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ABSTRACT
The sympathetic nervous system and the pituitary-adrenocortical 

system are two of the body’s main stress effector systems. Animal 
studies have indicated that exogenously administered glucocorticoids 
inhibit sympathetic outflows and interfere with the function of pre
synaptic a 2"aclrenoceptors modulating neuronal norepinephrine (NE) 
release, The present study tested whether glucocorticoids produce 
similar effects in humans. In a randomized, double-blind, placebo- 
controlled cross-over experiment, 15 healthy subjects took 20 mg 
prednisone or placebo orally daily each morning for 1 week, followed 
by the other drug after a 1-week washout. On the last day of each 
treatment week, blood samples were drawn for assays of plasma levels 
of catechols and ACTH before and after iv infusion of the c^-adreno- 
ceptor antagonist yohimbine (YOH) (0.125 mg/kg bolus, 0,001 
mg*kg~1*min“' 1 infusion). In 7 subjects, directly recorded peroneal 
skeletal muscle sympathetic nerve activity (MSNA) was also mea
sured at baseline and after YOH infusion at the end of both treatment 
weeks. Prednisone decreased plasma NE levels and MSNA compared

HE HYPOTHALAMO-PITUITARY-ADRENOCORTI- 
CAL and sympathoneural systems interact in complex 

ways to maintain homeostasis: 1 ) exposure to stressors often 
increases hypothalamo-pituitary-adrenocortical and sympa
thoneural outflows concurrently; 2) central administration 
of corticotropin-releasing hormone evokes large increases 
in plasma levels of ACTH and catecholamines; 3) ACTH 
(probably via adrenal corticosteroids) increases activities 
of dopamine-/3-hydroxylase and phenylethanolamine-N- 
methyltransferase, enhancing the capacity to synthesize nor
epinephrine (NE) and convert NE to epinephrine; 4) steroids 
generally inhibit extraneuronal uptake of catecholamines; 
and 5) steroids augment /3-adrenoceptor-mediated processes 
(5, 6). Conversely, catecholaminergic pathways in the brain 
contribute to ACTH release (7), and /3-adrenoceptor agonists 
increase (8) or decrease (9) pituitary ACTH secretion.

In laboratory animals, administration of glucocorticoids 
decreases plasma levels of catecholamines, inhibits catechol
amine synthesis (10), and can attenuate plasma catechol
amine responses to at least some stressors (11 ), suggesting 
that glucocorticoids inhibit sympathoneural outflows under 
resting conditions and during stress. Endogenous glucocor
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with levels after placebo (1.09 ± 0,11 nmol/L vs. 1.40 ± 0.13 nmol/L, 
P < 0.01; 30 ± 4  bursts/min vs. 36 ± 3 bursts/min, P < 0.05) without 
affecting blood pressure or pulse rate, YOIi increased mean arterial 
blood pressure by 12% (P < 0.001) and heart rate by 7% {P < 0.05); 
prednisone did not alter these effects of YOH. YOH-induced propor
tionate increments in plasma NE levels averaged about 10 times those 
in MSNA. Prednisone did not affect the YOH-induced proportionate 
increments in plasma NE levels (placebo, 243%; prednisone, 237%) or 
MSNA (placebo, 22%; prednisone, 23%). The decrements in MSNA 
and plasma NE levels after prednisone treatment indicate that glu
cocorticoids inhibit sympathoneural outflows in humans. The 10-fold 
larger NE than MSNA response to YOH confirms substantial inhib
itory modulation of NE release by «.¿-adrenoceptors on noradrenei'gic 
terminals, and the similarity of responses to YOH after prednisone or 
placebo suggests that glucocorticoid-induced sympathoinhibition oc
curs independently of altered modulatory function of c^-adrenocep- 
tors on noradrenergic terminals. (J Clin Endocrinol Metab 80:1804- 
1808,1995)

ticoids restrain catecholaminergic responses to immobiliza
tion in conscious rats (12). The occurrence of glucocorticoid- 
induced attenuation of catecholaminergic stress responses 
seems to depend on the type of stressor (11, 13, 1.4).

Exogenously administered glucocorticoids may also in
terfere with the function of a 2-adrenoceptors on noradren
ergic terminals in the brain and periphery. Thus, hypercor- 
tisolemic animals have blunted responses of levels of NE and 
its intraneuronal metabolite dihydroxyphenylglycol (DI-IPG) 
in brain microdialysate (10) and in plasma (15) after admin
istration of the a2-adrenoceptor blocker yohimbine (YOH).

