UNIVERSITY OF WESTMINSTER

"o

YvYyy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

A component-based environment for distributed configurable
applications.

Ahmed Saleh!
George R. Ribeiro-Justo?
Stephen C. Winter?

! School of Informatics, University of Westminster
2 Cap Gemini Ernst & Young, UK

This is an electronic version of a paper presented at the 9th IEEE Conference
and Workshop on Engineering of Computer-based Systems (ECBS2002):
Component-based Software Engineering Workshop: Composing Systems
from Components, 08-11 Apr 2002, Lund, Sweden.

This material is posted here with permission of the IEEE. Such permission of the IEEE does
not in any way imply IEEE endorsement of any of the University of Westminster's products or
services. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

9" IEEE Conference and Workshop on
Engineering of Computer-based Systems
(ECBS2002), Lund, Sweden, April 10 —
11, 2002. Workshop Proceedings.

A Component-based Environment For Distributed Configurable Applications

Ahmed Saleh

George R. Ribeiro-Justo

Stephen C. Winter

University of Westminster, UK~ Cap Gemini Ernst & Young', UK University of Westminster, UK

saleha@wmin.ac.uk

Abstract

One of the basic requirements for distributed applications to run
under different working environments is to be flexible,
configurable, portable and extensible. Using the current
development techniques independently falls short in supporting
most of these requirements due to complexity of their integration
and the conflict of their objectives. In this context this paper
describes an integrated environment based on an interface
description language called NCSL, an architecture description
language called NADL, and a supporting management system
composed of a component-based framework and an event
management system that facilitate the process of developing and
managing distributed configurable applications based on their
non-functional requirements (NFRs).

1. Introduction

While computing power and network technology have
improved dramatically over the past decade, the design
and implementation of complex distributed configurable
applications remain difficult and time-consuming. Also,
the need for considering distributed applications’ non-
functional requirements (i.e. performance, reliability,
security, etc.) has added further complexity to the process
of developing these applications. Using traditional
development techniques often result in static and difficult
to understand applications that do not address the user
requirements. Also, due to the evolving nature of
distributed systems’ environments, applications that can
tolerate the continuous upgrade of such environments are
often developed on a per application basis.

Component-based frameworks have emerged as the new
technology that can facilitate the development of
distributed applications through reusable components. As
its name suggests, a component-based framework is a
collection of software components that have been
developed independently but can interact and collaborate
with each other to support the development of a group of
applications or solve a particular type of problems.
Unfortunately, constructing distributed configurable
applications from pre-existing reusable components of
such frameworks cannot be achieved without
understanding the structure and functionality of these

George.Justo@capgemini.co.uk

wintersc@wmin.ac.uk

components. Despite some successful attempts, most of
the current frameworks rely on providing reusable
components that can be plugged in together in different
configurations to build up the applications, but are not
able to tackle the problem of design reuse, where the
entire structure/architecture of the application can be
reused to build new applications. Furthermore, very few
frameworks have addressed the problem of integrating the
non-functional requirements of the application’s services
due to the difficulties of representing and controlling such
requirements at run-time.

This paper describes an integrated environment for
supporting the development and control of distributed
configurable applications through a collection of
distributed components that collaborate within a specific
configuration to satisfy both the developer and
environment requirements. This environment is based on
a framework of distributed reusable components called
FRODICA (Framework for Distributed Configurable
Applications). Each constituent component of the
framework should have a well-defined interface that has
been defined by the NCSL language (Non-functional
Component Specification Language) that describes the
components’ functional and non-functional requirements
to enable their interaction regardless to their
implementation details. The components’ interaction and
the configuration itself is defined by an architecture
description language called NADL (Non-functional
Architecture description Language), which defines the
architectural structure of the application and its run-time
constraints, and the rules of selecting/integrating different
components according to the application’s NFRs,.

2. Related Work

Many researchers have investigated the development of
component-based frameworks to support the construction
of configurable applications in a distributed context. For
example, C++CL [1] is an OO (object-oriented)
framework for developing reconfigurable distributed
systems. It is based on the CL model where an application
is divided into two sets of components: tasks and
configurations. The computation is usually performed by

! The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official policies, either

expressed or implied of Cap Gemini Emst & Young.

tasks that can interact with each other via local ports. The
configuration is the part of the program where the system
structure is specified and controlled. This consists of
defining task instances, connecting them and managing
their execution. C++CL is considered as a real attempt to
create an object-oriented framework for developing
dynamic distributed software architectures. However, it
does not support the definition of NFRs at any stage of
the development process.

