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Electronic Nose: Clinical Diagnosis based on
Soft Computing Methodologies

V.S. Kodogiannis, P. Chountas, A. Pavlou, 1. Petrounias, H.S.Chowdrey and C. Temponi

Abstract—Recently, the use of smell in clinical
diagnesis has been rediscovered due to major advances
in odour sensing technology and artificial intelligence, It
was well known in the past that a number of infectious
or metabolic diseases could liberate specific odours
characteristic of the disease stage and among others,
urine volatile compounds have been identified as
possible diagnostic markers. A newly developed
electronic nose based on chemoresistive sensors has
been employed to identify in vitre 13 bacterial clinical
isolates, collected from patients diagnosed with urinary
tract infections, gastrointestinal and respiratory
infections, and ir vive urine samples from patients with
suspected uncomplicated UTI who were scheduled for
microbiological analysis in a UK Health Laboratory
environment. An intelligent model consisting of an
odour generation mechanism, rapid volatile delivery
and recovery system, and a classifier system based on a
neural networks, genetic algorithms, and multivariate
techniques such as principal components analysis and
discriminant function analysis-cross validation. The
experimental results confirm the validity of the
presented methods.

Index Terms—Neural networks, Genetic
Electrenic noses, Microbial analysis.

algorithms,

I. INTRODUCTION

There is increasing worldwide awareness that bionics and
artificial intelligence (AI) will play an important role in
many aspects of human activity. Medicine will be o
exception, new socio-economical factors and the needs of
an evolving global community are demanding the
development and application of new intelligent diagnostic
and therapeutic near-patient or home-based devices to
control disease more effectively [1]. Advanced information
technology and satellite communications combined with
new intelligent sensors conld result in the ability to monitor
and control the worldwide spread of discases like
tuberculosis (TB), AIDS, cancer, metabolic diseases and
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gastric disorders such as Helicobacter pylori (HP) infection
[2]. Since the early report of an artificial electronic odour
detection system by Persaud & Dodd [3], a substantial
amount of research has been targeted on the development
of novel integrated gas-sensing systems, The petential
applications for the Electronic Nose technology are very
extensive. Those industries that are using or could use this
technology include Foed & Drink, Chemical, Petroche-
mical, Packaging, Pharmaceutical, Flavours & Fragrance,
Environmental, Health and Security [4]. Over the past few
years there have been an increasing number of attempts to
apply artificial olfactory diagnostics in clinical practice [5].
The diagnosis of disease states is a primary pre-requisite of
successful medical treatment and as such is a high priority
in any area of clinical science. Microbial infections and
related causes of illness seem to be one of the more
common problems encountered in the world today and are
widely reported by the press, especially when so-called
“killer bugs” or “antibiotic-resistanf’ organisms are
mentioned. In many cases, infection with micro-organisms
produces a change in the smell of a person, which can be
especially noticeable on the breath, in the urine or the
stools. Such changes have been commonly used as an aid to
diagnosis of disease and in some countries, smelling the
patient or the body fluids of the patient was, and still is, an
important tool in diagnesis. In 1986, National Geographic
published an article on “The intimate sense of smeil” in
which the odour of different diseases was described and in
which clinicians state that odour is important in diagnosis,
especially in the emergency room.

However a critical step before introducing such “smart™
devices into the clinic would be the ir virro static or
dynamic headspace analysis of microbial wvolatile
compounds, extracted from clinical isolates of UTI, HP and
Tespiratory infections. A metabolile may be described as
volatile if it is a gas or has a high vapour pressure under the
environmental conditions in which it is liberated from a
cell. Organic volatile compounds (VOCs) can affect all
forms of life, from the pheromones of insects, the odours of
plants, to putrefaction. Whether chemo-messengers
intraspecies or interspecies (allelochemics), they form
complex dynamic systems of odour mixtures which can
affect species behaviour and adaptation. The following
table presents some microbial velatiles and their
biochemical precursors.

