UNIVERSITY OF WESTMINSTER

gRabh -

vvyy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Power consumption behaviour of multiplier block
algorithms.

Suleyman Demirsoy
Andrew Dempster
lzzet Kale

Cavendish School of Computer Science

Copyright © [2002] IEEE. Reprinted from 45th Midwest Symposium on Circuits and
Systems, 2002 (MWSCAS-2002), 04-07 Aug 2002, Oklahoma, USA.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

POWER CONSUMPTION BEHAVIOUR OF
MULTIPLIER BLOCK ALGORITHMS

Siileyman Strri Demirsoy, Andrew G. Dempster and Izzet Kale

Applied DSP and VLSI Research Group, Department of Electronic Systems
University of Westminster, 115 New Cavendish St, London, WIW 6UW, UK
Tel: +44 20 7911 5000 - 361 1(ext) e-mail: demirss@cmsa. wmin.ac.uk

ABSTRACT

Multiplier blocks have been used primarily for the reduction of
cireuit complexity. Using new algorithms, it has been shown that
they can also be used for effective reduction of power
consumption in digital filter circuits. In this paper, the new GP
score method is used as a relative power measure to compare
digital filter multiplier blocks designed using the BHM, RAGn
and C1 algorithms.

1. INTRODUCTION

Digital filter implementations employing multiplier blocks (MB)
offer substantial reduction in the multiplier area [2] and power
consumption [3]. This technique is based on sharing the
mtermediate terms that are generated by addition, subtraction
and shifting of the input sample between different coefficients.
By the clever combination of these partial products it is possible
to form the products with comparably few adders/subtractors [1].

There are algorithms to facilitate the design of multiplier blocks.
These algorithms take the coefficient set of the filter as the input
and produce a set of partial products that leads to the generation
of the final products in an optimal way defined by the criteria of
the algorithms. The BHM algorithm [2] looks for the closest
match to the target value from a range of multiples of all
fundamentals and adds to graph and continue to do so until every
coeffictent value is formed. The RAG-n algorithm tries to find a
set of partial products with the fewest adders by firstly including
all partial products that require a single adder, then examining
whether any further products can be produced when adding only
a single adder to the pgraph. This algorithm operates for
coefficient word-lengths up to 12-bits [2] The CI algorithm,
which employs RAG-n as a sub-algorithm, aims to find a
multiplier block with the shallowest possible adder chain from
the input to any output [3]. It starts by including in the designed
graph all numbers that require a single adder, i.e. “cost 1”. This
produces a very shallow graph. Cost 1 numbers are then removed
from the graph if this does not result in an increase in the graph’s
depth. The ultimate goal in any of these algorithms is the
reduction in area and/or power usage.

In digital CMOS circuits the major source of power dissipation is
due to transitions at the circuit nodes, and it is formulated as
follows [5]:

_ 2
war'lching =0y, CL Vdd etk (1)

0-7803-7523-8/02/$17.00 ©2002 1EEE

where Gl;_,, is the node transition activity factor (the average

number of times the node makes a transition in one clock
period), ;18 the load capacitance, V 4o 18 the supply voltage

to the circuit and fdk is the clock frequency of the circuit. It

can be easily inferred that the number of transitions taking place
in two circuits is an acceptable measure for the comparison of
the relative power consumption provided that the number of
nodes are not significantly different [5].

Recently, a high level method to estimate the relative transition
activity of multiplier blocks has been proposed [4]. “GP Score”
shows good correlation with the actual transition counts at each
node in a multiplier block for Virtex FPGA implementations.
The algorithm is applicable to any multiplier block in general,
however, the MATLAB script [6] operates on a table of numbers
that represents the details of the multiplier block in Dempster
format as detailed in the following section.

In this paper, we use the GP Score as the metric to compare the
relative power of the BHM, RAG-n and C1 algorithms. Section
2 describes the details of the experiments performed. Section 3
discusses the simulation results. Section 4 comments on the
behavior of the atgorithms and Section 5 concludes the paper.

