

UNIVERSITY OF WESTMINSTER[#]

Timing Constraints in EAST-ADL and MARTE Damjan Temelkovski, Ljerka Beus-Dukic

University of Westminster

Introduction

Real-Time Embedded Systems (RTESs) are soft or hard, based on how strict their timing constraints are. Safety-critical RTESs are systems whose failure would lead to the loss of human lives or environmental disaster.

Conclusions

Timing constraints can be specified using different mechanisms in all of the state-ofthe-art modelling languages for RTESs.

TIMMO-2-USE's BBW system modelled in EAST-ADL shows how EAST-ADL (and TADL) can be used in a model-based development of an RTES. A large number of tools can be used for modelling, implementation, and timing analysis but it is difficult to use a single tool-chain.

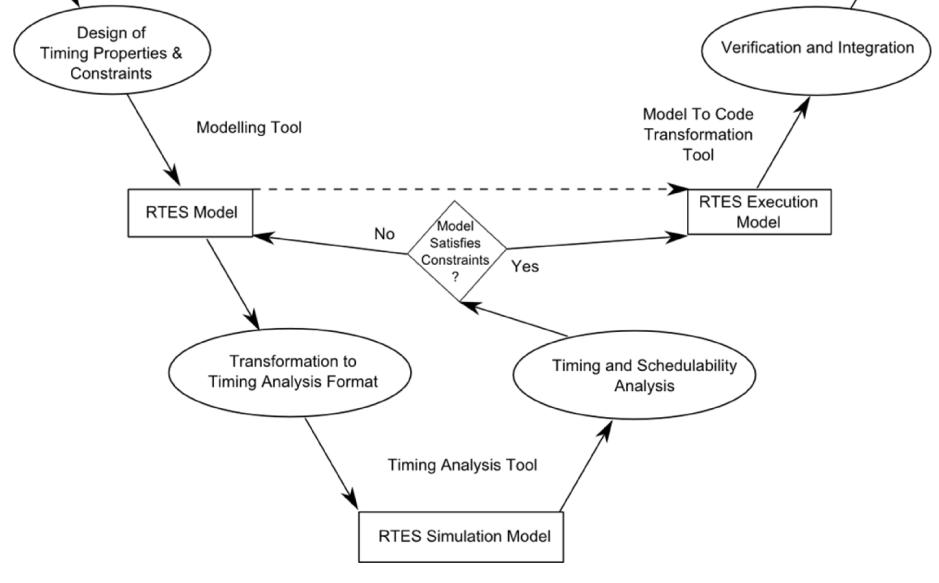


Figure 1. Model-based development Performance and timing analysis, the key features of RTES development, can be done in the early development stages using model-based engineering (Figure 1).

Objectives

1) Review of state-of-the-art modelling languages for RTESs (Table 1).

	Timing in	First release	Latest release	Developed by	Inspired by
UML	SimpleTime	UML 1.0 (1997)	UML 2.4.1 (2011)	OMG	Booch, OMT/OOD ¹
SPT	Time Domain Model	SPT 1.0 (2003)	SPT 1.1 (2005)	OMG	UML

Our BBW model shows how MARTE (using elements from SysML and OCL) can be used in a model-based development of an RTES from the automotive industry.

Table 2. shows a comparison of the different timing constraints in EAST-ADL and MARTE. Although MARTE has shortcomings compared to EAST-ADL, the possibility of using the tools:

- Acceleo for code-generation
- *Cheddar* for timing analysis

directly on a MARTE model promise a simple single tool-chain approach to modelling, implementation and timing analysis.

EAST-ADL Timing Constraint (value) MARTE Timing Constraint (value)

Reaction (upper) TimedConstraint («nfp» class property:TimeUnit)

Execution (upper) TimedConstraint (class property:Real)

Periodic (period) TimedConstraint (class property:Real)

InputSynchronization (upper) TimedConstraint («nfp» class property:TimeUnit)

OutputSynchronization (upper) TimedConstraint («nfp» class property:TimeUnit)

Table 2. Comparison of EAST-ADL and MARTE timing constraints

MARTE	Time Package	MARTE 1.0 (2009)	MARTE 1.1 (2011)	OMG	SPT
SysML	-	SysML 1.0a (2005)	SysML v1.3 (2012)	INCOSE, OMG	UML
AADL	Timing Properties	AADL v1.0 (2004)	AADL v2.1 (2012)	SAE	MetaH
AUTOSAR	Timing Extensions	AUTOSAR (2003)	AUTOSAR 4.1 (2013)	AUTOSARPartnership	-
EAST-ADL	TADL Concepts E	AST-ADL1.0 (2004)	EAST-ADL 2.1 (2010)	FP7 EAST-EEA	AUTOSAR

UML originated from the Booch method, Object-Modeling Technique (OMT), and Object-Oriented Design (OOD)

Table 1. Summary of the modelling languages that have been reviewed

2) Case study: Analysis of TIMMO-2-USE's validator of a Brake-By-Wire (BBW) system in a vehicle modelled in EAST-ADL.

