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Abstract 

Tanker shipping is the primary means for the transportation of petroleum and petroleum 
products around the world and thus plays a crucial role in the energy supply chain. However, 
the high volatility of tanker freight rates has been a major concern for market participants and 
led to the development of the tanker freight derivatives in the form of forward freight 
agreements (FFAs). The aim of this paper is to investigate the performance of these 
instruments in managing tanker freight rate risk. Using a data set for six major tanker routes 
covering the period between 2005 and 2013, we examine the effectiveness of alternative 
hedging methods, including a bivariate Markov Regime Switching GARCH model, in 
hedging tanker freight rates. The regime switching GARCH specification links the concept of 
equilibrium freight rate determination underlying different market conditions and the 
dynamics of the conditional second moments across high and low volatility regimes. Overall, 
we find evidence supporting the argument that the tanker freight market is characterized by 
different regimes. However, while the use of a regime switching model allows for a 
significant improvement in the performance of the hedge in-sample, out-of-sample results are 
mixed. 
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1. Introduction 

Tanker shipping plays a key role in the energy markets as participants in the supply 

chain of petroleum and petroleum products, including producers, traders, refineries, 

distributors, as well as tanker owners and oil shipping companies, hire and operate tanker 

ships for the purpose of transportation, logistics and distribution of these energy commodities 

around the world. It is well documented that the demand for tanker ships is predominantly a 

derived demand, determined by the international seaborne trade in petroleum and petroleum 

products (Stopford, 2009). This in turn means that any cyclicality, volatility and fluctuations 

in petroleum and petroleum products trade can affect tanker freight rates or the cost of the 

transportation of these commodities between production and consumption areas. At the same 

time, such fluctuations in freight rates can affect the revenue and cash flows of tanker 

owners, which in turn would impact profitability and future investment in the tanker industry. 

For instance, freight rate or the transportation cost for one barrel of crude oil in a Very Large 

Crude Carrier (VLCC) from the Persian Gulf to Japan was as low as $1.19/barrel in October 

2010, where the cost of transportation of the same quantity of oil on the same route was as 

much as $6.15/barrel in December 2007. Hence, given such a high volatility level in the 

tanker freight market, there has been great interest in developing the means and mechanisms 

by which market participants can reduce their inherent freight rate risk and transportation 

costs. 

A primary instrument used by tanker shipping market participants to manage their 

freight exposure risk is forward freight agreements (FFAs).1 Tanker FFA contracts were 

introduced since the early 2000’s to enable tanker market participants to hedge their freight 

risk exposure. Tanker FFA contracts are principal-to-principal agreements between a buyer 

and seller to cash settle the difference between the contract price and an appropriate 

settlement price 2, which is normally the average of the spot freight rates on the underlying 

shipping route over the calendar month, reported by the Baltic Exchange, or by other 

                                                 
1 There are other alternative freight risk management techniques available to the participants in the tanker 
industry which includes time-charter contracts, contracts of affreightment (CoAs), and freight options. While, 
period charter contracts and CoAs are considered physical form of hedging, these contracts are not very liquid 
and operationally flexible. With respect to the available derivatives, tanker freight options can also be used for 
hedging freight rates but they are not very liquid and comparatively expensive.     
2 While in the tanker market all the FFAs are settled on the basis of calendar month, in the dry bulk market some 
of the FFA contracts on certain routes (e.g. C4 and C7 of capsize) could be settled on the average of last seven 
days of the month. See Alizadeh and Nomikos (2009) for a detailed explanation of tanker FFA definitions, 
trading mechanism and settlements.  
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independent providers of market information, such as Platts.3 These contracts are used to 

hedge tanker freight rates for a specified quantity of cargo to be transported in specified 

route. For the purpose of freight risk management, an oil trader who acts as the charterer can 

set up a long hedging position by buying FFA contracts, while a tanker owner would hedge 

by simply taking the short position and sell FFA contracts. Given the recent very high 

uncertainty and tanker freight market volatility, decisions as to how to manage tanker freight 

risk and which instrument to use have become crucial to all market participants including 

shipowners and oil traders, and FFA contracts have become the most common hedging 

instrument. 

There are a number of studies in the literature on different aspects of shipping freight 

derivatives, including FFAs and freight options; however, the majority of these focus on the 

dry-bulk shipping market. For instance, Kavussanos and Visvikis (2004a, 2010) examine the 

effectiveness of dry-bulk FFAs as a risk management instrument for Panamax and Capesize 

freight rates. They report that, in general, the hedging performance of FFAs is not as good as 

that for corresponding instruments in other comparable markets. Other examples include 

Kavussanos and Visvikis (2004b) who examine the return and volatility interactions between 

spot and forward freight rates in the dry-bulk sector, and Batchelor, et al. (2005) who focus 

on the relationship between the bid-offer spread and the volatility of FFA prices, concluding 

that while the bid-offer spread increases, this indicates the rise of agents’ uncertainty and 

eventually increases the volatility of FFA prices. In a later study, Batchelor, et al. (2007) 

reveal that the use of FFA prices and spot prices, in a multivariate dynamic model, improves 

the forecasting performance of both spot and forward freight rates, Finally, Alizadeh (2013) 

examines the interaction of trading volume and the volatility of dry-bulk FFA prices. 

Kavussanos and Visvikis (2006) provide a survey of the available empirical literature on the 

freight derivative markets.  

Given that all of these studies concentrate on the dry-bulk FFAs there is, to the best of 

our knowledge, no study on the effectiveness and performance of tanker FFAs in managing 

freight rate risk. Previous studies on tanker FFAs by Koekebakker and Adland (2004) and 

Koekebakker, et al. (2007) focused more on the dynamics of the forward curve; while, 

                                                 
3 Tanker freight rate indices are produced and reported for different clean and dirty tanker route by the Baltic 
Exchange on a daily basis based on the assessment of a panel of tanker brokers. The reported rates on these 
routes are used by market participants to trade and settle tanker freight derivatives such as FFAs and Options, or 
for physical freight trading and benchmarking. See Alizadeh and Nomikos (2009) for a detailed explanation of 
tanker FFA definitions, trading mechanisms and settlement. 
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although Dinwoodie and Morris (2003) did look at hedging using FFAs, they only focus on 

the issue from a behavioural perspective. In contrast, the aim of this paper is to specifically 

examine the effectiveness of tanker FFAs in hedging tanker freight rates and by introducing a 

regime switching model that allows for the dynamics of the hedge ratio to be dependent on 

market conditions. 

This paper therefore makes several contributions to the existing literature on tanker 

freight risk management. In this regard, we examine the effectiveness of FFA contracts in 

reducing tanker freight rate risk on six major dirty and clean tanker routes using both 

dynamic and static hedge ratios. Second, we propose the implementation of the Markov 

Regime Switching Multivariate GARCH (MRS-MGARCH) model to determine the time-

varying hedge ratio and compare its effectiveness with alternative single regime models. The 

advantage of the MRS-MGARCH model is that it allows for the dynamics of the volatility 

and correlation between spot and FFA prices to change according to the state of the tanker 

market. Third, we use a relatively long sample (2005 to 2013) for tanker freight rates and 

corresponding FFAs, as well as data series from different tanker sectors, to perform the 

analysis both in- and out-of-sample to be able to compare the performance of proposed 

models during both periods thereby achieving a better picture of their true performance. 

Finally, we discuss the factors affecting the hedging performance of tanker FFAs in terms of 

managing tanker freight rates and explain why the hedging performance of tanker FFAs is not 

comparable to those observed in commodities and financial markets. 

The structure of this paper is as follows: Section 2 reviews the previous studies on 

hedging and hedge ratio determination in different markets. Section 3 outlines the 

methodology and theoretical considerations of extending the Multivariate GARCH models to 

MRS-GARCH model. Section 4 discusses the properties of the data. Section 4 presents the 

empirical results and discusses the main findings. Finally, Section 6 summarises the findings 

of the paper and concludes. 

2. Review of Literature 

The underpinning theory of hedging spot prices with futures contracts was first 

developed by Johnson (1960), Stein (1961) and Ederington (1979). In particular, Ederington 

(1979) suggests that the optimal (or minimum variance) hedge ratio using futures contracts is 

the ratio of the covariance between the changes in the spot and futures prices and the variance 
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of the changes in the futures prices. This ratio is exactly the same as the coefficient in an OLS 

regression of the changes in spot prices on the changes in futures prices, where this hedge 

ratio is commonly known as the constant or conventional hedge strategy, since it is fixed 

across time. This being said, the constant hedge ratio may not be suitable for long-term series 

analysis due to the fact that as market conditions change, the dynamics of the variance of the 

spot and futures prices, as well as the correlation between them, changes in turn, hence the 

hedge ratio should be adjusted to reflect such variations. 

In order to address this issue, the conventional hedging strategy has been challenged by 

a stream of literature proposing a dynamic hedging strategy. In particular, the GARCH model 

is widely applied to allow for the estimation of time-varying variance and covariance, and 

consequently the calculation of time-varying hedge ratios. For example, Baillie and Myers 

(1991) use a Vech-GARCH model to estimate the dynamic hedge ratio for six commodities, 

concluding that the time-varying hedge strategy outperforms the conventional constant hedge 

ratio. Kroner and Sultan (1993) and Park and Switzer (1995) compare the hedging 

effectiveness of constant hedging and dynamic hedging, estimate using a Bivariate-GARCH 

model to determine the dynamic hedge ratio for five foreign currencies and three stock 

indices, respectively. Their findings support the argument that time varying hedge strategies 

outperform the constant hedge ratio. The same methodology has also been applied in 

shipping research. Kavussanos and Nomikos (2000a, 2000b) and Kavussanos and Visvikis 

(2004a) provide evidence that the time-varying hedge ratio determined by a bivariate 

GARCH-X model is more appropriate than the constant hedge ratio in terms of hedging 

performance when using FFAs for hedging dry-bulk shipping freight rates. Interestingly, and 

in contrast to findings from the stock market, any variance reduction, when compared to 

unhedged positions, is less than 40% in the case of the shipping market, as opposed to more 

than 90% in similar research on the stock markets. 