2. ANALYSIS

The multiplier block algorithms mentioned above, are coded in
MATLAB and generate multiplier blocks in a table format
composed of the partial results and the input connections and
shift values for each adder/subtractor in the multiplier block.
Figure la shows a signal flow graph for a multiplier block
composed of six partial results/coefficients. Each vertex (®)
represents an adder with two inputs. The numbers on the edges

Fo2 | 2 | B | R} & {50
5 1 1 4 1
3 1 |1 2 1
7 1 |3 |1 2 12
19 1 [5 [-1 14 {2
71 1 17 16471 3
61 1 |3 164 1-112
@ (b}

Figure 1 A multiplier block in (a) signal flow
graph form, (b) in Dempster format

are the values that the inputs are multiplied by. These
multiplications are realized by shifting the input by hard wiring.
Negation is realized by replacing the adder with a subtractor.

Figure 1b is the corresponding table in Dempster format for the
signal flow graph given in Figure la. Each partial product is
given in a single row and characterized by the input connections
and scaling factor. A ‘1° that appears in the input (2™ and 3
columns means the graph input signal itself is connected to the
adder, A partial product given in the n" row can use the partial
products that appear in the upper rows (1 to n-1) as the inputs.
The edge values are all powers of 2 and correspond to a shift of
log; bits of the given number. The last column of the table is the
indicator of the maximum number of adders on the path from the
input to that partial result.

It is of interest to know how the algorithms perform in terms of
power on average for certain word-length and number of
coefficients. Their application to different coefficient sets would
result in different behaviors. Hence, an investigation over a large
number of random coefficient sets for different word-lengths and
different set sizes is required.

A set of experiments identifies the behavior of the algorithm for
a fixed coefficient set size of 25 and coefficient word-length of
8-bits, 10-bits and 12-bits for an 8-bit input signal over 100
random coefficient sets. Another experiment observes the
algorithms over a fixed coefficient word-length of 12-bits for
various set-sizes of 10, 15, 20 and 25 for 100 random sets.

To get an idea of the practical use of the algorithms on a variety
of real filter implementations, another set of experiments was
performed over a set of Low-Pass (LP), Band-Pass (BP) and
High-Pass (HP) filters,

All experiments were performed in the MATLAB environment.
The random filter sets are generated using the random
command. Real filter implementations were done by the remez
command that generates linear phase FIR filters for the given
frequency behavior,

3. RESULTS

Individual GP Scores of the multiplier-blocks generated by three
different algorithms for filters with random coefficient sets are
shown in Figure 2. Figure 2a is for 25 coefficients of 10-bit
word-length and Figure 2b is for 15 coefficients of 12-bit word-
length, The goal of the analysis was to find out the GP Score
characteristics of each algorithm for different word-length and
set size specification. It is observed that, for any particular
coefficient set, Cl generates the lowest GP Score among the
algorithms. The behavior of RAG-n and BHM varies greatly for
different sets, Despite their GP Scores being similar on average
in Figure 2a, the standard deviation of the individual scores is
greater for RAG-n. On the contrary, in Figure 2b, BHM
produces more diverse results and on average has the higher GP
Score.

Figures 3a and 3b display the average GP Scores and standard
deviations for random coefficient sets of various sizes and word-
lengths. In Figure 3a, the results are classified in terms of the set
size for the three algorithms where the word-length of the
coefficients are kept constant at 12-bit. As expected, the GP

Score increases with the increased coefficient set size. This is
because the multiplier block gets larger, and can hence be
expected in general to consurne more powet. The C1 algorithm
generates the multiplier blocks with the lowest GP Score over all
set sizes and has the lowest standard deviation for the random
examples. BHM gives the highest average GP Score for set sizes
of up to 25 coefficients and has the highest standard deviation
among its results. RAG-n produces a higher GP Score for 25
coefficients although it still has lower standard deviation.

Figure 3b shows the average GP Scores of random coefficient
sets for a fixed set size of 25 and varying word lengths, The Cl
algorithm consistently produces the lowest GP scores with the
minimum deviation. For shorter word-lengths, RAG-n and C1
mostly generate the same multiplier blocks for a given
coefficient set. However, the variation in the outcomes of RAG-
n is the highest among all. BHM gives better results than RAG-n
as the word-length increases, however, the deviations in the
results are substantially higher.

Table 1 displays the GP Scores and adder counts of the
multiplier blocks generated by the three algorithms for different
types of real filters. There are two lowpass filters, two highpass
filters and two bandpass filters. Each filter has a different pass-
band and stop-band specification. The coefficients generated by
the Matlab remez function are normalized to have the
maximum value of 1 and then multiplied by 4096 and rounded
using MATLAB’s floor command to convert them to 12-bit
integers. The three algorithms are then run to generate the
multiplier blocks.

