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Abstract

Reinforcement learning in the continuous state-space poses the problem of the in-
ability to store the values of all state-action pairs in a lookup table, due to both storage
limitations and the inability to visit all states sufficiently often to learn the correct val-
ues. This can be overcome with the use of function approximation techniques with
generalisation capability, such as artificial neural networks, to store the value function.
When this is applied we can select the optimal action by comparing the values of each
possible action; however, when the action-space is continuous this is not possible.

In this thesis we investigate methods to select the optimal action when artificial
neural networks are used to approximate the value function, through the application of
numerical optimization techniques. Although it has been stated in the literature that
gradient-ascent methods can be applied to the action selection [47], it is also stated that
solving this problem would be infeasible, and therefore, is claimed that it is necessary
to utilise a second artificial neural network to approximate the policy function [21, 55].

The major contributions of this thesis include the investigation of the applicabil-
ity of action selection by numerical optimization methods, including gradient-ascent
along with other derivative-based and derivative-free numerical optimization methods,
and the proposal of two novel algorithms which are based on the application of two
alternative action selection methods: NM-SARSA [40] and NelderMead-SARSA.

We empirically compare the proposed methods to state-of-the-art methods from
the literature on three continuous state- and action-space control benchmark problems
from the literature: minimum-time full swing-up of the Acrobot; Cart-Pole balancing
problem; and a double pole variant. We also present novel results from the applica-
tion of the existing direct policy search method genetic programming to the Acrobot
benchmark problem [12, 14].
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Chapter 1
Introduction

1.1 Problem Description

Reinforcement Learning (RL) is the process of learning to perform a given task well,
learning only from experimental interactions with the environment, in a similar manner
to the way we train pets through rewards and punishment. The term RL can be used
either to describe problems of this form, where the only training information is in the
form of a reward (or punishment) signal, or to describe a class of solutions applied to
these problems.

As RL agents are able to learn the expected long term reward and good policies
through experimentation with the environment, without an explicit teacher, it has
many application areas which may be very difficult, or impossible, to solve through
alternative methods, such as:

• difficult games, e.g. an agent reaching high skill level at Backgammon merely by
playing the game [54]

• control problems, e.g. an agent learning to fly a helicopter [39]

• resource allocation problems [45]

RL has had much success in the small discrete state- and action-space setting, and
through function approximation has been successfully applied to problems with large,
or continuous, state-spaces. There are also some methods which enable the application
of RL to problems with continuous action-space; however, the two most commonly
applied of these are the actor-critic architecture, which requires the training of an
extra function approximator, and direct policy search, which takes a large number of
training episodes in order to optimize the policy function using derivative-based or
derivative-free methods.

1
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1.2 Aims of This Work

Reinforcement learning in small, discrete state- and action-space can be achieved by
storing, in a lookup table, the expected sum of long-term discounted rewards we will
receive from being in any given state and taking any of the available actions from that
state. When the state-space is either very large or continuous we must utilise function
approximation to allow us to generalize between different states as we will be unable
to physically store the values of so many states, and we would be unable to visit all
states sufficiently often to learn the correct values. But we are still able to compare
the expected values of each possible action from the current state to select the one
believed to maximize the long-term reward. However, when the action space is large,
or continuous, selecting the action which will lead to the highest expected long-term
reward also poses a problem. This research investigates different methods of solving
this optimization problem to allow fast action selection using the same implicit policy
methods which is the preferred approach when the action space is small [21].

In order to achieve this we investigate the current state-of-the-art approaches for
solving continuous state- and action-space reinforcement learning problems and the
various function approximation techniques which are used to store the expected sum
of rewards, as a function of the state and action, and/or the policy function, which
stores the action to take from the specified state.

We then attempt to develop novel approaches which are an improvement on the
current performance of RL algorithms by overcoming the problems of applying RL in
the continuous state- and action-space. These novel approaches will be verified against
the state-of-the-art approaches on some well known control benchmark problems from
the literature.

1.3 Contributions

The main contributions to knowledge made by this thesis are:

• Description of two novel approaches to action selection through application of
optimization methods, which provide:

– faster action selection than gradient ascent, which is stated as an approach
in the literature [47]

– no discretization of the state- or action-space

– training on continuous problems without a separate policy function

• Comparison of performance of different optimization methods to the action se-
lection
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• Novel results of these and the existing approaches of genetic programming on the
Acrobot benchmark problem from the literature

1.4 Thesis Outline

The rest of this thesis is presented as follows. Firstly, the following three chapters
present the necessary background material required to appreciate the rest of the thesis.
This consists of the background of: reinforcement learning (Chapter 2) including the
notation used throughout the thesis and the basic algorithms of RL; artificial neural
networks (ANN) (Chapter 3) describing the architectures and training methods of sev-
eral ANNs which are commonly applied to approximating the value function and/or
policy function in RL; and finally evolutionary algorithms (Chapter 4) describing both
genetic algorithms and genetic programming, which are two approaches based on evo-
lution in nature applied to evolving candidates which optimize a fitness function, in
RL this fitness function is the sum of rewards received in an episode and these methods
are applied to direct policy search.

This is followed by a more in-depth description of the algorithms used to apply RL
to continuous action-space problems, which make use of all of the techniques covered in
the background. This includes both a review of the state-of-the-art continuous action-
space RL algorithms (Chapter 5) and then presents the details of some novel implicit
policy methods which take advantage of optimization methods to select the action
rather than discretizeing the action-space (Chapter 6).

Thirdly we present the application of several of the algorithms described to three
difficult continuous state- and action-space control benchmark problems from the lit-
erature to show how the novel algorithms compare to the state-of-the-art empirically
(Chapter 7). The control problems are: the Acrobot (Section 7.1) which also includes
novel results from existing techniques, the Cart-Pole (Section 7.2) and the double Cart-
Pole (Section 7.3) which are both compared to the CACLA algorithm as it has been
shown to outperform many other RL approaches in the literature [47]. The novel
approaches compare favourably to the state-of-the-art on all three benchmarks.

And finally Chapter 8 presents a brief summary of the contents of the thesis; a
discussion of the results of this research; and directions for future work.



Chapter 2
Reinforcement Learning

Reinforcement learning (RL) [30, 45, 53] is a machine learning technique whereby an
agent learns, through interaction with the environment, a policy of which actions to
take from any given state. The environment encompasses all information relating to
the application domain, including details unobservable by the agent, such as a model
of the dynamics of a control problem or the locations of all cards in a poker game.
The state is a representation of the information the agent should reasonably be made
aware of in order to act in the current environment, e.g. the cards the agent has in a
poker game, the betting pot and the chips each player has. The state signal is passed
to the agent from the environment, and the action is the signal the agent sends to the
environment which then affects the environment and results in the transition from the
current state to another state. In the poker example a reasonable set of actions may
be {bet, check, raise, fold}, which would not all be available from every state, e.g. if
the previous player has placed a bet the agent cannot check, but must either bet, raise
or fold.

Here agent refers to a computer program with the ability to interact in some way
with the environment and to autonomously select actions, based on the information it
observes about the current state of the environment, and can update this policy based
on positive or negative reinforcement signals, which are received from the environment.

In order for the agent to learn which actions are better than others from a given
state, there must be some measure of how good it is to be in a particular state in
the environment the agent is placed in. This takes the form of a reward which is
the feedback the agent receives from the environment as a measure of the quality of
the transition from the current state to the resulting state when applying the selected
action.

Thus, the task of a RL agent is to learn a policy which maximises this reward
signal, in order to perform optimally in the environment, this of course assumes the
rewards are correctly aligned with the goal to be achieved (see Section 2.1 for details

4
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Agent Environment

action

(state,reward)

Figure 2.1: The interaction between the RL agent and the environment. At each
time-step the agent selects an action based on the current state, which it applies to
the environment after which the environment notifies the agent of the next state and
immediate reward resulting from the state transition.

on how the RL problem is formulated). The way in which the agent interacts with the
environment through these signals can be seen in Fig. 2.1.

It is important to note that the goal of RL is to maximise the long-term reward
rather than the immediate reward at each time-step which may involve taking, seem-
ingly, suboptimal actions in order to achieve greater rewards in the future. For example
at certain times of the day it may be quicker to take a longer route rather than queuing
up to take the short-cut with everyone else.

In order to explain how the agent learns to optimize the rewards received, we first
describe the notation used to model the problem to be solved using RL in Section 2.1,
then in Section 2.2 we describe the basics and the algorithms of dynamic programming,
which is a method of solving RL problems when a full model of the environment is
available. Then we expand this to general reinforcement learning in which a model
of the environment is not assumed (Section 2.3). And in Section 2.4, Section 2.5
and Section 2.6 we discuss the main obstacles involved in applying RL, including the
exploration exploitation trade off, slow leaning and applying algorithms in continuous
state- and action-spaces, along with some commonly applied approaches to overcoming
such difficulties. Finally Section 2.7 contains a summary of the material covered in this
chapter.

2.1 Markov Decision Process

A problem which is to be solved by RL is first formulated as a markov decision process
(MDP). An MDP is a mathematical model of a decision process which comprises:

• A set of possible states S
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• A set of possible actions A

• A state transition function: S ×A× S 7→ [0, 1]

• A reward function: S ×A× S 7→ R

each of which is described in more detail in the following sections.
Another key factor of formulating a task as an MDP is that it must satisfy the

markov property, which means the information contained in one state is sufficient to
optimize future actions, without knowledge of previous states.

2.1.1 State-Space

The state-space is the set of all possible states S, it is important to define the state-space
such that the markov property holds. The state-space may be discrete or continuous,
vector or scalar valued. In some cases a good state representation may be obvious from
the application in other cases it may be necessary to construct a, somewhat, artificial
state representation in order to utilise symmetries in the state-space, or in an attempt
to construct a more hierarchical representation.

An example of a state-space representation which satisfies the markov property is
the current layout of a Chess board: the sequence of moves leading to the current board
layout is not required for a player to select his next move; thus, the raw board layout
satisfies the markov property and could be used. Of course with such a large state-
space it would be useful to identify other features to augment the state representation
and, therefore, assist in the learning process, but identifying such features may require
expert knowledge of the application domain.

Although it is possible to apply RL to problems where the markov property does
not hold: partially observable MDPs (POMDPs) [49] where, e.g. due to noisy sensors,
the state signal may not be distinguishable from other states. Such difficulties are not
considered here.

It is also possible, in some applications, to use the afterstate [53] (also known as
post-decision state [45]). The afterstate is the state with the action applied to it, but
before the state transition function has been applied. One obvious example of this is
in a board game, where the afterstate is the board layout after the agents move, but
before the opponents move. This fully utilises all the information available to the agent,
and because many state-action pairs may lead to the same afterstate can accelerate
learning [53], and can also be utilised in applications with much higher dimensional
action-spaces [45].
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2.1.2 Action-Space

The action-spaceA is the set of all possible actions which may be taken from the current
state. In some problems, the available actions may vary according to the current state,
and therefore, the action-space is often expressed as A(s).

As with the state-space, the action-space may be discrete or continuous, scalar or
vector valued. The action representation also depends on the application, and on the
solution method: some approaches involve discretization of continuous action-space in
order to avoid the optimization problem for action selection [24, 47].

2.1.3 State Transition Function

The state transition function maps the probability of making the transition from s ∈ S
to s′ ∈ S when applying a ∈ A(s). We denote this probability with the notation:

Pr(s′|s, a) = Pr(st+1 = s′|st = s, at = a). (2.1)

Again this function is very problem specific: some may be deterministic, others
stochastic. It may also depend on how the task is formulated.

2.1.4 Reward Function

The reward function gives the expected reward received after taking a in s and as a
result transitioning to s′:

r(s, a, s′) = E {rt+1|st = s, at = a, st+1 = s′} (2.2)

Although we include s, a and s′ in this notation, in practice this function may be
defined in terms of just s and a or just s′, it is possible that the reward could be
deterministic, this is largely dependent on the problem.

Although some applications may have an inherent reward function: e.g. portfolio
management [45], for many others this function will have to be defined by the designer
to indicate the goal of the task. For a disaster avoidance task, one example of which is
balancing a pole on a cart (Section 7.2), the reward may simply be 0 at all time-steps
until failure, when a negative reward is received. In problems where a minimum time
solution is required the reward may be a negative value at all time-steps until the agent
is successful, e.g. the minimum-time swing-up of the acrobot (Section 7.1).

In other cases a more sophisticated reward function may be applied to include
several features of desired performance. It is important to ensure the reward function
only defines the desired outcome and not the method of achieving the desired outcome.
In the chess example if the defined reward function punishes the agent for having
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pieces taken by the opponent, this may result in the agent maximizing the number of
remaining pieces even at the expense of the game [53].

2.2 Dynamic Programming

Dynamic programming (DP) [5] is the predecessor to RL, which seeks to optimize the
long term sum of a reward received at each discrete time-step of a task. This is achieved
by first separating the sum of all rewards into the immediate reward and the sum of
all future rewards in order to apply a recursive solution which maximizes the sum of
the immediate reward and the sum of all future rewards.

RL extends DP to be applicable to problems where a model of the environment is
not available and/or the state- and action-space are too large to evaluate every possible
action from every possible state until the value function and/or policy has converged.
Thus DP can be seen as a special case of RL when a model of the environment is
available, and is often viewed as such by the RL community [10, 28, 30, 53].

Using the notation described in Section 2.1, DP seeks to select the action at each
state to maximize the sum of discounted rewards:

T−1∑

t=0

γtrt+1 (2.3)

with the undiscounted setting included as a special case where γ = 1; however, typically
γ is set to values such as 0.8 or 0.9. In certain applications, such as financial applications
where the value of money changes with time, the value of γ may take a special meaning
in the application domain. But, in general, it both ensures the sum remains finite and
controls how much preference is given to receiving rewards sooner.

The mechanism employed by DP to separating the sum of rewards into a recursive
problem is the value function (Section 2.2.1), after describing the value function we go
on to describe the main algorithms of DP: policy iteration (Section 2.2.2) and value
iteration (Section 2.2.3).

2.2.1 Value Function

The principal component of DP is the value function, which divides the maximization
of the sum of long term discounted rewards into a recursive problem of maximizing
the sum of immediate rewards and the sum of all future rewards, where the sum of all
future rewards can be approximated by the value function at the following time step.
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The value function is the expected sum of discounted rewards:

V (st) = E





T−(t+1)∑

k=0

γkrt+k+1



 (2.4)

which is split into the immediate and all future rewards:

V (st) = E {rt+1}+γ E





T−([t+1]+1)∑

k=0

γkr[t+1]+k+1



 (2.5)

and the value function at the next time-step is substituted for the sum of all future
rewards:

V (st) = E {rt+1}+γV (st+1) (2.6)

The equation which optimizes the value function V (s) is known as the Bellman
optimality equation:

V ∗(s) = max
a

E {r(s, a, s′) + γV ∗(s′)} (2.7)

which is the maximum sum of discounted rewards. DP methods and some classes of
RL methods attempt to find approximate solutions to this equation in order to find an
optimal policy. The two main approaches to DP: policy iteration and value iteration
are described below.

2.2.2 Policy Iteration

Policy iteration relies on iteratively calculating the value function V (s), ∀s ∈ S based
on following the current policy and then calculating an improved policy by setting it
to the action which optimizes V (s) assuming the value of selecting all future actions
according to the current learnt policy:

π(s)← arg max
a∈A(s)

∑

s′

Pr(s′|s, a) [r(s, a, s′) + γV (s′)] , ∀s ∈ S (2.8)

until there are no changes to the policy.

2.2.3 Value Iteration

Value iteration, on the other hand, calculates V (s) by selecting the maximum action
rather than from following a policy using Equation (2.9), until the changes in the value
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function are very small.

V (s)← max
a

∑

s′

Pr(s′|s, a)[r(s, a, s′) + γV (s′)], ∀s ∈ S (2.9)

Thus, approximately solving V ∗(s), after which the policy which maximizes the
value function can be calculated using (2.10) if required.

π(s)← arg max
a

∑

s′

Pr(s′|s, a)[r(s, a, s′) + γV (s′)], ∀s ∈ S (2.10)

One of the largest problems with DP is that every state and action must be visited
in order to solve the approximation of the value function. This is especially important
as the number of possible states and actions increases exponentially with an increase
in the dimensionality of the state- or action-space, this is known as the curse of dimen-
sionality. The curse of dimensionality is one of the problems RL methods attempt to
overcome by updating only the value function for states which are visited by the agent.

2.3 Reinforcement Learning Methods

There are three main approaches to the learning of policies with RL: Temporal Differ-
ence (TD) learning, Actor-Critic (AC) methods and direct policy search (DPS). TD and
AC both store estimates of the value function, but TD calculates the policy from the
value function whereas AC also explicitly stores the policy function. DPS only stores
the policy function. Here each of these methods will be briefly discussed individually.

2.3.1 Temporal Difference Learning

Initially the value functions are unknown and must be learnt through experimentation
with the environment. Temporal difference (TD) learning [52] is one method of updat-
ing the value function. TD learning updates the policy at each time-step, and therefore
takes advantage of the updated estimate when deciding future actions within the same
episode. TD learning is done by, at each time-step, calculating the TD error δ (2.11),
which is the difference between the estimate of V (st) made at the previous time-step
and the sum of the immediate reward and the discounted estimate of the sum of all
future rewards: rt+1 + γV (st+1)−V (st). V (s) is then updated to reduce the TD error:

δ = r(s, a, s′) + γV (s′)− V (s) (2.11)

by applying:
V (s)← V (s) + αδ (2.12)



CHAPTER 2. REINFORCEMENT LEARNING 11

This method clearly relies on the estimate at the next time-step in order to update
the estimate at the current time-step, and therefore several episodes will be required
to establish accurate value estimates of states occurring towards the beginning of the
trajectory which take into account rewards received later in the trajectory. This can
be improved by eligibility traces (Section 2.5).

It is not always possible to select actions based on V (s), which requires a model of
the transition function. In such cases the state-action value function Q : S × A → R
is applied instead. The TD error is defined in a similar way, however, as there is
no estimate of V (s) two different approaches exist for estimating the sum of future
rewards using the Q function. One option is to base the update on the action selected
at time-step t+ 1, which leads to the SARSA algorithm:

δ = r(s, a, s′) + γQ(s′, a′)−Q(s, a) (2.13)

The alternative is to use the value of the greedy action at time-step t + 1, which
results in the Q-learning algorithm:

δ = r(s, a, s′) + γ max
â∈A(s′)

Q(s′, â)−Q(s, a) (2.14)

The difference, in RL terminology, is that SARSA uses on-policy updates, and Q-
learning uses off-policy updates. Which means SARSA applies the learnt policy to
select actions when interacting with the environment (on-policy), whereas Q-learning
uses a different policy for action selection and training (off-policy): updates assume
the greedy action will be taken but actually exploratory actions may be taken. This
can lead to some differences in learnt functions and learnt policies: SARSA takes
exploration into consideration and therefore learns a safer policy if exploration leads
to poor rewards, whereas Q-learning ignores the values of such exploratory actions and
therefore may learn a policy in which the long-term expected reward is maximized in
episodes where the greedy policy is followed; however any exploratory actions, or noise,
may have devastating consequences, as is illustrated by the cliff walking example in [53,
p. 149].

2.3.2 Actor-Critic

Actor-Critic (AC) based methods were among the earliest approaches to solving RL
problems [3]; however, despite the fact that generally, when it is possible to do so, pref-
erence is given to implicit policy methods [21] (also referred to as critic-only methods),
AC methods remain popular largely due to their applicability to continuous action-
space without searching for the optimal action directly [53], particularly as it is often
stated that searching of the action which maximizes the value function is not feasi-
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ble [21, 55]. Another reason for the survival of AC methods is their ability to learn a
stochastic policy, which is particularly applicable in non-Markov problems [53, p.153].