Detecting low numbers of bacterial species in clinical
samples usually involves time consuming growth in
selective media and subsequent isolation and identification
by appropriate diagnostic procedures. Complex volatile
mixtures are released during bacterial interaction with the



host tissue or media, and chromatographic techniques have
been used in the past to characterise those species on their
gas profiles [6]. Recently some novel biomedical, gas-
sensing applications have been reported, such as the
diagnosis of leg-ulcer streptococeal [7] and respimatory
infections [8], detection of diabetes [9]. Gibson ef al. [10}
reported the characterisation of baclerial classes and growth
phase prediction by applying sensor arrays combined with
neural networks and other pattern recognition methods.

TABLEI
GENERATION OF MICROBIAL VOLATILES DUE TO METABOLIC REACTION
WITH SPECIFIC BIOCHEMICAL PRECURSORS

Bacterial species Medium Volatile Compound
E. coli, Klebsiella sp. Arabinose, Ethanol

lactose
Proteus sp., Kiebsiella sp, Trypticase [sobutanol, isopentyl
Staph. Aureus, soy broth acetate ketones

Pseudomonas sp.

Proteus sp L-methionine  Dimethyl sulphide,
methyl mercaptan
Trimethylamine, ethyl

acetate

Proteus sp, Enterococcus
sp. Klebsiella sp

Acatyleholine

Proteus sp, C. septicum Broth Isobutylamine,

(complex) isopentylamine,
ethylamine

Proteus sp Phenylalanine  Benzaldchyde,
, valine isobutyraldehyde
leucine isovelaraldehyde

P. acruginosa Broth Butanol, methyl ketones,
{complex) 2-heptanone

Recently, a rapid detection of Helicobacter pylori and
gastroesophageal clinical isolates employing a wide range
of metal oxide and conducting polymer sensors combined
with neural networks (NNs) and multivariate techniques as
been reported [11].

The objectives of this study are to;

e Introduce the application of a newly devcloped
intelligent gas-sensing device in a UK Public
Health Laboratory environment;

e Analyse 45 specimens of human urine by the
application of an intelligent diagnostic model
based on novel generation, detcction, and rapid
recognition of urinary volatilc patterns within 5
hrs of receipt of specimens in the laboratory.

¢  Discriminate i vitro, between 13 bacterial clinical
isolates all collected from patients diagnosed with
Urinary Tract infections (UTI), gastrointestinal
and respiratory infections

» Combine classical NN techniques with advanced
Al-based methodologies (GA) to generate a
powerful hybrid classification tool; demonstrate
the power of a GA, by which a sophisticated NN
can be trained for improved generalisation and
classification performance;

* Adopt a soft fusion of the outputs of multiple
classifiers dedicated to specific feature parameters.

il. EXPERIMENTAL

A. Volatile sensing system
A gas sensor array (Bloodhound Sensors) ecmployed 14
electroconductive polymer, semi-micro, chemoresistors
produced by eclectropolymerisation of the corresponding
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monomers directly onto the sensor surface. Production of
sensors  primarily  involved doped  polypyrroles,
polythiophenes and polyanilines with different substitute
groups in the polymer structure as illustrated in Fig. 1. The
sensor array was also mounted in solenoid valves, which
provided the headspace sample with carbon-activated
filtered clean airflow of 4ml sec”. Specific selection and
polymer tailoring, doping materials and precise
manufacturing process can make each of the 14 sensors
consistently responsive to a variety of volatile mixtures.

Doped Polypyrrole
and Palyaniline

Pt strips with gaps
4.323mm wide

Fig. 1: The Bloodhound gas-sensing unit

The sensor ¢lectrodes wused were manufactured
photolithogra-phically and consisted of a gold interdigitated
structure on aluminum substrate with a titanium adhesion
layer. Electropolymerisation was carried out by electrode
immersion in aqueous or acetonitrile solutions of the
monomer and ¢ycling between -0.1V and +0.8V or +1.7V
for thiophenes. Teflon upgraded flow cells prevented
volatile adsorption onto the housing surfaces. The sensory
unit employs a control sample system that generates two
calibration points:

e A sensor baseline, which is generated by
continuous flow of activated carbon filtered air
passing over sensor surfaces and

» A control-sample unit that contains 100ml of
sterile water, able to perforin a flush-cycle and
define a standard reference point.