One possible reason for the relatively poor performance is related to the market pattern 

within the shipping freight markets. It has been argued that shipping freight rates are 

determined through the interaction between the supply and demand schedules for shipping 

services. Although demand for ocean shipping is almost inelastic (Marlow and Gardner, 

1980), the supply function for sea transportation has a convex shape (Koopmans, 1939; 

Zannetos, 1966; Koekebakker, et al., 2006, amongst others). The convexity in the shape of 

the supply curve is the result of a limitation in terms of the tonnage available for providing 
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the service at high demand levels and a comparable abundance of tonnage during period of 

low demand. This is due primarily to delays involved in ordering new tonnage and scrapping 

surplus tonnage. Consequently, it appears that freight market behaviour can be split into high 

and low volatility regimes, as illustrated in Figure 1. The interaction between supply and 

demand in region A to B results in only small changes in freight rates (from FR1 to FR2) due 

to the availability of spare capacity, whereas the interaction between supply and demand in 

region B to C results in larger movements in the freight rate (from FR3 to FR4). Such 

behaviour in the tanker freight market is documented by Kavussanos and Alizadeh (2002) 

and again by Alizadeh and Nomikos (2011) for the dry-bulk market. Therefore, it might be 

the case that the dynamics of the time-varying volatility of freight rates and the correlation 

between spot and FFA prices are regime dependent, where this would indicate that a regime-

switching model should be more than capable of capturing the pattern of freight rates. 

The main approach proposed in the literature to deal with structural shifts and regime 

changes in the behaviour and relation between variables is the Markov Regime Switching 

(MRS) model (Hamilton, 1989). The MRS model has been applied in the hedging literature 

for both the financial and commodity markets. For instance, in the financial markets, 

Alizadeh and Nomikos (2004) investigate the hedging effectiveness for the FTSE 100 and 

S&P 500 indices, providing evidence that the hedging performance of a MRS hedge strategy 

outperforms other strategies. In the commodities market, Lee and Yoder (2007) apply the 

MRS-GARCH model to the corn and nickel futures markets and report higher, yet 

insignificant, variance reduction when compared to OLS and single regime GARCH hedging 

strategies; while, Alizadeh, et al. (2008) analyse three sets of energy commodities data, i.e. 

crude oil, gasoline and heating oil, and also find that the use of a MRS-MGARCH model 

improves the hedging performance. Both of these papers argue that the movement of spot and 

futures prices has different patterns and dynamics under different market conditions, or 

regimes. Lending further support to this argument is the recent study by Abouarghoub, et al. 

(2014) who use a two-state regime switching model to show that the volatility of tanker 

freight rates switches between distinctive dynamic structures. 

Given the nature of the supply-demand interaction in the tanker market and the 

possibility of the existence of distinct regimes in the freight market, discussed above, it seems 

necessary to investigate whether incorporating information on these regime changes could 

enhance the hedging performance of tanker FFAs. This paper therefore addresses this issue 



 7

by implementing a MRS-GARCH model to determine whether the MRS-MGARCH model 

provides superior hedging performance compared to standard approaches. 

3. Methodology 

As mentioned in Section 2, the consensus from previous studies is that GARCH-based 

hedge ratios tend to change as new information arrives to the market and, on average, tend to 

outperform the constant hedge ratios in terms of risk reduction. To estimate the conditional 

second moments of the spot and FFA returns, we employ a VECM model for the conditional 

means of the spot and FFA returns, with a multivariate GARCH error structure. The error 

correction part of the model is necessary because spot and FFA prices share a common 

stochastic trend, while the multivariate GARCH error structure permits the variances and the 

covariance of the price series to be time-varying. Therefore, the conditional means of the spot 

and FFA returns are specified using the following VECM: 

 
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t i t i t t
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         

X Φ Φ X Π ε   ;

ε Ω H   ;  H

      (1) 

where  t t tS F X   is the vector of spot and FFA prices, 0Φ  is a 2x1 vector of constants, 

iΦ  is a 2x2 coefficient matrix measuring the short-run adjustment of the system to changes 

in tX , Π  is a 2x1 vector measuring the long-run adjustment, 1Z t  is the error correction term 

(ECM)4 (representing the long-term relationship), and tε  is the vector of residuals which 

follows a multivariate normal distribution, with mean zero and time-varying covariance 

matrix tH . 

The existence of a long-run relationship between spot and FFA is investigated in the 

VECM in equation (1) using the trace  statistics (Johansen, 1988), which test for the rank of 

Π .5 If the  rank 1Π , then there is a single cointegrating vector and Π  can be factored as 

                                                 
4 The error correction term is Ft – St here (see section 4). The error correction term represents the long-run 
relationship between spot and FFA prices, where one would expect that spot prices would correct themselves, 
dependent on this relationship, until long-run equilibrium is achieved. 
5 The Johansen (1988) procedure provides more efficient estimates of the cointegrating vector when compared 
to the Engle and Granger (1987) two-step approach. Moreover, Johansen’s tests are shown to be fairly robust to 
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Π αβ , where α  and β  are 2x1 vectors. Using this factorization, β  represents the vector 

of cointegrating parameters and α  is the vector of error correction coefficients measuring the 

speed of convergence to the long-run steady state. The significance of incorporating the 

cointegrating relationship into the statistical modelling of the spot and futures prices is 

emphasized in studies such as Kroner and Sultan (1993), Ghosh (1993), Chou, et al. (1996) 

and Lien (1996). They point out that hedge rations and measures of hedging performance 

may change sharply when this relationship is unduly ignored when determining the model 

specification. The conditional second moments of the spot and FFA returns are specified as a 

multivariate GARCH (1,1) using the following augmented Baba, et al. (1991) (henceforth 

BEKK) representation (see Engle and Kroner, 1995): 

 

1 1 1 1 1            H A A B H B C ε ε C D Z Z Dt t t t t t       (2) 

where Ht is the covariance matrix, containing the time-varying variances of and covariance 

between the spot and FFA returns; A is a 2x2 lower triangular matrix; B, C, and D are 2x2 

diagonal matrices of the coefficients. In this representation, the conditional variances are a 

function of their own lagged values and their own lagged squared error terms, while the 

conditional covariance is a function of lagged covariance and lagged cross products of the 

error terms, t-1 . Moreover, this formula guarantees Ht to be positive definite for all t, and, in 

contrast to the constant correlation model proposed by Bollerslev (1990) (CC-GARCH), it 

allows the conditional covariance of spot and futures returns to change signs over time6. 

Once the time-varying covariance matrix is estimated, the time-varying hedge ratio at 

time t is calculated as the ratio of the covariance between spot and futures returns, and 

variance of futures returns at time t, as in equation (3): 

 
 

,t t t

t

t

Cov S F

Var F


 



          (3) 

Equation (3) is the ratio of the conditional covariance of spot and forward price changes 

and the conditional variance of futures price changes. The time-varying conditional hedge 

                                                                                                                                                        
the presence of non-normal innovations (Cheung and Lai, 1993) and heteroskedastic disturbances (Lee and Tse, 
1996). This is particularly important since spot and futures prices in this study share these characteristics (see 
the next section for a discussion on this). 
6 For a discussion of the properties of this model and alternative multivariate representations of the conditional 
covariance matrix, see Bollerslev, et al. (1994) and Engle and Kroner (1995). 
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ratio nests the conventional (OLS) hedge ratio when the conditional moments are replaced by 

their unconditional counterparts. Because the conditional moments can change as new 

information arrives in the market and the information set is updated, it is believed that the 

time-varying hedge ratios should provide superior risk reduction compared to conventional 

and static hedges. 

3.1 Markov Regime Switching GARCH Model 

Although most of the extant literature supports the argument that a GARCH hedge 

strategy can enhance the variance reduction, these benefits are market specific and vary 

across different contracts. For example, Lien, et al. (2002) finds that the conventional hedge 

ratio outperforms a conditional correlation GARCH strategy. Nonetheless, they advise that 

further research employs a MRS model to establish the hedge strategy. 

Lee and Yoder (2007) and Alizadeh, et al. (2008) propose a bivariate MRS-GARCH 

model for the determination of an optimal hedge ratio for commodity and energy prices. 

Their suggested model allows for the mean and the time-varying variance and covariance of 

spot and futures prices to switch between regimes and captures the state of the market. Under 

a bivariate MRS-GARCH model, equations (1) and (2) are extended to allow for state 

dependency of coefficients. Therefore, the conditional means of the spot and futures returns 

are specified as: 

 
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Z
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



     

  
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X Φ Φ X Π ε   ;

ε Ω H   ;  H

    (4) 

where  1,2st   for the two-state model. In the two-state MRS model, the coefficients can 

change depending on the state or regime (1 or 2). Moreover, since ,t stε  is a vector of 

Gaussian white noise process, with a time-varying state dependent covariance matrix, the 

covariance matrix also has two states, ,t stH . Consequently, the MRS-GARCH model has the 

following specification for the conditional covariance matrix: 

 

, 1 1 1 1 1t st st st st t st st t t st st t t st            H A A B H B C ε ε C D Z Z D      (5) 
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where all the matrices of the coefficients have two states and this formulation still keeps the 

advantage of being positive definite (as under the BEKK specification). The shift of regime 

depends on the conditional probability matrix in that: 

   
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     (6) 

where 12P  measures the probability of being in state 2 in the current period given that you 

were in state 1 in the previous period, while 21P  is exactly the opposite transition. In 

particular, the conditional probability is determined by one-period lagged information, i.e.: 

   12 21

0,1 1,1 1 0,2 1,2 1

1 1
  ;  

1 exp 1 expt t

P P
m m Z m m Z 

 
   

     (7) 

where the exponential function can ensure that 12 210 , 1P P  . The error correction term is 

actually the lagged basis here and also the linkage between two series (i.e. the spot and FFA 

returns). Due to the fact that the lagged basis is considered to provide an indication of the 

future direction of spot prices (Fama and French, 1987), this study includes it as a variable to 

explain the transition probability. In order to integrate the state dependent variances and 

residuals, we use Gray’s (1996) integrating method as adopted by Lee and Yoder (2007). For 

instance, the variance and residuals of spot returns can be expressed as: 

      
 
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  (8) 

where , ,S st t  is the state dependent mean equation of spot price changes, and ,st tp  is the 

unconditional regime probability that the process will be in a given state at a point in time. 