Whether glucocorticoids decrease sympathoneural activ
ity or plasma NE levels in humans, at baseline or in response 
to a 2-adrenoceptor blockade, has not been established. Such 
effects could be relevant clinically; a2-adrenoceptor blockers 
are currently undergoing clinical trials as antidepressants, 
and many depressed patients have high circulating cortisol 
levels. More generally, such effects would implicate the a 2- 
adrenoceptor as a potentially important site of interaction 
between two of the main stress effector systems of the body.

We previously reported that YOH infusion in humans 
increases both MSNA and the rate of spillover of NE for a 
given amount of directly recorded skeletal muscle sympa
thetic nerve activity (MSNA), i.e. that cv2-adrenoceptors in the 
brain and on noradrenergic terminals in the periphery re
strain NE release into the bloodstream (16). In this study, we 
examined the effects of 1 week of oral prednisone treatment- 
on plasma levels of catechols and on MSNA, under resting 
conditions and in response to iv infused YOH, in a double
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blind, placebo-controlled, randomized cross-over study of 
healthy adult volunteers. The study was designed to address 
whether glucocorticoid administration affects plasma NE 
and MSNA levels at baseline and in response to ^-adreno
ceptor blockade and if so whether the extent of attenuation 
of the MSNA and plasma NE responses are proportionately 
similar. If the extent of attenuation of the plasma NE response 
to YOH were the same as the extent of attenuation of the 
MSNA response to YOH, this would suggest that glucocor
ticoids interfere with YOH-induced increases in sympathetic 
nerve traffic, whereas if the extent of attenuation of the 
plasma NE response to YOH were larger than the extent of 
attenuation of the MSNA response to YOH, this would sug
gest that glucocorticoids interfere with YOH-induced NE 
release from sympathetic terminals for a given amount of 
nerve traffic. Thus, the study design enabled separate ex
amination of effects of glucocorticoids on a 2~adrenoceptor 
restraint of central sympathetic outflow and on NE release 
from sympathetic terminals in the periphery.

Subjects and  Methods

Subjects

Fifteen healthy volunteers (12 men and 3 women; mean age 33 yr, 
range 21-54 yr) participated in the study after giving written informed 
consent. All subjects had a normal medical history, physical examina
tion, screening laboratory tests of blood and urine, and electrocardio
gram. The participants refrained from smoking and from drinking al
cohol or caffeinated beverages for 24 h before each YOH challenge test. 
The study protocol was approved by the Intramural Research Board of 
the National Institute of Neurological Disorders and Stroke.

S tudy  design

All subjects w ere studied twice, after 20 mg prednisone per day for 
7 days and after placebo for 7 days. The sequence of the double-blind 
treatments was random ized. Between the two treatments there was a 
washout period of 7 days. On the last day of each treatment, a YOH 
challenge test was performed. The subjects were advised to take the last 
dose 1 to 2 h before the YOH infusion. The chosen dose of prednisone 
is known to suppress hypothalamo-pituitary-adrenocorlical activity 
(Ï 7).

Setup

The experiments were conducted in a quiet room with constant tem 
perature (~  24°C) and w ith the subjects in the supine position. Blood 
pressure was measured by an automated cuff device (Critikon, Tampa, 
FL). Heart rate w as recorded continuously by electrocardiogram, An iv 
catheter was inserted in each arm, one iv for infusing YOH and one for 
sampling blood.

Microneurography

In seven subjects, multifiber recordings of MSNA were obtained 
successfully from a muscle fascicle of the peroneal nerve at the head of 
the fibula after each drug treatment. The course of the nerve was m apped 
by transculaneous electrical stimulation (40-60 volts, 0.2 millisec, 1 
hertz) w ith a pencil-shaped electrode. A sterile, tungsten wire micro- 
clectrocle was then inserted in the region of the nerve. A similar reference 
electrode was inserted sc 1-3 cm from the recording electrode. Weak 
electrical stimuli (2-4 volts, 0.2 millisec, 1 hertz) were delivered to the 
recording electrode by a stimulator connected to an isolation unit. The 
elicitation of involuntary twitches in the foot indicated that the electrode 
tip was located within or was close to the muscle nerve fascicle. The 
electrode was then moved until there was acceptable recording from

