

University of Westminster Eprints
http://eprints.wmin.ac.uk

An object-oriented organic architecture for next
generation intelligent reconfigurable mobile networks.

George Ribeiro-Justo1
Tereska Karran2

1Cap Gemini Ernst & Young UK
2Cavendish School of Computer Science, University of
Westminster

Copyright © [2001] IEEE. Reprinted from DOA'01: 3rd International Symposium on
Distributed Objects and Applications.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

An Object-oriented Organic Architecture for Next Generation Intelligent
Reconfigurable Mobile Networks

George R. Ribeiro-Justo
Cap Gemini Ernst & Young UK’
George. Justo@capgemini. CO. uk

Abstract

Next generation mobile networks have great potential
in providing personalised and effcient quality of service
by using re-confgurable platforms. The foundation is the
concept of software radio where both the mobile terminal
and the serving network can be re-configurable. This
approach becomes more effective when combined with
historic-basedprediction strategies that enable the system
to learn about application behaviour and predict its
resource consumption. We extend that concept by
proposing the use of an object-oriented intelligent
decision making architecture, which supports general and
large-scale applications. The proposed architecture
applies the principles of business intelligence and data
warehousing, together with the concept of organic viable
systems. The architecture is applied to the CAST
(Configurable radio with Advanced Software Technology)
platform.

1. Introduction

Adapting the application behaviour to resource
availability and user goal has become a widespread
strategy in mobile computing [17]. The idea of changing
the quality of service (or as some authors call it the
‘fidelity’ of the application [171) can be very effective in
adapting the application resource consumption to the
resource availability. This is generally achieved by using
history-based predictions of the application behaviour and
resource consumption. Most of these approaches,
however, are application specific and only work for small
applications. We propose a general solution, which can be
applied to large applications. We use the concept of
business intelligence as the foundation for our solution.

Tereska Karran
University of Westminster

karrant@wmin.ac. uk

Business intelligence (BI) is a new discipline that aims
at supporting decision-makers in large enterprises. It
provides tools and techniques that consolidate and
transform corporate data into critical information for
decision-making. BI tools are designed specifically to
access, analyse and report on diverse and disperse
historical data. BI, therefore, owes most of its advantages
to the quality of data it uses, and makes data warehousing
the heart of any good BI solution.

BI systems are usually complex distributed systems
that consolidate historical data from different data
sources, using different formats and performing complex
analytical processing on the historical data. Such complex
systems require solid reference architectures in order to
simplify their development and management and to
provide the best decision-making support. To solve this
problem, we have proposed a new distributed object-
oriented reference architecture called CODA (Complex
Organic Distributed Architecture)

CODA represents a new generation of decision-making
system that includes a means of monitoring and
controlling objectives to allow the enterprise to evolve
dynamically with a certain degree of autonomy. It applies
a theoretical foundation for modelling evolutionary
enterprises provided by (organic) principles, defined by
the Viable System Model [2]. CODA refines and adapts
Beer’s Viable Systems Model with reference to distributed
decision supporting systems. Although originally
conceived for defining management principles, the model
is hrther adapted to the control of data flow in a complex
decision support system. The result is a flexible, organic
and adaptable BI architecture.

Many of the concepts of BI are not new, but have
evolved and been refined based on experience gained
from early host-based corporate information systems, and
more recently, from data warehousing systems. CODA is
a distributed intelligent information system, which
combines data warehousing, data mining and agent
technology.

’ The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official
policies, either expressed or implied of Cap Gemini Ernst & Young.

0-7695-1300-X/01/$10.00 0 2001 IEEE 31

CODA separates the intelligent information system into
five functionally distinct layers; each supported by a data
warehouse component and an intelligent component. Each
data warehouse component is separated by filter
components, which restructure data into formats suitable
for the information processing functions to be performed.
This approach is based on the way that organic systems
manage complex and adaptive behaviour. The advantages
of CODA are that it is intuitively easy to manage, and
supports complex evolution by using data intelligently. At
the same time, CODA minimises information flow
between the system components and provides sufficient
component autonomy.

This paper demonstrates the use of CODA as a solution
for generating and using historical data to support
resource management decisions in reconfigurable mobile
networks. The paper presents the main components of the
architectures using UML.