2.3.3 Direct Policy Search

Direct policy search (DPS) methods (sometimes referred to as actor-only methods),
including evolutionary algorithm based methods and policy gradient methods, attempt
to search for optimal policies without learning the value function. They typically
attempt to solve a slight variation of the RL problem:

max
θ

J(θ) = E

{
T∑

t=0

γtrt

∣∣∣ θ
}

(2.15)

which is the expected sum of discounted rewards using the policy parameter vector
θ. Thus, DPS seeks to optimize the policy by adjusting the parameters of the policy
without attempting to solve V (s). One exception to this is the genetic programming
approach (discussed in more detail in Section 5.2.3) which not only adjusts the param-
eters of the policy, but the policy function also has no fixed structure and is updated
through evolutionary operations.

2.4 Exploration vs Exploitation

During learning, particularly at the earlier stages when an arbitrary policy is used, it is
important to explore the environment as well as exploiting the current policy in order
to find action choices which may lead to state trajectories which are an improvement
over the current policy. There are several methods of achieving this, the most popular
of which are ε-greedy in the discrete action-space setting, and Gaussian exploration in
the continuous action-space.

2.4.1 ε-Greedy

In the ε-greedy exploration method an exploration parameter ε controls the exploration
exploitation trade off. With probability ε an exploratory action is selected at random,
and with probability 1− ε the greedy action is taken, to exploit the learnt policy. This
parameter may be constant throughout learning, or may start high when there is no
knowledge about the optimal value function and reduced as learning progresses.
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2.4.2 Softmax Exploration

An alternate exploration technique, in the discrete action-space setting, is the softmax
method which, by applying the Boltzmann distribution, selects actions according to
probability based on their expected value rather than selecting from all exploratory
actions with equal probability, as is the case with ε-greedy [53]. The distribution
includes a temperature parameter τ , which controls the extent to which the action
selection probabilities are affected by the difference in Q values.

Pr(at = a|st = s) =
exp [Q(s, a)/τ ]∑

aj∈A(s) exp [Q(s, aj)/τ ]
(2.16)

For simplicity in (2.16) we assumed the use of Q(s, a), of course, if V (s) is be-
ing used, it is possible to define the same distribution in terms of V (s′), where s′ is
calculated using the state transition probabilities (2.17).

Pr(at = a|st = s) =
exp [

∑
s′ Pr(s′|s, a)V (s′)/τ ]∑

aj∈A(s) exp [
∑

s′ Pr(s′|s, aj)V (s′)/τ ]
(2.17)

Despite the reduced danger of selecting disastrous exploratory actions ε-greedy is
still the more commonly applied of the two methods, possibly due to the difficulty in-
volved in selecting the reduction schedule of τ [53, p.31]. Also, bad exploratory actions
may be less important is some applications, particularly when learning is performed
on computer simulations.

2.4.3 Gaussian Exploration

Gaussian exploration does not select random actions uniformly, as is the case with
ε-greedy. Instead a random value is selected from a zero mean Gaussian distribution,
where the standard deviation is an adjustable parameter to control the exploration.
This random value is then added to the selected action, i.e.:

a← a+ ∼ N (0, σ2) (2.18)

As with the other exploration methods discussed, the exploration may be reduced
as learning progresses by reducing the standard deviation.

2.5 Eligibility Traces

In TD learning only the estimate of the value function for the current state is updated
at each time-step, which can lead to slow learning, particularly with delayed rewards
e.g. a board game where the reward is 1 if the agent wins and -1 if the agent loses.



CHAPTER 2. REINFORCEMENT LEARNING 14

An extension to TD in order to improve learning efficiency is to not only update the
current state, but also to update, to a lesser extent, all previous states in the trajectory.
This is known as the eligibility trace.

This technique can be applied to many TD based RL algorithms, and the version
of such algorithms is typically denoted by appending λ to their names, e.g. TD(λ),
SARSA(λ), Q(λ). Named after the eligibility decay parameter λ, which controls to
what degree states at previous time-steps are eligible for the immediate reward received
at the current time-step.

Eligibility traces are implemented by making the following slight adjustments to
the value update equation:

e(st)← e(st) + 1

V (sk)← V (sk) + αδe(sk), e(sk)← γλe(sk), k = t, t− 1, . . . , 0
(2.19)

where e(s) is the eligibility value of the given s and the other parameters are as standard
TD learning (Section 2.3.1).

The update (2.19) could be performed on every state visited since the start of
the episode, however, this may be very time consuming for long trajectories; more-
over, states visited several time-steps ago will not be significantly affected due to the
eligibility decay parameter λ and, thus, may be excluded from the update in order
to minimize the increase in update time [53]. For SARSA or Q-learning the update
equations use Q(s, a) and e(s, a) rather than V (s) and e(s) respectively.

There are two methods of applying eligibility trace: accumulating traces and replac-
ing traces. In (2.19) we utilised an accumulating trace, which takes its name from the
fact that the eligibility of the current state s is e(s)← e(s)+1, i.e. the eligibility keeps
accumulating. It is also possible to apply a replacing trace, where we use e(s)← 1, i.e.
the eligibility is replaced with the value of one. This method can be used to overcome
the problem of assigning a disproportionally large amount of credit to states which are
visited often, but did not significantly contribute to the reward [53].

2.6 Continuous State- and Action-Space

When the state- and action-space are both discrete and sufficiently small the value
function Q(s, a) may be stored in a lookup table, but as the state space grows this
becomes infeasible due to both storage size and the fact that states may only be visited
once; hence, values of unvisited states must be generalized from the values of visited
states.
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2.6.1 Continuous State-Space

The most common solution is to apply function approximation to the storage of the
value function V (s). This may solve both problems, depending on what function
approximation technique is used, by both allowing the storage of any value function
with continuous state-space and also making it possible to generalise values of one state
based on values of others.

The optimal action may be selected quickly and easily if the action space is discrete
and relatively small, by simply evaluating:

Q(s, a), ∀a ∈ A(s) (2.20)

or the resulting V (s) of applying all possible actions if the transition function is known
or afterstates are being used and selecting the action which maximizes the function.

2.6.2 Continuous Action-Space

However, for applications with a larger action-space this becomes impractical for mod-
erately large action-spaces, and impossible when the action-space is very large or con-
tinuous. The problem is not due to the storage or the training of the value function: a
global function approximator, such as an MLP, can be trained to represent any func-
tion with arbitrary accuracy [25], it is the selection of the optimal action which leads
to difficulty.

Some approaches apply discretization to the action-space to reduce it to a practical
size, e.g. using one-step-search [47], or applying k-nearest neighbours based techniques
to the storage of the value function [24]. However, the majority of approaches to the
continuous action-space avoid this obstacle completely by employing function approxi-
mation to the explicit storage of the policy either, in addition to the value function, in
the form of actor-critic [48, 56] or, without storing the value function at all, through
direct policy search [14, 15, 46]. A more complete discussion of these, and other, ap-
proaches to the continuous state- and action-space problem can be found in Chapter 5.

2.6.3 Applying Eligibility Traces with Function Approximation

When linear function approximation is applied the values are not directly stored for
each state, but for a collection of features which represent the state, e.g. the vector
output of the function φ:

V (s) = φ(s)θ (2.21)
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in this case the eligibility trace can be stored as a vector of the same length as the
feature vector and applied as follows:

θ ← θ + αδe (2.22)

where the TD error, as usual (for SARSA) is calculated using:

δ ← r(s, a, s′) + γQ(s′, a′)−Q(s, a) (2.23)

and the eligibility trace e is calculated using:

e← γλe+∇θQ(s, a). (2.24)

as is described in [53].
When certain non-linear function approximation techniques (e.g. MLP) are applied

each of the weight vectors, or matrices, must have its own eligibility value of equal
dimensions, which can be updated similarly.

2.7 Chapter Summary

In this chapter we have introduced the basics of RL including the notation which will be
used throughout this thesis. We then went on to describe briefly some of the difficulties
which exist within RL including the exploration exploitation trade off and the problems
that arise when applying RL to applications with continuous state- and action-space,
along with some of the techniques commonly adopted in order to overcome them. This
thesis focusses on overcoming the difficulties associated with applying RL to continuous
state- and action-space problems; hence, this problem is revisited in Chapter 5 where
we discuss the state-of-the-art continuous RL algorithms in detail.



Chapter 3
Artificial Neural Networks

In this chapter we will introduce a selection of artificial neural networks (ANNs) [18, 25]
which are commonly applied to value and/or policy function approximation in RL.
ANNs are inspired by the way biological neural networks, i.e. the brains of animals are
believed to function.

Although all ANNs take their inspiration from the same set of ideas, there are
many alternative architectures which have differences resulting in different advantages
and disadvantages when being applied to solving a given problem. There are three
classes of problems to which ANNs are typically applied: clustering, classification and
function approximation. Some ANN architectures are particularly well suited to solving
one of these classes of problems, but not others. Here we limit our presentation to
those suitable for function approximation, focussing particularly on the architectures
commonly applied to value and policy function approximation in continuous state- and
action-space RL.

Firstly, in Section 3.1 we describe the most basic ANN architecture: the perceptron,
which is a single layer neural network capable only of approximating linear functions.
After which we extend this to the multilayer perceptron in Section 3.2, which, by
incorporating a hidden layer of nodes with non-linear activation functions, is able to
approximate non-linear functions. Then we examine alternative architectures in the
form of Radial Basis Functions (Section 3.3) and CMAC (Section 3.4). After presenting
these main ANN architectures, we summarise the material presented in this chapter
and compare the architectures for applicability as function approximation methods for
continuous state- and action-space RL in Section 3.5.

3.1 Perceptron

The Perceptron comprises a layer of inputs and a single layer of neurons, which here we
will restrict to a single output node as we are only interested in approximating scalar

17
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Figure 3.1: Diagram of the perceptron artificial neural network. Weights are shown in
blue and bias in red.

functions; however, any number of nodes may be used in the output layer, the number
of which will be determined by the problem to be solved, e.g. if the ANN is being
applied to approximating a policy function the quantity of output nodes will match
the dimensionality of the action-space.

The structure of the perceptron can be seen in Fig. 3.1, the perceptron’s response
to an input signal x is generated by first calculating the input to the output node o_in
by sending the input signal x to the output node via the synaptic weights w where
the sum of these values and the bias are calculated:

o_in = b+
n∑

i=1

xiwi (3.1)

then the final output o is generated by applying the activation function f to the sum
of inputs to the node:

o = f(o_in) (3.2)

The activation function is a mathematical function, applied to the sum of inputs
to a neuron in order to produce an output signal limited to the desired range, and, in
the case of MLPs, to allow non-linear functions to be approximated by the ANN.

The Activation function is normally applied to limit the output of the neuron to
a given range, however, sometimes it may limit the output to binary values. Possible
activation functions include linear, sigmoid, bipolar sigmoid, hyperbolic tangent. For
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binary outputs it is also possible to use step functions, such as:

f(x) =





1, if x ≥ 0

0, otherwise
(3.3)

however, such activation functions will not be discussed further as they are not ap-
plicable when the ANN is utilised to the approximation of a value function, or the
approximation of a policy function in continuous action-space.

3.1.1 Training

Training the perceptron for continuous outputs can be accomplished using the delta
rule where the contribution of each weight to the total error of the output is calcu-
lated. There are alternative training algorithms, such as the Hebb rule, which may be
employed when the output is limited to binary or bipolar values by a step activation
function, however, as we are only interested in continuous outputs and therefore such
methods will not be discussed here.

The error we will assume we are attempting to minimize here is the mean squared
error (MSE):

E =
1

p

p∑

i=1

(ti − oi)2 (3.4)

where p is the total number of patterns we have to train the ANN with and oi is the
network response and ti is the desired response to the input vector i.

Here we focus on the iterative, rather than batch update, and therefore, apply the
error e = (t− o)2 where t and o are the target and output values for the current input
vector x. Therefore for each pattern we seek to minimize the error given by:

e =
1

2
(t− o)2 (3.5)

where the coefficient 1
2
is included to cancel out multiplication by 2 which will result

from calculating the derivative of the error w.r.t. w, which is used to obtain the
contribution of each weight value to the error, and the final weight update will be:

∆w = η · − ∂e

∂w
(3.6)

We update the weights in the negative direction of the gradient ∇we, for which each
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element is calculated as follows:

∂e

∂wi
=
∂e

∂o

∂o

∂o_in
∂o_in
∂wi

=
∂

∂o

[
1

2
(t− o)2

]
∂

∂o_in
[f(o_in)]

∂

∂wi

[
b+

n∑

j=1

xjwj

]

= −(t− o)f ′(o_in)xi

(3.7)

where o_in is the input to the output node.
Often, in order to simplify the update equations, δ is defined as:

δ = − ∂e

∂o_in
(3.8)

this also leads to more uniform update equations when we expand this to the multilayer
perceptron. By applying this variable and substituting (3.7) into (3.6) we arrive at the
weight update vector:

∆wi = ηδxi (3.9)

and the bias update value is:
∆b = ηδ (3.10)

due to the fact the input to the bias is always 1.
These update values are then added to the current weight and bias values to arrive

at the values used at the next iteration:

w ← w + ∆w

b← b+ ∆b
(3.11)

which are then applied to generating future output values which may, if training is still
taking place, be used to generate ∆w at the following iteration.

3.2 Multilayer Perceptron

The multilayer perceptron (MLP) [18, 25] is an extension on the single layer perceptron
(Section 3.1) which includes one or more hidden layers which have a non-linear activa-
tion function, which allows the approximation of non-linear functions. Although it is
possible to have any number of hidden layers, it has been proven that a single hidden
layer is sufficient to approximate any function, providing sufficiently many nodes are
in the hidden layer [18, 25]; thus, a single hidden layer is often used. However, in some
cases it may be beneficial to include a second hidden layer [18].

The MLP is a global function approximator and can be trained to approximate any
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function to arbitrary accuracy [25]. As can be seen in Fig. 3.2 on the following page,
the MLP takes a vector input x, of n elements, at the input layer. These inputs are
sent to the hidden layer via the weight matrix V and the summation of all inputs to
each hidden node are computed, including the bias values b1:

h_inj = b1j +
n∑

i=1

xivi,j (3.12)

and then the non-linear activation function f is applied to generate the output value
from each of the m hidden node:

hj = f(h_inj) (3.13)

The outputs from the hidden layer are then multiplied by the weights vector w as
they are sent to the output node o where the sum of these values and the bias b2 are
computed:

o_in = b2 +
m∑

j=1

hjwj (3.14)

and finally the output activation is applied resulting in the final output value:

o = g(o_in) (3.15)

The activation at the output node g may also be non-linear, to scale the output to
a desired range, e.g. [−1, 1]; however, it could also be linear in which case the function
g may simply output the value of its input, i.e. o = o_in.

3.2.1 Training

Training the MLP can be achieved in an on-line fashion similarly to the delta rule of
the perceptron 3.1, by applying the generalised delta rule, which is an extension of the
delta rule in order to allow the updating of the weights leading to the hidden layer(s).
This type of learning is also known as backpropagation as the error from each layer,
starting from the output layer, is backpropagated to calculate the error at the previous
layer.

We begin in a similar fashion to the single layer perceptron, by calculating ∇we:

∂e

∂wj
=
∂e

∂o

∂o

∂o_in
∂o_in
∂wj

=
∂

∂o

[
1

2
(t− o)2

]
∂

∂o_in
[g(o_in)]

∂

∂wj

[
b2 +

m∑

k=1

hkwk

]

= −(t− o)g′(o_in)hj

(3.16)
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Figure 3.2: Diagram of the multilayer perceptron artificial neural network. Weights
are shown in blue and bias in red.

and as with the single layer perceptron, we substitute:

δ = − ∂e

∂o_in
(3.17)

and arrive at:
∂e

∂wj
= −δhj (3.18)

allowing us to compute the weight update values at the output layer:

∆wj = ηδhj (3.19)

with the bias being:
∆b2 = ηδ (3.20)

However, we cannot apply these updates before calculating the update values of the
first layer weights V .

As we do not have targets for the outputs of the hidden nodes we are unable to
compute their update in the same way, and therefore we require backpropagation. We
propagate the error terms from the output δ back along the respective weights w to
generate an error term for each of the hidden nodes:

δj = δwjf
′(h_inj) (3.21)
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from which, along with ∂h_inj/∂vi,j = xi, we can compute the weight updates for the
first layer weights V :

∆vi,j = ηδjxi (3.22)

with the first layer bias updates:
∆b1j = ηδj (3.23)

and finally all updates can be applied to the weights:

V ← V + ∆V

b1 ← b1 + ∆b1

w ← w + ∆w

b2 ← b2 + ∆b2

(3.24)

3.2.2 Momentum

As the MLP is known to have problems of slow convergence and the weights are sus-
ceptible to becoming ‘stuck’ in local minima of the error. A common extension to
the backpropagation training method described above is to include a momentum term.
The momentum parameter µ controls the amount of weight given to the momentum
in the update.

The idea behind the use of momentum is that by including the previous ∆w when
calculating the current ∆w the update applied will be larger if the current and previous
updates are in the same direction. This allows the weights to more quickly converge
to the minimum values and, more importantly, skip past local minima in the error
function. The weight updates with momentum are:

∆vi,j ← ηδjxi + µ∆vi,j (3.25)

and
∆wj ← ηδhj + µ∆wj (3.26)

There exist other variations and extensions to strive for better performance with
the MLP architecture, such as variable learning rates [18]; however, as we do not apply
such extensions in this work they are not discussed further here.

3.3 Radial Basis Function

The radial basis function (RBF) neural network [25] is different to the perceptron and
the MLP in that the first layer of weights V are not coefficients to multiply the inputs
by, but are a set of points in the input space serving as centres for the basis functions
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(BFs), therefore the closer the input is to one of these centres the larger the output
from the associated hidden node will be.

Fig. 3.3 presents a visual representation of the activation of the RBF nodes for
1-dimensional input. For inputs with 2-dimensions the Gaussian function will be a
3-dimensional bell shape, for higher-dimensions the graphic representation is no longer
possible. However, in any dimension the first layer weights can be seen as being the
centres c of the BFs and it is the distance from this c which is used in calculating the
nodes output.

Each hidden node has a different centre c and therefore will have a different output
from the same input signal. The nodes may or may not have different values of σ,
which controls the width of the BF. The BFs may be evenly spaced throughout the
input space; randomly positioned; or the centres may be selected by some form of
clustering analysis. As the data is not available beforehand in RL problems evenly
spaced basis functions is the most widely applied approach [10, 35].

The output of the RBF is the sum of the outputs of the hidden nodes multiplied
by the output weight vector, as with the perceptron and MLP. The structure of the
RBF ANN can be seen in Fig. 3.4, and although similar in appearance to the MLP
diagram the outputs are calculated in a very different way. The first layer of weights
V of the RBF represents the centres of the basis functions of their respective nodes;
thus, instead of computing the dot product of the inputs and the first layer weights,
as with the MLP, the values of V are used in calculating the activation of the hidden
nodes:

φi(x) = exp

(
− 1

2σ2
‖vi − x‖2

)
(3.27)

resulting in the outputs of each hidden node φi(x). We then calculate the output using:

o = φ(x) ·w (3.28)

therefore, only the weights in the vector w connected to nodes close to the input will
have significant impact on the final output.