sympathetic nerve fibers. Recordings of M SNA w ere accepted if tapp ing  
or stretching the muscles o r tendons supp lied  by  the im paled nerve 
produced  afferent m echanoreceptor discharges and rubbing  the skin in 
the sensory field of the nerve  evoked no afferent response an d  if spon
taneous, pulse synchronous bursts  of imtscle sym pathetic nerve activity 
w ere observed, with the frequency and  am plitude  of the bursts increa- 
seing during held  expiration bu t not d u rin g  arousal stimuli. Electrodes 
rem ained in place th roughou t the study. The electrodes w ere connected 
to a preamplifier (gain 1000) and an  am plifier (gain 70). The nerve signals 
w ere played through a loudspeaker, d isplayed on a m onitor, and re 
corded using  a MacLab/8 data  record ing  system  (MacLab, ADInstru- 
m ents Pty, Ltd, Castle Hill, Australia) controlled by a M acintosh com 
puter. The num ber and the am plitude  of sym pathetic bursts w ere 
m easured during  5-min periods and  expressed as bursts  per m in and  
/xvolts per min. The m easurem ents w ere  perfo rm ed  by Peaks softw are 
from MacLab.

[Qr i 2 min. Blood

YO H  infusion

After the subject had  been at supine rest for 20 m in, blood pressure 
and heart rate were recorded  every 2 m in  for '10 min, and  baseline blood 
samples (— 10 cm3) w ere d raw n.

YOH hydrochloride w as obtained from Sigma F and  D Division (St. 
Louis, MO) and  adm inistered u n d e r  Investigation N ew  D rug num ber 
2 1 ,220. YOH w as injected as a bolus (0.125 mg*kg‘ 1 for 3 min) followed 
by a continuous infusion a t 0.001 mg*kg" E*min 
pressure and heart rate w ere recorded  every 2 m in during  the infusion; 
the last three values w ere used for data analysis, in the last m in of the 
infusion, another blood sam ple w as draw n.

Assays

Blood samples were collected into chilled heparin ized glass Lubes and 
centrifuged at 4C and 3,500 X g  for 15 min before storage of the plasm a 
at —75C until assayed, Plasma levels of catechols w ere m easured  by 
liquid chrom atography w ith  electrochemical detection after adsorption  
on  alumina (18). The limits of detection w ere about 0.04 n m o l/L  for NE 
and about 60 p m o l/L  for epinephrine.

ACTII assays w ere conducted using  a dual an tibody im m unoradio- 
metric assay (Allegro HS-ACTH; Nichols Institute, Los Angeles, CA), as 
previously described (19). The in traassay  coefficients of variation w ere 
20% and 6.5% at concentrations of 1.5 and 9.0 p m o l/L , and  the m in im um  
detectable concentration w as 0.44 p m o l/L  {range 0.22-1.1 pm ol/L ).

Data analysis

Results are presented as m eans ±  s h . Responses were expressed both 
as absolute and  as percentage changes from the resting value. The 
Wilcoxon signed rank test was used to com pare the effects of prednisone 
and placebo on basal values an d  to assess the effects of YOH during  
placebo treatment. Tw o-w ay analyses of variance were used to test for 
interactions between prednisone and YOH. A P value less than 0.05 
defined statistical significance.

R esults

Effects o f  prednisone on basal values 

Prednisone administration for 1 week did not affect systolic, 
diastolic, or mean blood pressure, heart rate, or body weight 
(Table 1). Plasma ACTH levels decreased significantly from 21.7 
± 5.6 pmol/L to 10.6 ± 3.7 pmol/L (P <  0.05). Plasma levels 
of NE decreased by 20% (P <  0.01), and DHPG levels decreased 
by 15% (P <  0.01). MSNA (bursts per min) decreased by 21% 
(P <  0.05, Table 1); the proportionate decrease in MSNA was 
larger (51%) when MSNA was expressed as /uvolts per min (P 
<  0.05). Prednisone did not affect plasma levels of epinephrine, 
3,4- d i hy d r o xy p h e n y 1 a 1 a nine, or dihydroxyphenylacetic acid. 
Urinary sodium excretion was not significantly affected by
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TABLE 1. Effects of 1 week of treatment with placebo or prednisone (20 mg orally each morning) on responses of blood pressure, heart 
rate, plasma levels of catechols, and skeletal muscle sympathetic nerve activity (MSNA) responses to yohimbine (YOH) in healthy 
volunteers"