2. The Complex Organic Distributed
Architecture

An organic model is capable of providing a layered,
filtered architecture for managing information in a
distributed context. CODA achieves this by refining and
adapting Beer’s Viable Systems Model [2] with reference
to distributed information systems.

2.1. CODA Principles

The Viable Systems Model (VSM) is based on the way
a biological organism, such as the human nervous system,
processes data in terms of objectives. Incoming data is
levelled according to the type of activity performed and
filtered so that only the relevant information is presented
when decisions are made.

According to the cybernetic model of any viable
system, there are five ‘necessary and sufficient’
subsystems involved in any viable organism and
organisation [2]. To be viable a system should therefore
be organised according to those levels. We define these in
CODA, focusing mainly on data complexity and business
fknctions, as follows:

Operations: This layer deals with simple linear data,
which usually corresponds to typical transaction
processing and business operations. The operational
data warehouse usually links together data from
databases in several locations.
Monitor operations: In this layer, the data is often
dimensional and aggregated. For instance, data is
organised by time or group. This layer is responsible
for monitoring business operations.

3. Monitor the monitors: This layer deals with
multidimensional data and provides capability for
analysing trend behaviour. At this level, business
operations are monitored in terms of external trends.
Control: This level should be able to “learn” about
simple emergent behaviour, trends and forecast and
be able to run predictions and simulations
automatically.
Command: This is the highest level, which should be
able to deal with any variety not treated by the lower
layers [26]. This means to recognise new threats and
opportunities.

Figure 1 presents a diagrammatic view of CODA with
its principal components and their relationships. The
details of the components are described in the following
sections. The reader should refer to [12, 191 for more
details about CODA.

4.

5.

2.2. CODA Structure

In CODA, information processes (mapped to
architectural components) are distributed and leveled.
Each component can be upgaded and implemented
incrementally. In a fully implemented organic structure,
components are semi-independent. They can manage
themselves using Critical Success Factors (CSFs) but can
also refer to components above. Each component has a
part in fulfilling enterprise objectives. The combined
interactions of the business processes demonstrate the
emergent behavior of the organization. Each component
should also have enough information to make the right
decisions. Only a subset of the information available to the
whole organisation is relevant to each component. The
general structure of CODA is illustrated in Figure 1.

CODA corresponds to a typical object-oriented (00)
layered architecture [20, 211, where each layer denotes a
level of the VSM. Data sources, which can be data marts,
data warehouses and legacy processing, must be attached
to the right layer. The criteria to allocate a particular
element to a certain layer (level) in the architecture are
defined according to their processing type as in the VSM,
as described above. Observe that other data warehouse
architectures [22] may suggest the separation of data in
two levels according to the summarization process; that is,
lightly summarized data is a data that is distilled from a
low level of detail whilst highly summarized data is
compact data. Unlike CODA, however, this leveling does
not take into account the user of the data.

A main objective of CODA is to provide an 00
distributed BI management architecture. CORBA usually
provides the application message layer in CODA. The
components of the architecture provide CORBA
Application Programming Interfaces (APIs), which allow
universal and transparent access. C O M A is a key

32

technology for interoperable object-oriented distributed
systems [23, 241 thereby other components can be easily
integrated into CODA. Since CODA is an 00
architecture, most components in the architecture
correspond to a class or object, or are wrapped to provide
an 00 interface. For example, a business task is modelled
as a method, if it is a simple task, or as a class, if it is a
complex task. Interactions between components are
usually carried out via the CORBA object request broker

DS

DS

DS

DS

It 4-b
Inter-layer
Filters Feedback Loop Data access

Figure 1. Overview of CODA

Interaction between the layers is achieved by two key
elements of CODA, namely, the filters and the feedback
loop. As previously stated, each layer is separated by
filters, which ensure that only the necessary information
reaches it. The feedback loop allows components in a
layer to only report unusual failure or success in meeting
their CSF to the above layers. This means that tasks in the
above layer(s) must take action. The feedback loop
corresponds to an event-based, implicit invocation style
[21], where one layer generates alerting events, related to
failures or successes, and the above layer registers the
task(s) to be invoked.