3.3.1 Training

In general the training of the RBF consists of two parts: firstly selecting the c and σ
for each hidden node, and secondly training the output layer weights either in batch
or in an on-line manner. When utilised for value function approximation for RL, the
first phase is generally a case of selecting the quantity of BFs to use and then the c and
σ are calculated to spread them evenly throughout the input-space, which are decided
through experimentation on the given problem [10]. Thus, the training of the RBF is
only the updating of the output weights, which, when combined with TD learning, is
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Figure 3.3: Diagram of the RBF activation function, for one-dimensional input. The
Gaussian function is shown in blue; the centre variable c in red; and the width variable
σ in purple.
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Figure 3.4: Diagram of the RBF neural network.
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updated using gradient descent, in a similar manner to the training of the perceptron.
Thus training takes the form of minimising the error e by calculating ∇we, the

elements of which are computed as follows:

∂e

∂wi
=
∂e

∂o

∂o

∂wi

=
∂

∂o

[
1

2
(t− o)2

]
∂

∂wi

[
n∑

j=1

φj(x)wj

]

= −(t− o)φi(x)

(3.29)

and updating the weights in the negative direction of this gradient:

∆wi = η

(
− ∂e

∂wi

)

= η(t− o)φi(x)

(3.30)

and, as with the other architectures, the weight update vector ∆w is added to the
current weight vector w to generate the weight vector for the next iteration:

w ← w + ∆w (3.31)

3.4 CMAC

The Cerebellar Model Articular Controller (CMAC) originally proposed by [1] uses a
different approach from other ANNs such as MLP (Section 3.2) and RBF (Section 3.3)
in that the non-linearity does not come from passing the inputs through non-linear
activation functions, such as tanh. The active tile in each layer is calculated from the
input vector (Fig. 3.5), and then a hash function is applied to the activated tile from
each layer. This produces a set of active weight indices, one for each tiling layer used.
Which is why the CMAC is often referred to as tile-coding among the RL community.

The designer selects the quantity of layers of tiles to be used, each of which is
initialized with a random offset value in each dimension of the input space, which
remain constant after initialization. For any given input the associated tile from each
of the layers of tiles is activated. The layer and coordinates of the active tile in that
layer are passed through a hash function to produce an active weight index. The
summation of the active weights is calculated and is the CMAC’s output value, training
is performed by updating only the values of the active weights to move the output vector
closer to the target.

It can be seen from Equation (3.32) that the output o of the network is obtained
by computing the dot product on the weight vector w and the input vector x after it
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x1

x2

Figure 3.5: Diagram of the tiling of the CMAC with three layers of tiling shown in red,
green and blue. The 2-dimensional input to the CMAC is shown as a black dot and
the activated tiles of each layer are filled with their respective colour.

has been passed through a non-linear mapping function φ(·).

o = φ(x)w (3.32)

This is the same as Equation (3.28) for the RBF (Section 3.3), with the difference
being solely in the function φ. In the CMAC approach the output of the function φ is
a binary vector consisting mostly of zeros. The activated indices have a value of one,
the number of which is the same as the quantity of layers of tiles used. Thus, this
method may have a large number of weights, but only a small number will be used in
calculating the response to any particular input.

The number of active weights are equal to the number of layers tiling used, each
layer produces a integral vector, or the grid coordinates of the active tile, which is
then supplied to the hash function, along with the tiling number, to produce a positive
index ∈ [0, n− 1], where n is the number of weights being used. Thus the quantity of
tiling layers is not equal to the number of weights used, but is the number of active
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weights. If we store the output of the hash from each tiling layer in a we can calculate
the output by applying:

o =
m∑

i=0

wai (3.33)

where there are m layers of tiling being used.

3.4.1 Training

Training can be performed similarly with the perceptron and the RBF, by updating
the active weights in the direction of the gradient in order to reduce the error: e.g. the
squared difference between the output and the desired output.

The main differences between the training of these architectures is that the output
is simply the sum of the active weights of the CMAC (3.32), therefore the calculation
of the elements of ∇we is:

∂e

∂wi
=
∂e

∂o

∂o

∂wi

=
∂

∂o

[
1

2
(t− o)2

]
∂

∂wi

[
n∑

j=0

φj(x)wj

]

=




−(t− o), if φi(x) = 1

0, otherwise

(3.34)

therefore only these m weights must be updated and all other elements of ∇we will be
zero.

The weight update values are:

∆wi = η(t− o), i = a1, a2, . . . , am (3.35)

and only those weights need to be updated:

wi = wi + ∆wi, i = a1, a2, . . . , am (3.36)

making this a far less computationally intensive network to update than the others,
particularly the RBF.

3.5 Chapter Summary

In this chapter we have presented a brief introduction to the most commonly applied
ANN architectures applied to function approximation in RL, and how they can be
trained iteratively using the gradient. It is also possible to train these neural networks
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in other ways, such as using batch algorithms, which is more suitable when working
with a fixed dataset. With RL the data is received at each time-step in the form of
the reward and thus iterative update methods are more suitable. Alternative methods
of updating the weights will be discussed in Chapter 5, where we consider the policy
gradient and GA approaches to direct policy search.

Each of the architectures presented in this chapter have advantages and disadvan-
tages when applied to function approximation in RL, and we will consider these and
compare the different ANNs below.

The Perceptron is not as widely used in approximating the value function in RL as
the other approaches mentioned here due to the fact that it is only able to approximate
linear functions of its input vector x. One approach which can be taken to overcome
this is to perform a non-linear mapping of the input before applying it to the ANN, e.g.
input x is mapped to the ANN input x̃← [x0, x1, x0x1, x

2
0, x

2
1]> which is then supplied

as the ANN input vector; however, as the dimensionality of the input space grows,
this method becomes difficult to apply unless there is some prior knowledge about
the function which will be approximated, which is not normally the case in RL. An
approach of this nature was taken by [35] where it was stated that achieving acceptable
performance with a linear architecture requires tweaking.

The MLP is an obvious choice to overcome this problem, which is capable of ap-
proximating the widest range of functions of all the architectures presented here, as a
global function approximator it is capable of approximating any function given suffi-
cient hidden nodes [18, 25]. However, due to the fact that the MLP is more difficult
to train, due to the weights becoming stuck in local minima, some members of the RL
community prefer ANNs which are linear in the parameters such as RBF and CMAC.
Despite this, RL utilising the MLP has been shown to achieve good results [48, 54, 56].

The RBF is a more widely applied approach as, the first layer performs a non-
linear mapping and, once the BF centres are fixed, only the output weights are trained
which leads to a method which is linear in the parameters and therefore is simpler to
train than the MLP. However, as the input dimensionality grows the number of BFs
grows exponentially, and as each of these must be evaluated to generate the output the
RBF becomes computationally demanding and doesn’t scale well. In order to apply
RBF with larger input dimension it may be necessary to space the BFs further apart
reducing the complexity of the functions which can be approximated.

The CMAC is similar to the RBF in that the tile coding and hash function performs
a non-linear mapping to a set of active weights, the linear combination of which pro-
duces the output. However, the CMAC does not suffer from the scalability problems
of the RBF, as only the number of tiling layers of weights are used for each input,
which also results in a less computationally intensive approach. For these reasons the
CMAC is widely applied in RL problems. However, the CMAC does perform some
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discretization at the tile coding stage and therefore is unable to achieve the same level
of continuous smooth function approximation as other methods, e.g. RBF and MLP.
It is shown that due to this the CMAC is unable to match the performance of the RBF
on the Mountain Car benchmark problem [33].



Chapter 4
Evolutionary Algorithms

Evolutionary algorithms (EA) [17] is an approach to solving problems through the
application of a process which is inspired by evolution and natural selection in nature.
This is achieved by maintaining a population of individuals and at each generation
some of these individuals are selected based on their fitness level as parents to be
recombined, by the process of crossover, producing children which will be placed in the
next generation.

Here we briefly introduce two of the main classes of evolutionary algorithms: genetic
algorithms (GA) and genetic programming (GP), both of which are applied to solving
RL problems through direct policy search. But they are very different in how they
represent individuals and therefore how they can be applied to solving problems. Whilst
GA represents individuals as vectors of numbers, and therefore the problem has to be
modelled in such a way as to apply these vectors as solutions, GP produces programs, or
mathematical functions, and therefore can be more directly applied to solving problems
and the designer is not required to specify, so strictly, the form of the solution.

Firstly, we describe the details of genetic algorithms in Section 4.1; then we describe
genetic programming in Section 4.2; and finally, in Section 4.3, we summarize the
material presented in this chapter.

4.1 Genetic Algorithms

In genetic algorithms [17] the population of solutions at the first generation are ini-
tialised with random values within the limits of the problem and then, at each gen-
eration, individuals are selected based on their fitness and are with probability Pc

recombined to produce children to place in the population at the next generation or
with probability Pr are reproduced as exact copies in the next generation. There is
also a probability of mutation Pm that a random change will be applied to individuals
before they are added to the next generation. This process is repeated either for a

31
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1 0 1 0 0 1 1
(a) Binary representation

1 5 8 2 7 2 0
(b) Integer representation

3.6 7.5 6.3 8.1 0.3 4.9 2.2
(c) Real number representation

Figure 4.1: Diagram of chromosome representations in genetic algorithms

specified number of generations or, if information about the desired performance is
available, when we reach the optimal or desired solution.

Each of these processes is described in more detail in the following sections. Firstly
we describe how the individuals are represented; followed by a description of the fit-
ness function; the parent selection methods; then the details of how individuals are
recombined through crossover and randomly changed through mutation; and finally
implementation of elitism, which ensures the best individuals of the current population
are included in the next generation.

4.1.1 Representation of Solutions

The population is comprised of multiple solutions to the problem, each of which is
encoded as a chromosome. These chromosomes are represented as vectors of numbers,
which may be either bit-strings; vectors of integers; or vectors of real numbers. How-
ever, in all cases they are a fixed length numeric representation of a solution to the
problem to be solved by GA. Some examples of possible representations can be seen in
Fig. 4.1.

Although the individuals are represented in this way, and therefore the problem
must be modelled as such, this does not limit the applicability of GA to numerical
optimization of a function taking a vector as the input, as non-numerical optimization
problems can also be formulated in such a way as to be solved by GA.

4.1.2 Fitness Function

The fitness function is an critical element of constructing any EA solution as the fitness,
along with the parent selection method, guide the evolution process, such that future
generations include individuals with improved performance on the desired task.

The fitness function calculates a numeric value representing the performance of a
particular individual on the problem to be solved as a function of the chromosome
values.
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4.1.3 Parent Selection

In order to guide the recombination of individuals through their fitness on the task the
members of the population to be recombined, or reproduced, in the next generation
are selected based on their fitness. This results in fitter individuals having a higher
probability of either surviving to the next generation or reproducing children to pop-
ulate the next generation. There are several methods of achieving this, here we will
discuss two popular methods: roulette wheel selection, which is a fitness proportionate
method, and tournament selection, in which a group of randomly selected individuals
compete in a tournament for selection.

Roulette Wheel Selection

Roulette wheel selection, as the name suggests, uses a simulation of a roulette wheel
to perform parent selection, where the wheel is divided into sections each of which
represents an individual from the population. The size of these sections are proportional
to the fitness of the corresponding individual, and therefore, when the wheel is spun
the probability of the ball landing on any particular individual is proportional to the
fitness of that individual.

Before the selection is performed the sum of the fitness of all individuals in the
current population, of size M , is calculated: sf =

∑M
i=1 f . To ‘spin the wheel’ a

random number rf is selected uniformly in the range [0, sf ] and the fitness of each
member of the population is added to the cumulative fitness cf until cf ≥ rf , and the
last individual whose fitness was added is the selected individual.

Tournament Selection

An alternative to the roulette wheel method is the tournament selection method, which
does not require the fitness of all individuals in order to perform the selection. This
is achieved by the uniform random selection of k individuals from the population to
compete in the tournament. The winner is the individual in the tournament with the
highest fitness.

4.1.4 Crossover

Crossover is applied to the two individuals which were selected, based on their fitness,
to be combined to produce children, or to be directly reproduced, in order to populate
the next generation of individuals.

There are several possible ways to apply crossover to the parents which may depend
on the representation of the individuals. A simple example when bit-string encoding
is employed is to select a random number α in the range (1, L), where L is the length
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1 0 1 0 0 1 1
(a) Parent 1

1 1 0 1 0 0 1
(b) Parent 2

1 0 1 1 0 0 1
(c) Child 1

1 1 0 0 0 1 1
(d) Child 2

Figure 4.2: Diagram of genetic algorithm one-point crossover, where the randomly
selected crossover point is between the third and fourth nodes. Blue and red nodes
represent genetic material from parent 1 and parent 2 respectively.

of the bit-string representation used, and to take the binary bits from the start until α
from parent 1, and the bits from α to the end of the bit-string from parent 2, to create
child 1 and the first section of parent 2 and the last section of parent 1 to create child
2, as is shown in Fig. 4.2. This method is one-point crossover, it is also possible to
apply n-point crossover, for n > 1.

Alternative possible methods of crossover could be applied when real number encod-
ing is used for chromosomes, one example is arithmetic recombination where the two
parents, represented by vectors p1 and p2, are recombined to create the two children
c1 and c2, by applying the following:

c1 = αp1 + (1− α)p2

c2 = αp2 + (1− α)p1

(4.1)

where α ∈ (0, 1) is a parameter controlling the weight given to each parent in the
recombination, but in this method if α = 0.5 the two children c1 and c2 will be
identical. It is also possible to perform a similar arithmetic crossover at only certain
indices of the individuals.

There are many other methods of crossover, obviously too many to discuss here;
however, the above are given as some examples, further examples can be found in [17].

4.1.5 Mutation

Along with crossover, mutation is applied to alter individuals as they enter the next
generation; however, mutation is applied to modifying one individual rather than com-
bining two parents. As with crossover, the exact method of mutation will be somewhat
dependant on the representation of the chromosomes. Mutation may be required in
GA to restore areas of the search space which have been lost due to the parent se-
lection method, or may not have been present in the initial random population. A
simple example of this, when using a binary representation, is if the ideal solution
is [1, 1, 1, 1, 1], and the population contains [1, 1, 0, 0, 1], [1, 1, 1, 0, 1], [1, 0, 1, 0, 1] and
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[0, 1, 1, 0, 1]. Any recombination of the individuals in the population will not achieve
the optimal solution, as no individual has a 1 in the second to last index. However, by
allowing bits to be randomly flipped it may be possible to achieve the desired solution.

As mutation indiscriminately alters individuals at random, it may destroy good so-
lutions rather than restoring necessary material that has been lost from the population.
For this reason the probability of mutation Pm is generally very low.

The above example introduced a simple mutation operator applicable to bit-string
chromosome representations: flipping a bit. In this method every bit of every individual
will have probability Pm of being flipped.

When an integer or real valued representation is used, it is not possible to simply
flip the value as there will be more than two possible values. In this case it is possible
to randomly reinitialise the value at the specified index of the chromosome with a
uniformly selected value.

Alternative mutation operators are also possible such as permutations of the indi-
vidual or swapping the values of two indices in a given chromosome.

4.1.6 Elitism

When randomly performing crossover and mutation on the population there is a possi-
bility that good individuals will not survive to the next generation, either because they
were not selected as parents; crossover was performed and the feature of the solution
which provided its high fitness was lost; or mutation was applied to the individual. To
ensure the survival of the fittest individuals in the population elitism may be applied,
which transfers exact copies of the individual(s) with the highest fitness to the next
generation.

4.2 Genetic Programming

Genetic programming [32, 44] also takes its inspiration from genetics and evolution.
Unlike GA, however, solutions in GP comprise the structure as well as the parameter
values. The solutions can be thought of as a program, or as a function, an illustration
is given in Fig. 4.3 on page 37, and also in Fig. 4.4 on page 40 which illustrates how
individuals are combined during the genetic recombination process to produce the next
generation of solutions.

The initial population of trees are randomly generated, and then the population at
each subsequent generation is generated by with probability Pc performing crossover
on two individuals from the current population; with probability Pr selecting two in-
dividuals to reproduce exactly from the current population; and with probability Pm
applying mutation to an individual from the current population.
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In this section we introduce the structure of GP individuals; initialization meth-
ods; crossover and mutation operations; and the problem of ‘bloat’ along with some
approaches to overcome it.

4.2.1 Representation of Individuals

In GP individuals in the population are commonly represented as a tree of function
nodes and terminal nodes. Function nodes have branches to a number of nodes, cor-
responding to the quantity of arguments of the particular function. These nodes may
also be function nodes, or terminal nodes. Terminal nodes, as the name suggests are
terminals and have no branches.

In order to apply GP to a problem we must specify the set of possible function
nodes FS and the terminal set T S, when doing this, care must be taken to include
all required functions and terminals, but to limit unnecessary function and terminals
as they will expand the solution search space and increase the difficulty of evolving
optimal solutions.

Function Nodes

The function set may include mathematical functions such as:

{+,−,×,÷,√, sin, tanh, | · |}

where | · | is the absolute value. However, care must be taken when applying functions
such as ÷ which are undefined for certain values, i.e. when the second argument is
zero, in such cases it is common to apply a ‘protected’ form of the function, such as the
protected divide function [32], ensuring the function is defined for all possible argument
values. The protected divide used here is:




arg1 ÷ arg2, if arg2 6= 0

0, otherwise
(4.2)

It is also possible to apply functions such as if-less-than to provide a branching
structure in the solutions:




arg3, if arg1 < arg2

arg4, otherwise
(4.3)

From these examples it is clear that functions may take various numbers of arguments,
each of which could either be another function node, or a terminal node.
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Figure 4.3: An example of a tree representation of an individual used in GP

Terminal Nodes

Terminal nodes are numerical values and could be numeric constants, e.g.:

{π, e, ϕ}

which may be included in the terminal set if they are considered to be helpful in
solving the problem. Alternative terminals include the current values of the state of
the problem, e.g. the current angle of a pole which is to be balanced, or a randomly
generated value R ∈ [Rmin, Rmax], which is generated at initialization and remains
constant thereafter. This makes potentially useful values available without requiring
the inclusion of them in the terminal set at design time

4.2.2 Initialization Methods

When initializing the population in GP, trees may be built by selecting from the set of
function nodes, which obviously results in further layer(s) following the current node,
or selecting from the set of terminal nodes, which will limit the depth of the tree to
that of the current node. Therefore, some rules may be applied to determine the depth
and shape of the initial population.

Here we describe three standard initialization methods applied in GP: full, grow
and ramped half-and-half. For all of these methods a parameter di is set to restrict the
maximum initial depth of the trees.
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Full

When the ‘full’ method is applied the maximum depth di is set and all nodes at depth
less than di are selected only from the set of function nodes FS, and nodes at depth
equal to di are only selected from the set of terminal nodes T S. This results in all
trees being initialised to the full size permitted by the di parameter.

Grow

With the ‘grow’ initialization method we do not restrict the nodes at depth less than
di to FS, instead permitting any nodes from FS ∪ T S, and therefore allow trees, or
sections of trees, to have a depth less than di. However, nodes at depth di are still
restricted to T S to limit the maximum initial depth.

Ramped Half-and-Half

The ‘ramped half-and-half’ method combines both of the previously described methods:
‘full’ and ‘grow’, and also varies the maximum depths of the trees created. This is
achieved by generating half of the initial population using the grow method and half
by the full method. Also, to vary the depths of the trees in the initial population, an
equal proportion of the trees are initialised with a maximum depth of 2, 3, . . . , di. Thus,
the GP process begins with an initial population varying in both depth and shape.

4.2.3 Parent Selection Methods

As with GA we must select individuals from the current population to apply crossover
and reproduction in order to populate the next generation.

As each individual has a fitness value we can apply the same fitness proportionate
or tournament based methods described for GA in Section 4.1.3. There is also another
commonly applied parent selection technique applied to GP: fitness proportionate over-
selection, which is described below.

Fitness Proportionate over-selection

Fitness proportionate over-selection [32] is a method to place a higher probability
of selecting the fittest individuals in the population. This is implemented by first
calculating the normalised fitness of all the individuals in the current population and
then sorting the population based on their normalised fitness. In order to calculate
the normalised fitness we first calculate the adjusted fitness, which exaggerates the
difference between the best performing individuals:

fa(i) =
1

1 + f(i)
(4.4)
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where, f(i) is the fitness of the ith individual of the population. Then we calculate the
normalised fitness:

fn(i) =
fa(i)∑M
j=1 fa(j)

(4.5)

where M is the number of individuals in the population.
Once the normalised fitness has been calculated and the population has been sorted

it is divided into two groups: one containing the individuals of highest fitness and the
other containing the rest of the population, over-selection can then be performed.

A cumulative percentage parameter c controls the percentage of the total fitness
of the entire population which is included in the fittest group. The fittest individuals
are added to this group until the cumulative fitness of them reaches c, the remaining
individuals in the population are placed in the other group.