This unconditional regime probability is calculated by the following: 

    1221
1, 2,

12 21 12 21

Pr 1   ;  Pr 2t t

PP
st p st p

P P P P
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 
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Because the exponential function provides that the probability will be between 1 and 0, the 

conditional regime probability also falls in the range of 0 and 1. Similarly, the variance and 

residuals of forward returns are expressed as: 

      
 
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  (10) 

where , ,F st t  is the state dependent mean equation of forward price changes. Furthermore, the 

state dependent conditional covariance is a function of the lagged aggregated covariance and 

lagged cross products of the aggregated error terms. The unobserved state variable is 

integrated out as follows: 
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1, ,1, 1, ,2, 1, ,1, 1, ,2,

1

            1 1

SF t t S t F t SF t t S t F t SF t

t S t t S t t F t t F t

h p h p h

p p p p

   

   

     

         
             (11) 

Under the specifications of equations (8) through (10), the MRS-BEKK model becomes path-

independent because the variance/covariance matrix depends on the current regime alone, and 

not on its entire history. Consequently, the Markov property for a first-order Markov process 

is not violated and we can allow for a GARCH error structure. 

Finally, assuming that the state dependent residuals follow a multivariate normal 

distribution, with mean zero and time-varying state-dependent covariance matrix ,t stH , the 

likelihood function for the entire sample is formed as a mixture of the probability distribution 

of the state variables, where: 

 
1 1

1, 2,2 2
,1 ,1 ,1 ,1 ,2 ,2 ,1 ,2

1 1
,θ exp exp

2 2 2 2
t t

t t t t t t t t t

p p
f

 
           

   
X H ε H ε H ε H ε           

(12) 

with the log-likelihood function as: 

   
1

θ log ,θ
T

t
t

L f


  X                    (13) 

where θ  is the vector of parameters to be estimated, and ,t stε  and ,t stH  are defined in 

equations (4) and (5), respectively. The log-likelihood function  θL  can then be maximized 
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using numerical optimization methods, subject to the constraints that 1, 2, 1t tP P   and 

1, 2,0 , 1t tP P  . 

Under the MRS specifications outlined above, the second moments of the spot and 

futures returns are conditioned on the information set available at time 1t  . Therefore, the 

estimated hedge ratio at time t, given all the available information up to 1t  , can be written 

as *
1 , ,/t t SF t FF th h   , where ,SF th  and ,FF th  are calculated from the collapsing procedure 

as presented in equations (10) and (11), respectively. 

Estimating the optimal hedge ratio using the MRS-BEKK model further allows for 

structural changes in the GARCH processes and overcomes some of the limitations that 

traditional GARCH models exhibit. First, by allowing the volatility equations to switch 

across different states, we relax the assumption of constant parameters throughout the 

estimation period, thus improving the ‘fit’ of our models to the data. Second, the Markovian 

formulation improves on the autoregressive nature of GARCH-based hedge ratios and 

ensures a better estimate of the optimal hedge ratio by additionally conditioning on the 

current state of the market. Finally, by accounting for regime switching, the high volatility 

persistence imposed by single regime models decreases and the forecasting performance is 

expected to improve (see, for example, Cai, 1994, Dueker, 1997, and Lamoureux and 

Lastrapes, 1990). Consequently, one expects MRS hedge ratios estimated by the 

variance/covariance matrix to outperform the conventional hedging strategies. 

4. Description of the Data 

Our data set comprises time series of weekly spot and forward freight rates for three 

major dirty tanker routes (TD3, TD5 and TD7), corresponding to three classes of crude oil 

tankers, namely VLCC, Suezmax and Aframax7, and three major clean tanker routes (TC2, 

TC4 and TC5), served by Panamax and Handysize product tankers. The difference between 

dirty and clean tankers is the cargo transported by them, i.e. dirty tankers carry crude oil, 

while clean tankers transport petroleum products. Tanker routes are classified according to 

the type of cargo, the size of ship and the geographical trade, where the descriptions of these 

tanker routes are given in Table 1 and defined by the Baltic Exchange. These six routes are 
                                                 
7 In the tanker market, vessel sizes include VLCC (Very Large Crude Carriers) of 200,000 to 320,000 dwt, 
Suezmaxes of 120,000 to 200,000 dwt, Aframaxes of 80,000 to 120,000 dwt and some smaller size tankers such 
as Panamax of 40,000 to 80,000 dwt and Product Tankers of less than 40,000 dwt. 
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selected based on the consideration that these are the most liquid tanker routes and FFA 

prices are regularly reported. The data set is from the Baltic Exchange, and spans the period 

between 5 January 2005 and 14 August 2013, thereby providing a total of 442 weekly 

observations. Spot and forward freight rates for both dirty and clean tankers are quoted in 

Worldscale (WS)8 points and are the closing prices on Wednesday.  

Tanker FFA contracts are traded for every calendar month of the year, where 

settlements are based on the average of the spot prices (reported by the Baltic Exchange) over 

the settlement month. Until very recently, tanker FFAs were traded in WS rates; however, 

due to issues regarding uncertainty and changes in WS fats rates every year, there has been a 

move towards trading tanker FFAs on a $/mt basis. In order to examine the hedging 

effectiveness of the FFA contracts, we first convert the historical FFA rates to $/mt using the 

appropriate WS flat rates for that year,9 and then construct a continuous series of FFA prices 

for each tanker route by using the first nearest month contract and rolling over the contract to 

the next nearest month on the last trading day of the month preceding the settlement month. 

For instance, on the last business day of March, the April contract is closed and a May 

contract is opened.10 Figures 2 and 3 plot the spot, 1-month and 2-month FFA prices for the 

TD3 and TC2 tanker routes, respectively. It can be seen that the spot and FFA prices tend to 

move together for each route; however, the degree of correlation is far from perfect. In fact, 

spot prices tend to show much higher volatility than forward prices. Furthermore, the TD3 

route follows a slightly different pattern when compared to the TC2 route, due to differences 

                                                 
8 The convention in the tanker market is to negotiate and hire vessel under the voyage (spot) charter contract on 
a Worldscale (WS) basis. This is an index reproduced and reported every year by the Worldscale Association, 
where each year the Worldscale Association calculates and publishes the breakeven rates (known as Flat Rates) 
for a standard tanker (75,000 deadweight) on a round trip basis for any given tanker route based on several 
assumptions such as fuel prices, fuel consumption of the vessel, and port charges. Subsequent chartering 
negotiations and hiring of tankers in that year are based on a multiple or fraction of the published flat rate. The 
use of WS system in the tanker freight market gives the charterers flexibility in nominating of loading and 
discharging ports for a given WS rate under the charter-party. (See Alizadeh and Nomikos (2009) for detailed 
definition and use of WS in tanker chartering or visit https://www.worldscale.co.uk.) 
9 We would like to thank an anonymous referee for suggesting the use of $/mt freight rates in the analysis 
instead of WS rates. This being said, the analysis and results based on WS rates, which are not reported here but 
are available from the authors upon request, are qualitatively similar to the results based on $/mt freight rates. 
This is due to the fact that we have used nearby contracts which means that most of the sample spot and FFA 
price observations occur in the same year and it is only during the turn of the year that the spot and FFA prices 
may not represent the same flat rate. Although our results indicate that the performance of hedging tanker 
freight rates with FFA contracts in WS rates or $/mt do not significantly differ, this might be an issue when 
using long maturity FFAs for hedging. 
10 Although this method of rolling forward the FFA contracts may induce a certain degree of rolling-over jumps 
into the series, the alternative way of using a perpetual contract (as explained in Alizadeh and Nomikos, 2004) 
can, in practical terms, increase the cost of maintaining a FFA position due to high transaction costs and bid-ask 
spreads). 
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in the market fundamentals and supply-demand factors in each route. Nevertheless, both 

series demonstrate that tanker freight rates display two different patterns of movement, i.e. 

high and low volatility regimes. 

Summary statistics of logarithmic prices and returns for both spot and FFAs are 

presented in Panel A of Tables 2 and 3 for the dirty and clean tanker routes, respectively. 

According to the coefficients of excess kurtosis and Jarque-Bera statistics (Jarque and Bera, 

1980), the spot and FFA returns series appear to significantly depart from normality and to be 

leptokurtic, which is consistent with the demand and supply pattern of shipping markets. For 

instance, the mean of returns is around zero, which implies that the returns (or change in 

freight rates) are usually either zero or very large, hence the leptokurtosis also indicates that 

freight rates either stay at a certain level or move dramatically (thus exhibiting low or high 

volatility). In addition, evidence of significant serial correlation and heteroskedasticity in 

both prices and returns is also found as indicated by the Ljung and Box (1978) (Q) and Engle 

(1982) ARCH (Q2) statistics. Finally, the results from the Phillips and Perron (1988) unit root 

test provide evidence that the spot and FFA price series are first-difference stationary. 

Having identified that spot and FFA for different tanker routes are  1I  variables, 

cointegration techniques are then used to determine whether a long-run relationship between 

the spot and FFA price series exists. The lag length, q , in the VECM is chosen on the basis 

of the Schwarz Bayesian Information Criterion (SBIC) (Schwarz, 1978). The results from the 

Johansen (1988) cointegration tests, presented in Panel B of Tables 2 and 3 for the dirty and 

clean tanker routes, respectively, indicate that the joint hypothesis of 1    and 0   

cannot be rejected at the 5% level of significance, which suggests that the cointegrating 

vector is  1, 1,0 . In other words, the cointegrating relationship is in fact the basis

 1 1t tS F  . 

5. Empirical Results 

We begin our analysis by first focusing on the VECM model of the mean and 

coefficients of the error correction terms, which measure the speed adjustments to the 

equilibrium, in the single regime BEKK-GARCH and MRS-GARCH models. Following this, 

we then discuss the dynamics of the volatility and the effect of regime shifts on the mean 

specifications. 
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All models are estimated using the maximum likelihood estimation approach and 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method.11 The diagnostic tests of 

the estimated multivariate BEKK-GARCH and MRS-GARCH models for all tanker routes 

(see Tables 4 to 9) suggest that all the models are well specified and there is no sign of 

autocorrelation or ARCH effects in the standardized residuals. There are, however, some 

exceptions in that, for example, there seem to be some 8th order autocorrelation in the models 

of the TD7 route that could not be removed, even with the introduction of higher-order 

lagged dependent variables in the mean equation. Moreover, the adjusted R-squared and log-

likelihood values indicate that the MRS-GARCH models have greater explanatory power, 

when compared to BEKK-GARCH models, across all six tanker routes. 