Each layer is structured in a similar way, providing
filtering, feedback and security capabilities, as illustrated
in Figure 2. Two types of components usually provide

data access in CODA: wrappers and filters. Object
wrappers are widely used to integrate legacy or non-
CORBA compliant applications. The filters are
responsible for providing clean and secure data.

3. Next Generation Reconfigurable Mobile
Networks

We use the typical components of a 3G network [3, 161
as the basis for the elements of our model. A mobile
equipment (ME), or mobile station (MS), contains a SIM
card that uniquely identifies the equipment. One or more
MSs can connect to a base station transceiver (BST).
Several BSTs together are controlled by a base station
controller (BSC). The BTS and BSC together form the
base station subsystem. The BST is referred to as the base
station (BS). The combined traffic of the MSs in their
respective cells is routed through the mobile switch centre
(MSC). In addition, connections originating from or
terminating in the fixed network are handled by a
dedicated gateway MSC. A location area (LA) consists of
several cell groups. Each cell group is assigned to a BSC.
Each administrative (AR) is made of at least one LA. Each
AR is assigned to an MSC.

0 Feedback fi

lower layer
~~ ~~ ~

Figure 2. CODA typical layer

Several databases are available for call control and
network management: the home location register (HLR),
the visited locations register (VLR), the authentication
centre (AUC) and the equipment identify register (EIR).
The HLR stores permanent data, such as the user profile,
and temporary information, such as the user’s current
location. The HRL is always first queried to determine the
user’s current location. The VLR is responsible for a
group of location areas and stores data about the users
who are currently in its area of responsibility. This

33

includes part of the permanent user data that has been
transmitted from the HRL to the VLR for fast access. The
AUC generates and stores security-related data such as
authentication and encryption keys. More details can be
seen in [3,16].

The EC Framework V CAST project [14] is
investigating re-configurability in existing and future
mobile networks. The CAST model illustrated in this
paper is a simplified version of the generic model
described above. The main principle of the CAST
platform is re-configurability, therefore in order to
provide the best service, re-configuration will be used as
much as possible.

The CAST project does not establish a strategy for
selection of the types of services that will be provided by
the system. We assume that these will be derived from the
services defined by a typical 3G platform. In addition, it is
not an objective of CAST to define novel types of
services. Our model should be general enough to deal with
general classes of services. We assume, however, that
services can be categorised by the amount of resources
they require. For instance, voice service requires fewer
resources than coloured video-on-demand service. We
will focus on re-configurable resources in our model. The
idea is to show how quality of service can be improved by
managing and reconfiguring the resources available.

The overall UML CAST model is presented in Figure
3. We opted for a simple but general model, which can
give us flexibility for extension as the project progresses.
Observe that although it is important to include conceptual
components of the serving mobile network, the focus is on
re-configurability of the whole network in relation to MS
and BS.

The aim is to develop a model that contains sufficient
information for effective viable operation. In addition, it
must keep information to a minimum so that fast
responses are possible, which is important in CAST
because of the real-time nature of the system.

BS links

4. An Organic Architecture for Next
Generation Reconfigurable Mobile Networks

contains

4.1.The Main Components of the
Architecture

Service 1..
requires

The main components of the proposed architecture are
illustrated in Figure 4. We apply the data access object
(DAO) pattern to model the CODA tasks. Each CODA
data source (data warehouse or otherwise) is accessed and
controlled by DAOs.

Resource

4.2. The Operations Level

The operations level (see Figure 5) includes all data
required for effective operation, in this case the operation
of the MS (handset) and BST. The data stored in each MS
is necessarily limited. However, the BSC stores details of
each task activation managed by the BST and MS
requesting a service. These details are archived within a
specified period. We have selected a time period of three
hours, or when 10 service requests have been handled, or
after any reconfiguration request, whichever is sooner.
This is where up to 1 MB of memory may be needed to
record a task activation. We allow for 1MB of data store
in the handset to record up to six hours of service requests
or two task reconfigurations, since it may not be possible
to download the information if the system is busy. Service
requests have priority, and are executed before archive
requests so a BSC may have up to double the amount of
data at very busy times.

switching

handles

requires

Reconfiguration Reconfiqurable
Resource

Figure 3. CAST conceptual model in UML

When an MS makes a service request to a BST, the
service request is dealt with using the minimum data for
an effective execution of the service. However, the CAST
system needs to store detailed information about service
requests if it is to improve overall system performance.
The data collected must include time location and group
variables. Therefore, a request for more detailed
information from the BSC may follow the execution of the

34

service request if performance issues prevented a
download of all required information at execution time.
The request for further information can be normally made
when both MS and BST systems are idle.