Individuals are selected for crossover 80% of the time from the group of fittest
individuals and 20% of the time from the other group. When over selection is per-
formed, the individuals are still selected proportionately to their normalised fitness
from appropriate subset of the population.

4.2.4 Crossover

When crossover is to be performed two individuals are selected from the population,
using one of the parent selection methods discussed above, and they are combined to
create two new individuals for the next generation. As the individuals are selected
based on their fitness it is hoped that the combinations of the individuals will produce
individuals with higher fitness.

As GP individuals can be viewed as tree structures, the crossover process first selects
a random node in the tree of each parent. A node at an internal point is selected with
probability Pip, which should be high to avoid crossover merely swapping terminal
nodes in the two trees [32].

Following the selection of two crossover points, the sub-trees having these nodes
at their roots are ‘cut’ from the parents and swapped to generate the two children, as
depicted in Fig. 4.4 on the next page.

4.2.5 Mutation

Mutation in GP allows the random re-initialization of a node or sub-tree to allow the
re-introduction of required functions or terminals which are not currently present in
the population.

The simplest method of applying mutation in GP is to select a random node in the
tree to be mutated and replace the node with a randomly generated sub-tree which, as
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Figure 4.4: Diagram of crossover in genetic programming, the bold nodes show the
randomly selected crossover points, and blue and red nodes identify nodes which are
taken from parent 1 and parent 2 respectively.
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with the initially generated trees, has a maximum depth. However, many alternative
mutation operations exist [44].

As both the function and terminal sets tend to be relatively small and repeated
many times in the population it is unlikely that any nodes will be missing from the
population, and require mutation to be re-introduced into the population [32]. Thus,
mutation is not considered as essential in GP as it is in GA and is not always em-
ployed [32]. However, there is also evidence that mutation may be beneficial, depending
on the problem, and therefore should be tested, with a low probability, when tuning
the parameters of the GP model [44].

4.2.6 Bloat Control

When performing crossover, a deep sub-tree may be placed in another tree. Such
crossover operations can, within a few generations, lead to massive growth in the depths
of the individuals in the population. This can be problematic for two reasons: firstly,
the larger trees may increase the resources required; and secondly, more complicated
trees may have reduced generalization capabilities. This undesirable growth which does
not significantly increase the fitness is known as bloat in the GP community [37, 44].

There are several approaches to controlling bloat in GP, the most simple being depth
limiting, which places a limit on the maximum permitted depth of trees from genetic
operations. Many other approaches, however, exist [37], e.g. adding a penalty term to
the fitness function which is known as parsimony pressure. Both of these approaches
are described below.

Depth Limiting

Depth limiting, as used in [32], is a widely applied approach to bloat control, in which
a maximum depth parameter Dc controls the maximum depth of individuals due to
genetic operations. This is different to the initial depth parameter Di, and is a larger
value to allow some growth of the individuals during the genetic process.

After crossover is applied the depth of the two children are calculated and if one
of them exceeds the maximum depth Dc it is replaced by a direct copy of one of the
parents. If both of them exceed Dc then both children are replaced by the parents.

Parsimony Pressure

An alternative, slightly more sophisticated, bloat control method is the parsimony
pressure method [37]. This method can be applied in many forms but as an example
in the linear version individuals are selected proportionally to an augmented fitness
function g, which is a linear combination of the fitness f and the depth d of the given



CHAPTER 4. EVOLUTIONARY ALGORITHMS 42

solution:
g = xf + yd (4.6)

This method adds an additional parameter to tune, which specifies the importance
of the size of solutions in relation to the fitness function. This parameter is difficult to
set and best results may be found by combining this technique with depth limiting [37].

4.2.7 Elitism

The genetic operations applied to the individuals in GP are guided by the fitness, and
therefore, will create individuals with higher fitness on the task GP is being applied to.
However, there is a chance that the fittest individuals may not be reproduced to the
next population and even if they are selected for crossover, the resulting individuals
may have much lower fitness.

In order to overcome this problem elitism may be applied, which, as with GA,
ensures the fittest individual(s) from the current generation are copied to the next
generation.

4.3 Chapter Summary

This chapter was a brief introduction to evolutionary algorithms in the forms of GA
and GP, both of which are applied to RL problems later in the thesis. There are many
variations of these techniques including alternative crossover and mutation operations;
however, this limited presentation describes the fundamentals of the techniques.

GA is often applied as a global optimisation method and has been applied to find-
ing the weights of artificial neural networks, such as those introduced in Chapter 3,
approach is applied to the solution of an RL problem, such methods can be seen as an
example of direct policy search (described in Section 5.2).

GP is also a well known approach to direct policy search [30, 53] and is described
in Section 5.2.3 and an example of its application to the Acrobot swing-up problem is
presented in Section 7.1.



Chapter 5
Continuous State- and Action-Space
State-of-the-art

Here we elaborate on the problems of continuous state- and action-spaces, as was
described briefly in Chapter 2, and present the current state-of-the-art methods applied
to solving such problems.

When problems have discrete, small state- and action-spaces the value function
Q : S × A → R, giving the expected value of taking a given action from a given state
can be stored in a look-up table; however, if |S| is too large or, in the continuous
state-space setting, infinite this is no longer feasible, and leads to two problems:

1. it would be impossible to store all values in a look-up table

2. the agent would be unable to visit all states and actions sufficiently often to find
the correct values

When this is the case, but the action-space is discrete and sufficiently small, we
can solve both of these problems by utilising function approximation, such as artificial
neural networks (Chapter 3), to approximate the state-action value function Q(s, a).
Due to the generalisation capabilities of such function approximation methods, we are
able to make estimates of values of unvisited states based on the current learnt values
of other states. Also the updating of these values will improve the approximation
of similar states and actions. Furthermore, as the function is approximated using a
small number of parameters it is possible to store in memory. The optimal action
arg maxaQ(s, a) can then be selected by evaluating:

Q(s, a), ∀a ∈ A (5.1)

which is often the favoured approach when it is practical to do so [21].

43



CHAPTER 5. CONTINUOUS SPACE STATE-OF-THE-ART 44

However, when the action-space A is large, or continuous, this approach is no longer
directly applicable, as it would be impossible to evaluate so many possible actions at
every time-step. There are, however, several approaches which either facilitate the
application of this method through discretization or avoid the problem by storing an
approximation of the policy function, either alongside the value function; or by directly
optimizing the policy function without approximating the value function. The examples
of the state-of-the-art approaches we discuss here can be classified as follows:

• actor-critic:

– adaptive critic [48]

– CACLA [56]

• direct policy search:

– genetic algorithm based direct policy search [16]

– genetic programming based direct policy [12]

– policy gradient [46]

• implicit policy methods:

– action-space discretization [47]

– gradient based action selection [30, 47]

• other methods:

– k-nearest neighbours [23]

– wire fitting [2]

In the remainder of this chapter the above approaches will be presented individually,
along with the advantages and disadvantages of each, followed by a summary at the
end of the chapter.

5.1 Actor-Critic

Actor-Critic (AC) methods [21, 55] require two function approximators: the critic
stores the value function (either Q(s, a) or V (s) may be used) whilst the actor stores
the policy function π : S → A, i.e. which action to take given the current state. This
leads to very fast selection of actions and allows the full range of continuous actions
to be selected. However, it also leads to many more parameters which must be tuned,
in the form of the function approximator parameters, and two function approximators
which must be trained.
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Figure 5.1: Diagram of the Actor-Critic architecture, showing how the actor and critic
interact with the environment and each other.

At each time step the actor selects an action and applies it to the environment,
after which it receives the next state s′. At the same time the critic receives s′ and
also r which are used to update the critics estimate of the value function and also to
send a feedback value to the actor from which the actor updates the policy function.
A graphical representation of this interaction between actor, critic and environment is
shown in Fig. 5.1.

Two specific examples of AC implementations which have been applied to contin-
uous state- and action-space problems are the adaptive critic [48] and CACLA [55],
each of which is described in more detail below.

5.1.1 Adaptive Critic

The adaptive critic is another name for the actor-critic architecture, here we will use
this name to describe the implementation of the AC architecture used in [48].

This implementation utilises two MLPs for the actor and critic. The actor approx-
imates π : S → A, whilst the critic approximates Q : S × A → R. This approach also
includes a count of the number of consecutive trials within the current episode which
ended within a given number of time-steps of each other, which allows the weights of
the MLPs to be reset if training becomes stuck.

The critic network Q(s, a) is used to approximate the discounted reward:

R(t) = rt+1 + αrt+2 + . . . (5.2)

where α is the discount parameter.
The error of the critic network is calculated as:

ec(t) = αQ(st, at)− [Q(st−1, at−1)− rt] (5.3)
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and the weights of the critic network are updated using gradient descent to minimize
the square of this error.

The error of the actor network is defined as the difference between the output of
the Q function and the desired value of Q. This is possible as the reward is defined to
be 0 in the success and is −1 only on failure, thus, the desired value is zero, and the
error is:

ea = Q(st, at)−Qdesired (5.4)

where gradient descent is applied to updating the policy function to minimize the
square of this error.

There are separate learning rates for the action and critic networks which are re-
duced as time progresses. This implementation also performs several updates on each
network with parameters to control the maximum number of updates performed at any
time-step Na and Nc, and also error thresholds for each network to determine if fewer
updates is already sufficient Ta and Tc. The weights of the critic were also confined to
a small range by, after each set of updates of the critic network, applying1:

θc ←
θc

‖θc‖max
(5.5)

This method requires several parameters not used in other applications, such as
CACLA, to allow multiple updates and resetting the weights of the neural networks.
Moreover, to apply the update to π there must be a desired Q value whilst this is often
the case in disaster avoidance tasks, where the reward is zero at all times except failure,
at which point it becomes a negative value, this is not necessarily the case for all RL
tasks.

5.1.2 CACLA

Another approach is that used in the continuous actor-critic learning-automaton (CA-
CLA) [56], which comprises an actor network and a critic network, which were both
implemented using MLPs with 12 hidden nodes in the experiments where CACLA was
proposed [56]. CACLA updates the policy by observing the temporal-difference error
and if it is positive the action taken is better than expected, so the actor is updated
to increase the probability of selecting the action taken. As the policy is only up-
dated when exploratory actions are taken exploration must be applied, using e.g. the
Gaussian exploration method [55].

The main unique point of the CACLA algorithm is that only the sign of the TD

1In [48] it is stated that ‖θc‖1 is used and a corresponding normalisation is applied to the actor
weights; however, this description specifies the details of the implementation which was supplied by
the authors.
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error is used in calculating the actor update, whereas other AC algorithms also use
the magnitude. Also, most other AC methods update the policy when the TD error
is negative, but this is not the case with the CACLA algorithm based on the intuition
that we should not increase the probability of actions which were not taken as no
information about the value of such actions is available [55, 56].

The updates to the MLPs are performed as follows, at each time-step the critic
network is updated using:

θv ← θv + αδ∇θvV (s) (5.6)

where θv is the vector of parameters of the value function V (s); α is a learning rate
parameter; and δ is the TD error. Then if δ > 0 the actor network is updated using:

θa ← θa + α(a− π(s))∇θaπ(s) (5.7)

where θa is the vector of parameters of the policy function π(s) and, as with the critic
update, α is the learning rate parameter.

In order to speed up the training of the policy function the number of updates
applied to the actor network is proportional to the ratio of the TD error and the
variance of the TD error. The variance of the TD error is initialized by a parameter at
the start of training and is then updated at each time-step using:

var← (1− β)var + βδ2 (5.8)

and the number of updates performed on the policy network is
⌈

δ√
var

⌉
.

Both of these AC methods, and AC methods in general suffer from the fact that
two function approximators are required, and the policy function is trained based on
the current estimates of the value function. This results in more training and more
parameters; however, the explicit policy function does allow very fast action selection.

5.2 Direct Policy Search

Direct policy search (DPS) methods store only the policy function π(s), and therefore,
as with AC methods, select actions quickly once trained. The policy function is either
updated using approximations of the gradient [46]; or using derivative-free optimization
techniques [15, 12]; however, regardless of the method used, a very large number of
episodes are required to find the values of the objective function in this optimisation,
which is generally the sum of rewards. DPS methods do not take advantage of rewards
received at each state transition as is utilised by temporal difference methods.

All DPS algorithms seek to maximize the expected sum of rewards received when
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following the policy π1:

E

{
T∑

t=0

rt

∣∣∣π
}

(5.9)

without making any use of intermediate rewards or the estimated values of states, as
is used by DP and TD methods.

The various approaches to DPS are described separately in this section: firstly, pol-
icy gradient, which seeks to optimise the parameters of the policy function by estimat-
ing the gradient; followed by genetic algorithms which is an evolutionary, derivative-free
approach to the same problem; and finally genetic programming, which attempts to
optimises the structure of the policy function rather than merely finding the parameters
which optimise a fixed structure policy function.

5.2.1 Policy Gradient

Policy gradient (PG) methods [46] consist of an approximation of the policy function
which is improved through iterative updates based on approximations of the gradient.

As the PG method searches for good policies and does not attempt to learn the
value function, sometimes it is referred to as an actor only method [10]. One of the
advantages of PG is that learning a good approximation of the value function may
be more difficult than finding a good policy directly [4]. PG is also applicable to
continuous action problems which are problematic for many other methods; however,
PG methods only search for a local maximum of the performance measure of the policy
J(θ).

The policy is parameterised on a vector θ, and therefore is denoted as πθ and the
performance of the policy is the expected sum of rewards:

J(θ) = E

{
T∑

t=0

rt

∣∣∣πθ
}

(5.10)

and this parameter vector is updated in the direction of the gradient using the update:

θ ← θ + α∇θJ(θ) (5.11)

where:

∇θJ(θ) =

[
∂J(θ)

∂θ1

,
∂J(θ)

∂θ2

, . . . ,
∂J(θ)

∂θn

]>
(5.12)

There are three widely applied approaches to approximating ∇θJ(θ): the method
of finite differences; vanilla gradient; and natural gradient, as described below.

1The expected average reward may also be used by dividing this value by the number of time
steps T , but if the episodes are of the same length this will be dividing by a constant and therefore
will not alter the ranking of the different policies.
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Finite Differences

One of the most simple methods of estimating the gradient of J(θ) w.r.t. θ is the
method of finite differences. The parameter vector is perturbed in each dimension to
approximate the partial derivative of J(θ) w.r.t. the given dimension of θ:

∂J(θ)

∂θk
≈ J(θ + εUk)− J(θ)

ε
(5.13)

where Uk is a vector with 1 at the kth position and 0 at all other positions. In this
approach the policy used is deterministic.

Vanilla Policy Gradient

An alternative method of estimating the gradient is the ‘vanilla’ policy gradient method
which is different from the method of finite differences in that it relies on the use
of a stochastic policy. The estimate of the gradient is also calculated from sample
trajectories.

One of the problems noted with this method is the high variance of gradient esti-
mates, thus a baseline value is utilised to reduce this [46].

Natural Gradient

An extension to the vanilla policy gradient method is to follow the natural gradient
rather than the standard gradient [31], which can overcome the problems associated
with the standard gradient becoming trapped in plateaus [6, 31, 43, 46].

This method is also called natural actor-critic when the training process uses the
value function V (s) as the baseline, to minimize the variance [6].

5.2.2 Genetic Algorithms

Genetic Algorithms (GA) (as described in Section 4.1) is a successful derivative-free
global optimization method, and therefore is a natural alternative to the derivative
based methods used in the policy gradient approach.

GA is applied to directly searching for the parameters of a policy function which
maximise the sum of rewards, i.e. to find the solution to:

arg max
θ

J(θ) (5.14)

and thus produce a policy which performs well on an RL task. The policy is often
implemented using an ANN, where θ represents the weights of the ANN which approx-
imates π(s) [16] and the GA fitness function is simply J(θ).
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This method can be very time consuming as it is common to have many compet-
ing solutions in the GA population, all of which must be evaluated for their fitness
by running a simulated episode of the control problem, possibly multiple times with
different starting states, at every generation1. This may be mitigated, to some extent,
by computing the fitness of several individuals from a given generation in parallel, as
the individuals in each generation are not affected by others in the same generation;
however, this is only possible in simulations. Also, due to the nature of the optimiza-
tion method, whilst some individuals will improve, many individuals will have terrible
performance. Thus, even without the computational requirements precluding the di-
rect applicability rather than simulations, the poor individuals may cause damage to
hardware if applied to a real control problem.

5.2.3 Genetic Programming

Genetic Programming (GP) has been noted as an approach to RL problems [30, 53] and
is commonly applied to finding optimal control for problems where the sum of rewards
received at each time-step throughout the episode is applied as the fitness function,
albeit not often presented from an RL perspective [12, 13, 14, 32].

Whereas PG and GA methods search for the parameters of the policy function θ
which maximize J(θ), GP searches for the structure of the policy function by combining
a given function set and terminal set, which are problem specific and specified by the
designer. Thus, GP can be thought of as a technique to search a subset2 of the space
of all policy functions for the π which maximizes the average expected reward:

E

{
T∑

t=0

rt

∣∣∣π
}

(5.15)

rather than seeking to maximise (5.10).
The fact that the structure is not predefined makes GP more generic in the functions

it can produce, but also places many other implementation decisions on the designer,
most importantly the function and terminal sets; however, there are many more deci-
sions such as bloat control methods, initialisation method, populations size, number of
generations, etc. (see Section 4.2). If the function set is too large good solutions may
be missed due to the prohibitively large search space, on the other hand if required
functions are omitted from the function set the desired solution will not be possible.
The other parameters must also be tuned for the specific problem.

1It is not necessary to recompute the fitness of any individuals which are reproduced in the
following generation without mutation; however, few individuals are reproduced exactly from one
generation to the next in GA.

2Limited by the function and terminal sets selected at design time.



CHAPTER 5. CONTINUOUS SPACE STATE-OF-THE-ART 51

Moreover, each run of GP is very time consuming due to the large population size
and number of generations required, and several runs must be attempted using different
randomly initialized populations due to the stochastic nature of GP; thus, tuning the
parameters for GP may be a very time consuming process.

5.3 Implicit Policy Methods

Implicit policy methods (IPM) store only the value function Q(s, a) and by evaluating
this for possible actions are able to select the action which maximizes this function for
the given state. This approach, therefore, does not require the learning of the policy
function, and is sometimes referred to as a critic only method.

The two main approaches to applying IPM to continuous action-space problems
are discretization of the action-space and applying gradient-based optimization to the
value function. When discretization of the action-space is applied the optimal action
can be selected by evaluating Q(s, a) for each of the discrete actions, and the action
with the highest value is selected, and thus, limits available actions to the discretized
action set. When gradient-based optimization is applied we retain the ability to select
any action from the continuous action-space at the expense of solving a numerical
optimization problem each time the selection of the greedy action is required.

5.3.1 Discretization

The most straight-forward approach to discretizing the action-space is the one-step-
search [47], where an interval is selected a∆ and only the subset of the action-space:

Ã = {amin, amin + a∆, . . . , amax − a∆, amax} (5.16)

is evaluated. As this transforms the continuous action-space problem into a discrete
action-space problem it allows the use of implicit policy methods. However, this ap-
proach suffers from two large problems: 1) the level of granularity must be specified
at design-time, which is difficult; 2) if the level of granularity required to achieve
suitable performance on the task is too fine, even |Ã| will be too large to evaluate
Q(s, a), ∀a ∈ Ã.

Both of these problems have been addressed, to some extent, by [42] where the
action-space is discretized with a very fine granularity but the action selection only
requires the evaluation of two actions a− a∆ and a+ a∆, where a∆ is also updated to
increase or decrease the granularity at each time-step. This may prevent fast changes
in action value and also precludes the agent from applying the same action at two
consecutive time-steps, due to the minimum value of a∆.
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5.3.2 Gradient Based

Applying the gradient of Q(s, a) w.r.t. a has been suggested as a method to select
the action which maximizes the value function [30, 47]; however, this approach is often
dismissed as impractical [21, 55].