As expected from the previous experiments, Cl gave the lowest
GP Score despite the increased adder count in examples 1, 2,
5and 6. BHM resulted in the highest GP Scores for all cases.
For 12-bit word-length and 25 coefficients RAG-n performed
worse than BHM, however in the examples given here, most of
the coefficients are less than 12-bit numbers as can be deduced
from Figure 4. In this figure, absolute values of the magnitudes
of the coefficients for some filters from Table 1 are shown. The
magnitudes of the coefficients of the HP filters are comparably
lower than LP and BP filters resulting in the lowest GP Scores of
the three types of filters. BP filters have more coefficients with
bigger magnitude and have higher GP Scores.

Although the results we have reported for the various filters are
indicative of the HP filter resulting in the smallest multiplier
blocks due to the density of the small coefficient magnitudes,
this is in no way a general characteristic for the HP filters only.
On the contrary we could have similar coefficient densities for
any filter response. The main factor that primarily decides the
coefficient magnitude densities in practical filter implementation
{predominantly FIR) is the active pass-band bandwidth.

4. DISCUSSION

Figures 2 and 3 clearly show that not only does the C1 algorithm
produce designs that are likely to consume less power than the
other algorithms, but also that we can have more confidence in
those designs, because the variation in the GP Score is lower. To
some extent, this high degree of variation in BHM and RAG-n is
due to the fact that they were designed as algorithms to reduce
adder count, and the power implications were ignored.

SGSF(‘) Score of random filters with 25 coefficents and wordlength=10

= bhm
ao0gr [9"
2500
2
o
%]
2000
o
o

15007

0 10 20 30 40 80 60 70 80 90 10¢
random filter sets

()

GP Score of random filters with 15 coefficients and wordlength=12
300

2500

1000

500 * y : - .
0 19 20 30 40 5B 60 V0 80 90 100

randem filter sets

(b)

Figure 2 GP Scores of the multiplier blocks produced by
different algorithms for 100 random coefficient filters (a)
word-length=10, set size=25 (b) word-length=12, set
size=15

It has been noted that when the RAG-n algorithm is operating on
a coefficient set that has no “cost-1" coefficients, heuristics must
be used when producing the multiplier block {2]. This causes
problems: the algorithm runs for much longer, and it produces
graphs that are not guaranteed to be optimal. The C1 algorithm
avoids these problems by including as many cost-1 coefficients
as possible. However, it leaves the C1 algorithm vulnerable to
the obvious next layer of problems at cost 2.

For example, consider the coefficient set [3 2123 3746 1689],
which has individual multiplier costs [1 3 3 4}. RAG-n would
design a 9-adder graph with depth 5 and GP Scote 316. There is
only one adder at depth 5 and it (1873 = 3746/2) is the last
inserted into the graph, as a combination of | x 1689 (at depth 4}
and 8 x 23 (depth 2). The 23 is inserted because it is the
minitnum number that would allow us to get to 1873 using one
adder. However, if instead, 2049 was used and we had 1873 =
2049 — 8 x [1, then this adder would have depth 3, the overall

GP Score and Standard deviation vs. size of the set

250

word-length=12 bits

¢| =+ - bhm
2000
- ragn
& cl

o 15000

Q R

L2

&

100 T
Standard Deviations
peet L -set size=20 set sizex25
500 set size®13 Bl bhm. ragn..

" setsize=10 bam

a =
8 10 12 14 16 18 20 22 24 26 28
number of coefficients
(a)
2 GP Score and Standard deviation vs. wordlength
Ol T u
number of coefficients=25 +
20000
-+~ bhm
- ragn
® 1500 s
8
»
-8
© 1000
500 ‘wordlength=8
bhm ragn . i

word-length

(b)

Figure 3 Average GP Scores and standard deviations of
the multiplier blocks produced by different algorithms
over 100 randem coefficient filters (a) different set-sizes,
word-length=12 (b) different word-lengths, set size=25

graph would have depth 4 and the GP Score would reduce to 267
from 316. Tn other words, a relatively arbitrary decision has
made a significant difference to the power consumption of the
design.

Another problem we noted while analyzing the results was that
Cl did not remove cost-1 coefficients that could reduce logic
depth. Obviously, there is more to designing shallow graphs than
our original simple-minded assumption (the premise of the Cl
algorithm) that an abundance of cost-1s will guarantee minimum
depth.