4.3. Monitoring Level

The BSC (see Figure 6) is able to make some decisions
on operational processes by aggregating the operations
and resource requests in time bands, speed of execution
bandwidth available and bandwidth used etc. It has a
small data warehouse. The BST and the MS data stores
are archived periodically. In the case of the BSC we have
assumed that the size of the data stored on each resource
request is up to 1 MB. The data is archived to the MSC
after three hours, after 300 service requests or after a
global reconfiguration request whichever is sooner.

Monitor the
Monitors
Level

Monitoring
Level

I ODerations Level \

Figure 4. CODA for reconfigurable mobile networks

The BSC is able to handle most reconfiguration
requests from the handset and most service requests.
However, if CSF ranges for performance are not met
(speed, bandwidth and location), then the BSC operations

monitor will seek advice from the levels above on which
course of action to take.

Data about all service requests (both executed and
failed) is collected and stored in the BSC and archived
periodically. This is not a large data store, and the
collected data is archived and downloaded regularly (after
300 resource requests or every three hours whichever is
sooner).

4.4. The Monitor the Monitors Level

At the higher CODA levels the collected data is stored,
dimensionalised and analysed. The MSC and Coda Net
Manager Level’s manage the regularly archived
information so that the base station and handset service
can be optimised and reconfigured. They also make
predictions about new services and service loads, and
fine-tune the operations as needed via global
reconfiguration. They are able to provide some
operational advice if performance success factor ranges
are not met.

The MSC (see Figure 7) performs the ‘monitor the
monitors’ function in the CAST intelligent system. This
requires a larger warehouse capacity than that of the BSC.
It should be large enough to manage a multidimensional
database composed of data from 1 - 10 BSCs. It should
have sufficient capacity to store one week of data together
with a comparison archive of data from one similar week
from the same time last year. For example, the same week
or one when operating circumstances were similar (for
example when a test match series was on). Space and
complexity considerations mean that this level should not
perform forecasting and trend analysis. If we apply the
CODA architecture then forecasting and trend analysis
should be performed by the Controlling levels, in our
model this is the CODA net manager.

The MSC monitors the BSCs at all times, receiving
regular status reports that all is well in those BSCs it is
monitoring. The MSC checks all BSC operations for
seven days in three-hour time bands using aggregations.
Each new day the seventh most distant day is archived and
data is sent to the CODA Net Controller. The archived
data is organised by time location and group. Based on
simple analysis, the MSC is able to make predictions
about service needs and reconfigurations. This will be
used to optimise the performance of the base stations.
Incoming data is compared with the previous hour and
previous time band for consistency.

35

MS - Handset Operations
MS Handset Operations

CSFs for Handset operations

Perform reconfiguration
connection, history

Perform service
Request Service

1

MSlhandset Aaareaated Details
Handset Type
Handset resource list
Handset service list
Reconfiguration Request history

Service Request History

1 provide resource

1
reconfiauration details

Reconfiguration history
Reconfiguration outcome
Reconfiguration request location
Reconfiguration request type
Reconfiguration resource list
Reconfiguration resource parameters
archive request

Service request location
Service request time

Figure 5. The operations level

BSC Monitoring Operations Class
Operational CSFs
reconfiguration request
service Request
Check BSC CSFs
Request Reconfiguration
Send operational status details
device information request
perform reconfiguration
perform service
status information request

I

BTS Reconfiguration Details I
ETS Reconfiguration Outcome
BTS Reconfiguration Resource Location
BTS Reconfiguration Resource Time
BTS Reconfiauration Resource TvDe

BTS Reconfiguration Log
BTS Service Request History

Reconfigutaion Resources Requested

Ms Service Request Details

MS Service Request Type
Ms Service Request Source location
Ms Service Request Time
Ms details
Ms histoly
Ms type

Figure 6. The monitoring level

36

It is also checked against 'data for the previous day and
a similar day from the last year (this is downloaded from
the Coda Net as the MSC data warehouse is limited in
scope). The MSC Software contains tasks, which check
for rises and falls in the usage. Tasks also check
performance status within predefined ranges set by MSC
CSFs.