A specific sampling profile consisted of 5s of absorption
time and 16s of desorption time was applied and controlled
by specially designed data capture software,

B. In vitro classification of bacterial clinical isolates

The following bacterial species, as illustrated in Table II,
were isolated from patients suffering from Septicagmia,
Respiratory, wound and Urinary Tract infections (UTI).
After primary culture and biochemical profiling and
characterisation they were assigned a Gloucestershire
Royal Hospital culture collection mumber.

1) Bacterial volatile generation
The above clinical isolates were recovered on Blood agar
plates No.2 (Oxoid), containing 5% sterile horse-blood
(Oxoid) for 16hrs following primary isolation, and
successful growth the biochemical profiles of all species
were identificd using conventional microbiological analysis
performed at Gloucestershire Public Heaith laboratory
(UK). Each one of the bacterial species was inoculated (10°
CFU) on blood agar No 2 (Oxoid) containing 5% horse-



blood (Oxoid), urea (Img ml”, lactose (2mg ml™", L-
methionine, L-valine and L-leucine (0.5mg ml”, Sigma)
adjusted at pH 7.3.

TABLE I
(GENERAL AND BIGCHEMICAL CHARACTERISTICS OF 13 CLINICAL ISOLATES

Sprcies Heep .No Source  Diagnosi Blschemical
(GRH PHLS) conditian
Escherichacali TI®Y Vrine UTl A Galacicndese”, Lysine®, Wsityt-

18¢ *. Feu.: Lacloss®, mearnital’,
Kylost * Indole’
B.Galadosidasa’, L oo, Mothgl-
123", Foma.: Lactase’, mammital®,
Hylops ¥
Nosocomial  Extendedspectrum. Rlactamase,
UTL Argrine *, Lysine, [nositol and
Clyeecol: acid
Acid from: Mannitd *, Lactose®,
Sucrose *, Sorbitel”, Hydeolysis of
Argnine *, Pyruwate!

Citrobacter spp 94513 Blood  Septicaemia

Bterobarter cloacae 93586

Faeces

Bvderacoccus foecalis  T2¥T1 Urine uTi

Beerococousspp. 93981 Urine/  Cyslitis Pyruvals *, mebiiose®.
fueces
Ketmella orytoca 94022 Uznne uTi Mel cnale.f srm eration ¥, O lucoss, gas”]
Indale *, Urenss’, KCN gowth”,
Klebsiclle preumnemioe 167913 Sputusi  Preumania Glucos gas”, indole’, Urenne’, KON
arowth ©
Lactobarilbe s 71855 Gastric  Gastsie Catalase *, HS gas’.
Juice canger
Pratas gp. 24488 Usine Bledder Ureese *,H S gas’, BfGaloctomdase’)
Infection Lactoas™,
Pratas mrabilis 94402 Usine UTI Urease . Qerithins decarbozylase .
Lipase .
Saglpiococns aras 94707  Womd  Skinlesion Catnlest *, Coagulese®,
Preuriomonas serugnesa 73021 Sputum  Chesticfecion  Oxidam ', Gelatinase’, NHy

from Arginine *.
BHaemolysis®, Growp A
Ferm : Lactoee ™

Sreptacovers progenes S4TIT  Throst swab Sore throat

* Positive, Negative, "™ Fermentation, “%Gioucestershics Royal Hospilat, PP Putiic Hestth
Labcratory Service, T Urinary Tsact Infe cion.

All bacterial cultures were incubated at 37°C aerobically
for approximately 12hrs except Lactobaciilus spp. that was
cultured micro-aercbically at 45°C and pH 6.0. A number
of controls containing only sterile cultures were also
incubated for the same period of time in order to study the
difference between actual bacterial volatile patterns and
“noisy” background produced by humidity, sensor aging
and natural enzymatic digestion of cultural substrates.

