

University of Westminster Eprints
http://eprints.wmin.ac.uk

A formal definition of the Users View (UV) of the
Graphical Object Query Language (GOQL).

Euclid Keramopoulos1
Philippos Pouyioutas2
Tasos Ptohos1

1Cavendish School of Computer Science
2School of Computing, Intercollege, Nicosia, Cyprus

Copyright © [2002] IEEE. Reprinted from Proceedings of the Sixth International
Conference on Information Visualisation, pp. 211-216.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

1

A Formal Definition of the Users View (UV) of the Graphical Object Query
Language (GOQL)

E. Keramopoulos *,
euclid@it.teithe.gr

P. Pouyioutas **,
pouyioutas.p@intercollege.ac.cy

T. Ptohos *

tasos@wmin.ac.uk

* Cavendish School of Computer Science, University of Westminster, 115 New Cavendish Str,
London W1W 6UW, UK

** School of Computing, Intercollege, 46 Makedonitissas Ave., P.O. Box 24005, Nicosia 1700,
CYPRUS

ABSTRACT
In this paper we provide a brief formal definition of

the Users View (UV) of the Graphical Object Query
Language (GOQL). The UV provides a graphical
representation for object-oriented database schemas and
hides from end-users most of the perplexing details of the
object-oriented database model, such as methods,
hierarchies and relationships. In particular, the UV does
not distinguish between methods, attributes and
relationships, encapsulates the is-a hierarchy and utilises
a number of desktop metaphors to present a graphical
schema that is easy to be understood by end-users. Thus,
the UV provides the environment, through which end-
users, can pose ad-hoc queries through GOQL.

We first give a brief formal definition of an object-
oriented database schema in the GOQL model. This is
given, by providing a formal definition of the basic
element of such a schema, namely the class. The UV is
then briefly formally defined as a mapping from a GOQL
object-oriented database schema. Using this mapping,
any object-oriented database schema can be translated
into a graphical representation in the UV. The running
example of the paper is used to demonstrate the mapping
from the textual schema to the graphical schema of the
UV. The formal definition of the UV will allow us, in the
future, to formally define the graphical constructs of
GOQL.

Keywords: Graphical Query Languages, Object-Oriented
Databases, Formal Definition

1. Introduction

The evolution of database query languages during
the last thirty years is strongly related to the evolution of
database models and database systems. In the early days,
i.e. the file processing systems era, the manipulation of
data stored in such systems depended on programs
written in some third generation programming languages.
Similar imperative languages were also used for querying
the hierarchical and network database systems that
followed the file processing systems. The introduction of
relational database systems proved a major leap forward

in the design/use of query languages as it led to the
development and use of declarative query languages.

The development of declarative query languages,
such as QUEL and SQL, meant that users were able to
query a system by describing what they wanted rather
than how to get what they wanted. The declarative nature
of these languages made them easier, for the end-user, to
use and understand and, thus, it allowed them to be
established as �user friendly� query languages suitable
for both expert and naive users. Tabular and graphical
query languages, which were based on the QBE paradigm
[1], were also proposed for relational database systems.
In languages such as Dbase, Paradox and Access, the
required tables are displayed on the user's screen; users
can usually express their queries by check marking
projected attributes, inserting selection criteria in the
appropriate attributes, and performing any join operations
by inserting common example variables in the join
attributes, or drawing lines between the join attributes.

Recent developments in database systems have
resulted in the appearance of object-oriented databases,
which also support the use of declarative query languages.
The SQL-like object-oriented query language of the
ODMG 2.0 model [2], namely OQL, has been widely
accepted as the standard in the field.

Recent advances in the use of graphical interfaces
and the successful introduction of the Graphical User
Interfaces (GUIs) by a number of vendors, such as Apple
and Microsoft, have also led to the development of a
number of graphical programming languages, such as
Visual C++ and Visual Basic. The popularity of graphical
programming languages might be attributed to users�
perception that these languages are easier to use and learn
compared to textual languages.