Placebo Prednisone
Baseline YOH Baseline YOH

Systolic BP (mm Hg) 121 ±  4b 136 ± 5 119 ± 3b
f

133 ± 4
Diastolic BP (mm Hg) 70 ± 2 h 77 ± 2 70 ± l 4 76 ± 2
MAP (mm Hg) 87 ±  2b 97 ± 3 86 ± 26 95 ± 2
Heart rate (beats/min) 63 ± 2b 67 ± 3 64 ± 3C 67 ± 3
Plasma NE (nmol/L) 1.40 ± 0.13* 4.83 ± 0.56 1.09 ± 0 .11^ 3.47 ± 0.38
Plasma E (pmol/L) 150 ± 30 220 ± 40 110 ± 20c 150 ± 30
Plasma DHPG (nmol/L) 6.10 ± 0.37e 7.59 ± 0.49 5.02 ± 0.24M 6.37 ± 0.29
Plasma DOPA (nmol/L) 9.08 ± 0.71 9.16 ± 0.82 7.68 ± 0.39 8.24 ± 0.38
Plasma DOPAC (nmol/L) 8.05 ± 1.09 8,70 ± 1.24 8.90 ± 1.48 9.06 ± 1.56
MSNA (bursts/min) 36 ±  3C 44 ± 4 30 ± 4c,/r 35 ± 4
MSNA (¿¿volts/min) 6.56 ±  0.93e 9.45 ± 1.72 3.26 ± 0.31^ 4.69 ± 0.65

BP, blood pressure; MAP, mean arterial blood pressure; DHPG, dihy dr oxyphenylgly col; DOPAC, dihydroxyphenylacetic acid.
a MSNA recording was carried out in 7 out of the 15 subjects.
b P  < 0,001 (YOH vs. baseline).
c P  < 0,05 (YOH vs. baseline).
d P  < 0.01 (baseline value, prednisone us. placebo),
c P  <  0.01 (YOH vs. baseline).
r P  <  0.05 (baseline value, prednisone vs. placebo).

prednisone (after placebo, 9.6 ±1 .9  mmol sodium per mmol 
creatine excretion; after prednisone, 9.8 ± 1.6 mmol sodium per 
mmol creatinine excretion),

Effects o f YO H  infusion during  placebo phase

During placebo treatment, YOH increased systolic, di
astolic, and mean arterial blood pressure significantly by 
13%, 11%, and 12% (all P <  0.001), respectively, and heart 
rate by 7% (P < 0.05; Table 1). YOH also increased plasma 
NE levels and MSNA (bursts per min) in all subjects. The 
mean increment in plasma NE levels was 243% (Fig. 1), 
about 10~fold larger than the 22% increase in MSNA (Fig. 
2). Plasma DHPG levels increased by 25% (Table 1). MSNA 
(¿ivolts per min) increased by about 40%. Plasma epineph
rine levels did not increase significantly, and plasma 3,4- 
dihydroxyphenylalanine and dihydroxyphenylacetic acid 
levels were unchanged.

Effects o f  YO H  during  prednisone treatm ent phase

Prednisone did not affect absolute or percentage responses of 
blood pressure or heart rate to YOH (Table 1). Hie absolute in
crement in plasma NE levels during YOH infusion was not sig
nificantly smaller after prednisone than after placebo (2.38 ± 0.34 
nmol/L and 3.44 ± 0.46 nmol/L, 0.05 <  P <  0.10); the propor
tionate increments did not differ (237 ± 41% and 243 ± 24%, Fig. 
1). Prednisone also did not influence the YOH-induced propor
tionate increments in plasma DHPG levels (Table 1).

Analogously, neither absolute nor proportionate responses 
of MSNA to YOH differed between placebo (7 ± 3 bursts/min, 
22 ±  7%) and prednisone (6 ± 1 bursts/min, 23 ± 7%) treat
ments (Fig. 2). The proportionate plasma NE response to YOH 
remained about 10 times the MSNA response. Analyses of 
variance revealed no interaction between the effects of pred
nisone and of YOH for any of the dependent neuronal or neu- 
rochemical measures. The relative responses of NE levels and 
MSNA (A%NE/A%MSNA) also did not differ between the 
prednisone and placebo treatments.
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Fig. 1. Mean (± sem ) plasma NE levels at baseline and during in
fusion of YOH after 1 week of placebo and after 1 week of prednisone 
(upper panel)  and absolute and percentage responses of NE levels 
during YOH infusion (lower panel)  (!|i*P < 0.01; < 0.001).