The estimation results for the multivariate BEKK-GARCH models indicate that the 

coefficients of the error correction terms (s and f) are negative and significant in both the 

FFA and spot price equations and across all tanker classes. Meanwhile, differences in the 

magnitude of the coefficients ensure the convergence of the FFA and spot prices to the long-

run equilibrium, and the response of spot prices to restore the equilibrium is found to be 

greater that the response of forward prices. The estimated coefficients of the error correction 

terms in the spot equations (s,st) are found to be negative and significant in both regimes in 

the MRS-GARCH models for all tanker classes. This being said, the estimated coefficients of 

the error correction terms in the FFA price equations (f,st) are not always significant in our 

models, a finding which is in line with previous literature on the dry bulk market 

(Kavussanos and Nomikos, 2000b and Kavussanos and Visvikis, 2010). 

Having analysed the results for the error correction terms in the spot and FFA equations 

above, we now change focus to examine the dynamics of the volatility across our models and 

the compare the error correction terms across regimes. The comparison of the coefficients of 

the variance equations for each tanker route across the different regimes indicates that there 

are differences in terms of the dynamics of the volatility of spot and forward rates under each 

regime. In particular, the persistence of volatility (as measured by 2 2
, ,i st i stb c ) is notably 

different under different regimes. Previous studies by Hardy (2001) and Fong and See (2002) 

                                                 
11 Due to limited space, the estimated coefficients for the VECM models are not presented here, but are, of 
course, available from the authors upon request. In summary, the estimation results for the VECM models 
indicate that the coefficients of the error correction term (s and  f) are negative and significant in both the FFA 
and spot price equations and across all tanker classes. Meanwhile, differences in the magnitude of the 
coefficients ensure the convergence of the FFA and spot prices to the long-run equilibrium, and the response of 
spot prices to restore the equilibrium is found to be greater than the response of forward prices. 
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find evidence of higher persistence of volatility in high volatility regimes, where the latter 

also report that negative shocks exhibit higher persistence in high volatility regimes. Taking 

the case of the TD7 (Aframax) route as an example, regime 1 would be the high volatility 

regime and regime 2 would be the low volatility regime, given that regime 1 demonstrated 

higher persistence in volatility. Comparing the estimates of the error correction terms across 

regimes and routes, we find that three of the six tanker routes show larger coefficients (in 

absolute terms) for the error correction terms in the low volatility regime. This could be due 

to smaller deviations from the long-run equilibrium price in the low volatility regime 

compared to deviations from the long-run equilibrium in the high volatility regime. As a 

result, prices only require smaller adjustments in order to restore long-run equilibrium in the 

low volatility regime, while any adjustment towards equilibrium should be larger in the high 

volatility regime. Hence, the process of adjustment to restore the long-run equilibrium level 

would be quicker in the low volatility regime than in the high volatility regime. 

These results, given the fact that both the error correction coefficients and volatility 

coefficients demonstrate regime switching behaviour, demonstrate the importance of 

incorporating regime switching capabilities within models. Having established this, we look 

at the potential impact that this could have on the determination of hedge ratios and hedging 

performance of tanker FFAs. 

5.1 In-sample Hedging Performance 

Having estimated the BEKK-GARCH and MRS-GARCH models, we can use the 

respective conditional variance and covariances to calculate the time-varying hedge ratios 

using equation (3). Subsequently, the hedged portfolio can be constructed, where the variance 

of each portfolio is shown as follows: 

 *
t t tVar S F                      (14) 

where *
t  is the hedge ratio estimated using different hedging strategies, include the naïve 

hedge ratio  * 1t  , the constant, or OLS, hedge ratio  *
t   and the dynamic hedge ratio, 

estimated using the BEKK-GARCH and MRS-GARCH models  *
1 , 1 , 1t t SF t FF th h     . In 

order to measure the hedging effectiveness, we calculate the variance reduction of each 
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strategy as compared to the variance of an unhedged position,  tS , and then compare the 

variance reduction across different hedging strategies. 

The results of the in-sample analysis, which covers the period between 5 January 2005 

and 31 March 2010, are presented in Panel A of Tables 10 and 11, for the dirty and clean 

tanker routes, respectively. In general, it seems that the hedging effectiveness of all models 

and for all vessel types is relatively low. However, the MRS-GARCH hedge seems to 

outperform other hedging strategies based on variance reduction estimates and utility 

function comparisons across all clean and dirty tanker routes. In fact, the MRS-GARCH 

hedging strategy results in a variance reduction of 44.61%, 28.04% and 42.92% for the TD3, 

TD5 and TD7 routes, and 48.04%, 28.18% and 28.96% for the TC2, TC4 and TC5 routes, 

respectively. 

Moreover, Panel B of Figure 4 presents the estimated values of three different hedge 

ratios, i.e. the constant, BEKK-GARCH and MRS-GARCH hedge ratios over the sample 

period, for the TD3 route12. The variation in the time-varying hedge ratios, in comparison to 

the constant hedge ratio, supports the need for the frequent revision of the hedge ratios in the 

tanker market. Furthermore, when comparing the BEKK-GARCH and MRS-GARCH hedge 

ratios, the MRS-GARCH ratio is found to be able to adjust more frequently to changes in 

market conditions. For example, in Panel A of Figure 4, when the probability of the low-

volatility regime for TD3 is relatively high (e.g. October 2006), the hedge ratio should also 

decrease as spot rates become less volatile when compared to FFA prices. Finally, the MRS-

GARCH hedge ratio seems to adjust at a faster rate to changes in the market conditions when 

compared to the BEKK-GARCH hedge ratio.  

5.2 Out-of-sample Hedging Performance 

Given that hedgers are interested in obtaining an ex-ante indication of their potential 

exposure, we extend our analysis further to determine whether the MRS-GARCH model can 

improve the out-of-sample hedging performance of tanker FFAs. For this purpose, we use an 

out-of-sample period that spans from 6 April 2010 to 14 August 2013, approximately three 

and a half years, or approximately a third of our total sample size. The out-of-sample hedging 

involves the estimation of the hedge ratio for the different models for the week ahead and 

                                                 
12 For reasons of brevity, figures are only presented for the TD3 route; the figures for the other routes are 
available from the authors upon request. 



 18

adjusting the size of the futures position accordingly. To determine the MRS-GARCH hedge 

ratio, a two-step approach is used. In the first step, one period regime probabilities are 

predicted by calculating the product of the regime probabilities at time t and the transition 

probability matrix, Pt , (where the latter is outlined in equation (6) above) as: 

    11, 12,

1, 1 2, 1 1, 2,
21, 22,

t t

t t t t
t t

p p
p p p p

p p 

 
  

 
                (15) 

 In the second step, the predicted regime probabilities are used to calculate the predicted 

FFA price variance  , 1FF th   and the covariance between the spot and FFA returns  , 1SF th  , 

as illustrated in equations (10) and (11), respectively. Finally, the time-varying MRS-

GARCH hedge ratio is calculated as follows: 

, 1*
1 1

, 1

SF t
t t

FF t

h

h
 

 


                     (16) 

The variance of the hedged portfolio under different hedging strategies is estimated using 

equation (14) and the predicted hedge ratios,  *
1 1 1t t tVar S F     . 

Panel B of Tables 10 and 11 display the comparison of the out-of-sample variance 

reduction for the dirty and clean tanker routes, respectively. A comparison of the reported 

variance reductions reveals that the out-of-sample hedging effectiveness of almost all models, 

and across almost all tanker routes, is lower than their corresponding in-sample hedging 

effectiveness, with the exception of TD5. For instance, in the case of the TD3 route, the best 

in-sample variance reduction, assuming use of the MRS-GARCH hedge ratio, is 44.6%, 

whereas the same hedging strategy yields a variance reduction of 30.2% out-of-sample, and 

the highest variance reduction is 33.7% using a naïve hedge ratio. In addition, the MRS-

GARCH hedging strategy does not seem to outperform the alternative hedging strategies 

across almost all routes out-of-sample. In fact, it seems that the best out-of-sample hedging 

performance in terms of variance reduction is realized when the naïve and conventional 

hedging strategies are employed. This being said, this result is not entirely surprising as it is 

similar to the findings of Fung and Leung (1991), Byström (2003) and Kavussanos and 

Visvikis (2010), among others. Fung and Leung (1991) estimate the optimal hedge ratio in 

the foreign exchange markets, and find the hedge ratios are close to 1. Byström (2003), in 

turn, examines the hedging effectiveness of various hedging strategies for electricity futures, 
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finding that the constant hedge strategy has a slightly better hedging performance when 

compared with a time-varying strategy; while, finally, Kavussanos and Visvikis (2010), when 

investigating variance reduction in the case of Capesize freight rates, obtained a similar result 

in that the naïve hedge has the highest variance reduction out-of-sample. 

An alternate approach to measuring the hedging effectiveness of these strategies would 

be to evaluate the economic benefit of each hedged portfolio, as outlined in Kroner and 

Sultan (1993) and Lafuente and Novales (2003), where one evaluates a hedger’s utility 

function. To do this, we use the predicted hedge ratio, *
1t  , and the expected returns on cash 

and futures positions, 1tS   and 1tF  , to estimate the expected returns on the hedged 

portfolio as *
1 1 1 1t t t tx S F       . Next, assuming a risk-aversion coefficient,   0k k  , 

which relates to the return and risk on a hedged portfolio, we estimate the expected utility 

values using the mean-variance utility function as follows: 

     1 1 1t t t t tE U x E x kVar x                     (17) 

In line with previous literature,  we assume a value of 4 for the coefficient of risk-

aversion. 13  It should be noted that if we assume that the mean returns on the hedged 

portfolios are zero, then the utility function will reduce to a multiple of the variance of the 

hedged portfolio, which yield the same conclusions as the hedging effectiveness based on 

variance reduction. Similarly, as the coefficient of risk aversion increases (i.e. the hedger 

becomes more risk averse), the effect of the mean return on the portfolio becomes weaker, 

which means that the hedger’s concern is only risk reduction by minimising the variance. The 

results of the estimated utility functions for different hedging strategies are also reported in 

Tables 10 and 11, for the dirty and clean tanker routes, respectively. These results are 

generally consistent with the comparison of the variance reduction, above, in that the MRS-

GARCH strategy clearly provides the highest utility in-sample, while the results are 

somewhat mixed out-of-sample. For example, with respect to the latter, the naïve and 

constant hedge strategies outperform the dynamic strategies for TD5 and TC4 with respect to 

the variance reduction, whereas the MRS-GARCH strategy produces the best utility measure. 