The Aster project is another attempt based on matching
the NFRs of an application with the NFRs of selected
components and connectors manipulated by the Aster
framework [3]. This matching process results in
generating a customized middleware that provides the
NFRs of the application. Although the Aster framework
proved to be efficient in implementing several
transactional and non-functional properties, it does not
cover all concepts of software architecture (e.g.
connectors, ports, etc.) only components and some basic
connectors are supported. In addition, it does not address
the problem of managing NFRs during run time.

Unlike Aster, the QuO (Quality Objects) framework [4] is
an integrated environment for developing distributed
applications with QoS requirements. Its main idea is
based on the notion of contracts, delegates and system
condition objects that negotiate an acceptable region of
QoS prior establishing a connection between a client and
a server. When both client and server agree upon a
specific region, the connection is established and the QoS
level is monitored for further developments. Although
QuO offers more flexibility than other frameworks, it
depends heavily on CORBA IDL to provide its code
generator with the appropriate interface, ORB proxy and
ORB before generating the executable code of the system.
In addition, QuO only concentrates on the structure of the
components and their QoS, but does not address the
global architecture of the application and its NFRs.

3. The FRODICA Framework

As mentioned in the introduction, the key point to
facilitate the development of new applications from pre-
existing reusable components is to understand the
structure of these components and how they interact.
Taking this into consideration, FRODICA [6] has been
developed as a four-tier framework that can reside above
the operating system and below the application layer. The
layering approach adopted by FRODICA categorises the
components into four separate layers according to their
functionality and complexity. In this context, components
of top layers can extend/customise the functionality of the
corresponding lower-layer components in order to tailor
the topmost-layer components to suit individual
distributed applications.

The communication layer of FRODICA is the lowest
layer of the framework, which is responsible for handling
the low-level communication protocols of the system.
This layer is mainly concerned with carrying out all the
underlying message passing, naming services, binding
and data marshalling between distributed components.
Accordingly, this layer comprises all platform-dependent
software (i.e. libraries and interfaces) required to perform
such communications,

The general-purpose layer is the middleware layer of the
framework that deals with low-level system operations.
The main objective of this layer is to hide the platform-
specific software and hardware complexity from upper
layers, hence provide platform independent environment
for system developers to create their applications. This
layer acts as the bridge between the application layer and
the underlying technology infrastructure. It
accommodates a number of management and general-
purpose components that provide the basic requirements
to build distributed configurable applications.

The application-oriented layer is concemed with putting
together all the standard services required for supporting
the development of an integrated distributed configurable
application. Components of this layer are extensively
used by system developers in creating their applications,
and therefore, they tend to provide the most basic services
for developing distributed applications, together with a
well-defined interfaces and a clear extensibility methods
to enable their use without exploring the complexity of
lower layers’ components.

Finally, the specific-application layer is the topmost layer
that comprises the components, connectors and interfaces
needed for running a specific application. In this layer,
system developers can create their own new components,
extend or specialise lower layers’ components to build
their applications.

4. NCSL Language

The NCSL is a component specification language based
on Java. It provides a set of tools for the description and
deployment of distributed components, taking into
consideration the restrictions and constraints (i.e. non-
functional requirements) imposed by the
system/developer on these components’ services. At the
design stage, components are described with the help of a
configuration language that defines the intemnal
specifications of each component in terms of the services
provided/required by the component, as well as the non-
functional requirements associated with each service. The
compilation of NCSL into the framework implementation
language is achieved via a separate compiler called
NcslToJava, which examines the validity of the
component’s interface description and generates an

executable code in the form of Java and XML files.
Subsequently, the generated interface will be used by the
NADL language (explained at the next section) to
identify components’ functional and non-functional
properties required for configuring distributed
applications at run time.

NCSL currently supports three types of non-functional
attributes:

o Performance: The performance is defined in
terms of average time (measured in millisec) to
perform a service.