Discussion

The results show that oral prednisone treatment for 1 week 
at a dose of 20 mg each morning produces sympathoinhi- 
bition, because directly recorded MSNA and plasma levels
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of the sympathetic neurotransmitter NE and of the intra
neuronal NE metabolite DHPG were significantly lower after 
prednisone treatment than after placebo treatment in the 
same subjects. The double-blind, placebo-coxi trolled, ran
domized cross-over design excluded important sequence ef
fects or observer biases. The sympathoinhibition probably 
resulted at least partly from effects of prednisone in the 
central nervous system or sympathetic ganglia, because 
prednisone decreased the rate of directly recorded sympa
thetic nerve traffic in the peroneal nerve, and because per
oneal sympathetic fibers are postganglionic (16).

Studies of laboratory animals have indicated that a 2- 
adrenoceptors in the brain tonically inhibit sympathoneural 
outflows (20). The same may hold true for humans, because 
patients with spinal cord transections with disruption of 
descending pathways from the brain to the intermediolateral 
columns of the thoracolumbar spinal cord do not demon
strate a decrease in blood pressure in response to clonidine 
(21), and iv infusion of the a2-adrenoceptor blocker YOH in 
healthy volunteers increases MSNA (16). An increase in the 
number or affinity of central ^-adrenoceptors during pred
nisone treatment could therefore inhibit sympathoneural 
outflows. Consistent with this view, elevated plasma cortisol 
levels in anorexic patients are associated with an increased 
number of platelet a 2-adrenoceptors (22); however, such an 
effect of prednisone would be expected to augment sympa
thoneural responses to a2~adrenoceptor blockade, and the 
present results failed to confirm this hypothesis.

Other animal studies have suggested that glucocorticoids 
interfere with the modulatory function of a 2“adreno cep tors 
in the brain and periphery (5,10). The failure in the present 
study to detect attenuation of responses of either MSNA or 
of plasma NE levels after prednisone treatment casts doubt 
on the generalization of these findings in rats to healthy adult 
humans.

In the present study, the proportionate increases in an- 
tecubital venous plasma NE levels during YOH infusion 
averaged about 10 times those in MSNA, confirming pre
vious clinical reports that the hum an forearm possesses 
abundant, functional a 2-adrenoceptors on sympathetic 
nerves (23).

Prednisone treatment failed to attenuate the marked ef
fects of YOH on plasma NE or MSNA levels. The fact that 
there was no significant difference in the relative plasma NE 
response for a given neural response (A%NE/ A%MSNA) to 
YOH between the prednisone and placebo treatments sug
gests the absence of an effect of prednisone on the modula
tory function of presynaptic a 2-adrenoceptors in the periph
ery. Therefore the findings are consistent with the view that 
the sympathoinhibition produced by prednisone occurs in
dependently of effects of prednisone on the function of pe
ripheral and central neural a 2-adrenoceptors.

Plasma DHPG levels reflect NE turnover in sympathetic 
nerves (24, 25). The fall in plasma DHPG levels after pred
nisone treatment therefore confirms ghicocorticoid- 
induced syrnpathoinhibition. YOH increases plasma 
DHPG levels in humans because of reuptake and intran
euronal oxidative deamination of endogenottsly released 
NE (24). The finding that increments in plasma DHPG 
levels during YOH infusion did not differ after placebo or 
prednisone treatment suggests that prednisone does not 
interfere with neuronal uptake of NE (Uptake-1 ) or with 
monoamine oxidase. Because of the relatively small p ro 
portion of endogenously released NE that is removed by 
nonneuronal uptake (Uptake-2, reference 26), prednisone 
treatment would not be expected to alter plasma NE re
sponses to YOIi, even though exogenously administered 
steroids inhibit Uptake-2 (4).

Several reports noted glucocorticoid-induced augmenta
tion of pressor or vasoconstrictor responses to exogenously 
administered NE and augmentation of tachycardic responses 
to j3-adrenoceptor agonists (5,27). In the present study, YOH- 
induced pressor and tachycardic responses were similar after 
placebo and after prednisone. These results suggest that glu
cocorticoids may not accentuate responses for a given 
amount of endogenously released NE in humans, but a si
multaneous effect of prednisone on other vasopressor or 
depressor hormone systems could have obscured an aug
mented pressor response to YOH.

In conclusion, administration of prednisone to humans 
causes sympathoinhibition* In contrast to previous findings 
in laboratory animals, this inhibition seems to occur inde
pendently of inhibitory modulation of sympathoneural out
flows by a 2-adreno cep tors in the central nervous system and 
of inhibitory modulation of NE release by a 2-adrenoceptors 
on noradrenergic terminals in the periphery.
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