
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Validation of a fast method for quantification of intra-abdominal 

and subcutaneous adipose tissue for large-scale human studies

Borga M, Thomas EL, Romu T, Rosander J, Fitzpatrick J, 

Leinhard OD, Bell JD

 

This is the accepted version of the following article: Borga M, Thomas EL, Romu T, 

Rosander J, Fitzpatrick J, Leinhard OD, Bell JD (2015) Validation of a fast method for 

quantification of intra-abdominal and subcutaneous adipose tissue for large-scale human 

studies NMR in Biomedicine 28 (12) 1747-1753 1099-1492 

Which has been published in final form at https://dx.doi.org/10.1002/nbm.3432

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161108785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1002/nbm.3432
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


Validation of a Fast Method for Quantification of Intra-abdominal and 

Subcutaneous Adipose Tissue for Large Scale Human Studies

Running Title: Quantification of IAAT and ASAT

Magnus Borga1,2,5, E Louise Thomas3, Thobias Romu1,2, Johannes Rosander5, Julie 

Fitzpatrick3, Olof Dahlqvist Leinhard3,4,5, Jimmy D Bell3

1. Department of Biomedical Engineering, Linköping University, Sweden

2. Centre for Medical Image Science and Visualization (CMIV), Linköping University, 

Sweden 

3. Department of Life Sciences Faculty of Science and Technology University of 

Westminster, London, United Kingdom

4. Department of Medical and Health Sciences, Linköping University, Sweden

5. Advanced MR Analytics AB, Badhusgatan 5, SE-582 22 Linköping, Sweden

Author of Correspondence

Professor Jimmy D Bell, Department of Life Sciences, Faculty of Science and 

Technology, University of Westminster, 115 New Cavendish Street, London W1W 

6UW

Tel: 020 3506 4608

Email: J.Bell@westminster.ac.uk

Word Count – 3,543

Keywords: adipose tissue, fat quantitation, obesity, MRI, Dixon, abdominal fat

Abbreviations: IAAT: intra-abdominal-adipose tissue; ASAT: abdominal 

subcutaneous adipose; TF: trunk-fat; AMRA: Advance MR Analytics;   CoV: 

coefficient of variation

mailto:J.Bell@westminster.ac.uk




Graphical abstract

In this study we tested the value of using the semi-automated fat-muscle-quantitation system 

(AMRATM Profiler) in the analysis of MR images for population studies. The results show 

extremely high agreement with the current “gold-standard” method across a range of BMI, 

with the AMRATM Profiler technique taking up to 10-fold less time compared to its 

counterpart. The speed and robustness of this method makes it an ideal tool for small and 

large-scale human phenotypic studies 



Abstract summary

Central obesity is the hallmark of a number of non-inheritable disorders. The advent 

of imaging techniques such as magnetic resonance imaging (MRI) has allowed for a 

fast and accurate assessment of body fat content and distribution. However, image 

analysis continues to be one of the major obstacles for the use of MRI in large scale 

studies. In this study we assess the validity of the recently proposed fat-muscle-

quantitation-system (AMRATM Profiler) for the quantification of intra-abdominal 

adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from 

abdominal MR images.  Abdominal MR images were acquired from 23 volunteers 

with a broad range of BMIs and analysed using SliceOmatic, the current gold-

standard, and the AMRATM Profiler based on a non-rigid image registration of a 

library of segmented atlases. The results show that there was a highly significant 

correlation between the fat volumes generated by both analysis methods, (Pearson 

correlation r = 0.97 p<0.001), with the AMRATM Profiler analysis being significantly 

faster (~3 mins) than the conventional SliceOmatic approach (~40 mins). There was 

also excellent agreement between the methods for the quantification of IAAT (AMRA 

4.73 ± 1.99 vs SliceOmatic 4.73 ± 1.75 litres, p=0.97). For the AMRATM Profiler 

analysis, the intra-observer coefficient of variation was 1.6 % for IAAT and 1.1 % for 

ASAT, the inter-observer coefficient of variation was 1.4 % for IAAT and 1.2 % for 

ASAT, the intra-observer correlation was 0.998 for IAAT and 0.999 for ASAT, and the 

inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate 

that precise and accurate measures of body fat content and distribution can be 

obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility 

of large-scale human phenotypic studies.