The greedy action is selected by initializing a to an estimate and iteratively updating
the value of the selected action using the gradient ascent method of optimization:

a← a+ α∇aQ(s, a) (5.17)

where α is a step-size parameter.
This method is only applicable if the gradient of the value function is available,

and also suffers from the problems of slow convergence rate and a susceptibility to
becoming trapped in local optima [41].

5.4 Other Methods

The following two methods do not fit into the other classes of solutions, they are
wire-fitting and k-nearest neighbours. Wire-fitting performs function approximation
whereby the learnt function outputs several actions and their corresponding values,
and due to the nature of the function approximation method used the greedy action
will always be included in the set of action-value pairs produced. k-nearest neighbours
performs discretization of the state-space and the action-space, resulting in a problem
that can be stored in a lookup table as is often applied in the small, discrete state- and
action-space setting; however, the selection of continuous actions is made possible by
taking a weighted average of the k actions selected from the discretized set.

5.4.1 Wire-Fitting

Wire fitting (WF) is a method of approximating Q(s, a) using n wires, resulting in
a value function like a sheet draped over the wires which can be evaluated through
interpolation [2].

The algorithm consists of a function approximator which outputs n actions, corre-
sponding to the locations of the n wires, and the associated n state-action values of
these actions and the given state, i.e. Q(s, ai), i = 1, 2, . . . , n.

Interpolation, f(s, a) in Fig. 5.2, can be utilised to find the values of actions between
those output by the function approximator; however, this is not required for action
selection as the action with the highest value will always one of those given by the
function approximator as one of the wires will always be located at the maximum
point.
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Figure 5.2: Diagram of the wire-fitting architecture.

This method has been shown empirically to be unable to succeed in the Cart-Pole
problem when the track is limited [2] and has since been shown to perform worse than
other methods [56] on a continuous action control problem. Also, for each of the n wires
the learned function must output an action and a value, therefore if a large number of
wires is required for the problem this method may become computationally demanding,
as is suggested in [56] where it is stated as being the most computationally demanding
of the methods applied.

5.4.2 k-NN

The k-nearest neighbour (k-NN) method [23], similarly with the one-step-search, uses
a discretized action-space, but the k-NN method is also able to select actions which
are not included in the discretized action set. This is achieved by discretizing both
the state- and action-spaces, and then taking the weighted average of the k discretized
actions that would have been selected from the k discretized states with the smallest
euclidean distance from s.

The discretized action space is achieved by taking n uniform discrete actions from
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the continuous-space, this can be done by setting:

a∆ =
amax − amin

n− 1
(5.18)

and the discretized action-space:

Ã = {amin + i · a∆}n−1
i=0 (5.19)

The weighting of each action ai ∈ a is calculated by first calculating a closeness
value based on the euclidean distance between each of the k nearest neighbour states
knni, i = 1, 2, . . . , k and the state to be evaluated s:

wi =
1

1 + ‖s− knni‖
(5.20)

normalising so that the weights sum to 1:

wi =
wi∑k
j=1 wj

(5.21)

finally using these normalised weights to calculate the weighted average of the k actions:

a = w · a (5.22)

The training for this method as presented in [23] includes an eligibility trace and
is more computationally demanding as the values of all the states in knn and their
respectively selected actions must be included in the calculation. The training method
used is an adapted version of SARSA(λ), thus, we assume we have the values of
s, a, r,knn,a, s′, a′,knn′ and a′.

We calculate the eligibility as the normalised weight of the states in knn for all
actions in a:

e(s, a) =




wi if s = knni and a ∈ a

0 otherwise
(5.23)

and δ using:
δ = r + γQ(knn′)−Q(knn′) (5.24)

where Q(knn) is defined as:

Q(knn) =
k∑

i=1

max
a∈Ã

Q(knni, a) · wi (5.25)
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and the updates are performed by applying:

Q(s, a)← Q(s, a) + αδe(s, a)

e(s, a)← γλe(s, a)
(5.26)

This method suffers from the same ‘level of discretization’ problem as the one-step-
search, but also applies discretization to the state space which may lead to further
aliasing problems.

5.5 Chapter Summary

In this chapter we have presented the main approaches currently being applied to solve
continuous state- and action-space RL tasks. Each method applies different techniques
to overcoming the problems associated with continuous state- and action-space.

The actor critic methods and direct policy search methods attempt to approximate
the policy function, thereby overcoming the problem of selecting the optimal action.
They do however have disadvantages: the AC methods require more parameters and
two function approximators must be trained, whereas DPS methods require a very high
number of episodes of the problem to be carried out in order to estimate the gradient
of the policy without taking advantage of the information contained within the value
function, which is not stored. Also PG methods search only for a local maximum of
the performance measure of the policy J(θ) [43].

When discretization is performed on the action-space in order to apply implicit pol-
icy methods or k-nearest neighbours there is a trade off to be made between achieving
a good approximation of the value function and the computation required. Also, as
these methods transform the continuous action-space problem into a discrete action-
space problem, they cannot truly be thought of as solving the continuous action-space
problem.

The gradient based approach to applying implicit policy methods allows the so-
lution to the continuous action-space problem, without applying a second function
approximator for the policy function; however, it has been suggested that it would be
too time consuming to be practical [21, 55].

The wire-fitting method allows the solution of the continuous action-space problem,
where the action can be computed in a fast time. However, the number of wires required
to approximate the learned function may be too large and therefore require excessive
computation to apply this approach, it has been also shown to perform poorly on the
Cart-Pole benchmark problem [2, 56].

Also, CACLA has been shown to outperform many other methods from the liter-
ature including wire-fitting and an alternative AC method on the continuous action-
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space Cart-Pole problem [56] and natural actor-critic, and an evolutionary algorithm
approach on the double pole variant [55], due to this we apply this method as the
state-of-the-art to compare other methods to in Chapter 7.



Chapter 6
Implicit Policy Methods with Optimization

It has been stated that if the function approximation method used to approximate
Q(s, a) enables the evaluation of ∇aQ(s, a) it would be possible to apply a gradient
based method to selecting the greedy action w.r.t. Q(s, a), and thus, apply implicit
policy RL methods to problems with a continuous action-space [47]. However, it is also
often asserted that directly solving the optimization problem would be prohibitively
time-consuming in the justification of the use of an AC method [21, 55]. Here we
investigate the possibility of applying optimisation techniques to directly solving:

arg max
a

Q(s, a), ∀a ∈ A (6.1)

thus eliminating the requirement of an additional function approximator for π(s), and
therefore, enabling the use of implicit policy RL methods, such as SARSA (Section 2.3),
which are often the algorithms of choice when problems have a small, discrete action-
space [21].

We use a single MLP to approximate Q(s, a) which is updated using backpropaga-
tion with the target values of the updates calculated using the SARSA RL algorithm.
We apply momentum to the updates of the ANN, however we do not overcomplicate
the algorithms with further learning acceleration techniques in order to retain the sim-
plicity, general applicability and to allow comparison to other algorithms, which are
equally eligible for the application of such performance enhancements. Such exten-
sions can, and should, be applied to get the most out of the algorithm on a particular
problem, as should any available domain knowledge. However, the algorithms also
were not adapted to each problem here in order to maintain the simplicity and general
applicability of the proposed methods.

Here, the implicit policy algorithm applied to the updating of the value function
Q(s, a) is SARSA, and an MLP is utilised for the value function approximation.

In the rest of this chapter we firstly describe several optimization methods which are

57
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considered for the action selection, and compare their properties for this application.
After which we discuss how this approach compares to existing approaches, before
presenting the detailed description of the algorithms resulting from utilizing the four
optimization methods: Genetic Algorithms; Gradient Descent; Newton’s Method; and
Nelder-Mead to the action selection. Preliminary results from the application of each
of the aforementioned algorithms to the Cart-Pole benchmark control problem are
presented to compare the performance of the algorithms both in terms of the success
rate and action selection time. Followed by a chapter summary.

6.1 Optimization Methods

Several optimization methods were considered for the action selection, here we discuss
two derivative-based and two derivative-free methods and compare them in terms of
action selection time and final performance on the Cart-Pole problem, which is one of
the benchmark control problems which is used in comparing algorithms later in the
thesis (Section 7.2).

6.1.1 Derivative Based

The two derivative-based optimization methods we consider are both line-search meth-
ods, i.e. the x that we seek which optimizes the objective function f : Rn → R is
updated at each time-step t by first selecting the direction and then taking a step in
that direction:

xt+1 = xt + αtpt (6.2)

where αt is the step-size and pt is the search direction at time-step t. The difference
being how pt is calculated. Gradient Descent uses the gradient to select the direction,
whereas Newton’s Method also makes use of the second derivative in calculating the
search direction.

Gradient Descent

Gradient Descent [41] is a relatively straightforward optimization method which only
requires the first derivative of the objective function f(x), i.e. ∇f(x), from which it
takes small steps in the direction which reduces the gradient:

xt+1 = xt − α∇xf(x) (6.3)

where α is a small positive step-size parameter.
Although gradient-decent requires little computation due to relying only on the
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first derivative for the search direction, it can be excruciatingly slow depending on the
problem and is also highly susceptible to becoming trapped in local optima [41].

Newton’s Method

Newton’s Method [41] is widely applied as a second order derivative based optimization
technique. By taking into account the second derivative of the objective function when
calculating the search direction, Newton’s Method can converge much faster than if
only the gradient were used [9, 41].

Newton’s Method is an iterative algorithm to finding zeros of a function, but is
commonly applied to finding the points at which the derivative of the function is zero,
i.e. the minimum and maximum points of the function. These stationary points of a
function f(x) are found by repeatedly applying (6.4), which updates x to progressively
approach a nearby stationary point with each iteration. As the algorithm does not
distinguish between maximum and minimum points it must be applied from several
different starting points, x0, in order to find the value of x which maximizes f(x);
however, the extra computation required to apply the algorithm from several initial
points is offset by the fast convergence of the algorithm.

xn ← xn−1 −
f ′(xn−1)

f ′′(xn−1)
(6.4)

There are additional considerations when Newton’s Method is applied to optimizing
an objective function taking an input dimension greater than one, in such cases the
Hessian must be positive definite to ensure the search direction is defined and the in-
verse of the Hessian must be calculated at each iteration. Modified versions of Newton’s
Method may be applied to overcome these problems such as quasi-Newton methods [9].
As Newton’s Method relies on the derivatives it also suffers from a susceptibility to
becoming trapped in local optima; however, this is mitigated by necessity to run the
algorithm from several initial points.

6.1.2 Derivative Free

Derivative free optimization methods do not require the derivative of the objective
function which allows their application to a wider range of function approximators,
where it may not be possible, or practical, to evaluate the partial derivatives of Q(s, a)

w.r.t. a. Also the fact that they don’t rely on the derivative for the search direction may
provide an additional benefit, by helping to avoid becoming trapped in local optima,
particularly when combined with a diverse set of points [17]. But this comes at the
cost of the ability to utilise the derivative to guide the search, which provides fast
convergence.



CHAPTER 6. IMPLICIT POLICY METHODS WITH OPTIMIZATION 60

Genetic Algorithms

Genetic Algorithms (GA) [17], as described in Section 4.1, is an evolutionary based
technique which can be applied to a wide range of problems by encoding the solution
as a genetic representation and specifying a fitness function. It is clearly straightforward
to apply this to optimization of a mathematical function where the fitness function is
already defined as the objective function f(x) and it is trivial to either directly use
the input value x as a real-valued genetic representation, or to convert it to another
representation, e.g. binary string.

There are many implementation decisions and parameters which must be set and
tuned when applying GA: number of generations; population size; probability of crossover;
probability of mutation; probability of reproduction; whether elitism is used; type of
crossover: one point, n-point, uniform, etc.; parent selection method. Also there may
be various other parameters depending on implementation choices, e.g. if the genes are
represented by binary strings the length of the binary string must be specified.

Moreover, the number of function evaluations required to apply GA is very high as
the whole population must be evaluated at each generation even if we avoid recalcu-
lating the fitness of individuals that are reproduced from previous generations, which
will not be high unless the probability of mutation and the probability of crossover
are both very low, which would adversely affect the GAs ability to search the solution
space.

Nelder Mead

The Nelder-Mead optimization technique [38] is a simplex method for minimizing a
function f(x), x ∈ Rn in which the dimension of the simplex is n + 1 and each
element of the simplex is a point in Rn. The algorithm proceeds by, at each iteration,
performing one of four operations: shrink, reflect, expand or contract to update the
simplex according to certain conditions, as can be seen in Algorithm 6.1 on the following
page adapted from [34]. There are four parameters: ρ, χ, γ and σ, which affect
reflection, expansion, contraction and shrinkage respectively. We set these parameters
to the values: ρ = 1, χ = 2, γ = 0.5, σ = 0.5 as given in [34].

As a derivative-free method Nelder-Mead does not require ∇aQ(s, a) or ∇2
aQ(s, a)

and thus can be applied to any function approximation method. Also, the action
selection can be very quick depending only on the number of iterations Nelder-Mead
is run and the speed of calculating Q(s, a), which is very fast with most function
approximation techniques.
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Algorithm 6.1 Nelder Mead optimization algorithm
1: procedure NelderMeadMin(x, f(·), ρ, χ, γ, σ)
2: initialise_simplex
3: for i← 1,max_iterations do
4: Sort simplex such that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1)
5: x̄← 1

n

∑n
j=1 xj . Calculate centroid of n best points

6: xr ← x̄+ ρ(x̄− xn+1) . reflection
7: if f(x1) ≤ f(xr) < f(xn) then
8: xn+1 ← xr . Accept reflection
9: next iteration
10: end if
11: if f(xr) < f(x1) then
12: xe ← x̄+ χ(xr − x̄) . expansion
13: if f(xe) < f(xr) then
14: xn+1 ← xe . Accept expansion
15: next iteration
16: else if f(xe) ≥ f(xr) then
17: xn+1 ← xr . Accept reflection
18: next iteration
19: end if
20: end if
21: if f(xr) ≥ f(xn) then . Contract
22: if f(xn) ≤ f(xr) < f(xn+1) then
23: xc ← x̄+ γ(xr − x̄) . outside contraction
24: if f(xc) ≤ f(xr) then
25: xn+1 ← xc . Accept contraction
26: next iteration
27: end if
28: else if f(xr) ≥ f(xn+1) then
29: xc ← x̄− γ(x̄− xn+1) . inside contraction
30: if f(xc) < f(xn+1) then
31: xn+1 ← xc . Accept contraction
32: next iteration
33: end if
34: end if
35: end if
36: xj ← x1 + σ(xj − x1), j = 2, 3, . . . , n+ 1 . Apply shrink
37: end for
38: return x1

39: end procedure
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6.1.3 Comparison

One way to classify the optimization algorithms, for a general comparison, is by whether
or not they require the derivatives of the objective function to guide the search. Deriva-
tive based methods can utilise the derivatives to select the search direction, which can
lead to faster convergence; however, they are more susceptible to getting stuck in the
nearest local maxima to the initial point, whereas derivative free methods are not
guided by the gradient and therefore are less likely to converge to the nearest local
maxima, although they also are clearly not guaranteed to converge to the global max-
imum.

A simple approach to overcome such difficulties is to apply the gradient based
method from several initial points x0 and select the maximum of the local maxima
found from each starting point, which was applied to both derivative-based methods
here. Another problem with first order derivative based methods is that they can
be slow, second order methods, such as Newton’s Method, can help overcome this
problem [9, 41].

An obvious deciding factor is that as derivative-based methods require the calcula-
tion of the derivative; thus, if this is not possible derivative free methods are the only
option.

6.2 Relation to Other Approaches

Here we list related approaches from the literature including application of the gradient
in action selection [30, 47] and discretization of the action-space [47]. Both of which
allow the use of implicit policy RL algorithms in the continuous action-space.

6.2.1 One-Step-Search

The one-step-search [47] is one of the most straight-forward discretization methods in
which the actions are limited to the discrete subset of actions:

A = {amin, amin + ∆a, . . . , amax −∆a, amax} (6.5)

where ∆a is a tunable parameter to control the granularity of discretization. All of the
actions in the discretized subset are evaluated and the one with the highest value is
selected as the greedy action.

This method requires the granularity of the discrete actions to be set, but such
information about the required level of granularity to obtain a sufficiently close ap-
proximation of the value function is rarely available to the implementer; furthermore,
if the required level of granularity is too fine |A| would still be too large to evaluate
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all possible actions. This will then lead to a trade-off between computational time and
quality of the selected actions.

6.2.2 Adaptive Action Modification

The Adaptive Action Modification approach [42] claims to allow action selection over
a continuous action-space by limiting the possible actions to only two possible actions:

A(st) = {at−1 ±∆a} (6.6)

this affects how fast or slow changes in action values can occur, depending on the value
of ∆a, and also precludes the same action being selected at two consecutive time-steps.
Moreover, as there are parameters specifying the maximum and minimum values of
∆a, the overall technique is a form of discretization at some varying level of granularity
between these limits.

6.2.3 Gradient

The application of gradient-descent to continuous action selection has been suggested [30,
47]; however, it is not generally applied, possibly due to the slow and poor performance
we experienced (Section 6.4).

6.3 Detailed Description

Here we describe the details of the algorithms resulting from applying Genetic Algo-
rithms; Gradient Descent; Newton’s Method and Nelder Mead to continuous action
selection.

6.3.1 Genetic Algorithms

The application of GA to action selection is presented in Algorithm 6.2 on the next
page. The representation used was binary strings and the crossover method was one
point crossover. Roulette wheel parent selection was used. A value was added to the
calculated fitness in order to ensure the fitness of all individuals was positive to allow
the roulette wheel method to be applied, this value is obviously dependent on the
possible values of the objective function, Q(s, a). Actions were selected in the range
[−1, 1] as the input to the ANN was adjusted to this range. Rescaling of the action
to the allowable range for the problem was done after action selection was complete.
The initialisation of the population was done by generating random values within the
allowable range for the problem, i.e. [−1, 1], to set the initial value of each individual
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Algorithm 6.2 Genetic Algorithm Action Selection
1: procedure GetActionGA(s)
2: for all generation ∈ {1, 2, . . . ,MAX_GENERATIONS} do
3: for all i ∈ {0, 1, . . . , POPULATION_SIZE − 1} do
4: initialise(populationi) . Initialise population in valid range
5: end for
6: for all i ∈ {0, 1, . . . , POPULATION_SIZE − 1} do
7: populationi.f itness← Q(s, populationi.real)
8: end for
9: sort(population)
10: new_population0 ← population0 . Copy elite individuals
11: new_population1 ← population1

12: while size(new_population) < POPULATION_SIZE do
13: parents← roulette_wheel(population)
14: if uniform_rand(0, 1) < Pc then
15: children← crossover(parents) . Perform crossover
16: else
17: children← parents . Perform reproduction
18: end if
19: for i ∈ {1, 2} do
20: for j ∈ {0, 1, . . . , L− 1} do
21: if uniform_rand(0, 1) < Pm then
22: flipbit(childreni, j)
23: end if
24: end for
25: end for
26: new_population.insert(children)
27: end while
28: population← new_population
29: clear(new_population)
30: end for
31: return max(population).real
32: end procedure

in the population. The notation populationi.real is used to represent the real number
representation of the value of the ith member of the population. The individuals also
stored their own fitness value in populationi.f itness, for the fitness of the ith member
of the population.

The copying of the best individuals is included in the algorithm, however, the
use of elitism can be set by a parameter, as was the case in the implementation
used. Other tunable parameters in this algorithm include: MAX_GENERATIONS,
POPULATION_SIZE, L (length of the binary string), Pc (probability of crossover),
Pm (probability of mutation).
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Algorithm 6.3 Gradient Descent Action Selection
1: procedure GetActionGD(s)
2: abest ← 0
3: for all a0 ∈ {amin, amin + a∆, . . . , amax − a∆, amax} do
4: a← a0

5: aprevious ← amax + 10
6: for i← 1,max_iterations do
7: a←

[
a+ ∂Q(s,a)

∂a

]amax

amin

. Limit a to allowable range

8: if Q(s, a) > Q(s, abest) then
9: abest ← a
10: end if
11: if |a− aprevious| < ζ then
12: break . If a has converged move on to next a0

13: end if
14: aprevious ← a
15: end for
16: end for
17: return abest
18: end procedure

6.3.2 Gradient Descent

The application of gradient descent to action selection we used is presented in Algo-
rithm 6.3. The parameters were set as follows STEP_SIZE = 0.1; a∆ = 0.1; and
MAX_ITERATIONS = 20. The optimization was run from several starting actions
between the minimum and maximum actions as the gradient descent optimization
method is susceptible to converging to local optima.