2) Volatile delivery system
- Following 12hrs of incubation at 37°C, each of the growing
cultures-measured at the stationary phase-were placed into
21 polypropylene Mylar bags and inflated with carbon-
activated filtered clean air (Hepavent, Whatman).

(C): Iofllter aml senmor
areay apparatus

() headspace
pling point
™.

— —— /
; (i) Newwral neework analysis
/ DV PALEEE IE FECoraItEon
i
.

>
(b)’.‘ 370 warer batht st
FIALC evirolment

Fig. 2: Schematic representation of experimental apparatus

Each bag was transferred into a 37°C water bath and left to
cquilibrate for 5min before being connected with the
sensory unit through & 15cm long Teflon tbing, a
hydrophobic PTFE filter (Hepavent, Whatman), to ensure a
sterile less humid environment over the sensor surfaces.

256

The sampling point was adjusted to a set height above the
static headspace as illustrated in Fig. 2. A flow rate of
200ml min” was set automatically by data control software.
Additionally environmental conditions at the sampling
point, inside the water bath were continnously monitored in
order to establish a standardised sampling protocol.

3) Bacterial pattern recognition

Fig. 3 displays a real time sensory response analysed by 5
extracted sensor features that describe sensor-volatile
physicochemical interaction and pattern extraction. (a)
Divergence: maximum step response, (b) Absorption:
maximmm rate of change of resistance), (c) Desorption:
maximum negative rate of change of resistance, (d) Area
under the curve and (e) Ratio Absorption/Desorption. In
order to improve the bacterial classification process
fourtcen conducting polymers and the above 5 features
generated a set of 70 sensor parameters. All sensors
responses were pre-processed by using a suitable
normalisation algorithm [12].

Time: 60s

N

B

Yo Response

Fig. 3: Parameters measured for each sensor response

C. In vivo classification of Urinary tract infections

UTI is a significant cause of morbidity with 3 million UTI
cases each in the USA alone [13]. Thirty-one percent of
nosocomial infections in medical intensive care units are
attributable to UTI, and it is estimated that 20% percent of
females, aged of 20 and 65 years suffer at least one episode
per year. There are also links to other complicated or
chronic urological disorders such as pyelonephritis,
urethritis, and prostatitis[14].  Approximately 80% of
uncomplicated UTI are caused by FE.coli and 20% by
enteric pathogens such as Enterococci, Klebsiellae, Proteus
sp., coagulase (-) Staphylococci and fungal opportunistic
pathogens such as Candida albicans [15]. Current
diagnostic techniques requirc 24-48 hss to identify
pathogenic species in urine midstream specimens (= 10°c
ml") and apply antibiotic semsidvity tests. Despite the
introduction of molecular lests, microscopy and culture
remain the gold standard in every day clinical practice.

1) Urine samples and volatile generating kits (VGK)
Forty-five 5ml urine samples (following eukaryotic cell
filtering extraction) were collected from randomly selected
patients admitted in Gloucestershire PHLS and inoculated
into specially made centrifuge bottles (50ml, Sterilin) each
containing 95% BHI broth (Oxoid), 5% serum bovine
(Oxoid), 0.70mg ml" of a series of amino acids (L-Leucine,



L-Alanine, L-Serine, L-Valine, L-Asparagine, L-
Glutamine, L-Methionine, Sigma), 1mg ml” Urea (Sigma),
0.75mg ml” Lactose (Sigma), 0.1mg ml* Casein (Oxoid),
0.3mg ml! Acetyicholine (Sigma) to a final volume of
20ml per VGX and incubated acrobically for 5 hrs at 37°C.

2) Flow injection analysis (FI4) of urinary volatiles
After 5 hrs of incubation to coincide with the logarithmic
phase of growth, 45 VGK were placed in a 37°C water bath
and directly connected with a specifically designed air-
filtlered sparging (bubbling) system. This consisted of
Teflon tubing (Tvgon), a hydrophobic biofilter (0.45pm
PTFE, Whatman-Hepavent) and an activated carbon filter
(Whatman) to provide clean air-flow above the urine
headspace. A flow rmate of 200ml min’ was set
automatically and environmental conditions at the sampling
point were continuously monitored. The actual urine
sampling time and baseline recovery per specimen was 3
min.