                                                 
13 The assumed value of 4 the coefficient of risk aversion in our empirical analysis is in line with most empirical 
studies in the literature. For example, Poterba and Summers (1986) estimate it to be 3.5 and Chou (1988) find it 
to be 4.5 in equity markets, while Kroner and Sultan (1993) and Alizadeh, et al. (2008) use a coefficient of risk 
aversion of 4 to investigate the hedging effectiveness of exchange rates and energy futures, respectively. We 
also estimated the utility function with a lower value of coefficient of risk aversion (k = 3) for comparison, but 
the results and conclusions did not change, with the exception of the results for TD3. 
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Although the in-sample results indicate that dynamic hedge ratios, in general, and the 

MRS-GARCH model, in particular, outperform alternative hedge ratios in reducing the risk 

exposure as a result of the variation in tanker freight rates, the out-of-sample results are 

somewhat mixed. These findings are in line with other studies in the literature which use 

MRS-GARCH models for forecasting volatilities and the determination of hedge ratios in 

other commodity and financial markets (see Lee and Yoder, 2007 and Alizadeh, et al., 2008). 

A possible reason for the weaker out-of-sample hedging performance of the MRS-GARCH 

model, when compared to its in-sample performance, could be the two-stage forecasting 

process required to calculate the hedge ratio for each period. Any errors in this two-step 

process could potentially exacerbate the error in the predicted hedge ratio and consequently 

affect the hedging effectiveness. 

Following on from this, we also find that the hedging effectiveness and variance 

reductions across all tanker routes and hedging strategies are generally between 20% and 

50%, which are low when compared to hedging performances in other financial and 

commodity markets. There are three possible explanations for the poor hedging performance 

of tanker FFAs. First, tanker FFA settlements are based on the average of the spot prices over 

the settlement (maturity) month. This process could reduce the variability of the forward 

price and decrease the covariance (and the correlation) between the spot and the forward 

prices, which in turn implies higher variance of the hedged portfolio,  t tVar S F  , and 

lower hedging effectiveness 14 . In other words, using an average settlement mechanism 

reduces the effectiveness of the hedge by removing intra-month volatility and increasing the 

basis risk. This being said, there are several reasons for the market to adopt average 

settlement contracts. First, settling the FFA contract on an average spot price over a period 

reduces the effect of possible market manipulation in the settlement process, especially in a 

                                                 
14 The effect of average price settlement on hedging effectiveness is related to the reduction of the covariance 
(and correlation) of the underlying asset and the forward contract, where we would express the variance of a 
hedged portfolio with a hedge ratio of   as: 

          2
, , ,2 1 ,t t t n t t t n t t t nVar S F Var S Var F Cov S F                

Also, under the unbiasedness hypothesis, we can assume that  , ,t t n t t nF E S  , where ,t t nS   is the average of 

tS  over m periods, from t n m   to t n . It is obvious that as m increases,  ,t t nE S   (and by definition   

,t t nF  ) becomes less variable and smoother. However, lower variation in ,t t nF   leads to the reduction of the 

covariance between the spot and forward,  ,t tCov S F  , and the correlation between the spot and forward 

rates, which in turns implies higher variance of the hedged portfolio,  t tVar S F   , and lower hedging 

effectiveness. 
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market where the supply of the underlying asset (freight or tonnage) is limited. Second, in 

markets where the price of the underlying asset is reported based on assessments, or even in 

illiquid markets, such as tanker shipping markets, the use of an average price over a period of 

time can increases price accuracy and transparency. Finally, when there is uncertainty about 

the timing of the physical transaction in the future, a derivative contract with an average 

settlement price is believed to provide a better match for the hedging process. 

The second possible explanation for the poor hedging performance of tanker FFAs is 

related to the weak linkage between the spot and FFA prices. This is because the underlying 

asset (tanker freight rates) in this market is a non-storable, and there is no cash-and-carry 

arbitrage mechanism to relate or bond the spot and FFA prices. Consequently, there might be 

periods when FFA and spot prices are disconnected and correlation between the two prices 

weakens. In other words, in the absence of arbitrage possibilities, speculative trades in the 

FFA markets can drive forward prices beyond what the fundamentals of the expected 

physical market, under the equilibrium condition, predict. This point is especially important 

when using dynamic hedging strategies, which require frequent adjustments of the hedge 

ratio, as opposed to the static strategies, which involve hedging and settling at maturity. 

The final reason for the disconnection between FFA and physical tanker freight rates 

could be thin trading and low liquidity in the tanker FFA market. Roll, et al. (2007) provide 

an explanation and supporting evidence as to how liquidity enhances the efficiency of the 

futures-cash pricing system and the basis. They argue that deviations from no-arbitrage 

relations could be due to market liquidity because liquidity facilitates arbitrage; while large 

enough changes in the futures-cash basis could also trigger arbitrage trades and, in turn, affect 

liquidity. In addition, Investigating the hedging effectiveness of contracts with different 

delivery choices, Pirrong, et al. (1994) argue that having multiple delivery choices can reduce 

liquidity and increase basis risk, which in turn reduces the hedging effectiveness. Moreover, 

the low trading volume and liquidity in tanker FFA market may result in higher transaction 

costs, both in the form of wide bid-ask spreads and, potentially, in the form of an illiquidity 

premium in FFA prices (see Alizadeh, et al., 2014). This illiquidity premium, especially 

when it is time-varying, could, in turn, drive FFA prices away from fundamentals and the 

spot-forward relation. 
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6. Conclusions 

A major challenge for participants in the tanker shipping market is to deal with the 

volatility of the tanker freight rates and thereby control the fluctuations in costs for shipper or 

charterers and variations in revenues of tanker owners and operators. This study examines the 

performance of tanker FFAs in managing freight rate volatility across three dirty and three 

clean tanker routes. Based on the behaviour of demand and supply in the shipping market, 

where the supply function is convex and the demand function is almost inelastic, we 

employed a two-state regime switching VECM-GARCH model to determine the time-varying 

hedge ratio. The proposed model allows for the dynamics of the mean and variance of the 

FFA and spot tanker freight rates to evolve under different regimes. 

In-sample comparisons of the hedging effectiveness of the four competing hedging 

strategies, i.e. the naïve and constant static strategies, as well as the dynamic BEKK-GARCH 

and MRS-GARCH hedge ratio approaches, supports our proposition that the MRS-GARCH 

model is the most appropriate specification. This being said, the out-of-sample results suggest 

that the MRS-GARCH dynamic hedging strategy does not perform as expected. Moreover, 

the results reveal the relatively poor performance tanker FFAs in managing tanker freight rate 

volatilities across different classes and routes compared to the hedging effectiveness of 

futures and forward contracts in other commodity and financial markets. This is not 

surprising, however, and is consistent with previous findings in the literature (Kavussanos 

and Visvikis, 2004a, 2010). We provide three explanations for the poor performance of 

tanker FFAs for risk management. The first of these is that there is residual risk, as a result of 

intermonth volatility, which cannot be effectively hedged against. The second explanation is 

that, given that the underlying asset is non-storable, the link between the spot and FFA 

markets is not as strong as in other financial markets, thereby reducing the correlation 

between spot and FFA prices and efficiency of any hedging strategy. The final explanation is 

that the lack of liquidity in the FFA markets could result in illiquidity premia in FFA prices, 

and the deviation of FFA prices from fundaments and a reduced linkage to spot freight rates. 
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Table 1: Description of tanker routes used for analysis 

Route Cargo size Cargo Type Route Description Indicative Route 

TD3 260,000mt Crude Oil Persian Gulf to Japan Ras Tanura to Chiba 

TD5 130,000mt Crude Oil West Africa to USAC Bonny to Philadelphia 

TD7 80,000mt Crude Oil North Sea to Continent Sullom Voe to Wilhelmshaven 

TC2 37,000 mt Clean Petroleum Products 
Continent to US 

Atlantic Coast (USAC) 
Rotterdam to New York 

TC4 30,000 mt Clean Petroleum Products Singapore to Japan Singapore to Chiba 

TC5 55,000 mt Clean Petroleum Products Persian Gulf to Japan Ras Tanura to Yokohama 



 

 

  

Table 2: Summary statistics and results of unit root tests and Johansen Cointegration test for spot and near month forward prices in three dirty tanker 
routes 

Panel A : Summary statistics and results of unit root tests 
  VLCC : TD3  Suezmax: TD5  Aframax: TD7 
  Levels  Returns  Levels  Returns  Levels  Returns 
  Spot FFA  Spot FFA  Spot FFA  Spot FFA  Spot FFA  Spot FFA 
Mean  2.6341 2.6760  0.0014 3.7E-05  2.8665 2.8738  -0.0020 -0.0010  1.9058 1.9088  -0.0015 -0.0013 
S.D.  0.4315 0.3192  0.1834 0.1538  0.3266 0.2440  0.1631 0.0924  0.3138 0.2184  0.1984 0.0834 
Skewness  0.8019 0.6959  0.5245 0.3320  0.4367 0.4019  0.5713 0.3558  0.5043 0.4976  0.3728 0.0966 
Kurtosis  3.2210 3.3510  6.2987 4.0341  3.1017 3.0991  5.2718 4.4092  2.8019 2.6984  4.6153 4.1352 
JB test  29.3767 23.0959  133.797 16.8647  8.6640 7.3518  72.2112 27.8306  11.8428 12.1222  35.3448 14.8063 
Q(8)  912.162 1166.825  21.385 25.508  966.101 1369.963  23.990 21.006  712.844 1365.894  111.493 56.335 
Q2(8)  897.134 1147.479  17.830 50.078  946.224 1345.956  2.802 17.237  685.136 1331.053  11.718 30.400 
PP test  -0.4884 -0.4023  -14.342 -20.871  -0.663 -0.4276  -16.118 -18.197  -0.9783 -0.600  -15.825 -18.847 
 

Panel B : Johansen Cointegration test 

  Lags H0 H1 trace 
Normalised CV 

(1            α) 
LR test 

 = -1  α = 0 
Restricted CV 

 
VLCC : TD3  1 r = 0 r>0 29.3613 (1  -0.9887  0) 0.1656 (1    -1    0) 

   r = 1 r>1 0.1655  (0.3159)  
         

Suezmax: TD5  1 r = 0 r>0 44.2978 (1  -0.9978  0) 0.1646 (1    -1    0) 
   r =1 r>1 0.1646  (0.3150)  
         

Aframax: TD7  1 r = 0 r>0 56.0595 (1  -0.9988  0) 0.4516 (1    -1    0) 
   r = 1 r>1 0.4517  (0.4984)  

 Sample period is from 5 January 2005 to 31 March 2010, a total of 269 weekly observation. 
 S.D. is the standard deviation. JB test is the Jarque-Bera (1980) test for Normality. The test follows a 2 distribution with 2 degrees of freedom. Q(8) and Q2(8) are Ljung-Box 

(1978) tests for 8th order autocorrelation in the level and squared series, respectively. PP test is the Philips and Perron (1988) unit root tests. 1%, 5% and 10% critical values 
for this test are –3.9739, -3.4175 and –3.1308, respectively.  