Introduction

Today, it is generally recognized that central obesity is a key risk factor for the 

development of a number of metabolic disorders (1, 2). It has also been shown that 

indirect measures such as body-mass index (BMI), waist circumference, and 

bioimpedance are poor predictors of regional body fat distribution on an individual 

level (3-5). The advent of tomographic imaging modalities such as computer-

tomography (CT) and magnetic resonance imaging (MRI) has greatly facilitated our 

ability to directly measure body fat content and distribution in an accurate and 

reproducible manner (6, 7). Currently, it is possible to obtain a whole body MRI scan 

of an individual, in less than 5 minutes, allowing total and regional fat depots to be 

measured in detail. However, scan costs and image analysis are still substantial 

obstacles for large population studies. Indeed, MRI measures of whole-body regional 

body fat distribution have up to now been limited to research studies in relatively 

small cohorts of subjects, for example 80 subjects in (7) and less than 500 in (5). In 

studies with larger cohorts such as the Dallas Heart Study (8), the Framingham Heart 

Study (9) and the Multi-Ethnic Study of Atherosclerosis (MESA) (10), very limited 

abdominal MR/CT imaging was carried out, with some studies using single-slice to 

define abdominal adiposity. This clearly puts considerable limitations on the total 

information available to researchers (11). Furthermore, although cost per scan has 

reduced considerably in recent years, the time required to analyse these datasets 

continues to be a major limiting factor, mainly due to the lack of fast, reliable and 

reproducible methodologies (12).  



In the last few years, an increasing number of genome-wide association studies 

(GWAS), using ever-larger cohorts, have been carried out in order to identify 

common genetic variants associated with complex diseases including obesity, 

diabetes, heart disease and cancer (13). In many of these studies, phenotyping of 

subjects was limited to either weight or BMI, with some using also waist-

circumference.  More recently a number of large population studies have been 

initiated where more in-depth phenotyping is sought, including the use of MRI and 

Dual-energy X-ray absorptiometry (DXA) methodologies, for the purpose of 

measuring body-fat distribution. One example is the UK Biobank, where up to 

100,000 individuals will be scanned using MRI, while in the German Cohort Biobank 

it is envisaged that 30,000 volunteers will be scanned, many of whom will be followed 

longitudinally.  Besides the obvious demand for efficient scanning protocols, the 

resulting millions of images need to be analysed in a fast and reproducible manner 

and at a minimum cost. Although existing manual and semi-automated systems can 

be used to analyse images from small cohorts (<100 subjects), they are not feasible 

for use in large population studies.

The aim of this study is to evaluate the performance of a rapid semi-automated tool 

for quantification of body fat, including intra-abdominal-adipose tissue (IAAT) and 

abdominal subcutaneous adipose tissue (ASAT) volumes from MR images. Recently, 

a number of such methods have been proposed (14-20). Most of these methods (14-

19) rely on binary classification of adipose tissue, making them sensitive to partial 

volume effects (21), a problem that increases with lower spatial resolution. In contrast 

to these methods, a new method has been proposed, AMRATM Profiler, based on 

quantitative fat imaging where the entire fat signal within a certain compartment is 

taken into account (22,23). In addition to reducing the sensitivity to partial volume 



effects, this makes the method less sensitive to segmentation errors. Also in (19), a 

similar approach was used where fat fraction was integrated within the segmented 

regions. In Würslin et al. (20) a fuzzy segmentation of T1-weighted spin-echo images 

was used to alleviate the problem of partial volume effects. In both these 

approaches, however, the segmentation was based on a 2-dimensional slice-by-slice 

analysis. The method used in this study is based on a true 3-dimensional analysis 

using atlas-based segmentation.

The qualities of the proposed method make it an ideal tool for potential large-scale 

human studies. However, this tool has not been fully validated against the current 

gold-standard technique for fat quantitation of MR images. Here, the AMRATM Profiler 

is assessed against the tool of choice for fat quantitation, the commercially available 

SliceOmatic. The results show excellent agreement between the methods across a 

range of BMI, with analysis using the AMRATM Profiler taking up to 10 times less 

compared with SliceOmatic. The speed and robustness of the AMRATM Profiler 

makes it the ideal tool for small and large-scale human phenotypic studies. 