Using OLAP aggregations and slice, dice and pivots
operations [22], the MSC is able to optimise the
performance of the system using average service-request-
rates, and totals from past performance to optimise the
current performance of the BTS and MS systems under its
control.

The MSC monitors current Performance against past
performance and then against predicted performance. The
data is managed using a grid, which matches expected
with actual data. The expected data and actual data are
among the CSFs for monitoring performance. If the actual
performance falls outside expected tolerances then the
CODA Net manager is invoked for immediate assistance.

4.5. The Control Level

The CODA Net manager (Figure 8) is the top level
CODA layer implemented on the demonstrator. It
performs the controlling fimction described by CODA.
The CODA Net Manager has the same data as the MSC
but at a vastly increased capacity. It monitors several
MSCs (1 - 10 in the demonstrator) and archives data
yearly. This large warehouse has full OLAP database
functionality using, time group, location, forecast and
version data.

The history data in the warehouse dates 12 months
back and three months forward from the current
operations. This vast amount of stored data is used to
forecast and assess trends and make decisions about
performance. The CODA Net manager can reset CSFs in
the levels below and interrupt processing if user
information (drawn from the user databases) requests it.
The CODA Net manager is able to fine-tune the
operations of the mobile system by managing and
reconfiguring resources to meet predicted loads. It is able
to make some predictions about new services based on
analysis of trends, although this would be performed more
effectively by a further intelligence layer, which can make
more complex trend deductions.

Thus, CODA is able to present a potential solution for
the problems posed in managing large networks using
intelligent reconfiguration controllers. The CODA system
has the advantage of not requiring major reconfiguration
of existing hardware, as it is able to act on stored data,
which is regularly archived.

4.6. Interfaces to External Components

The best way of defining the interfaces in an
architecture is through the concept of service. A service
defines a contract between components at an abstract
level. The interface of a component can be defined by the
services it requires from and provides to other
components. The interfaces between CODA components
have been specified in the previous sections. Now we
have to establish what services the CAST CODA
components will provide to and require from components
outside the architecture. The overall service architecture is
described in Figure 9 where an arrow pointing out denotes
a service provided and similarly an arrow pointing in
denotes a service required by the component.

Since the reconfiguration takes place at both the MS
and BS levels, this is where CAST CODA obtains
information about resources status in order to support the
application service. This service is referred to as Resource
Services. The Resource Services must provide information
to CAST CODA and does not expect any information
from CAST CODA. In general, CAST CODA will only
request information about the latest application service
and the resources used to support that service. CAST
CODA may also request information about the availability
and status of resources on the MS or BS. The resource
services could be implemented by the resource controller
or the network management system. This decision,
however, does not affect CAST CODA.

The Reconfiguration Management Services interact
with CAST CODA in two ways. Firstly, it will provide
information about the request for an application
(reconfiguration) service by the BS or MS. Afterwards, it
should also provide information about the result of the
request, namely, whether the reconfiguration was
successful or not. If the reconfiguration fails, information
about the cause of the failure should also be provided.
CAST CODA can then request from the resources
services the details of the resources status.

CAST CODA will provide intelligent decision-making
service to the Reconfiguration Management Services at
various levels. The reconfiguration management services
gives the detail of the application request and CAST
CODA, based on its intelligence, will respond whether
that service should be provided or not. CODA can also
provide details about the decision.

Again, the Reconjguration Management Services
should provide feedback to CODA as to whether its
recommendation has been accepted or not. This will
enable CODA to learn.