The phenomenal success of graphical programming
languages combined with researchers� drive to provide
database users with an interface that will allow them to
pose ad-hoc queries, led to the development of a number
of graphical interfaces for various database systems. A
comparative analysis of the features supported by such
interfaces can be found in [3]. Typically, such interfaces
allow queries to be visualised and be represented
diagrammatically or graphically rather than in some
obscure code.

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

2

In this paper, in Section 2, we present the graphical
interface of the GOQL language, namely the Users View
(UV), based on which GOQL queries can be posed
[3,4,5,6]. An example of an object-oriented database
schema and its corresponding UV is given to illustrate the
graphical interface provided by GOQL. In Section 3, we
provide a formal definition of the GOQL object-oriented
database model. In Section 4, we formally define the
mapping from a GOQL object-oriented database schema
to its corresponding UV. This mapping is used to
construct the UV of a given object-oriented database
schema. Finally, the paper concludes by discussing our
current and future work.

2. The Users View (UV)

The language GOQL [3,4,5,6] has been designed to

address the needs of end-users. It provides a graphical
interface, namely the Users View (UV), which hides and
encapsulates some features of the underlying database and
represents some others using metaphors. The language is
based on the object model of the ODMG 2.0 and provides
a graphical querying mechanism. Because there is a direct
correspondence between the features of GOQL and OQL
(GOQL supports all the features of OQL), the language
can be used as an alternative graphical interface to OQL.
Thus, GOQL allows users to express graphically queries
ranging from simplistic ones to rather complicated ones.
Among the features provided/supported by the language
are: the support of a 2D colour interface, the use/support
of methods, predicates, Boolean & set operators,
arithmetic expressions existential /universal quantifiers,
aggregate functions, group by and sort operators,
functions, and sub queries.

The graphical representation provided by GOQL is
called Users View (UV), and allows the representation of
all the features of the underlying ODMG object model;
however, a UV hides from users most of perplexing
details, such as methods, hierarchies and relationships. In
particular, a UV (a) does not distinguish between
methods, relationships and attributes; (b) does not support
an explicit representation of the is-a hierarchy lattice;
instead properties inherited by a subclass are explicitly
represented in that subclass as properties of the
corresponding class table; (c) utilises a number of desktop
metaphors that allow the representation of the other
features of the object model.

The UV of a GOQL object-oriented database
schema is generated from the stored metadata of the

underlying schema, and it is comprised of a number of
UV_class_tables (one UV_class_table for each class of
the schema). Each UV_class_table contains a list of all
the attributes, relationships and methods of the
corresponding object-oriented database schema class,
including the attributes, relationships and methods of all
of the superclasses of the class under consideration. More
specifically, the UV is a mapping of a GOQL object-
oriented database schema into the graphical interface of
GOQL, achieved by the use of various metaphors [3] as
follows:

• each class is mapped into one UV_class_table
• each attribute of a class is mapped into a

property (row) of the corresponding
UV_class_table

• each method of a class is also mapped into a
property (row) of the corresponding
UV_class_table

• each relationship is also mapped into a property
(row); thus, there is no distinction, as the user is
concerned, between an attribute, a method and a
relationship; the resulting row is linked with a
folder or a briefcase (a briefcase is used when
the related class has subclasses)

• each attribute/method of any superclass of the
mapped class is mapped into a property (row)
of the corresponding UV_class_table; thus,
inheritance is hidden from the user and the user
sees all properties of any superclasses as
properties of the UV_class_table

• types are hidden from the user (thus properties
do not show their types), except the ones listed
below, which help users to understand better the
database schema:

! a structure type is shown by an
envelope which is placed in the right
edge inside the row of the property; a
user can open the envelope to reveal
the properties that constitute the
structure type

! a collection type (set, bag, list or array)
is shown by a paper clip which is
placed in the top right edge inside the
property row.