6.3.3 Newton’s Method

The application of Newton’s Method to action selection can be seen in Algorithm 6.4
on the following page. Few iterations of Newton’s Method were required to converge
to a static point in the experiments carried out (Chapter 7), therefore this algorithm
does not introduce a significantly large run-time overhead compared with discretization
methods, whilst also allowing any action in the continuous range to be selected. Unlike
discretization methods, NM-SARSA is not limited to the discrete actions amin +n ·a∆,
which are merely the starting points to apply Newton’s Method from; therefore, it is
also possible to apply a far larger a∆ for this algorithm compared with action-space
discretization methods, in the following experiments a∆ = 0.5 was used when searching
for actions in [−1, 1]; actions were in this range, regardless of the problem, due to scaling
for input to the MLP, which were rescaled to the desired range after action selection
was complete, in order to apply them to the simulation.
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Algorithm 6.4 Newton’s Method Action Selection
1: procedure GetActionNM(s)
2: abest ← 0
3: for all a0 ∈ {amin, amin + a∆, . . . , amax − a∆, amax} do
4: a← a0

5: aprevious ← amax + 10
6: for i← 1,max_iterations do
7: a←

[
a− ∂Q(s,a)/∂a

∂2Q(s,a)/∂a2

]amax

amin

. Limit a to allowable range

8: if Q(s, a) > Q(s, abest) then
9: abest ← a
10: end if
11: if |a− aprevious| < ζ then
12: break . If a has converged move on to next a0

13: end if
14: aprevious ← a
15: end for
16: end for
17: return abest
18: end procedure

The maximum number of iterations of Newton’s Method used to produce the results
in Table 6.1 on page 68 was 5; however, as it was noted that a often converged in fewer
iterations, the previous action was recorded and compared to the current action at
each iteration to check for early convergence, if there was no significant change in the
action (|a− aprevious| < ζ) the inner loop was terminated immediately.

Also, as it was observed that occasionally a reached a point where it was switching
between two or more values, abest, which maximizes the value function, was updated at
every iteration to ensure the action which maximizes the value function was returned.

Whilst this method does take longer than presenting a policy network with the
current state, as is the case with actor-critic or policy gradient methods, it does not
take a prohibitively long time, the average time taken to select an action using this
method was 0.00003 seconds on the Cart-Pole problem, as is shown in Table 6.1 on
page 68.

6.3.4 Nelder Mead

Here it is shown how the Nelder-Mead derivative-free optimization method to the action
selection. Many of the details of this approach are the same as with the Newton’s
Method approach and the same MLP was used for the function approximation. The
only difference in the approach was the optimization method used. Although Nelder
Mead does not require the ability to calculate derivatives of the value function, we still
utilise the same MLP architecture throughout these experiments, which allows direct
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Algorithm 6.5 Nelder Mead Action Selection
1: procedure GetActionNelderMead(ρ, χ, γ, σ, iterations, s, Q(·, ·))
2: f(·)← −Q(s, ·)
3: x0 ← 0
4: x1 ← uniform(amin, amax) . uniform random action in [amin, amax]
5: for i← 1, iterations do
6: sort(x,f(·))
7: xr ← [x0 + ρ(x0 − x1)]amax

amin
. compute reflection points

8: if f(xr) < f(x0) then
9: xe ← [x0 + χ(xr − x1)]amax

amin
. expand

10: if f(xe) < f(x0) then
11: x1 ← xe . accept xe
12: else
13: x1 ← xr . accept xr
14: end if
15: continue . next iteration
16: else if f(xr) ≥ f(x0) then
17: if f(x0) ≤ f(xr) ∧ f(xr) < f(x1) then
18: xc ← [x0 − γ(xr − x0)]amax

amin

19: if f(xc) ≤ f(xr) then
20: x1 ← xc . accept xc
21: continue . next iteration
22: end if
23: end if
24: end if
25: x1 ← [x0 + σ(x1 − x0)]amax

amin
. perform shrink step

26: end for
27: sort(x,f(·))
28: return x0

29: end procedure

comparison between the approaches.
The optimization methods have different parameters, and when using Nelder Mead

we did not need to keep track of the previous action, as the simplex retains the best
action from the previous iteration. The details can be seen in Algorithm 6.5, where
[x]ba limits x to be within a and b and sort(x, f(·)) sorts the vector x in order of the
output of f(·), i.e. the sorted x will satisfy:

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn). (6.7)

Unlike Newton’s Method which started from the same initial actions each time the
method was called, we achieved better results when initialising the actions to 0 and a
uniformly randomly selected value in the range [amin, amax]. This introduction of this
stochastic element to the algorithm also creates a difference with the Newton’s Method
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Table 6.1: Optimization Methods Applied to Cart-Pole Problem

Optimization Method Average Action
Selection Time (sec)

Successful
runs (%)

Successful Testing
Runs (%)

Gradient 0.00052s 100% 94%
Newton’s Method 0.00003s 100% 98%
Nelder Mead 0.00003s 100% 100%
Genetic Algorithm 0.0033s 0% 0%

approach, which is completely deterministic. The number of iterations performed was
controlled by a parameter, which was set to 10 in producing the results in Table 6.1.
Although this could also be tuned for the application, to take full advantage of the
maximum allowable action selection time.

The problems we tested these algorithms on in Chapter 7 all have a scalar action;
however, this method is clearly well suited to continuous, vector-valued actions, and it
would be interesting to see how this approach performs in higher dimensional action-
spaces.

6.4 Preliminary Results

Each of the aforementioned methods were applied to the action selection on the Cart-
Pole problem (described in more detail in Chapter 7) the results of which are presented
in Table 6.1, giving the median action selection time as well as the percentage of runs
which produced controllers able to successfully balance the pole in one of the training
episodes and the percentage which could also balance the pole in all ten testing trials
for the given run, in which exploration and training was turned off. The details of this
experiment are the same as described in Section 7.2.

GA was infeasibly slow, despite the fact that the quantity of generations and the
population size used were insufficient to succeed in the benchmark task, and therefore,
is not considered an acceptable action selection method, despite the longest amount of
time being spent on parameter tuning of the GA approach. The gradient method also
produced poor performance in terms of both action selection time: on average taking
more than fifteen times longer to select the greedy action than Newton’s Method and
Nelder Mead, and also producing a learnt policy with inferior performance on the
testing trials. Therefore, we focus on the two methods which performed well in a
reasonable length of time: Newton’s Method and Nelder Mead.
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6.5 Chapter Summary

The optimization methods applied here allow fast, accurate greedy action selection
without the requirement of a separate policy function which adds more complexity to
the training process. We are not aware of other such applications in the literature,
only of suggestions of the possible application of the gradient [30, 47], which performed
worse than the methods used here (Table 6.1 on the preceding page); or discretization
methods which do not allow the use of a true continuous action space and thus force the
trade-off between speed and precision. Such a compromise may result in slow and/or
poor action selection.

The application of GA to the action section was also considered, as GA is a global
derivative-free optimization technique, however, after some experimentation it became
apparent that GA, even with an insufficient number of generations and population size
to achieve acceptable performance, requires too many evaluations of the objective func-
tion and therefore takes a prohibitively long time to be utilised in action selection. This
problem is particularly important as this optimization must be performed even once
the agent is fully trained due to the fact that the policy is not stored separately from
the value function, which is why we selected the Nelder Mead method and Newton’s
Method which both performed very well and selected actions in a very short time.

Although both Nelder Mead and Newton’s Method can be applied to optimising
functions taking a vector as input rather than a scalar, the computation involved
in applying Newton’s Method may be excessive as the inverse of the Hessian must
be computed; furthermore, as Newton’s Method requires that the Hessian is positive
definite, thus modified versions of the algorithm may be required which maintain the
positive definiteness of the Hessian, such as quasi-Newton methods [9]. However, the
Nelder-Mead approach would require minimal extra computation time when extended
to higher dimensional action-spaces, therefore, it would be interesting to observe the
performance on such problems as future work.



Chapter 7
Experiments

In this chapter the novel approaches proposed in Chapter 6: NM-SARSA and NelderMead-
SASRSA are applied to three continuous state- and action-space RL benchmark control
problems from the literature: Acrobot (Section 7.1), Cart-Pole (Section 7.2) and double
Cart-Pole (Section 7.3). These benchmark problems were applied as they are difficult
continuous state- and action-space control problems used in the literature and therefore
allow the comparison of the proposed methods to existing methods.

The performance of these novel algorithms is compared to that of existing state-of-
the-art algorithms from the literature, including CACLA, adaptive-critic and GP, for
which we present novel results on the Acrobot problem. We also compare the results
achieved by all of these methods to those from the literature.

Each of the benchmark control problems are presented separately, including details
of the task; details of the application of each approach; and results including a com-
parison of the performance of the different approaches. At the end of the chapter there
is also a summary including a comparison of the approaches across the different tasks.

All results presented in this section were obtained through software implementations
of the control problems in C++11, which were run on a laptop with an i5 processor.
The GP approach utilises multi-threaded programming in order to evaluate the fitness
of the two children resulting from crossover in parallel.

7.1 Acrobot

The acrobot is a two link robot, based on a human acrobat. The links are connected
by an actuated joint and one end is connected to a bar by an unactuated joint [50], see
Fig. 7.1 on page 72.

The state s = [θ1, θ2, θ̇1, θ̇2]> comprises the first and second angles θ1 and θ2 and
the respective angular velocities θ̇1 and θ̇2. The action a is the torque τ to be applied
to the actuated joint. The acrobot is a difficult control task as it is a four dimensional,

70
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highly non-linear, under-actuated control problem [50, 51].

7.1.1 Existing Approaches

There have been many approaches to the acrobot problem, but often they solve only
the simpler half-swing-up problem [53, 62], and are also often restricted to discrete
control τ ∈ {±τmax, 0}. Also, many of the full swing-up approaches either allow large
torque values [15, 36, 50, 59, 61, 63] or limit the control to discrete actions [8, 29, 57].

The balance task is currently best solved by the linear quadratic regulator (LQR)
traditional control method [51], which is often applied even when computational in-
telligence approaches are utilised in solving the swing-up task [19, 29, 59]. However,
the LQR approach, unlike computational intelligence methods, requires knowledge of
the equations of motion in order to calculate the coefficients of the linear controller.
Moreover, this method has a very small basin of attraction from which it is able to
balance the acrobot [51].

Here we focus on the swing-up control problem of the acrobot, as it has successfully
been achieved by several methods and therefore allows the methods presented here to
be, relatively, easily compared to many approaches to control problems. Whereas the
LQR controller applied to almost all approaches of the balance control [29, 50, 51, 61,
63].

7.1.2 Details

The task of the acrobot is to swing up, in the minimum time, from the initial state s0 =

[0, 0, 0, 0]> to the inverted, unstable, target state st = [π, 0, 0, 0]> and then to remain
balanced in that position. This is often split into two tasks: swing-up and balance, with
two distinct controllers which are switched at a given point. The controller switching
point can be either found through trial and error [50] or by applying other techniques
to find the most appropriate point to switch [63].

The results presented here are based on computer simulations of the acrobot using
the equations of motion (7.1) as described by [53]. The parameter values used are shown
in Table 7.1 on the following page. The angular velocities were limited to −4π ≤ θ̇1 ≤
4π and −9π ≤ θ̇2 ≤ 9π. Continuous values were allowed for a = τ ∈ [−2, 2]. The
acrobot state s was updated every 0.05 simulated seconds, using the Euler method of
numerical integration, and the controller selected the τ to apply to the actuated joint
every 0.2 seconds.
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Target

Bar

θ1
θ2

Figure 7.1: The full swing-up of the acrobot with target position. The dashed line
represents target position and the orange joint is the actuated joint.

Table 7.1: Acrobot parameter values

Parameter Symbol Value

Mass of link 1 m1 1
Mass of link 2 m2 1
Length of link 1 l1 1
Length of link 2 l2 1
Length to centre of mass of link 1 lc1 0.5
Length to centre of mass of link 2 lc2 0.5
Inertia of link 1 I1 1
Inertia of link 2 I2 1
Gravitational constant g 9.8

θ̈1 = −d−1
1

(
d2θ̈2 + φ1

)

θ̈2 =

(
τ +

d2

d1

φ1 −m2l1lc2θ̇
2
1 sin (θ2)− φ2

)
÷
(
m2l

2
c2 + I2 −

d2
2

d1

)

d1 = m1l
2
c1 +m2

(
l21 + l2c2 + 2l1lc2 cos (θ2)

)
+ I1 + I2

d2 = m2

(
l2c2 + l1lc2cos(θ2)

)
+ I2

φ1 = −m2l1lc2θ̇
2
2 sin (θ2)− 2m2l1lc2θ̇2θ̇1 sin (θ2)

+ (m1lc1 +m2l1) g cos
(
θ1 −

π

2

)
+ φ2

φ2 = m2lc2g cos
(
θ1 + θ2 −

π

2

)

(7.1)
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7.1.3 Method

The parameters used for each approach are those which were found to perform best on
this task. When Gaussian exploration was applied σ2 = 1 was used in generating the
random exploration value.

Genetic Programming Approach

GP was applied to the acrobot swing-up task [14] by including the angles and angular
velocities, which collectively form the state s, in the set of terminal nodes, along with
a randomly generated constant R ∈ [−10, 10]:

T S = {θ1, θ2, θ̇1, θ̇2, R}

the limit applied to R was selected through experimentation and this range was found
to produce the best results in these experiments.

The fitness of each individual in the population was calculated by running a sim-
ulation of the acrobot where the GP program was presented with the current state s
and returned the action a, which in this case was the torque τ to apply to the actuated
angle. The action was limited to the allowable range using:

τ =





τMIN , if τ < τMIN

τMAX , if τ > τMAX

τ, otherwise

The function set used for this task was:

FS = {+,−,×,÷, tanh, abs, iflt}

where ÷ was the protected divide function, and iflt is the if-less-than function, as
described by [32]. The details of all functions used are given in Table 7.2 on the next
page. The functions included in FS were determined through experimentation.

Each run began with the initialization of the population, the details of which is
given in Table 7.3 on the following page, the fitness of each individual was calculated
and then 100 generations of GP were executed, there is no target fitness to use for early
stopping before all generations are complete, as it is not clear how long the optimal
policy would take to swing-up the acrobot [7]. Experimentation was carried out with
more generations but this did not lead to improved performance.

The fitness was evaluated using the adjusted fitness to exaggerate the difference



CHAPTER 7. EXPERIMENTS 74

Table 7.2: Functions used for the function sets

Symbol Function Formula

+ add arg1 + arg2

− subtract arg1 − arg2

× multiply arg1 × arg2

÷ protected divide

{
arg1/arg2, if arg2 6= 0

0, otherwise
tanh hyperbolic tangent tanh (arg1)
abs absolute value |arg1|

iflt if less than

{
arg3, if arg1 < arg2

arg4, otherwise

Table 7.3: Genetic programming parameters

Parameter Value

Probability of crossover (Pc) 90%
Probability of reproduction (Pr) 10%
Probability of mutation (Pm) 0%
Population size (M) 2000
Number of generations (G) 100
Probability of choosing internal points for crossover (Pip) 90%
Maximum size of initial GP trees (Di) 6
Maximum size of GP trees created during run (Dc) 17
Initialisation method grow
Selection method fitness proportionate

over selection
Over-selection cumulative percentage (c) 16%

between the best individuals [32]. The raw fitness was calculated as:

f(i) = tup(i) (7.2)

where tup is the time to reach the inverted position, defined as when the following
evaluated to true:

cos(θ1) ≤ −0.95 ∧ cos(θ2) ≥ 0.95 ∧ |θ̇1| ≤ 0.5 ∧ |θ̇2| ≤ 0.5

As fitness proportionate over-selection was used, the normalized fitness was calcu-
lated from from the raw fitness (7.2) as described in Section 4.2.3.
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Adaptive Critic Approach

The AC method as used in [48] which was described in Section 5.1 was applied to the
full swing-up task of the acrobot. A slight modification had to be made in order to
apply the method to the swing-up problem rather than the cart-pole balancing problem
mentioned in that work. The approach in [48] recorded a history of the number of time-
steps taken before the pole fell down in the last 6 trials, and if 5 of them was within
5 time-steps of the previous trial the training was considered to have become ‘stuck’
and the weights of the neural networks were re-initialised. This was not possible on
the acrobot swing-up task due to the fact that when the trial fails the time will always
be the maximum time; thus, the maximum reward received in each of the previous
6 trials was recorded and if they were within 1 of the previous trial for 5 trials the
neural networks weights were re-initialised. The parameter values used are presented
in Table 7.4 on the next page along with those of the other methods. Learning rate was
reduced by 0.05 until it reached a minimum value of 0.005, and the number of updates
performed on the neural networks and error thresholds were: Nc = 10; Na = 200;
Tc = 0.01; Ta = 0.001.

CACLA

CACLA as described in Section 5.1.2 was applied to the Acrobot problem with MLPs
for both the actor and critic networks, the general RL parameters are listed in Table 7.4
on the following page with the CACLA specific variance parameter β = 0.001.

Newton’s Method SARSA

The general RL parameters used for the NM-SARSA approach can be seen in Ta-
ble 7.4, the parameters specific to the Newton’s Method optimization algorithm were:
maximum iterations of Newton Method was 20, initial action step-size was 1 and early
convergence ζ = 0.001. The learning rate was reduced by multiplying it by 0.85 at
each iteration, and after each trial the exploration coefficient was reduced by 0.0001

until it reached 0.1 and where it remained for the rest of the trials.

Nelder Mead SARSA

The general RL parameter settings used for the NelderMead-SARSA approach can be
seen in Table 7.4 alongside those of the NM-SARSA approach, the same parameters
were used except for those specific to the optimization method in order to retain the
comparability between the two approaches. In the NelderMead approach, the num-
ber of iterations of the Nelder Mead optimization algorithm for action selection was
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Table 7.4: Acrobot RL Agent Parameters

Parameter NM-SARSA NelderMead CACLA Adaptive Critic

Hidden Nodes 12 12 7 13
RL step-size (α) 0.2 0.2 0.2 N/A
RL discount rate (γ) 0.9 0.9 0.9 α = 0.95
Learn rate 0.3 0.3 0.2 0.5
Momentum 0.75 0.75 0 0
Exploration Gaussian Gaussian Gaussian Gaussian

ten. The other parameters for Nelder Mead were as specified in Section 6.1.2 and not
changed, and the initial simplex was 0 and a random value.

The exploration coefficient was reduced by 0.0001 after each trial until it reached
a value of 0.1, where it remained for any further trials. The ANN learning rate was
reduced at each time-step by multiplying it by 0.85.

7.1.4 Results

The performance of the various approaches to the acrobot swing-up task are listed in
table 7.5 on page 79. As can be seen, all methods were able to match the performance
of alternative approaches from the literature, in some cases outperforming existing
approaches.

As can be seen in table 7.5 on page 79, the GP approach produced the controller
with the fastest swing-up time. The fitness improvement across the generations of the
best run can be seen in Fig. 7.2 on the next page, and the swing-up trajectory can be
seen in Fig 7.3 on page 78.