37

MSC Monitoring the Monitors

BSC Details

1

BSC Aggregated Details
BTS Reconfiauration Loa
BTS Servicekequest Hktory
MS Reconfiguration Resource History
arrhwn

I
I

Handset Type
Handset resource list
Handset service list
Reconfiguration Request history

\

MSC Monitoring the Monitors I
Request Asconfiguration
Request Resources
Send Operational Status Details I
device information request
monitor operarations
status information request

1

MSC Aggregations
MSC Reconfiration Resource History
MSC Service Request History
Reconfiguration Resource Predictions

7

MSC Reconfiquration Details
MSC Reconfiration Request Time
Resources Outcome
Resources Required
Airhive

MSC Service Details

Figure 7. The monitor the monitors level

Since CODA is proactive and it may also
autonomously provide advice if it finds that the system
requires reconfiguration in order to be viable. This works
as a service request to the reconfiguration management
service. This type of service should contain a priority,
which indicates whether or nor the reconfiguration
management services can ignore CODA’S request.

Finally, it is also necessary to define the connectors
between CODA and the external services. In Figure 9, the
connectors are denoted by the arrows. A connector is an
architectural element that mediates the interaction among
components. It is essential in an architecture to specify
how the components interact, especially external

components. Since CAST is based on distributed object
technology, more specifically using Java, it is expected
that the components will use Java based distributed object
connectors. Possible candidates are Java RMI (Remote
Method Invocation) and COMA. We do not anticipate
the use of any other type of connector. In both cases, the
services will be defined using an interface definition
language. Each service will therefore correspond to
object-oriented methods or operations. The main
operations of CAST CODA have been defined in the
UML models presented.in section 4.

38

CODA Net Manager

global reconfiguration details

M S R A c o n f i a u r a t l o n s t o r y

BTS Reconfiguration Log
BTS Service Request History

archive

BSC Aggregated Details

global reconfiguration history
override history

evice information request
information request

override details

override outcome
override time

1 1 I

MSC Service Request History
Reconfiguration Resource Predictions
Reconfiguration Result Details

Handset resource list
Handset service list
Reconfiguration Request history

I I
Analyse Reconfiguration Requests
Analvse Recontiauration Resourcess

Figure 8. The control level

5. Conclusions and Future Work

The main aim of this paper was to present a distributed
object-oriented architecture to support intelligent
decisions within next generation mobile networks. Most
history-based prediction approaches for mobile
application adaptation use simple log techniques and
algorithmic complexity analysis. These approaches are
application-specific and can only be applied to small
applications. The paper has presented a general solution
based on CODA that can be applied to large-scale
applications.

The proposed architecture is an extension of CODA,
an organic BI architecture. The paper has shown how
CODA was easily adapted to this type of application. The
result has been a flexible and evolving architecture, which
employs the VSM principles to provide intelligent
decisions for the re-configurable platform. Although the
proposed solution has focused on CAST, it can be easily

applied to other re-configurable platforms. This
emphasizes our claim that CODA is sufficiently flexible to
be applied to a large number of applications.
The key challenge in implementing the CAST CODA
architecture is performance. Because of its real-time
nature, reconfigurable mobile network demands fast
responses from the decision support system. We believe
that the simplifications applied to the architecture can
provide reasonable performance. We have greatly reduced
the amount of data being transferred between the CODA
layers as well as the window between transfers. We will
also make use of compression and caching techniques to
reduce performance overheads.

6. Acknowledgement

This document is based on the work carried in the Eu-
sponsored collaborative research project CAST
(hhtp://www.cast5.freeserve.co.uk). Nevertheless, only the
authors are responsible for the views expressed here.

39

Requires
Provides advice Requires informafion
about information about
reconjigurat ion about resouyes reconfiguration