EAST-ADL is a high level abstraction of AUTOSAR. Its introduces 4 abstraction levels:

Vehicle Level: Technical Feature Model Analysis Level: Functional Analysis Architecture Design Level: Functional and Hardware Design Architecture Implementation Level: AUTOSAR compliant code

The BBW model by TIMMO-2-USE includes multiform timing constraints: *The vehicle shall start to brake within 5 meters after the brake pedal is pressed.*

3) Design of a model of a BBW system in MARTE

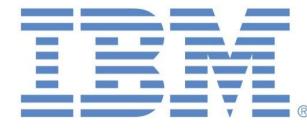
MARTE is a UML profile for RTESs. We used custom Clocks, the TimedConstraint stereotype and non-functional properties from MARTE, Requirements from SysML, and OCL (Figure 2).

References

- Temelkovski, D., Beus-Dukic, L. (2014). Model-Based Engineering in Real-Time Embedded Systems: Specifying Timing Constraints. In Madevska Bogdanova, A. and Gjorgjevikj, D. *ICT Innovations 2014, Web Proceedings, 6th ICT Innovations Conference on*. Ohrid, Macedonia. 9-12 September 2014. Skopje: ICT ACT, 2014, 230-239.
- Temelkovski, D., Beus-Dukic, L. (2014). Specifying timing requirements in domain specific languages for modeling. In Stojanović, R., Jóźwiak, L. and Jurišić, D. *Embedded Computing (MECO), 3rd Mediterranean Conference on*. Budva, Montenegro. 15-19 June 2014. IEEE, 2014, 264-267
- André, C., Mallet, C., Peraldi-Frati, M-A. (2007). A multiform time approach to real-time system modeling; application to an automotive system. In *Industrial Embedded Systems, SIES'07, International Symposium on.* Lisbon, Portugal. 4-6 July 2007. IEEE, 2007. 234-241.
- Espinoza, H., Gérard, S., Lönn, H., Kolagari, R.T. (2009). Harmonizing MARTE, EAST-ADL2, and AUTOSAR to Improve the Modelling of Automotive Systems. In STANDRTS, 21st Euromicro Conference on Real-Time Systems (ECRTS 09), Satellite workshop of. Dublin, Ireland. 30 June 2009.
- Iqbal, M. Z., Ali, S., Yue, T., Briand, L. (2012). Experiences of Applying UML/MARTE on Three Industrial Projects. In *Model Driven Engineering Languages and Systems (MODELS 2012), 15th International Conference on*. Innsbruck, Austria. 30 September-5 October 2012. LNCS 7590. Springer, 2012, 642-658
- ITEA (no date). *TIMMO-2-USE*. [online] ITEA. Available from: [Accessed 30 October 2014]">https://itea3.org/project/timmo-2-use.html>[Accessed 30 October 2014]
- EAST-ADL Association (2014) EAST-ADL Specification. [online] EAST-ADL Association. Available from: http://www.east-adl.info/Specification.html [Accessed 30 October 2014]
- OMG (2013). MARTE. [online] OMG. Available from: http://www.omgmarte.org/ [Accessed 30 October 2014]

Acknowledgements & Contact Details

This research has been supported by the EUROWEB Project funded by the Erasmus Mundus Action II programme of the European Commission.


Damjan Temelkovski damjan.temelkovski@my.westminster.ac.uk

> Ljerka Beus-Dukic l.beus-dukic@westminster.ac.uk

> > University of Westminster 115 New Cavendish Street London W1W 6UW

INCOSE UK Annual Systems Engineering Conference 2014 Academic Research Showcase Sponsored by

«timedConstraint»
{interpretation=duration, kind=required, on=[BasicClock]}
PedalPressureActuatorMode1ReactionConstraint

{{OCL}
let m:Real = self.occursAt.extension_NfpType.valueAttrib.oclAsType(Real)
in self.targetCalculator.targetController._'targetABS'.targetActuator.eventActuatorReaction.allInstances()->forAll(
 i | i <> m implies
 i.occursAt.extension_NfpType.valueAttrib.oclAsType(Real) - m < 600.0</pre>

Figure 2. A MARTE class diagram constraint