3) Intelligent UTI patterr recognition system

Thirty cases of UTI were identified from 45 randomly
selected samples by standard microscopy and culture: 13
patients were infected with E.coli (e}, 9 with Proteus sp. (p)
and 8 with coagulase (-) Staphylococcus sp., (st). Two
genetic training algorithms processed urine data through a
parallel evolutionary succession process towards competent
NN solutions. The first GA analysed patient data that had
been randomly divided into a “training” group of 31
urinary samples (e: 9, p: 6, st: 5 and n: 11) and a group of
14 “unknowns” (e: 4, p 3, st 3 and n: 4, 31% of patient
collected data).

III. ODGUR RECOGNITION AND DATA ANALYSIS

A. In vitro analvsis

Two hundred and forty-cight bacterial patterns of 14
classes and 70 normalised sensor parameters constructed a
matrix of 17,360 sensor data-items that was analysed by an
intelligent system consisting of Radial Basis Function
Networks (RBF). Overall, the sensor data matrix was
randomly divided into a training group containing 200
bacterial patterns and a testing one of 48 random
“unknown” samples.

e—— .

Laure ,;eu‘D%?l

a—

—

AlLsOTPOOn ):v
et SIS o

e

Desorption  J=—r

Fig. 4: Multiple Classifier Architecture

Recently, the concept of combining multiple networks has
been actively exploited for developing highly reliable
neural network systems. One of the key issues of this
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approach is how to combing the results of the various
networks to give the best estimate of the optimal result. A
straightforward approach is to decompose the problem into
manageable ones for several different sub-networks and
combine them via a gating network. The proposed
architecture is a neural network system containing five
parallel modules, one for each of the bacterial properties as
shown in Fig 4. Each network module makes a
classification from a single property and their results are
combined. using an averaging approach, to make an overall
classification. All modules contain fourteen input nodes
and four output nodes. The fourteen input nodes correspond
to the fourteen sensor parameters.

150

v &

3 Lo Laelag
o oy
§ 100 ‘In Oclasses
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— e

classes

Fig. 5: Fusion analysis results

The four output nodes are sufficient for binary
representation of the fourteen classes (13 bacterial classes
and the control group). Four binary digits can represent
sixteen integers, so each class is assigned one of fourteen
binary patterns. Two patterns remained unused. The soft
combination of neural classifiers resulted in 93.75%
accuracy over the testing dataset, demonstrating in this way
the efficiency of this scheme in terms of accuracy and
processing-time. The relevant results are illustrated in Fig.
5.

B. In vivo analysis

An evolutionaty process of 5 generations (3 NNs/
generation) was carried out employing 1 crossover and a
mutation rate of ©.5. Additionally the second GA
performed a much broader evolutionary optimisation
analysis of 100 generations. It also attempted to analyse the
same amount of patient data but with a higher ratio of
“unknown” proportion (42% of collected patient data)
including 26 training samples (¢: 8, p: 4, st: 4, n: 10y and 19
“unknown” UTI (e:5, p:3, st:4, n:5). A population of 600
NNs was evolved using an immigration mode, 2 crossovers
and a mutation rate of 0.7 towards the “fittest” NN solution.

Both “genetically” selected sensor parameters were also
used to perform PCA and DFA-cv. PCA accomplished
non-parametrically a significant dimension reduction by
minimising minor UTI data variations so that information
could be depicted on a few two-dimensional principal
component score plots. Two parallel evolutionary
algorithms selected 2 NN solutions. The first was a 3-layer
(28-12-4) back-propagation NN that used an adaptive
learning rate, a momentum of 0.42, an input pattern noise
of 0.03 and achieved a 98% prediction rate. Thirteen out of
14 “unknown” UTI samples were identified correctly with



a prediction output confidence ranging from 0.75 to 1.01.
The intelligent system failed to characterise only one uring
sample previously diagnosed with £ coli infection.
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Fig. 6: Extraction of “genetically” selected sensor parameters and two-
dimensional representations of PCA clustering between: a. nommal urine
(n), Proteus sp. (p) and Staphylococcus sp. (st) and b: E.coli (¢), Proteus
sp. (p) and Staphylococcus sp. (st). (Inner and outer circles divide most
closely linearly discriminated patterns from the most drifted ones,
respectively).