We next give in Figure 1 and Figure 2 a GOQL
object-oriented database schema (expressed in OQL) and
its corresponding Users View.

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

3

class Document
(extent Thedocuments)
{ attribute string ISBN;
 attribute string Title;
 relationship Publisher Publishers
 inverse Publisher::Publish;
 attribute float Price;
 relationship set <Editor> Editors
 inverse Editor::Documents;
 relationship set <Paper> Papers
 inverse Paper::Published_in;
 attribute integer Pages;
 attribute integer Year;
};

class Journal extends Document
(extent Thejournals)
{ attribute integer Volume;
 attribute integer Number;
};

class Proceedings extends Document
(extent Theproceedings)
{ attribute struct Con_Date {Date Start_date, Date End_date};
 attribute struct Place {set <string> City, string Country};
};

class Publisher
(extent Thepublishers)
{ attribute string Name;
 attribute string Address;
 attribute string Tel_no;
 attribute string Fax;
 attribute string Web_page;
 relationship set<Document> Publish
 inverse Document::Publishers;
};

class Person
(extent Thepersons)
{ attribute string Name;
 attribute string Sex;
 attribute Date Date_of_birth;
 attribute string Email;
 attribute string Web_page;
 integer age;
};

class Editor extends Person
(extent Theeditors)
{ relationship list<Document> Documents
 inverse Documents::Editors;
};

class Author extends Person
(extent Theauthors)
{ relationship list<Paper> Papers
 inverse Paper::Authors;
};

class Paper
(extent Thepapers)
{ attribute string Title;
 relationship set <Author> Authors
 inverse Author::Papers;
 relationship Document Published_in
 inverse Document::Papers;
 attribute integer First_page;
 attribute integer Last_page;
 attribute set<string> Keywords;
 relationship set<Paper> References
 inverse Paper::Is_referenced;
 relationship set<Paper> Is_referenced
 inverse Paper::References;
};

Figure 1: A GOQL Object-Oriented Database Schema

P ap e r

A u th o r

D o cum en t
"

P e r so n
N a m e
S e x
D a te _ o f_ b ir th
E m a il
W e b _ p a g e
A g e

A u th o r

P a p e rs

D o c u m e n t
IS B N
T itle
P u b lish e rs
P r ic e

P a p e r
T itle
A u th o rs
P u b lish e d _ in
F irst_ p a ge
L a s t_ p a ge
K e yw o rd s

N a m e
S e x
D a te _ o f_ b irth
E m a il
W e b _ p a ge
A ge

E d ito r

D o c u m e n ts

N a m e
S e x
D a te _ o f_ b ir th
E m a il
W e b _ p a ge
A ge

Pu b lish e r

J o u r n a l
IS B N
T itle
P u b lish e rs
P ric e

Pu b lish er

P r o c e e d in g
IS B N
T itle
P u b lishe rs
P ric e

Pu b lish er

C o n _ D a te
P la c e

P u b lish e r
N a m e
A d d re ss
T e l_ n o
F a x
W e b _ P a ge
P u b lish D ocum en t

"

#

E d ito rs E d ito r

E d ito rs Ed ito r

E d ito rs

V o lu m e
N u m b e r

Y e a r
P a p e rs
P a ge s Pap e r

E d ito r

D ocum en t
"

P a p e rs
P a ge s P ap e r

P a p e rs
P a ge s Pap e r

R e fe re n c e s Pap e r
Y e a r

Y e a r #

D a te

D a te

D a te

Is_ re fe re n c e d
P ap e r

Figure 2: The Users View of the Schema

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

4

3. A formal definition of the GOQL object-
oriented database model

GOQL is based on the ODMG 2.0 [2] object-

oriented model. In this section, we provide a brief formal
description of the GOQL object-oriented database
model.