* Reliability: The reliability is measured in terms
of the MTTF (mean time to failures).

e Availability: The availability is measured in
terms of the average time to restore (MTTR—
mean time to restore) a service after a failure. It
is a function of MTTF and MTTR.

The above words are regarded as keywords in NCSL.
NCSL also provides the concept of NFR expressions that
are Boolean and conditional expressions combining non-
functional attribute keywords and their values. For
example, a service is required to provide a ‘performance
= 500 Kb/sec and reliability > 500 mesc’. An example of
NCSL illustrated in Figure 1.

interface GoldBranch {
// provided services //
provide float checkBalance {(int customerID,
int customer PIN);
support { performance && // supported NFRs
availability } ;
// required services [/
require float getBalance (int customerID,
string customer name) ;
with {performance »= 500 Kb/sec && // required NFRs
availability >= 500 mesc | ;

Figure 1: The NCSL specifications for a Bank
component

To reduce overheads, a component is not required to
compute all non-functional attributes, when they are not
related to any NFR, but only those critical ones. In this
case, NCSL contains a ‘support’ clause that indicates
which non-functional attributes are computed by the
component. Remember that the interface corresponds to a
contract, therefore if a component supports a non-
functional attribute, as described in more details later, the
environment and an ADL (Architecture Description
Language) script can query the value of that non-
functional aftribute at runtime.

NCSL adopts the same concepts of ACME (An
Architecture Description Interchange Language) [2] in
assigning general non-structural information to each
architectural entity (i.e. component, connector, port, etc.)
to describe its run time behaviour. However, NCSL goes

further by defining a set of s to each service
supported/required by each one of these entities.

5. NADL Language

Current ADLs allow system developers to integrate
heterogeneous software components in a homogeneous
way, define and locate distributed components across the
network, and adapt their behaviour according to their
design preferences. This kind of features is described as
the functional requirements of the system. Most ADLs
fall short, however, in providing support for the NFRs of
the system, which describe its constraints and run-time
behaviour. This is due to the fact that they hide the details
necessary to specify, measure and control such
requirements, and hence provide little support for
building systems that can adapt to different levels of QoS.
Incorporating NFRs in the design of the system requires
the ADL to specify constraints for the QoS properties of
the required and provided services of each component.
Also, it requires matching techniques for determining
whether a service satisfies non-functional requirements
and what are the consequences if a component fails to
satisfy the desired non-functional requirements.
As a language that supports the description of re-
configurable distributed system according to both their
functional and non-functional properties, NADL provides
special constructs to deal with NFR description and
management. An NADL description (Fig 2) is made of
two main sections: a configuration section where
components are selected according to their services and
their NFRs, and a reconfiguration section where
reconfiguration actions are taken, depending on the
failure or changes of NFRs. NADL also allows the
system developer to define environment specific
properties that must be satisfied by all components
running the application. For example, a component must
run within a specific type of operating system or over a
machine with certain memory specifications. These
properties enable the system developer to refine his
selection to identify components that are more specific.
The key constructor of NADL is the concept of NFR
expressions that are extensions of those used in NCSL. In
NADL, NFR expressions may contain services from
different components while in NCSL they refer to the NF
attributes of a specific service. For example, the
expression below defines that the service video provided
by component compl should support availability above
500 msec and at the same time, the sound provided by
component comp2 should perform above 900 Kb/sec:
compl.video.availability =500 msec
&& comp2.sound.performance >900 Kb/sec
The NADL selection of components is based on their
interfaces, which already specify their NFRs. After the
system identifies possible candidates components, the

configuration can be defined. In general, the selection
should be the minimum requirement of the system.
During the configuration, it is then possible to define
further constraints depending on the candidate
components that have been selected. In addition, the
architect can specify global constraints relating the
various components.

The configuration is built by using the typical ADL
constructs such as connect, and start. Observe that NADL
also uses the concept of default connectors, which are
implemented by the supporting middleware. For instance,
in the case of Java components communicating using
RMI (Remote Method Invocation), it is possible to
connect the components directly by using an
RMIConnector default connector. After the configuration
has been successfully built, the reconfiguration section
specifies conditions for monitoring and managing the
configuration. This is done using when clauses similar to
those used during the configuration. The when clauses are
evaluated sequentially and the first one that satisfies the
corresponding reconfiguration block is triggered. During
the reconfiguration, components and connectors can be
connected or disconnected, and new components and
connectors can be selected to satisfy the architecture
NFRs.