However, the GP method was only a fraction of a second faster than the Nelder-
Mead SARSA method; moreover, as can also be seen in table 7.5 on page 79 the
expected number of simulations used to evolve the controller using GP is far more
than is used by all other methods presented here and therefore took far longer to run,
days rather than hours. However, this was still far fewer than that of another TD
method from the literature [11]. The two AC methods: Adaptive-Critic and CACLA
both produced similar results, which were also similar to the results of another RL
method from the literature [11]. The GP method and the two implicit policy meth-
ods: NM-SARSA and Nelder-Mead SARSA all outperformed existing methods which
use the same torque limits; furthermore, the swing-up speed achieved using GP and
implicit policy methods was comparable to the results achieved by other methods in
the literature which permit far greater torque values [36, 50].

1Expected number of fitness evaluations based on generations; population size; and Pc.
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Figure 7.2: Fitness of the best individual and average of population taken from an
average run of the swing-up task.
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Figure 7.3: The best genetic programming acrobot Swing-up controller. At 8.8 seconds
the angles are close to −π and 2π respectively (equivalent to the balance position), at
the same time as the angular velocities are both very close to zero.
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Table 7.5: Acrobot Swing-up Time of Different Techniques

Method Torque
Range
(Nm)

Swing-up
Time (s)

Success Rate
(% Runs)

Number of Training
Trials (Average)

Genetic pro-
gramming [14]

[-2,2] 8.8 100% 182,0001

Adaptive Critic [-2,2] 10.95 100% 152.65
CACLA [-2,2] 10.8 100% 100.56
NM-SARSA [-2,2] 9.3 82% 523.95
Nelder-Mead
SARSA

[-2,2] 9.05 86% 969.39

Continuous
TD(λ) [11]

[-2,2] ∼11 Not specified 1,000,000

Control
theory [36]

[-15,25] ∼9 N/A N/A

Partial feedback
linearization [50]

(−∞,∞) ∼10 N/A N/A

Whilst the best results were achieved using GP in this experiment, the approach is
excruciatingly time consuming: each experiment took days to run, even when exploiting
the availability of multiple processor cores to evaluate both children from crossover in
parallel; furthermore, a very large number of these runs is required in order to find
the combination of functions for the function set and to tune the other parameters:
number of generations; number of runs; initialization; maximum depth; elitism; etc.
NelderMead-SARSA, on the other hand, achieved comparable results with very little
parameter tuning at all, also the results of applying NM-SARSA also were only slightly
worse. If these approaches were given the amount of parameter tuning time applied to
GP it is possible that they would exceed the performance of GP.

However, whilst NM-SARSA and NelderMead-SARSA both performed very well
in terms of minimum swing-up time, they both required several times more training
episodes than the AC methods, on average, before they achieved the first successful
swing-up trial. They were also the only methods which suffered with some unsuccessful
runs. It is possible that more parameter tuning may yield agents which do not suffer
from these problems, another approach to addressing these problems may be to incor-
porate a test that learning is progressing with a weight re-initialisation, similar to that
used by the Adaptive-Critic.

1Expected number of fitness evaluations based on generations; population size; and Pc.
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7.2 Cart-Pole

The Cart-Pole problem is a cart on a limited track with a pole attached to the middle
by a free joint. The pole must remain balanced by applying force to the cart, without
the cart reaching the edge of the track.

The state vector comprised the pole angle; pole angular velocity; cart distance from
centre of track; and cart velocity s = [θ, θ̇, x, ẋ]>. The action was the force applied to
the cart a = F ∈ [−10, 10].

7.2.1 Existing Approaches

The Cart-Pole problem is a very well known control benchmark problem used by both
the EA [22, 32] and RL [2, 46, 48, 53, 56] communities.

Often the actions are limited to discrete values [32, 48], but here we attempt the
continuous action cart-pole problem. We select CACLA as a state-of-the-art method to
compare the results of the proposed methods of NM-SARSA and NelderMead-SARSA
to, as it has previously outperformed several continuous state- and action-space RL
algorithms on this task [56].

7.2.2 Details

The standard Cart-Pole problem, is a widely used control benchmark problem [48,
56]. In many applications the actions are limited to A = {0,±10}N; here, however,
continuous actions A = [−10, 10]N are permitted in order to evaluate the performance
of the algorithms in the continuous action-space. The parameters of the environment
used in this experiment are listed in Table 7.6 on the following page, and the equations
of motion used to update the environment are specified in (7.3), which is the same
as [48].

θ̈ =
g sin θ + cos θ

(
−F −mlθ̇2 sin θ + µc sgn (ẋ)

)
− µpθ̇

ml

l
(

4
3
− m cos2 θ

mc+m

)

ẍ =
F +ml

(
θ̇2 sin θ − θ̈ cos θ

)
− µc sgn (ẋ)

mc +m

(7.3)

For each episode the simulation was run for a maximum of 120 simulated seconds
and was terminated immediately if either the pole fell or the cart reached the edge
of the track. The pole was considered to have fallen if |θ| > π/15, and the cart was
considered to have reached the edge of the track if |x| > 2.4. Every 0.02 simulated
seconds the RL agent selected an action; the environment was updated using the Runge
Kutta fourth order numerical integration method and then the reward was calculated.
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Figure 7.4: Diagram of the Cart-Pole problem.

Table 7.6: Cart-Pole Parameters

Parameter Value

cart mass (mc) 1
pole mass (m) 0.1
gravitational constant (g) 9.81
half pole length (l) 0.5
cart friction (µc) 5× 10−4

pole friction (µp) 2× 10−6

time increment (∆t) 0.02
maximum force (Fmax) 10N

The reward was zero at all time-steps until failure, i.e. the pole fell or the cart reached
the edge of the track, at which time a reward of -1 was received.

The initial state at the beginning of each episode was [0 + o, 0, 0, 0]>, where o was
uniformly randomly generated offset in the range [−0.05, 0.05]. The selected action
was limited to the allowable range before being applied to the simulation.

7.2.3 Method

In all approaches Gaussian exploration was applied by adding a Gaussian random value
with σ2 = 1 to the action, this value was multiplied by an exploration coefficient which
was reduced in order to reduce the exploration as training progressed.

The experiment was run three times: without noise; with uniform noise in the range
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[−Fmax/2, Fmax/2]; and finally with Gaussian noise ∼ N (0, 1) added to selected action,
this was done after the action had been limited to the allowable range therefore the
actual applied action may not be within the action limits. The agent was not made
aware of any noise applied.

All parameter values listed are those which were found to perform best in the noise
free setting, parameters were not re-tuned when the experiments were re-run with noise
added to the selected action.

CACLA Approach

CACLA was applied to this task for comparison against a state-of-the-art method as
it previously outperformed a number of other continuous action-space RL methods
on this task [56]. The approach was basically as [56] using a 12 hidden node MLP,
with tanh activation at the hidden layer and linear output, for both the actor and
critic. The parameters used are given in Table 7.7 on the next page, and the CACLA
variance parameter β = 0.001. Momentum was not applied in updating of the MLPs in
CACLA, as after some experimentation it was found not to produce improved results.
Exploration was kept at 1 in training episodes as CACLA relies on exploration to
update the policy function.

NM-SARSA Approach

The RL parameters used for NM-SARSA are listed in Table 7.7 on the following page
with those of the other approaches. The NM-SARSA specific parameter values were:
maximum iterations = 5; early convergence parameter ζ = 0.001; initial action step-
size a∆ = 0.5. The exploration coefficient was set to one at the start of each trial and
reduced by 0.001 at each time-step until it reached zero.

NelderMead-SARSA Approach

The RL parameter values applied to the NelderMead-SARSA approach are presented
Table 7.7 on the next page. Ten iterations of the Nelder Mead optimisation algorithm
were performed for action selection. The exploration coefficient was set to 1 at the
beginning of each trial and reduced by 0.001 at each time-step until it reached 0.

7.2.4 Results

Results were produced from 50 different runs of NM-SARSA, NelderMead-SARSA and
CACLA. As soon as the agent succeeded in one of the episodes no further training took
place; however, ten testing episodes were carried out with no training or exploration
in order to test the performance and generalisation capability of the controller. The
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Table 7.7: Cart-Pole RL Agent Parameters

Parameter NM-SARSA NelderMead-SARSA CACLA

Hidden Nodes 12 12 12
RL step-size (α) 0.2 0.2 0.1
CACLA variance update (β) N/A N/A 0.001
RL discount rate (γ) 0.9 0.9 0.8
Learn rate 0.3 0.3 0.1
Momentum 0.7 0.75 0
Exploration Gaussian Gaussian Gaussian

Table 7.8: Cart-Pole Results

Method Noise Success Rate Episodes to Train Testing
Success RateMedian Min Max

CACLA
None 100% 129 68 267 98%
Gaussian 100% 136 76 314 92%
Uniform 100% 149 84 269 90%

NM-SARSA
None 100% 98 52 215 98%
Gaussian 100% 79 39 127 94%
Uniform 100% 81 48 155 90%

NelderMead
SARSA

None 100% 112 48 188 100%
Gaussian 100% 124 52 218 96%
Uniform 100% 134 43 293 84%

testing success rate is the percentage of runs in which the agent succeeded for all ten
testing episodes.

Table 7.8 shows the success rate: percentage of runs in which the agent was able to
successfully balance the pole in a training episode; median, minimum and maximum
number of episodes taken to train the agent to balance the Cart-Pole for 120s; and also
the testing success rate. The best results are highlighted in green and the worst in red.
NM-SARSA and NelderMead-SARSA achieve comparable performance to CACLA, in
terms of success rate, but NM-SARSA does so in consistently fewer training episodes,
NelderMead-SARSA also trains in fewer episodes than CACLA although the difference
is less extreme.

Fig. 7.5 on the next page was produced on the noise-free simulation, where 1000
episodes were run, regardless of whether the agent could balance the pole, in order to
calculate the average balance time per episode averaged over the 50 runs. The average
balance time of NM-SARSA is always slightly longer than that of CACLA. This also
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Figure 7.5: Cart-Pole training progress, balance time for each episode averaged over
50 runs.

shows the similarity in the training time of NelderMead-SARSA and CACLA. Although
both CACLA and NelderMead-SARSA still experienced some runs with short balancing
time in later episodes which produced the levelling off effect when the averages were
calculated for the plot, NM-SARSA seemed to suffer less and less with short runs in
later episodes: leading to the curve still increasing towards the later episodes. This
may be due to the fact that Newton’s Method when started from the same set of initial
points will always return the same action, provided the value function isn’t changed,
therefore once exploration is reduced there is far less chance of taking a poor action.
However, with NelderMead, the initial simplex is randomly initialised, thus returned
actions may be different. This will result in non-deterministic action selection which
may have resulted in some poorer actions being selected, even after training had reached
a good level where most runs balanced for the full time by these episodes.
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7.3 Double Cart-Pole

The double Cart-Pole problem is an extension of the standard Cart-Pole problem,
whereby the cart has two poles, of different lengths, attached which both must be
balanced [58]. The simulation in this experiment is the same as that of [55] except
the maximum time of the simulation was 120s instead of 20s, making the task more
challenging.

The state vector comprised the angle and angular velocity of each pole; cart distance
from centre of track; and cart velocity s = [θ1, θ̇1, θ2, θ̇2, x, ẋ]>, and the action was the
force applied to the cart a = F ∈ [−40, 40].

7.3.1 Existing Approaches

The double pole variant of the well known Cart-pole benchmark has been used since [58]
and has been used in several papers as a benchmark for EA based approaches [20, 22,
26, 27], which often also include a variant where the angular velocities are omitted
from the state representation to make the task non-markovian; however, as we do not
attempt to solve the problem of POMDPs here, we do not attempt this variant.

More recently, CACLA has been applied to this problem [55] achieving improved
results compared to the approach in [26], in which the approach was shown to out-
perform NAC. Thus, we use CACLA as the state-of-the-art approach to compare our
results to.

7.3.2 Details

The parameters used in this experiment are listed in Table 7.9 on page 87, and the
equations of motion used to update the environment are (7.4), as was used in [55].

ẍ =
F − µc sgn(ẋ) +

∑2
i=1 2miθ

2
i sin θi + 3

4
mi cos θi

(
2 µiθ̇i
mili

+ g sin θi

)

mc +
∑2

i=1 mi

(
1− 3

4
cos2θi

)

θ̈i = − 3

8li

(
ẍ cos θi + g sin θi +

µiθ̇i
mili

) (7.4)

Each simulation was run for a maximum of 120 simulated seconds and was termi-
nated immediately if either of the poles fell or the cart reached the edge of the track.
A pole was considered to have fallen if |θi| > π/15, and the cart was considered to have
reached the edge if |x| > 2.4. Every 0.02s an action was selected by the RL agent, the
environment was updated using the Runge Kutta fourth order method and the reward
was calculated. The reward was -1 if a pole fell or the cart reached the edge of the
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Figure 7.6: Diagram of the double Cart-Pole problem.

track and 0 otherwise.
The initial state at the beginning of each episode was [ π

180
, 0, 0, 0, 0, 0]>, this is the

same as the initial state used in [55]. The selected action was limited to the allowable
range before applying to the simulation.

7.3.3 Method

This application of the double Cart-Pole problem is slightly different to that described
in [55] in that the length of time the agent was required to balance the poles for was
120s (rather than 20s) which makes the task more difficult. Also the magnitude of the
exploratory actions in [55] were orders of magnitude larger than the allowable actions,
thereby forcing the agent to learn a bang-bang controller. Here, as we are specifically
interested in continuous actions, we do not influence the learnt policy through use of
such large exploratory actions.

The experiment was run three times: without noise; with uniform noise in the range
[−Fmax/2, Fmax/2]; and finally with Gaussian noise ∼ N (0, 1) added to selected action,
this was done after the action had been limited to the allowable range therefore the
actual applied action may not be within the action limits. The agent was not made
aware of any noise applied.

All of the parameters used were found to perform the best of those tested on the
noise-free setting, but were not re-tuned when noise was added.
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Table 7.9: Double Cart-Pole Parameters

Parameter Value

cart mass (mc) 1kg
pole one mass (m1) 0.1kg
pole two mass (m2) 0.01kg
gravitational constant (g) 9.81
pole one length (l1) 1m
pole two length (l2) 0.1m
cart friction (µc) 5× 10−4

pole one friction (µ1) 2× 10−6

pole two friction (µ2) 2× 10−6

time increment (∆t) 0.02s
maximum force (Fmax) 40N

CACLA Approach

The CACLA algorithm was applied to the double Cart-Pole task for comparison pur-
poses, as it was shown to outperform the results achieved using CMA-ES and NAC
approaches [55] when compared to the results in [26]. In [55] the CACLA policy func-
tion approximator was limited to a linear architecture in order to make it directly
comparable to linear methods; however, we apply non-linear MLP to the policy func-
tion in order to allow the approximation of more general functions.

The parameters used for the CACLA approach are given in Table 7.10 on the next
page and the CACLA specific variance parameter used was β = 0.001. An exploration
reduction schedule was not applied to CACLA, instead every tenth episode was run
without exploration to determine whether learning had been achieved. This was found
to perform far better than any exploration schedule tested with CACLA on this task.

NM-SARSA Approach

The parameters used for the NM-SARSA approach are listed in Table 7.10 on the
following page, maximum iterations was 10; a∆ = 0.5; early convergence parameter
ζ = 0.001. Exploration was not used in this approach.

NelderMead-SARSA Approach

The RL parameters applied to this approach are presented alongside the other ap-
proaches in Table 7.10 on the next page. The number of NelderMead iterations used
was 5. No exploration was used in this approach.
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Table 7.10: Double Cart-Pole RL Agent Parameters

Parameter NM-SARSA NelderMead-SARSA CACLA

Hidden nodes 12 12 12
Learn rate 0.2 0.2 0.1
RL step-size (α) 0.2 0.2 0.2
RL discount rate (γ) 0.9 0.9 0.9
Momentum 0.75 0.75 0
Exploration N/A N/A Gaussian

Table 7.11: Double Cart-Pole Results

Method Noise Success Rate Episodes to Train Testing
Success RateMedian Min Max

CACLA
None 96% 430 20 970 N/A
Gaussian 94% 430 180 970 90%
Uniform 40% 720 290 980 32%

NM-SARSA
None 100% 89 2 464 N/A
Gaussian 100% 106 50 639 72%
Uniform 98% 131 49 602 72%

NelderMead
SARSA

None 96% 141 28 482 80%
Gaussian 98% 170 46 651 80%
Uniform 94% 294 49 953 72%

7.3.4 Results

Each approach was allowed a maximum of 1000 episodes to train, but exploration was
stopped after the agent successfully balances the poles and a further 10 testing episodes
were performed without exploration or training, testing the generalisation capability
of the learnt controller. Except for the noise-free setting where, as the initial state
was the same for each episode, there would be no difference in the trajectory for any
number of runs once training and exploration was stopped. This was run 50 times and
the results are shown in table 7.11.

The performance achieved by NM-SARSA and NelderMead-SARSA was consider-
ably better than that of CACLA in terms of success rate and training was achieved in
considerably fewer episodes. CACLA achieved slightly better testing success rate on
the Gaussian noise setting but considerably worse on the uniform noise setting.

The difference in performance of NM-SARSA and NelderMead-SARSA was not
great on this task, however, NM-SARSA did produce consistently slightly better results
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Figure 7.7: Double Cart-Pole training progress, balance time for each episode averaged
over 50 runs.

in terms of average training episodes.
Fig. 7.7 was produced on the noise-free simulation, where 1000 episodes were run,

regardless of whether the agent could balance the poles, in order to calculate the aver-
age balance time per episode averaged over the 50 runs. As there was no exploration
reduction schedule used for CACLA, once CACLA succeeded in one episode the ex-
ploration coefficient was set to zero for all future episodes in that run to avoid the
average time being close to zero due to exploratory actions. As can be seen in Fig. 7.7,
NM-SARSA clearly trains in far fewer episodes than CACLA on this task, and, as with
Table 7.11 on the previous page, shows that NelderMead-SARSA performed similarly
with NM-SARSA but requiring a few more episodes to train.

7.4 Chapter Summary

In this chapter we have presented the results of applying the novel approaches to
action selection in continuous action-space described in chapter 6 as well as existing
approaches to continuous state- and action-space reinforcement learning problems. In
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all cases the novel approaches at least matched the performance of existing approaches,
exceeding it in the Cart-Pole and double Cart-Pole problems.

Although the adaptive-critic, CACLA and GP approaches applied here are not novel
algorithms and they have been applied to numerous RL control problems, these are
the first applications of these approaches to the problem of the full swing-up of the two
section acrobot that we are aware of. The results are also compared to results from
the literature and the results presented here compare well. Also, the GP approach,
along with NelderMead-SARSA, achieved the fastest swing-up time that we are aware
of using these parameter settings for the standard two section acrobot; however, the
GP approach is far more computationally intensive. This could be offset by calculating
the fitness of all of the new generation in parallel rather than just the two children as
was done here, but that would require far more processors as the population contained
2000 individuals. The implicit policy methods on the other hand could run faster on a
standard computer without requiring any parallelization.

There are obviously trade-offs with the approaches presented: the action selection
speed is slower when implicit policy methods are used, therefore, if very fast action
selection is required the number of iterations used for the optimization algorithm may
have to be reduced, potentially leading to worse results. But if DPS methods are
used training may take much longer, including many more trials, which is very time
consuming. Also, they cannot be updated online as implicit policy methods can be.
AC methods may provide an acceptable balance of the two if online and faster training
is required and the final policy must also be very fast to evaluate.

However, the time taken on action selection by the methods applied here was not
long, both NM-SARSA and NelderMead-SARSA took, on average, 0.00003 seconds
on the Cart-Pole problem; therefore, this approach should not be dismissed for all
problems.



Chapter 8
Conclusion

8.1 Thesis Summary

This thesis investigated the problems associated with the application of reinforcement
learning in the continuous state- and action-space investigated the use of several nu-
merical optimization methods to directly solve the optimization problem:

arg max
a

Q(s, a), ∀a ∈ A(s)

which is required for continuous action selection without learning an explicit policy
function. These included gradient descent, which is mentioned as a possible approach
in the literature [47]; Newton’s Method; Nelder Mead and Genetic Algorithms. The
best performing approaches: Newton’s Method and Nelder Mead were then compared
to a state-of-the-art continuous state- and action-space RL approach from the litera-
ture: CACLA on three continuous state- and action-space control benchmark problems
from the literature: Acrobot swing-up, Cart-Pole and double Cart-Pole, on which the
proposed methods showed improved performance. CACLA was selected as the state-
of-the-art approach to verify the performance of these novel approaches against as it
has been shown to outperform many alternative approaches on the Cart-Pole and dou-
ble Cart-Pole problems in the literature, including wire-fitting; natural actor-critic and
an evolutionary approach [55, 56]. We also produced new results of applying genetic
programming to the full, two-section Acrobot swing-up task for the first time.