 Cointegration tests are based on the Johansen (1988) procedure; the LR test is based on 1% significance level. 



 

 

Table 3:  Summary statistics and results of unit root tests and Johansen Cointegration test for spot and near month forward prices in three clean tanker routes 
Panel A : Summary statistics and results of unit root tests 

  TC2  TC4  TC5 
  Levels  Returns  Levels  Returns  Levels  Returns 
  Spot FFA  Spot FFA  Spot FFA  Spot FFA  Spot FFA  Spot FFA 
Mean  3.0582 3.0685  -0.0014 -0.0016  2.9167 2.9600  -0.0031 -0.0026  3.3824 3.4065  -0.0002 -0.0002 
S.D.  0.3010 0.2363  0.0986 0.0778  0.3595 0.2989  0.0783 0.0766  0.2988 0.2395  0.0724 0.0777 
Skewness  -0.3728 -0.4869  0.2705 0.2007  -0.3088 -0.4572  0.8890 0.3835  0.5414 0.6151  0.8467 0.5098 
Kurtosis  2.8342 2.6078  4.1721 4.8118  2.5657 2.5981  6.6766 4.4986  4.2099 4.1847  4.9452 5.2447 
JB test  6.5392 12.3534  18.6101 38.4559  6.3897 11.1830  186.2426 31.6453  29.5491 32.6902  74.2785 67.8709 
Q(8)  1157.795 1389.561  34.828 12.670  1265.044 1473.256  223.211 20.055  1244.923 1321.932  133.401 11.849 
Q2(8)  1139.882 1357.577  6.123 2.212  1205.225 1428.465  23.936 10.042  1280.860 1351.140  23.920 22.304 
PP test  -0.4932 -0.5409  -12.876 -16.966  -0.782 -0.7457  -7.998 -14.624  -0.2538 -0.218  -8.819 -16.387 
 

Panel B : Johansen Cointegration test 

  Lags H0 H1 trace 
Normalised CV 

(1            α) 
LR test 

 = -1  α = 0 
Restricted CV 

 
TC2  1 r=0 r>0 25.8380 (1  -0.9991   0) 0.1946 (1    -1    0) 

   r=1 r>1 0.1947  [0.3209]  
         

TC4  1 r=0 r>0 44.6638 (1  -0.9847  0) 0.2886 (1    -1    0) 
   r=1 r>1 0.2887  [0.4089]  
         

TC5  1 r=0 r>0 38.9250 (1  -0.9937   0) 0.1430 (1    -1    0) 
   r=1 r>1 0.1429  [0.2947]  

 Sample period is from 5 January 2005 to 31 March 2010, a total of 273 weekly observation for TC2 and TC4, and is from 28 June 2006 to 31 March 2010, a total of  
              196 weekly observation for TC5. 
 See also Table 1 

 



 

Table 4: Estimates of GARCH and MRS-GARCH models for TD3 tanker route (VLCC) 

GARCH 
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MRS-GARCH 
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 GARCH  MRS-GARCH 
 

Spot FFA 
 St = 1  St = 2 

  Spot FFA  Spot FFA 
Mean Equation 

0, / ,s f st i 
 -0.0142 -0.0076  0.0633*** 0.0094  -0.0166** 0.0025 

 (0.0096) (0.0087)  (0.0237) (0.0159)  (0.0068) (0.0070) 

1, / ,s f st i 
 0.0283 0.2286***  -0.0680 -0.0617  0.1488** -0.0306 

 (0.0674) (0.0765)  (0.1614) (0.1046)  (0.0685) (0.0639) 

2, / ,s f st i 
 -0.0691 -0.2209***  0.0710 -0.4688***  0.2883 -0.1195* 

 (0.0543) (0.0694)  (0.1981) (0.1551)  (0.0507) (0.0623) 

/ ,s f st i 
 -0.2920*** -0.1355***  -1.2597*** -0.8262***  -0.1141*** 0.0305 

 (0.0477) (0.0442)  (0.1129) (0.0766)  (0.0299) (0.0310) 
Variance Equation 

12,st ia 
 0.0129   0.0613***   0.0250***  

 (0.0107)   (0.0118)   (0.0082)  

,jj st ia 
 0.0380*** 0.0189  0.1204*** 0.0371**  0.0456*** -2.2E-07 

 (0.0127) (0.0268)  (0.0175) (0.0156)  (0.0090) (0.0258) 

,jj st ib 
 0.9342*** 0.9369***  0.5085*** 0.5734***  0.7202*** 0.9038*** 

 (0.0311) (0.0675)  (0.1294) (0.0504)  (0.0276) (0.0175) 

,jj st ic 
 0.0212 0.1972  0.4393*** 0.6365***  0.2901*** 0.2319*** 

 (0.1146) (0.1669)  (0.1356) (0.1051)  (0.0562) (0.0588) 

,jj st id 
 0.1885*** 0.1607***  0.5208*** 0.0855  -9.5E-07 -8.5E-07 

 (0.0730) (0.0256)  (0.1073) (0.0795)  (0.0735) (0.0636) 
Transition Probability Coefficients 

0,st im 
    -0.8229  1.2419*** 

    (0.5481)  (0.2290) 

1,st im 
    -1.4128  -2.8520*** 

 P12 = 0.68 P21 = 0.22  (2.1358)  (1.0652) 
V.P. 0.8732 0.9166  0.4515 0.7339  0.6028 0.8706 
LL 370.4986  410.4741 

 Spot FFA  Spot  FFA 
SBIC 323.03889 364.9151  304.3877  404.89064 
Adj R2 17.58% 8.24%  50.24%  30.41% 

Diagnostics 
Q(8) 4.140 9.317  10.767  16.301 
 [0.8443] [0.3163]  [0.2152]  [0.0383] 
Q2(8) 4.557 3.885  6.623  4.389 

 [0.8037] [0.8674]  [0.5778]  [0.8205] 
 Sample period is from 5 January 2005 to 31 March 2010, a total of 273 weekly observation. 
 j=1 or 2 indicates the elements in matrix; R-Square is the adjusted coefficient of determination. 
 Numbers in the bracket are the standard errors, numbers in squared bracket are p-values, and ***, ** and * denote 

significant under 1%, 5%, and 10% confidence level.  
 Q(8) and Q2(8) are Ljung-Box (1978) tests for 8th order autocorrelation in the level and squared residual series, 

respectively. V.P. and LL denote Volatility persistence and Log likelihood value. 
 

 



 

Table 5: Estimates of GARCH and MRS-GARCH models for TD5 tanker route (Suzemax) 
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 GARCH  MRS-GARCH 
 

Spot FFA 
 St = 1  St = 2 

  Spot FFA  Spot FFA 
Mean Equation 

0, / ,s f st i 
 -0.0063  0.0358   -0.0069  -0.0011    -0.0467*** -0.0119** 

 (0.0080)  (0.0650)   (0.0081) (0.0052)  (0.0138) (0.0048) 

1, / ,s f st i 
 0.2872*** -0.0022   0.0124  -0.0073   0.3296** -0.3939*** 

 (0.1064) (0.0047)  (0.0587) (0.0460)  (0.1627) (0.0340) 

2, / ,s f st i 
 -0.0241  -0.1292*   0.2584** -0.2176***   0.3142* 0.4996*** 

 (0.0399)  (0.0698)  (0.1138) (0.0799)  (0.1818) (0.0687) 

/ ,s f st i 
 -0.3917*** -0.1006***  -0.3681*** -0.1200***   -0.7788***  0.2424*** 

 (0.0531) (0.0327)  (0.0486) (0.0345)  (0.1008) (0.0320) 
Variance Equation 

12,st ia 
 0.0028    0.0250***   -0.0059   

 (0.0052)   (0.0060)   (0.0280)  

,jj st ia 
 0.0126  0.0137**   0.0412*** 1.2E-06  0.0055  4.4E-07 

 (0.0105) (0.0069)   (0.0061) (0.0063)  (0.0283) (0.0044) 

,jj st ib 
 0.9861*** 0.9425***  0.9586*** 0.9634***  0.7934***  -0.5186***  

 (0.0076) (0.0249)  (0.0087) (0.0142)  (0.0517) (0.1248) 

,jj st ic 
 0.0029  0.1815***  2.4E-06 1.0E-05  -0.0354 0.0776 

 (0.0369) (0.0558)   (0.0174) (0.0876)  (0.1228) (0.2690) 

,jj st id 
 0.1143*** 0.1232***  0.1188** 0.0919***  -5.4E-07 -6.5E-07 

 (0.0254) (0.0273)  (0.0531) (0.0334)  (0.0231) (0.0115) 
Transition Probability Coefficients 

0,st im 
    3.4816***  0.9028  

    (0.3717)  (0.5789) 

1,st im 
    -3.9303**  -5.2731** 

 P12 = 0.04 P21 = 0.31  (1.7325)  (2.4131) 
V.P. 0.9725 0.9212  0.9189 0.9282  0.6307 0.2750 

LL 461.1155  480.0977 
 Spot FFA  Spot  FFA 

SBIC 413.6558 455.5320  374.0113  474.5142 
R-square 22.36% 2.93%  24.59%  8.13% 

Diagnostics 
Q(8) 8.179 16.317  12.998  19.919 
 [0.4161] [0.0381]  [0.1119]  [0.0106] 
Q2(8) 4.297 5.274  7.225  7.602 

 [0.8294] [0.7280]  [0.5125]  [0.4733] 
 Sample period is from 5 January 2005 to 31 March 2010, a total of 273 weekly observation. 
 j=1 or 2 indicates the elements in matrix; R-Square is the adjusted coefficient of determination. 
 Numbers in the bracket are the standard errors, numbers in squared bracket are p-values, and ***, ** and * denote 

significant under 1%, 5%, and 10% confidence level.  
 Q(8) and Q2(8) are Ljung-Box (1978) tests for 8th order autocorrelation in the level and squared residual series, 

respectively. V.P. and LL denote Volatility persistence and Log likelihood value. 
 