Application : Bank {
select {
component: Compl { interface: MainBank ;
location: remote (osiris.cpc.wmin.ac.uk) ;
properties: { (getBalance.performance >= 500kb/s ||
checkBalance.availability >= S000 msec };};:
connector: Connl { interface: GoldConnector ;
properties: {dataStream.availability >= 800 msec &&
dataStream.reliability > 750 msec };
// End Properties //
Yoid s // End Connl // End select //
constraints: { Compl.Performance >= 4000 Kb/sec ;
propertiesCheckupRate >= 4000; }; // Rate of
//checking NFRs in msec//
implementation: {Bank.Platform = java; //App platform
Bank.O0S = Unix;};//0S for running the app //
configuration: { confl: when (select) ;
do (connect Compl.getBalance To Connl.dataStream;
connect Comp3.withdrawCash To Conn2.dataStream);
conf2: when (Comp3.checkBalance.availability <600 ms);
do (wait (3000);
reselect;) } ; // Repeat ‘'select’ process
reconfiguration: |
when (Compl.getBalance.performance <5000 Kb/sec ||
Compl.getBalance.availability < 5000 msec);
do { start ;
suspend ;
stop Comp3.checkBalance ;
stop Comp3.withdrawCash ;
resume ;
end) ;
}i } // End reconfiguration // End Application //

Figure 2: The NADL specifications for a Banking
Application

NADL also provides the concept of (global) constraints,
which define an NFR invariant for the architecture. The
constraint is revaluated after every reconfiguration.
Observe that, since NADL is service-driven,

reconfiguration is carried out at service level, which
means that during reconfiguration the whole component
is not affected but only those services involved. Further
more, component instances offering a service may run
longer than a particular application. This means that
existing component instances can be shared by different
configurations. The architect may decide whether to use a
fresh instance of a service or an existing service.

6. Conclusion

The environment outlined in this paper showed how
possible it is to extend existing IDLs and ADLs to
support the management of NFRs. It has also
demonstrated importance of considering the distributed
applications” NFRs at the early stages of the design in
order to ease their management and control at run-time.
Although, we have decided to build our own management
service but there is no reason why the management
system could not use services of a middleware such as
[5], which supports QoS management. We see these two
technologies as complementary rather than competing,
Also, the environment outlined in this paper showed that
the combination of software architecture with object-
oriented frameworks and language mechanisms can lead
to the development of a new generation of well-structured
distributed applications that can be easily configured to
adapt with different working environments.

7. Reference

1. Justo, G. R. R. and Cunha, P.R.F.: “dn Architectural
Application Framework for Evolving Distributed Systems™,
Journal of Systems Architecture, Special Issues on New
Trends in Programming and Execution Models for Parallel
Architectures, Heterogeneously Distributed Systems and
Mobile Computing, Vol. 45, No. 15, Sep. 1999.

2. Garlan, D.,, Monroe, R. and Wile, D.: “Acme: An
Architecture Description Interchange Language”.
Proceedings of CASCON, Nov. 1997.

3. Issarmny, V. and Bidan, C.: Aster: A CORBA-Based
Software Interconnection System Supporting Distributed
System Customization. In Proceedings of the 3™
International Conference on Configurable Distributed
Systems (ICCDS’96). Mayland, USA, May 1996.

4. Loyall, J., Bakken, D., Schantz, R., Zinky, J., Vanegas, R.,
and Anderson, K.: “QoS Aspect languages and Their Run-
time Integration”. Proceedings of the 4% Workshop on
Languages, Compilers and Run-time Systems for Scalable
computers (LCR), Pennsylvania, USA, 1998.

5. Koh, F. and Yamane, T.: Dynamic resource management
and automatic configuration of distributed component
system. In Proceedings of the 6" USENIX COOTS, Jan 01.

6. A. Saleh and G. R. Ribeiro Justo. A configuration-oriented
framework for distributed multimedia applications. In
Proceedings of the Fifteenth Symposium on Applied
Computing (SAC200) Italy, ACM Press, March 2000.