The results of the genetic programming approach to the minimum time full swing-up
of the Acrobot was published in [12, 14]; and the results of applying Newton’s Method
to the action selection problem when applying implicit policy methods to the Cart-
Pole and double Cart-Pole problems compared to the CACLA method were published
in [40].

We began by introducing the essential background material in reinforcement learn-
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ing (Chapter 2); artificial neural networks in Chapter 3; and evolutionary algorithms
in Chapter 4. Then we expanded on the problems which arise from applying RL to
problems with continuous state- and action-spaces in Chapter 5, and investigated the
application of numerical optimization methods to the continuous action selection prob-
lem in Chapter 6. Finally, in Chapter 7 we empirically tested these approaches and
compared them to state-of-the-art methods on the Acrobot; Cart-Pole; and double
Cart-Pole problems, on all of which the proposed methods outperformed the state-of-
the-art methods they were compared to.

Aside from presenting these approaches to action selection in the continuous action-
space and showing empirically their performance compares favourably to existing meth-
ods, in applying existing methods to the benchmarks, we present novel results for some
existing approaches on the Acrobot problem. The most interesting of which is the
GP approach which we show to outperform existing approaches, even though the GP
results were almost matched by the implicit policy methods we propose in far less time
and with far less parameter tuning.

8.2 Discussion

The major contributions to knowledge of this thesis are the two algorithms resulting
from the application of numerical optimization methods: NM-SARSA and NelderMead-
SARSA which perform the continuous action selection far quicker than gradient de-
scent, and without requiring the discretization of the action space. Also novel results
are included for the existing methods of GP, CACLA and Adaptive-Critic on the Ac-
robot problem in order to compare the novel approaches to existing methods. Results
were also produced from the application of the CACLA method to the Cart-Pole and a
slightly more difficult version of the double Cart-Pole, where the required balance time
was significantly longer than that of the approach from the literature [55], in order to
directly compare it to the methods proposed.

The optimization methods applied in these two approaches were selected after some
preliminary experimentation on the Cart-Pole problem, where they considerably out-
performed the alternatives considered: GA and gradient ascent both in terms of testing
performance and action selection time.

The results from the Acrobot experiments showed that the proposed methods were
able to swing-up the acrobot in a faster time than those from the literature [11, 50], and
produced comparable performance with a method from the literature which allowed
much larger torque values [36]. Whilst the two actor-critic methods applied produced
similar swing-up times to existing methods from the literature, but the genetic pro-
gramming approach produced slightly faster swing-up time than the proposed methods.
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The GP approach however took by far the longest to run and required the most pa-
rameter tuning of all methods applied. However, the two IPM approaches were the
only to have any unsuccessful runs on the Acrobot problem, but it is believed that this
could be corrected with either more parameter tuning or by including a test that the
neural networks weights have not become stuck, as is applied with the Adaptive-Critic
approach.

On both the Cart-Pole and double Cart-Pole the NM-SARSA approach performed
best, on average, in terms of success rate and also required far fewer episodes to train
than the CACLA approach, with the NelderMead-SARSA approach producing slightly
worse results than NM-SARSA, but still outperforming CACLA, and even in some
cases outperforming NM-SARSA.

The proposed approaches enable the application of RL to continuous state- and
action-space problems without a separate policy function, as is used in AC methods,
and without discretizing the action-space which is applied in some other approaches.
Both methods achieved good performance on the benchmark problems they were ap-
plied to with very little parameter tuning. The action selection times were much faster
than by applying gradient ascent, which is sometimes offered as a possible approach
in the literature [47]. However, the action selection time is still slower than that of a
dedicated policy function due to the time spent solving the optimization problem, and
therefore, if the action must be selected faster than is possible with these methods it
may still be necessary to apply actor-critic methods.

8.3 Future Work

Although the methods achieved good results on the problems they were applied to
here, it is important that they are applied to other benchmarks as well. It would be
particularly interesting to observe their performance on problems with higher dimen-
sional action-spaces, for which it may be necessary to adjust the NM-SARSA approach
to use a quasi-Newton method in order to speed up the process and maintain the pos-
itive definiteness of the Hessian. However, the NelderMead-SARSA method should be
immediately applicable to higher dimensional action-spaces without any adjustments.

It would also be interesting to compare alternative optimization algorithms, such
as approaches which can take advantage of the benefits of both derivative-free and
derivative-based optimization, as well as extensions to the optimization methods utilised
here, which may further speed up action selection and increase the applicability of these
approaches to problems where action selection must be very fast.

Also, as the algorithms presented here are the basic versions without eligibility
traces or extensions and variations to the function approximation or optimization meth-



CHAPTER 8. CONCLUSION 94

ods used, such as variable learning rates [18]; adaptive activation functions [18]; alter-
native structures: additional hidden layers, bridged MLP, fully connected cascade [60],
etc.; adjusting the line-search step length [41]. Future work should investigate what
performance improvements can be made by applying such enhancements.



References

[1] James S. Albus. A new approach to manipulator control: the cerebellar model
articulation controller (cmac). Journal of Dynamic Systems, Measurement, and
Control, 97:220–227, 1975.

[2] Leemon C. Baird and Harry Klopf. Reinforcement learning with high-dimensional,
continuous actions. Technical report, Wright Laboratory, 1993.

[3] Andrew G. Barto, Richard S. Sutton, and C.W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. Systems, Man and
Cybernetics, IEEE Transactions on, 13(5):834–846, September 1983.

[4] Jonathan Baxter and Peter L. Bartlett. Direct gradient-based reinforcement learn-
ing: I. gradient estimation algorithms. Technical report, National University, 1999.

[5] Richard E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, New Jersey, 6 edition, 1972.

[6] Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee.
Natural actori–critic algorithms. Automatica, 45(11):2471–2482, 2009.

[7] Gary Boone. Efficient reinforcement learning: Model-based acrobot control. In
IEEE International Conference on Robotics and Automation, pages 229–234, 1997.

[8] Gary Boone. Minimum-time control of the acrobot. In Robotics and Automa-
tion, 1997. Proceedings., 1997 IEEE International Conference on, volume 4, pages
3281–3287, April 1997.

[9] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, New York, 2004.

[10] Lucian Buşoniu, Robert Babuška, Bart De Schutter, and Damien Ernst. Rein-
forcement Learning and Dynamic Programming Using Function Approximators.
CRC Press, Boca Raton, Florida, 2010.

95



REFERENCES 96

[11] Rémi Coulom. High-accuracy value-function approximation with neural networks.
In European Symposium on Artificial Neural Networks, 2004.

[12] Dimitris Dracopoulos, Dimitrios Effraimidis, and Barry D. Nichols. Genetic pro-
gramming as a solver to challenging reinforcement learning problems. volume 8
of Horizons in Computer Science Research, pages 145–174. Nova Publications,
Hauppauge, NY, USA, 2013.

[13] Dimitris C. Dracopoulos and Dimitrios Effraimidis. Genetic programming for
generalised helicopter hovering control. In Alberto Moraglio, Sara Silva, Krzysztof
Krawiec, Penousal Machado, and Carlos Cotta, editors, Proceedings of the 15th
European Conference on Genetic Programming, EuroGP 2012, volume 7244 of
LNCS, pages 25–36, Malaga, Spain, April 2012. Springer Verlag.

[14] Dimitris C. Dracopoulos and Barry D. Nichols. Swing up and balance control of
the acrobot solved by genetic programming. In Max Bramer and Miltos Petridis,
editors, Research and Development in Intelligent Systems XXIX, pages 229–242.
Springer London, 2012.

[15] Sam Duong, Hiroshi Kinjo, Eiho Uezato, and Tetsuhiko Yamamoto. On the contin-
uous control of the acrobot via computational intelligence. In Been-Chian Chien,
Tzung-Pei Hong, Shyi-Ming Chen, and Moonis Ali, editors, Next-Generation Ap-
plied Intelligence, volume 5579 of Lecture Notes in Computer Science, pages 231–
241. Springer Berlin / Heidelberg, 2009.

[16] Sam Chau Duong, Hiroshi Kinjo, Eiho Uezato, and Tetsuhiko Yamamoto. A
switch controller design for the acrobot using neural network and genetic algo-
rithm. In Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th
International Conference on, pages 1540–1544, December 2008.

[17] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Computing.
Springer, 2003.

[18] Laurene Fausett. Fundamentals of Neural Networks: Architectures, Algorithms
and Applications. Prentice Hall, New Jersey, 1994.

[19] Ryo Fukushima and Eiho Uezato. Swing-up control of a 3-dof acrobot using an
evolutionary approach. Artificial Life and Robotics, 14:160–163, 2009.

[20] Faustino J. Gomez and Risto Miikkulainen. Solving non-markovian control tasks
with neuroevolution. In IJCAI, volume 99, pages 1356–1361, 1999.



REFERENCES 97

[21] Ivo Grondman, Lucian Buşoniu, Gabriel A. D. Lopes, and Robert Babuška. A
survey of actor-critic reinforcement learning: Standard and natural policy gradi-
ents. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 42(6):1291–1307, 2012.

[22] Frederic Gruau, Darrell Whitley, and Larry Pyeatt. A comparison between cellular
encoding and direct encoding for genetic neural networks. In Proceedings of the
First Annual Conference on Genetic Programming, pages 81–89. MIT Press, 1996.

[23] José Antonio Martín H. and Javier de Lope. Ex<a>: An effective algorithm
for continuous actions reinforcement learning problems. In Industrial Electronics,
2009. IECON ’09. 35th Annual Conference of IEEE, pages 2063–2068, November
2009.

[24] José Antonio Martín H., Javier de Lope, and Darío Maravall. The k-nn-td rein-
forcement learning algorithm. In José Mira, José FerrÃąndez, José Álvarez, Félix
de la Paz, and F. Toledo, editors, Methods and Models in Artificial and Natural
Computation. A Homage to Professor MiraâĂŹs Scientific Legacy, volume 5601 of
Lecture Notes in Computer Science, pages 305–314. Springer Berlin / Heidelberg,
2009.

[25] Simon Haykin. Neural Networks and Learning Machines (3rd Edition). Prentice
Hall, 3 edition, November 2009.

[26] Verena Heidrich-Meisner and Christian Igel. Evolution strategies for direct pol-
icy search. In Parallel Problem Solving from Nature–PPSN X, pages 428–437.
Springer, 2008.

[27] Verena Heidrich-Meisner and Christian Igel. Neuroevolution strategies for episodic
reinforcement learning. Journal of Algorithms, 64(4):152–168, 2009.

[28] Verena Heidrich-Meisner, Martin Lauer, Christian Igel, and Martin A Riedmiller.
Reinforcement learning in a nutshell. In Proceedings of the European Symposium
on Artificial Neural Networks (ESANN), pages 277–288, 2007.

[29] Tobias Jung, Daniel Polani, and Peter Stone. Empowerment for continuous agent-
environment systems. Adaptive Behavior - Animals, Animats, Software Agents,
Robots, Adaptive Systems, 19:16–39, February 2011.

[30] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[31] Sham Kakade. A natural policy gradient. In Advances in Neural Information
Processing Systems 14. MIT Press, 2002.



REFERENCES 98

[32] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[33] Matthew R. Kretchmar and Charles W. Anderson. Comparison of cmacs and
radial basis functions for local function approximators in reinforcement learning.
In Neural Networks, 1997., International Conference on, volume 2, pages 834–837.
IEEE, 1997.

[34] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.
Convergence properties of the nelder-mead simplex method in low dimensions.
SIAM Journal of Optimization, 9:112–147, 1998.

[35] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. The
Journal of Machine Learning Research, 4:1107–1149, 2003.

[36] Xu-Zhi Lai, Jin-Hua She, Simon X. Yang, and Min Wu. Comprehensive unified
control strategy for underactuated two-link manipulators. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(2):389–398, April
2009.

[37] Sean Luke and Liviu Panait. A comparison of bloat control methods for genetic
programming. Evolutionary Computation, 14(3):309–344, 2006.

[38] John A. Nelder and Roger Mead. A simplex method for function minimization.
The computer journal, 7(4):308–313, 1965.

[39] Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben
Tse, Eric Berger, and Eric Liang. Autonomous inverted helicopter flight via rein-
forcement learning. In Experimental Robotics IX, pages 363–372. Springer, 2006.

[40] Barry D. Nichols and Dimitris C. Dracopoulos. Application of Newton’s method
to action selection in continuous state- and action-space reinforcement learning. In
Proceedings of the European Symposium on Artificial Neural Networks (ESANN),
pages 141–146, April 2014.

[41] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, August
2000.

[42] Jason Pazis and Michail G. Lagoudakis. Learning continuous-action control poli-
cies. In Adaptive Dynamic Programming and Reinforcement Learning, 2009. AD-
PRL ’09. IEEE Symposium on, pages 169–176, April 2009.

[43] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–
1190, 2008.



REFERENCES 99

[44] Riccardo Poli, William B. Langdon, Nicholas F. McPhee, and John R. Koza. A
field guide to genetic programming. Lulu. com, 2008.

[45] Warren B. Powell. Approximate Dynamic Programming: Solving the curses of
dimensionality. John Wiley & Sons, Hoboken, New Jersey, 2 edition, 2011.

[46] Martin Riedmiller, Jan Peters, and Stefan Schaal. Evaluation of policy gradient
methods and variants on the cart-pole benchmark. In Approximate Dynamic Pro-
gramming and Reinforcement Learning, 2007. ADPRL 2007. IEEE International
Symposium on, pages 254–261, April 2007.

[47] Juan C. Santamarí, Richard S. Sutton, and Ashwin Ram. Experiments with rein-
forcement learning in problems with continuous state and action spaces. Adaptive
behavior, 6(2):163–217, 1997.

[48] Jennie Si and Yu-Tsung Wang. Online learning control by association and rein-
forcement. Neural Networks, IEEE Transactions on, 12(2):264–276, March 2001.

[49] Matthijs T.J. Spaan. Partially observable markov decision processes. In Marco
Wiering and Martijn Otterlo, editors, Reinforcement Learning, volume 12 of Adap-
tation, Learning, and Optimization, pages 387–414. Springer Berlin Heidelberg,
2012.

[50] Mark W. Spong. Swing up control of the acrobot. In Robotics and Automa-
tion, 1994. Proceedings., 1994 IEEE International Conference on, volume 3, pages
2356–2361, May 1994.

[51] Mark W. Spong. The swing up control problem for the acrobot. Control Systems,
IEEE, 15(1):49–55, February 1995.

[52] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988.

[53] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, Massachusetts, 1998.

[54] Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM,
38:58–68, March 1995.

[55] Hado van Hasselt. Reinforcement learning in continuous state and action spaces. In
Marco Wiering and Martijn Otterlo, editors, Reinforcement Learning, volume 12
of Adaptation, Learning, and Optimization, pages 207–251. Springer Berlin Hei-
delberg, 2012.



REFERENCES 100

[56] Hado van Hasselt and Marco A. Wiering. Reinforcement learning in continuous
action spaces. In Approximate Dynamic Programming and Reinforcement Learn-
ing, 2007. ADPRL 2007. IEEE International Symposium on, pages 272–279, April
2007.

[57] Lex Weaver and Jonathan Baxter. Reinforcement learning from state and tem-
poral differences. Technical report, Department of Computer Science, Australian
National University, 1999.

[58] Alexis P. Wieland. Evolving neural network controllers for unstable systems. In
Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on, vol-
ume 2, pages 667–673. IEEE, 1991.

[59] Lukasz Wiklendt, Stephan Chalup, and Rick Middleton. A small spiking neural
network with lqr control applied to the acrobot. Neural Computing & Applications,
18:369–375, 2008.

[60] Bogdan M. Wilamowski. Neural network architectures and learning algorithms.
Industrial Electronics Magazine, IEEE, 3(4):56–63, December 2009.

[61] S. S. Willson, Philippe Mullhaupt, and Dominique Bonvin. Quotient method for
controlling the acrobot. In Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, pages 1770–1775, December 2009.

[62] Xin Xu, Dewen Hu, and Xicheng Lu. Kernel-based least squares policy iteration
for reinforcement learning. Neural Networks, IEEE Transactions on, 18(4):973–
992, July 2007.

[63] Junichiro Yoshimoto, Masaya Nishimura, Yoichi Tokita, and Shin Ishii. Ac-
robot control by learning the switching of multiple controllers. Artificial Life
and Robotics, 9:67–71, 2005.



List of Publications

[BDN1] Barry D. Nichols and Dimitris C. Dracopoulos. Application of Newton’s
method to action selection in continuous state- and action-space reinforce-
ment learning. In Proceedings of the European Symposium on Artificial Neural
Networks (ESANN), pages 141–146, April 2014.

[BDN2] Dimitris C. Dracopoulos and Barry D. Nichols. Swing up and balance control
of the acrobot solved by genetic programming. In Max Bramer and Mil-
tos Petridis, editors, Research and Development in Intelligent Systems XXIX,
pages 229–242. Springer London 2012.

[BDN3] Dimitris C. Dracopoulos, Dimitrios Effraimidis, and Barry D. Nichols. Ge-
netic programming as a solver to challenging reinforcement learning problems.
volume 8 of Horizons in Computer Science Research, pages 145–174. Nova
Publications, Hauppauge, NY, USA, 2013.

101


	Introduction
	Problem Description
	Aims of This Work
	Contributions
	Thesis Outline

	Reinforcement Learning
	Markov Decision Process
	State-Space
	Action-Space
	State Transition Function
	Reward Function

	Dynamic Programming
	Value Function
	Policy Iteration
	Value Iteration

	Reinforcement Learning Methods
	Temporal Difference Learning
	Actor-Critic
	Direct Policy Search

	Exploration vs Exploitation
	-Greedy
	Softmax Exploration
	Gaussian Exploration

	Eligibility Traces
	Continuous State- and Action-Space
	Continuous State-Space
	Continuous Action-Space
	Applying Eligibility Traces with Function Approximation

	Chapter Summary

	Artificial Neural Networks
	Perceptron
	Training

	Multilayer Perceptron
	Training
	Momentum

	Radial Basis Function
	Training

	CMAC
	Training

	Chapter Summary

	Evolutionary Algorithms
	Genetic Algorithms
	Representation of Solutions
	Fitness Function
	Parent Selection
	Crossover
	Mutation
	Elitism

	Genetic Programming
	Representation of Individuals
	Initialization Methods
	Parent Selection Methods
	Crossover
	Mutation
	Bloat Control
	Elitism

	Chapter Summary

	Continuous Space State-of-the-Art
	Actor-Critic
	Adaptive Critic
	CACLA

	Direct Policy Search
	Policy Gradient
	Genetic Algorithms
	Genetic Programming

	Implicit Policy Methods
	Discretization
	Gradient Based

	Other Methods
	Wire-Fitting
	k-NN

	Chapter Summary

	Implicit Policy Methods with Optimization
	Optimization Methods
	Derivative Based
	Derivative Free
	Comparison

	Relation to Other Approaches
	One-Step-Search
	Adaptive Action Modification
	Gradient

	Detailed Description
	Genetic Algorithms
	Gradient Descent
	Newton's Method
	Nelder Mead

	Preliminary Results
	Chapter Summary

	Experiments
	Acrobot
	Existing Approaches
	Details
	Method
	Results

	Cart-Pole
	Existing Approaches
	Details
	Method
	Results

	Double Cart-Pole
	Existing Approaches
	Details
	Method
	Results

	Chapter Summary

	Conclusion
	Thesis Summary
	Discussion
	Future Work