 

Table 6: Estimates of GARCH and MRS-GARCH models for TD7 tanker route (Aframax) 
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 GARCH  MRS-GARCH 
 

Spot FFA 
 St = 1  St = 2 

  Spot FFA  Spot FFA 
Mean Equation 

0, / ,s f st i 
 -0.0055  0.1061***  0.0285* 0.0160**  -0.0498***  -0.0249***  

 (0.0092) (0.0311)  (0.0168) (0.0074)   (0.0078)  (0.0070)  

1, / ,s f st i 
 0.3306*** -0.0016   0.0233  -0.0268   0.1451***  0.0096  

 (0.0742) (0.0042)  (0.1192) (0.0460)  (0.0537) (0.0477) 

2, / ,s f st i 
 -0.0001 -0.1229***   0.6353  -0.1102   -0.1843  -0.1333 

 (0.0161) (0.0386)  (0.2427)  (0.0938)  (0.1273) (0.1010) 

/ ,s f st i 
 -0.4605*** -0.0960***  -0.5934*** -0.1414***   -0.3051***  -0.0628*  

 (0.0593) (0.0274)  (0.0878) (0.0338)  (0.0601) (0.0327) 
Variance Equation 

12,st ia 
 0.0043**   0.0189***   -1.4E-05  

 (0.0021)   (0.0052)    (0.1077   

,jj st ia 
 0.0350*** 0.0111***  0.1124*** 0.0194***  -4.6E-06 -5.0E-08 

 (0.0002) (0.0002)  (0.0172) (0.0067)   (0.0361) (0.0289) 

,jj st ib 
 0.9320*** 0.9476***  0.8512*** 0.9967***  0.2903*** 0.6797*** 

 (0.0010) (0.0048)  (0.0836) (0.0347)  (0.0573) (0.0493) 

,jj st ic 
 0.1657*** -0.0796**  -0.0892 -0.0207  -1.1E-06 -1.4E-06 

 (0.0065) (0.0357)  (0.3662) (0.1366)  (0.0880) (0.1156) 

,jj st id 
 0.2330*** 0.1126***  0.3767*** 0.1061***  -0.1289** 0.0138  

 (0.0027) (0.0012)  (0.0993) (0.0299)   (0.0579)  (0.0400)  
Transition Probability Coefficients 

0,st im 
    0.9555***  -0.1095 

    (0.3324)  (0.3562) 

1,st im 
    3.9887  10.1899* 

 P12 = 0.30 P21 = 0.53  (2.4584)  (6.0232) 
V.P.    0.732 0.993  0.084 0.461 
LL 472.5129  507.5813 

 Spot FFA  Spot  FFA 
SBIC 425.0532 466.9294  401.4948  501.9978 
R-square 22.35% 5.92%  34.49%  15.18% 

Diagnostics 
Q(8) 54.098 30.962  26.650  15.249 
 [0.0000] [0.0001]  [0.0008]  [0.0545] 
Q2(8) 4.754 9.555  5.267  9.430 

 [0.7834] [0.2976]  [0.7287]  [0.3073] 
 Sample period is from 5 January 2005 to 31 March 2010, a total of 273 weekly observation. 
 j=1 or 2 indicates the elements in matrix; R-Square is the adjusted coefficient of determination. 
 Numbers in the bracket are the standard errors, numbers in squared bracket are p-values, and ***, ** and * denote 

significant under 1%, 5%, and 10% confidence level.  
 Q(8) and Q2(8) are Ljung-Box (1978) tests for 8th order autocorrelation in the level and squared residual series, 

respectively. V.P. and LL denote Volatility persistence and Log likelihood value

 



 

Table 7: Estimates of GARCH and MRS-GARCH models for TC2 tanker route 
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MRS-GARCH 
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 GARCH  MRS-GARCH 
 

Spot FFA 
 St = 1  St = 2 

  Spot FFA  Spot FFA 
Mean Equation 

0, / ,s f st i 
 -0.0031  -0.0028   -0.0049 -0.0050  -0.0109***  0.0071  

 (0.0042)  (0.0036)   (0.0058)  (0.0046)   (0.0011)  (0.0044)  

1, / ,s f st i 
 0.0685 0.3441***    0.0954  -0.0804   -0.3188***  0.0738  

 (0.0609) (0.0763)  (0.0761)  (0.0608)   (0.0470)  (0.1002)  

2, / ,s f st i 
 -0.0614  -0.0278   0.3728*** 0.0243  -0.0302  -0.4810*** 

 (0.0505) (0.0676)  (0.0863)  (0.0820)   (0.0219)  (0.1353)  

/ ,s f st i 
 -0.2064*** -0.0641*  -0.2456*** -0.0734*  -0.0945***  -0.0204  

 (0.0354) (0.0366)  (0.0527)  (0.0434)   (0.0098)  (0.0358)  
Variance Equation 

12,st ia 
 0.0339***   0.0298***    -6.0E-08  

 (0.0055)   (0.0025)    (0.0069)   

,jj st ia 
 0.0705*** 0.0163**  0.0637***  0.0062  -3.0E-08 -3.0E-08 

 (0.0057) (0.0076)  (0.0058)  (0.0120)   (0.0027)  (0.0063)  

,jj st ib 
 0.3981** 0.7874***  0.7440*** 0.9009***  0.3179*** 0.6630*** 

 (0.2009) (0.0726)  (0.0809)  (0.0237)   (0.0485)  (0.0731)  

,jj st ic 
 0.1397 0.2943***  0.0151 0.1923***  0.0964 0.5153*** 

 (0.1607) (0.0716)  (0.0996)  (0.0640)   (0.0994)  (0.1242)  

,jj st id 
 0.1558  0.1517**  0.1127** 0.1174***  -8.0E-08 -3.5E-07 

 (0.0950) (0.0685)  (0.0545)  (0.0112)   (0.0130)  (0.0530)  
Transition Probability Coefficients 

0,st im 
    3.6527***  0.9105*** 

    (0.7945)  (0.3656) 

1,st im 
    -12.0957**  0.7056 

 P12 = 0.05 P21 = 0.29  (4.1394)  (2.3959) 
V.P. 0.1780 0.7066  0.5538 0.8486  0.1104 0.7051 

LL 685.4897  719.8277 
 Spot FFA  Spot  FFA 

SBIC 638.0300 679.9062  613.7412  714.2442 
R-square 18.82% -0.0829%  22.35%  2.49% 

Diagnostics 
Q(8) 8.343 8.187  9.258  5.321 
 [0.4007] [0.4154]  [0.3210]  [0.7228] 
Q2(8) 4.295 0.775  11.408  11.593 

 [0.8296] [0.9993]  [0.1796]  [0.1703] 
 Sample period is from 5 January 2005 to 31 March 2010, a total of 273 weekly observation. 
 j=1 or 2 indicates the elements in matrix; R-Square is the adjusted coefficient of determination. 
 Numbers in the bracket are the standard errors, numbers in squared bracket are p-values, and ***, ** and * 

denote significant under 1%, 5%, and 10% confidence level.  
 Q(8) and Q2(8) are Ljung-Box (1978) tests for 8th order autocorrelation in the level and squared residual 

series, respectively. V.P. and LL denote Volatility persistence and Log likelihood value 
 
 



 

Table 8: Estimates of GARCH and MRS-GARCH models for TC4 tanker route 
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 GARCH  MRS-GARCH 
 

Spot FFA 
 St = 1  St = 2 

  Spot FFA  Spot FFA 
Mean Equation 

0, / ,s f st i 
 -0.0076** -0.0040   -0.0108*** 0.0011   -0.0051  -0.0219** 

 (0.0034)  (0.0042)   (0.0023)  (0.0051)   (0.0086)  (0.0102)  

1, / ,s f st i 
 0.5567*** 0.1234**   0.4086*** 0.1937**  0.7832*** 0.3109** 

 (0.0476)  (0.0555)   (0.0374)  (0.0812)   (0.1103)  (0.1244)  

2, / ,s f st i 
 0.2250*** -0.1249*  0.2264*** -0.0107   -0.1288 -0.3090* 

 (0.0631)  (0.0720)   (0.0401)  (0.0894)   (0.1533)  (0.1811)  

/ ,s f st i 
 -0.1784*** -0.1126***  -0.1564*** -0.0966*  -0.2153** -0.0296  

 (0.0251)  (0.0395)   (0.0341)  (0.0525)   (0.0856)  (0.1003)  
Variance Equation 

12,st ia 
 0.0200***   -0.0276***   0.0395***  

 (0.0041)    (0.0046)    (0.0084)   

,jj st ia 
 0.0165*** 0.0241***  -0.0162*** -7.0E-08  0.0589*** -1.6E-07 

 (0.0051)  (0.0079)   (0.0025)  (0.0132)   (0.0104)  (0.0371)  

,jj st ib 
 0.4551** 0.8380***  0.1521  0.7181***  0.4925*** 0.8874*** 

 (0.1786)  (0.0508)   (0.0937)  (0.0633)   (0.1654)  (0.0506)  

,jj st ic 
 -0.3969*** 0.2400***  0.0046 0.4612***  0.4551*** 0.1555  

 (0.1234)  (0.0717)   (0.0647)  (0.1070)   (0.1098)  (0.0969)  

,jj st id 
 0.2849*** 0.1356***  -0.3084*** -0.1456***  -0.0545  -0.0907  

 (0.0452)  (0.0382)   (0.0307)  (0.0453)   (0.1714)  (0.1344)  
Transition Probability Coefficients 

0,st im 
    2.6275***  0.8157 

    (0.5278)  (1.0813) 

1,st im 
    7.8938**  37.7546 

 P12 = 0.12 P21 = 0.57  (3.6715)  (26.1258) 
V.P. 0.3647 0.7599  0.0232 0.7283  0.4497 0.8116 

LL 791.8084  826.7582 
 Spot FFA  Spot  FFA 

SBIC 744.3487 786.2249  720.6717  821.1747 
R-square 50.91% 6.16%  52.72%  13.46% 

Diagnostics 
Q(8) 5.996 14.405  2.470  9.764 
 [0.6477] [0.0718]  [0.9631]  [0.2820] 
Q2(8) 2.239 6.175  6.127  4.779 

 [0.9728] [0.6277]  [0.6331]  [0.7809] 
 Sample period is from 5 January 2005 to 31 March 2010, a total of 273 weekly observation. 
 j=1 or 2 indicates the elements in matrix; R-Square is the adjusted coefficient of determination. 
 Numbers in the bracket are the standard errors, numbers in squared bracket are p-values, and ***, ** and * 

denote significant under 1%, 5%, and 10% confidence level.  
 Q(8) and Q2(8) are Ljung-Box (1978) tests for 8th order autocorrelation in the level and squared residual 

series, respectively. V.P. and LL denote Volatility persistence and Log likelihood value. 
 