5. CONCLUSION

The main conclusion of the paper supports our original
hypothesis: that the C1 algorithm delivers lower-power designs
than the BHM or RAG-n algorithms. It also produces a more

I1I-3

TABLE 1 GP Scores and Adder Counts for a set of LP, HP and BP linear phase FIR filters

No FILTER SPECIFICATIONS GP SCORES ADDER COUNT
Coefficient word-length=12-bit BHM RAG-n C1 BHM { RAG-n | C1
1 | Order=64, LP, [fp fs]=[0.20 0.21] 1305 1195 1068 31 30 32
2 | Order=64, LP, [fp £s]=[0.17 0.19] 1666 1282 1047 29 29 32
3 | Order=64, HP, [fs fp]=[0.34 0.36] 041 716 716 24 24 24
4 | Order=64, HP, [fs fp]=[0.33 0.335] 860 699 699 23 22 22
5 Order=64, BP, [fs1 fp1 fp2 £52]=[0.18 0.19 0.30 0.31] 1840 1619 1165 33 32 34
6 | Order=64, BP, [fu1 fo1 fz £2]=[0.20 0.21 0.35 0.37] | 2011 1793 1342 13 31 34
LP, {fofe]= 017 0.19] HP, [%s1p]= [0.33 0.335) BP, [fs1 10252 = 018 0.19 0.30 0.31]
e r ; - ‘ 1 e— r : .
? . : : : ; : : :
R S L AR — beod 08 Heooieee i s b T ,
0.4 F§-}- , 0.4 s bemeen PR Y
7 11 S oz bt T T T il
i ?P Cl)nq)ﬁqch] o ? Q) %@;ﬁr\T (P ?
0 10 0 1o 20 30
@ (b) (c)

Figure 4 Normalized coefficients magnitudes of the (a) 2™ set (b) 4" set (¢) 5™ set from Table 1. The distribution of the 64
coefficients is symmetric in all filters in Table 1, therefore only half of the set is given in the figures.

reliably consistent power consumption for a given random
specification. RAG-n seems to work better than BHM for shert
word lengths and smaller coefficient sets.

However, the C1 algorithm is built on the RAG-n algorithm,
which has been seen to behave erratically. In fact, this study
seems more useful in pointing the way to a new low-power
algorithm, which could modify C1 as follows:

1) Use both RAG-n and BHM at each step and keep the better
result

ii) Allow the logic depth of the algorithm to decrease as cost-
1 coefficients are eliminated

i1i) Allow the number of adders to increase when logic depth
1s decreased

iv) Consider using only the “optimal” part of RAG-n and if
there are coeffictents left, use other heuristics, such as the
introduction of cost 2 coefficients, or the addition into the
graph of some of the required coefficients £1, £2, etc.

v) Investigate re-designing RAG-n to ensure that when it has
a choice of new adders to include, it chooses the one at
minimum depth.

vi} Use GP Score as the criterion for “best graph” rather than
logic depth

Another aiternative would be to approach the C1 problem the

other way around, i.e. to add a single cost-1 and see if it helps

with cost or depth or GP Score. Then continue adding cost-1s till
no further progress is made.

6. ACKNOWLEDGEMENT

The authors would like to thank Mark Zufferey for his generosity
in allowing us to use his resources for the work of this paper.

7. REFERENCES

[1] Bull D. R. and D H Horrocks, “Primitive operator digital
filters”, IEE Proceedings G, vol 138, no 3, pp401-412, Jun 1991
[2] A G Dempster and M D Macleod, “Use of minimum-adder
multiplier blocks in FIR digital filters” IEEE Trans Circuits and
Systems I, vol 42, no 9, pp569-577, September 1995

[3] Dempster A, G., S. S. Demirsoy, 1. Kale, “Designing
Multiplier Blocks with Low Logic Depth”, [EEE Int. Symp. on
Circuits and Systems (ISCAS’2002), vol. 5, pp. 773-776,
Arizona, US, May 2002

[4] Demirsoy 8. S., A. G. Dempster and 1. Kale, “Power Analysis
of Multiplier Blocks™, [EEE Int. Symp. on Circuits and Systems
(ISCAS’2002), vol.1, pp.297-300, Arizona, US, May 2002

(5] Chandrakasan A.P. and R.W. Brodersen, “Minimising
power consumption in digital CMOS circuits”, Proc.
IEEE, vol. 83, pp. 498-523, April 1995,

[6] http://www.cmsa. wmin.ac.uk/~demirss/gpscore

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