Materials and Methods

Image Acquisition

Written, informed consent was obtained from all volunteers. Ethical permission for 

this study was obtained from the research ethics committee of Hammersmith and 

Queen Charlotte’s and Chelsea Research Ethics Committee Hospital, London (Rec: 

07Q04011/19). In total, 23 volunteers (12 male, 11 female) were recruited via 

advertisements in newspapers, websites, and academic newsletters, inviting male 

and female volunteers from the general public. No age constraints were placed on 

recruitment in order to generate cross-sectional data. Average BMI 31.7 ± 5.1 kg/m2 

(range 22-46 kg/m2); age 36-66 years. Each subject was scanned with two different 

protocols on a 1.5T multinuclear scanner (Achieva, Philips Medical Systems, Best, 

The Netherlands). 

Scanning Protocol

Two different MRI acquisition protocol were used in this study in order to maximise 

the capabilities of each analysis tool.

Established T1-weighted Acquisition Protocol for SliceOmatic: The first scan 

was obtained using a rapid T1-weighted protocol as previously described (6). Briefly, 

a whole-body axial T1-weighted spin echo sequence was acquired using a body coil 

and no respiratory gating (typical parameters: repetition time 560 ms, echo time 18 

ms, slice thickness 10mm, inter-slice gap 10mm, flip angle 90°, number of excitations 

1). Images were acquired as nine equal stacks of twelve slices at the isocentre of the 

magnet with the subjects in prone position. 



3D Dixon acquisition for AMRATM Profiler: The second scan was carried out using 

a phase-sensitive multi-point 3D Dixon acquisition (24) with coverage from the neck 

down to the knees using the integrated quadrature body coil. In this scan, the 

subjects were in a supine position. 7 image stacks were acquired, of which stacks 

number 2-5, covering the abdomen, were acquired during breath hold (17 s). 

Parameters for the image acquisition were as follows: repetition time 5.86 ms (8.16 

ms for stacks 3-4 covering the liver), echo time n x 1,15 ms, n = 1-4 (n = 1-6 for  

stacks 3-4), matrix size, 172 x 158, slice thickness 4.2 mm (5 mm for stack 7 

covering lower part of thigh) and flip angle 13°. 

Given that each acquisition protocol resulted in slightly different anatomical coverage, 

for a robust comparison therefore it was decided to extract the same area from both 

datasets, using the previously published definition of the abdominal area: ‘from the 

image containing the femoral heads, to the slice containing the top of the liver/bottom 

of the lungs’ (6).  

Image Analysis

Reference Method (SliceOmatic)

The T1-weighted images were analysed as previously described using the semi-

automated software SliceOmatic (Tomovision, Montreal, Quebec, Canada) which has 

become the leading tool for analysis of body-fat in clinical and pre-clinical research 

(8). Briefly, total and regional volumes were recorded in litres (l); comprising; 

abdominal-subcutaneous adipose tissue (ASAT) and intra-abdominal adipose tissue 

(IAAT) (25). As previously stated the abdominal region was defined as the image 

slices from the slice containing the femoral heads, to the slice containing the top of 

the liver/bottom of the lungs (6); therefore the measurement of IAAT contains a 



mixture of visceral, perirenal, and retroperitoneal adipose tissue. In order to gauge 

abdominal adiposity as a whole, “trunk” fat (TF) was derived from the sum of IAAT 

and ASAT: TF = IAAT + ASAT.

The total time for the abdominal segmentation was approximately 40-60 minutes per 

dataset. The SliceOmatic analysis of the T1 weighted images was performed by an 

independent observer (Vardis Group, London, UK).

AMRATM Profiler Image Analysis

Image analysis was performed using AMRATM Profiler (Advanced MR Analytics AB, 

Linköping, Sweden) as previously described (22,23),  with some modifications.

Water and fat images were calculated using a two-step process. First, an initial set of 

water and fat images was calculated using the first set of opposite phase (TE = 2.3 

ms) and in-phase (TE = 4.6 ms) images, using the inverse gradient method (26,27). 