 

Table 9: Estimates of GARCH and MRS-GARCH models for TC5 tanker route 
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 GARCH  MRS-GARCH 
 

Spot FFA 
 St = 1  St = 2 

  Spot FFA  Spot FFA 
Mean Equation 

0, / ,s f st i 
 -0.0039  -0.0022   -0.0044 -0.0057  -0.0030 0.0251*** 

 (0.0025) (0.0050)  (0.0034)  (0.0065)   (0.0035)  (0.0076)  

1, / ,s f st i 
 0.3979*** 0.2311***  0.3814*** -0.0989  0.3310*** 0.3090** 

 (0.0547) (0.0680)  (0.0650)  (0.1088)   (0.0706)  (0.1346)  

2, / ,s f st i 
 0.0193  -0.0481   0.4156*** 0.1875**  -0.4345*** -0.9442*** 

 (0.0868) (0.0892)  (0.0702)  (0.0911)   (0.0974)  (0.1958)  

/ ,s f st i 
 -0.1815*** -0.1316**  -0.1635*** -0.0758  -0.3214*** -0.3557*** 

 (0.0370) (0.0628)  (0.0383)  (0.0701)   (0.0341)  (0.0647)  
Variance Equation 

12,st ia 
 0.0080**   0.0125***   -0.0130*  

 (0.0034)   (0.0034)    (0.0079)   

,jj st ia 
 0.0047  0.0138***  0.0095*** -4.0E-08  0.0124*** -6.0E-08 

 (0.0034) (0.0053)  (0.0033)  (0.0078)   (0.0039)  (0.0144)  

,jj st ib 
 0.9037*** 0.9306***  0.9038*** 0.9772***  0.3745*** 0.5191*** 

 (0.0315) (0.0231)  (0.0307)  (0.0171)   (0.0969)  (0.0862)  

,jj st ic 
 0.1936  -0.1697   0.3389*** 0.0498  0.0327 0.3823*** 

 (0.1211) (0.1037)  (0.0841)  (0.0793)   (0.2177)  (0.1411)  

,jj st id 
 0.1533*** 0.1829***  0.1746*** 0.2193***  -0.0383 0.1591** 

 (0.0247) (0.0447)  (0.0252)  (0.0303)   (0.0339)  (0.0695)  
Transition Probability Coefficients 

0,st im 
    2.6446***  0.7036* 

    (0.5029)   (0.3978)  

1,st im 
    -12.9283***  -2.4174 

 P12 = 0.11 P21 = 0.33  (3.2763)   (2.2774)  
 0.8542 0.8948  0.9318 0.9575  0.1413 0.4156 

LL 548.0584  571.9795 
 Spot FFA  Spot  FFA 

SBIC 503.4587 542.8114  472.2861  566.7325 
R-square 47.98% 0.0204 %  55.61%  10.27% 

Diagnostics 
Q(8) 7.717 8.315  18.144  12.555 
 [0.4615] [0.4033]  [0.0202]  [0.1281] 
Q2(8) 16.036 2.749  17.478  9.198 

 [0.0419] [0.9490]  [0.0255]  [0.3259] 
 Sample period is 28 June 2006 to 31 March 2010, a total of 196 weekly observation. 
 j=1 or 2 indicates the elements in matrix; R-Square is the adjusted coefficient of determination. 
 Numbers in the bracket are the standard errors, numbers in squared bracket are p-values, and ***, ** and * 

denote significant under 1%, 5%, and 10% confidence level.  
 Q(8) and Q2(8) are Ljung-Box (1978) tests for 8th order autocorrelation in the level and squared residual 

series, respectively. V.P. and LL denote Volatility persistence and Log likelihood value 



 

Table 10 – Hedging Effectiveness of MRS-GARCH against the Constant and Alternative Time-varying Hedge Ratios for Dirty Tanker Routes 
Panel A : In-Sample 

  TD3  TD5  TD7 

  Variance 
Variance 

Reduction 
Utility 

k=4 
 Variance 

Variance 
Reduction 

Utility 
k=4 

 Variance 
Variance 

Reduction 
Utility 

k=4 
UNHEDGED  0.03388  -0.1340  0.02639  -0.1061  0.0394  -0.1583 
NAÏVE  0.02135 36.9758% -0.0836  0.01965 25.0887% -0.0785  0.0258 34.5862% -0.1026 
CONSTANT  0.02001 40.9224% -0.0783  0.01966 25.5126% -0.0782  0.0242 38.5993% -0.0957 

BEKK-GARCH  0.01941 42.6977% -0.0784  0.01942 26.4022% -0.0781  0.0236 39.9953% -0.0951 

MRS-GARCH  0.01876 44.6126%* -0.0782*  0.01900 28.0353%* -0.0565*  0.0225 42.9239%* -0.0916* 

Panel B : Out-of-Sample 
  TD3  TD5  TD7 

  Variance 
Variance 

Reduction 
Utility 

k=4 
 Variance 

Variance 
Reduction 

Utility 
k=4 

 Variance 
Variance 
Reduction 

Utility 
k=4 

UNHEDGED  0.01068  -0.0451  0.01373  -0.0543  0.01171  -0.0466 
NAÏVE  0.00708 33.6989%* -0.0291  0.00938 31.6698%* -0.0365  0.00861 26.4747% -0.0348 
CONSTANT  0.00711 33.4265% -0.0296  0.00954 30.5627% -0.0371  0.00809 30.9286% -0.0329 
BEKK-GARCH  0.00724 32.1846% -0.0289*  0.00964 29.8000% -0.0365  0.00774 33.9093%* -0.0314* 
MRS-GARCH  0.00745 30.2262% -0.0305  0.00944 31.2401% -0.0359*  0.00824 29.6161% -0.0327 

 In-sample period is from 5 January 2005 to 31 March 2010, a total of 269 weekly observations. 
 Out-sample period is from 6 April 2010 to 14 August 2013, a total of 173 weekly observations. 

 An asterisk (*) indicates the model that provides the greatest variance reduction. 
 k is the coefficient of risk aversion. 

 

 

  



 

Table 11 – Hedging Effectiveness of MRS-GARCH against the Constant and Alternative Time-varying Hedge Ratios for Clean Tanker Routes 
Panel A : In-Sample 

  TD3  TD5  TD7 

  Variance 
Variance 

Reduction 
Utility 

k=4 
 Variance 

Variance 
Reduction 

Utility 
k=4 

 Variance 
Variance 

Reduction 
Utility 

k=4 
UNHEDGED  0.00978  -0.0407  0.00614  -0.0272  0.00632  -0.0268 
NAÏVE  0.00563 42.4148% -0.0225  0.00565 7.9547% -0.0234  0.00652 -3.2646% -0.0257 
CONSTANT  0.00547 44.0131% -0.0222  0.00443 27.8928% -0.0194  0.00454 28.1614% -0.0188 
BEKK-GARCH  0.00529 45.8828% -0.0211  0.00465 24.2307% -0.0213  0.00452 28.4331% -0.0193 
MRS-GARCH  0.00508 48.0384%* -0.0208*  0.00437 28.7835%* -0.0185*  0.00449 28.9605%* -0.0182* 

Panel B : Out-of-Sample 
  TD3  TD5  TD7 

  Variance 
Variance 

Reduction 
Utility 

k=4 
 Variance 

Variance 
Reduction 

Utility 
k=4 

 Variance 
Variance 
Reduction 

Utility 
k=4 

UNHEDGED  0.00996  -0.0396  0.00134  -0.0037  0.00281  -0.0104 
NAÏVE  0.00569 42.8487% -0.0231*  0.00130 3.3884% -0.0050  0.00274 2.6780% -0.0115 
CONSTANT  0.00577 42.0706% -0.0234  0.00112 16.1708%* -0.0036  0.00226 19.7361% -0.0088* 
BEKK-GARCH  0.00567 43.0716%* -0.0234  0.00113 15.5241% -0.0043  0.00229 18.7064% -0.0090 
MRS-GARCH  0.00593 40.4348% -0.0241  0.00113 15.4987% -0.0034*  0.00223 20.8373%* -0.0097 

 In-sample period for TC2 and TC4 is from 5 January 2005 to 31 March 2010, a total of 269 weekly observations. 
 In-sample period for TC5 is from 28 June 2006 to 31 March 2010, a total of 196 weekly observations. 
 Out-sample period is from 6 April 2010 to 14 August 2013, a total of 173 weekly observations. 
 An asterisk (*) indicates the model that provides the greatest hedge performance. 
 k is the coefficient of risk aversion. 
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Figure 1: Interaction between supply and demand for tanker shipping services under 
different market conditions 
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Figure 2 : spot, 1-month and 2month freight rates of TD3 
 

 

 
 

 

 

Figure 3 : spot, 1-month and 2month freight rates of TC2 
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Figure 4: In-sample Regime Probability and Hedge Ratios for TD3 

Panel A: Smooth Regime Probabilities for TD3  

 

 

Panel B: Estimated hedge ratios for TD3 
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