Figure 9. Interface to external systems

7. References

[I] Ashby W.R.. Introduction to Cybernetics, Chapman Hall,
London, 1965.
[2] Beer, S. The viable system model: Its provenance,
development, methodology and pathology. Journal of
Operational Research Society, 35(1):7-25, 1984.
[3] Bettstetter, C., H. Vogel and J. Eberspacher. GSM Phase
2+ General packet radio Service GPRS: Architecture, Protocol,
and Air Interface. IEEE Communications Surveys, vol. 2, no. 3,
1999.
[4] Booch, G., I. Jacobson, and J. Rumbaugh. Th Unified
Modeling Language Users Guide. Addison-Wesley, 1998.
[5] Buzydlowski, J.W., Song, I. Y , and Hassel, L. A
Framework for Object-Oriented On-Line Analytic Processing,
DOLAP’98: ACM First International Workshop on Data
Warehousing and OLAP, Washington, USA, 1998.
[6] Eriksson. H., and M. Penker. Business Modeling with
UML: Business Patterns at Work. Wiley 2000.
[7] Hofmeister, C., R. Nord and D. Soni. Applied Software
Architecture, Addison-Wesley, 2000.
[SI Espejo, R., Schuhmsnn, W. and Schwaninger, M.
Organizational Transformation and Learning, Cybernetic
Approach to Management. Wiley, 1996.
[9] Garlan, D. and J. P. Sousa. Documenting Software
Architectrures: Recommendations for Industrial Practice,
Technical Report CMU-CS-00-169, School of Computer
Science, Carnegie Mellon University, USA, 2000.
[IO] Hunt, J. Java For Practitioners, Springer, 1999.
[I I] Karran, T., G. Ribeiro Justo and J. Zemerly: An Organic
Architecture for Component Evolution in Decision Systems, qLh
World Conference on Systemics, Cybernetics and Informatics
(SCI 2000), Orlando, USA, July, IIIS, 2000.
[121 Karran, T., G. R. Ribeiro Justo and J. Zemely: An Organic
Knowledge Information Management Architecture, International
Conference on Intelligent Systems and Control, Santa Barbara,
California, USA, 1999.

[I31 Kruchten, P. The Rational Unified Process: An
Introduction, Addison-Wesley, 1998.
[I41 Madani, K., B. Bosch, B. Honary, G. Ribeiro-Justo, et al.
Configurable radio with Advances Software technology (CAST)
- Initial Concepts, ISR Mobile Communications Summit 2000,

[151 Megaache, S., T. Karran and Ci. R. Ribeiro Justo: A Role-
based Security Architecture for Business Intelligence, TOOLS
USA 2000: 34‘h International Conference on Distributed
Objects, Santa Barbara, California July 30 - August 3, IEEE
Press, 2000.
[I61 Morawek, R. and H. Oczelik. UMTS: basic Network
Architecture, ht tp: i !~~~~~~.unet .univie .ac .a t , 200.
[I71 Narayanan, D., J. Flinn and M. Satyanarayana. Using
History to Improve Mobile Application Adaptation, 3rd IEEE
Workshop on Mobile Computing System and Applications,
December 2000.
[IS] Nyanchama M. and S. Osborne. The Role Graph Model
and Conflict of Interest. ACM Transactions on Information
Security Systems, Vol. 12(1):3-33, 1999.
[191 Ribeiro Justo, G. R., T. Karran and J. Zemely, An Organic
Architecture for Distributed Knowledge Management. In
Industrial Knowledge Management - A Micro Level Approach,
R. Roy Ed., Springer, 2000. ISBN 1-85233-339-1.
[20] Ribeiro Justo, G. R. and P. Cunha. An Architectural
Application Framework for Evolving Distribute Systems.
Journal of Systems Architecture: Special Issue on New Trends
in Programming and Execution Model for Parallel
Architectures, Heterogeneous Distributed Systems and Mobile
Computing, Vol. 45:1375-1384, 1999.
[21] Shaw, M. and D. Garlan. Sofmare Architecture:
Perspectives on an Emerging Discipline, Prentice Hall, 1996.
[22] Singh H. S. Data Warehousing: Concepts, Technologies,
Implementation and Management, PTR, 1998.
[23] Umar, A. Object Oriented Client/Server Internet
Environments. Prentice Hall, 1997.
[24] Zahavi, R. Enterprise Application Integration with
CORBA: Component and Web-Based Solutions, OMG Press,
2000.
[25] Zuidweg, H., M. Campolargo, J. Delagado and A. Mullery
Eds. Intelligence in Services and Networks, 61h International
Conference on Intelligence and Services in Networks, LNCS
1597, Springer, 1999.
[26] Waelchi, F. The VSM and Ashby’s Law as Illuminants of
historical Management Thought, In The Viable Systems Model:
Interpretations and Applications of Stafford Beer’s VSMEds. R.
Espejo and R. Harnden, 1996.
[27]White, C. J. The IBM Business Intelligence Software
Solution, DataBase Associates, Version 4, May 2000.

pp. 139-144.

40