A GOQL object-oriented database schema S, is
defined as set of classes:

S = {Classi | i = 0 .. n}
A Class C, is defined as a quadruplet:

C = <State, Behaviour, Relationships, Inheritance >,
where

C.State = {< attributei: typei> | i = 0 � m, m is the
number of attributes }

C.Behaviour = { methodi | i = 0 .. n, n is the number
of methods }

C.Relationships = {relationshipi | i = 0 .. j, j is the
number of relationships }

C.Inheritance = { Ci | i = 0 .. k, k is the number of
immediate superclasses of C }

GOQL supports the types supported by on the
ODMG 2.0 database model. We then provide the list of
types supported:

Type = { Literal_Type
Object_Type

Objects are identified by their object identifiers whereas Literals do not have identifiers.

Atomic_Literal Literal_Type = { Structured_Literal

integer
float
boolean
character
String

Atomic_Literal = {

Enumeration

Literal_Collection

Structured_Literal = { Literal_Structure

Literal_Collection = {

Set Type
Bag Type
List Type
Array Type

Literal_Structure = < attributei: Type> | i = 0 � m, m is the number of attributes in the structure >

Enumeration is a type generator, which defines a
named literal type that can take on only the values listed
in the declaration. Sets are unordered collections that do
not allow duplicates. Bags are unordered collections that

allow duplicates. Lists are ordered collections that allow
duplicates. Arrays are unordered lists that can be located
by position.

Object_Type = {

Atomic_Object (instance of a user-defined or a built-in class)
Structured_Object

Structured_Object = { Object_Collection
Object_Structure

Set Type
Bag Type
List Type Object_Collection = {

Array Type

Object_Structure = < attributei: Type> | i = 0 � m, m is the number of attributes in the structure >

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

5
Atomic_object is either an instance of a user-

defined or a built-in class (Date, Time, Timestamp and
Interval).

4. A mapping from the GOQL object-oriented
database schema to the GOQL Users View (UV)

As explained in Section 2, the Users View (UV) of

a GOQL object-oriented database schema is generated

from the stored metadata of the underlying schema, and
it is comprised of a number of UV_class_tables (one
UV_class_table for each class of the schema). Herein we
give a formal description of this mapping. We first give
some definitions, which are used in the mapping.

Let C be a class. The all_attributes operator returns
the set of all attributes of the class C, which are either
explicitly defined in the class or in any of its
superclasses.

all_attributes (C) = { A | A ∈ C.State or (A ∈ all_attributes (X) and X ∈ C.Inheritance) }

Let C be a class. The all_methods operator returns
the set of all methods of the class C, which are either

explicitly defined in the class or in any of its
superclasses.

all_methods (C) = { M | M ∈ C.Behaviour or (M ∈ all_methods (X) and X ∈ C.Inheritance) }

Let C be a class. The all_relationships operator
returns the set of all relationships of the class C, which

are either explicitly defined in the class or in any of its
superclasses.

all_relationships (C) = { R | R ∈ C.Relationships or (R ∈ all_relationships (X) and X ∈ C.Inheritance) }

A GOQL object-oriented database schema S is
mapped into a Users View schema uvS by creating a
UV_class_table for each class C in S. The
UV_class_table has one row for each attribute/method/
relationship of C (directly defined or inherited by any
superclass of C). Five types of rows exist: simple,
envelope, clip, folder and briefcase depending of the
type of the attribute/method/relationship that resulted in

the said row. An envelope row is one resulted from a
structured attribute/method, a clip row is one resulted
from a collection attribute/method/relationship, a folder
row is one resulted from a relationship with a class
which has no subclasses and finally a briefcase row is
one resulted from a relationship with a class which has
subclasses. More formally, this mapping can be defined
as follows:

∀C ∈ S, ∃ uvC ∈ uvS: all_properties(uvC) = all_attributes(C) U all_methods(C) U all_relationships(C)
 the all_properties operator gives all the rows of a UV_class_table
Let p ∈ all_properties(uvC), p� be the attribute/method/relationship resulted in p and t the type of p�

If (t = Atomic_Object and not ∃ C� ∈ S: t ∈ all_superclasses(C�)) then

folder_row(p)
elseif (t = Atomic_Object and ∃ C� ∈ S: t ∈ all_superclasses(C�)) then

briefcace_row(p)
elseif (t = Object_Structure or t = Literal_Structure) then
 envelope_row(p)
elseif (t = Object_Collection or t = Literal_Collection) then
 clip_row(p)

If (unnest(t) = Atomic_Object and not ∃ C� ∈ S: unnest(t) ∈ all_superclasses(C�)) then
 folder_row(p)

 elseif (unnest(t) = Atomic_Object and ∃ C� ∈ S: unnest(t) ∈ all_superclasses(C�)) then
briefcace_row(p)

 elseif (unnest(t) = Object_Structure or unnest(t) = Literal_Structure) then
envelope_row(p)

 endif
 endif

 where unnest(t) = collection_unnest(t) and (t = Object_Collection or t = Literal_Collection)

 = t, otherwise
 collection_unnest(t) = collection_unnest (t�), if (t� = Object_Collection or t� = Literal_Collection)
 = t�, otherwise
 where t = Object_Collection t� or t = Literal_Collection t�

5. Conclusions

In this paper we provided a brief formal definition of

an object-oriented database schema in GOQL. We have

also explained the transformation of a given schema in
the Users View (UV) graphical representation of GOQL.
The graphical schema provides end-users with an
interface that allows them to easily pose ad-hoc queries

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

6
[3, 4, 5, 6]. The transformation of the schema to its Users
View has also been formally defined as a mapping from
the schema to the UV. Our work is based on the ODMG
2.0 model [2]. The recent release of the ODMG 3.0
model [7] necessitates that we extend our work to be
compatible with the new standard. Thus, our current work
concentrates on amending the work presented herein, as

well as amending the GOQL query language [3, 4, 5, 6]
to be consistent with the ODMG 3.0 model. Furthermore,
our current work concentrates on the methods and the
behaviour part of the GOQL model. An evaluation
experiment [8] carried out on the current version of
GOQL provided us with optimism as regards with the
usefulness and acceptability of the language.

References

[1] Zloof, M.M.: Query By Example. In Proceedings of NCC,
44, AFIPS Press, 1977.
[2] Cattell R.G.G. & Barry D.K. (Eds.). The Object Database
Standard: O.D.M.G. 2.0. Morgan Kaufmann Publishers, 1997.
[3] Keramopoulos, E., Pouyioutas, P., & Ptohos, T. A
Comparison Analysis of Graphical Models of Object-Oriented
Databases and the User�s View Level of GOQL. To appear,
International Conference on Information Visualisation 2001.
[4] Keramopoulos, E., Pouyioutas P. & Ptohos T. The GOQL
Graphical Query Language. To appear, International Journal of
Computers and Applications, 2001.

[5] Keramopoulos, E. Ptohos, T. & Pouyioutas P., 2000.
GOQL - A Graphical Query Language for Object-Oriented
Databases. IASTED AI2000 International Conference (Applied
Informatics), pp.129-133, Innsbruck, February 2000.
[6] Keramopoulos, E., Pouyioutas, P. & Ptohos, T. The
User�s View Level of the GOQL Graphical Query Language.
International Conference on Information Visualisation 99, pp.
81-86, London, July 1999.
[7] Cattell R.G.G. & Barry D.K. (Eds.). The Object Database
Standard: O.D.M.G. 3.0. Morgan Kaufmann Publishers, 2000.
[8] Georgiadou E., Keramopoulos E. Measuring the
Understandability of a Graphical Query Language through a
Controlled Experiment. BCS Conference of Software Quality
Management, Loughborough, 18-20 April 2001.

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