However, this single pattern confusion was limited to the
case of distinguishing between £.coli infection and normal
urine. Both their prediction confidence outputs were very
close-0.37 for E.coli and 0.43 for normal urine- but below a
0.5 test tolerance limit.
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Fig. 7. DFA and 3-group separation between: a. normal urine (n), Proteus
sp. (p) and Staphylococeus sp. (s1) and b. normal urine, E.coli (e) and
Staphylococcus sp.

Twenty-eight “genetically” selected parameters performed
PCA and DFA, which displayed two graphical cluster

separations between Proteus sp., Staphylococcus sp. UTI -

and normal samples. Cross-validation reclassified correctly
6 “unknown” patient samples (Figs 6a & 7a). Furthermore
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by extracting all “genetically” selected sensor parameters
that had been previously used as input neurones it was
possible to reveal hidden non-linear patterns characteristic
of each UTI group. Furthermore the second 3-layer NN
(22-15-4) achieved a 95% prediction rate and recognised 18
out 19 “unknown” UTI cases. Only one normal patient
sample had been mistaken for E.coli infection.

A two-dimensional discrimination plot between 3 of the
tested UTI groups (e, st, p) was produced by PCA. DFA
also separated patient samples infected with E.coli,
Staphylococcus sp. and normal urine samples. Cross
validation recognised 7 “unknown” UTI cases (Figs 6b &
7b).

IV. CONCLUSIONS

In recent years, antibiotic resistance and the evolutionary
emergence of “super bugs” are considered some of the
most significant causes of nosocomial infections and have
increasingly severe biological, health and economic impact.
Conventional diagnostic microbiology requires 24-48hrs to
identify each pathogenic species and perform antibiotic
sensitivity tests by employing the expertise of skilled
personnel, adding significantly to total health care cost.
There is need for innovative inexpensive tests to be
developed for early diagnosis of infectious diseases and
centrol of antibiotic resistance. The recent use of GC-MS
or MS methods accompanied by NN and multivariate
analysis although are considered very sensitive, they need
highly skilled personnel and are characterised by increasing
capital cost. Intelligent gas sensor technology has been
applied in several research areas, including biomedicine.
Many research groups around the world are actively
developing new improved gas sensors with broad
sensitivities to cerlain classes of volatile organic
compounds. As these sensors become commercially viable,
the EN might well achieve higher levels of acceptance in
medical applications.

The present system resulted in the delivery of bacterial
odours in the form of repetitive ‘sniffs’, and achieved
higher control by keeping the sampling point, the
headspace and liquid volumes constant. Additionally there
was continuous monitoring of environmental conditions at
the sampling point. There are several advantages in the
application of NN models as opposed to other statistical
techniques. Their ability to generalise is particularly useful
since rough data is often noisy due to some sensor drift.
Selecting and constructing the right learning data {input) is
crucial in pattern recognition methods. Each class must be
composed of representative and reproducible samples. The
quantity of these samples does not increase the
discrimination confidence instead it is the “quality” of
representation carried in each input sample that determines
patiern recognition performance. The applied GA-NN
technique achieved a high prediction rate and enabled the
parallel use of multivariate techniques too, showing a
degree of correlation among genetically selected input
parameters. The present work proposes a novel application
of GA-NN in combination with multivariate techniques in
bacterial class discrimination. However, the use of multiple
NN fusion is a challenging and more promising approach.
The adopted parallel architecture reduces the



dimensionality of the network search space thus increasing
both computational efficiency and the probability that
optimal network parameters will be found within the search
space. Future work will investigate the integration of GAs
to the multiple classifier scheme employed however with a
more accurate fusion decision criterion, such as the fuzzy
infegral.
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