In order to correct for R2*-effects and the fat signal spectrum, a final set of water-fat 

images were then calculated using all echoes with an in-house implementation of 

IDEAL reconstruction (28,29).

To obtain quantitative fat images, the water and fat image pairs were calibrated using 

the method described in 20,30. In summary, a quantitative fat image is computed 

based on pure adipose tissue as an internal signal reference. Hence, the signal 

intensity level in a given fat image voxel is related to the intensity in pure adipose 

tissue, which is given the value 1, corresponding to 100% adipose tissue. 



The IAAT and ASAT compartments were automatically segmented using non-rigid 

image registration of a library of manually segmented atlases as described in (22). A 

library of 10 atlases representing a range of body shapes with manually segmented 

labels for IAAT, arms, and internal non-visceral adipose tissue was used. A 

combination of atlas-based segmentation and morphological operations was used to 

remove the arms. In order to limit variability due to breathing, AMRATM Profiler uses 

top of femoral head and top of vertebrae T9, as lower and upper limits of the 

abdominal region in the segmentation of ASAT.

In order to further improve the segmentation performance for a larger variation of 

body shapes, the result from the atlas-based registrations was interpreted as a 

probability map (31) for each fat compartment, where 1 means that all atlases agree 

on the classification of adipose tissue and 0 means that no atlas agrees. The final 

definition of each fat compartment was obtained by applying a threshold value to the 

probability map of each compartment label. 

A quick visual inspection of the segmentation of each compartment was performed. 

In this step, the operator can observe the automated segmentation suggested by the 

computer and, if necessary, locally adjust the default threshold of the probability map 

in order to interactively change the final segmentation. To assess inter- and intra-

operator variability, the manual interaction was performed three times by three 

different operators. All operators were employees at AMRA and trained to perform 

this task.

To enable a direct comparison to the conventional SliceOmatic analysis, the volumes 

were manually cropped at approximately the same levels as the uppermost and 

lowest slices used to define the abdominal region in the SliceOmatic analysis. 



Finally, the calibrated fat signal was integrated within each segmented compartment. 

A scaling with the voxel volume then gave the total volume of adipose tissue within 

each compartment.

Statistical analysis

All data are presented as means ± SD. Statistical analysis was performed in 

Microsoft Excel 2011 (v. 14.2.4) and SPSS (v. 22) for the inter- and intra-observer 

variability ICC. The Shapiro-Wilk test was performed to test normal distribution of the 

difference between the two methods. Agreement between techniques was tested 

with Bland and Altman’s method. Significance of the difference was determined by a 

two-tailed paired Student’s t-test. The inter- and intra-observer variability were 

assessed using the coefficient of variation (CoV) and the intra-class correlation 

coefficient (ICC) using a Two-way mixed, absolute agreement model and single 

measures. Inter-observer CoV was computed for each observer as the quotient 

between the standard deviation of the three observations and the mean observation 

and then averaged over all 23 subjects. The intra-observer CoV was computed as 

the standard deviation of the three observers mean observations divided by the total 

mean and then averaged over all 23 subjects. The intra-observer ICC was computed 

for each operator separately. The inter-observer ICC was computed between the 

mean values of each operator.



Results

Typical MR images and their respective image analysis results from one of the 

volunteers can be seen in Figure 1. Quantitative measurements of IAAT, ASAT and 

total trunk fat were extracted from such images, using the standard SliceOmatic and 

the AMRATM Profiler (Table 1).  On average it took over 40 minutes for the abdominal 

region from the whole body dataset to be fully analysed by SliceOmatic, 

necessitating continuous manual input from an expert operator. The AMRATM Profiler 

required less than three minutes of manual intervention.  The automated intensity 

inhomogeneity correction and calibration of the fat image volume took approximately 

10 minutes and the atlas-based segmentation took approximately 7 minutes per atlas 

on a standard PC.

The Shapiro-Wilk test showed no significant deviation from a normal distribution for 

the differences in IAAT, ASAT and trunk fat measurements (p = 0.077, p = 0.147 and 

p = 0.159 respectively). There was no significant difference in the amount of IAAT 

measured using AMRATM Profiler compared with the conventional SliceOmatic 

analysis (AMRATM Profiler 4.73 ± 1.99 vs SliceOmatic 4.73 ± 1.75 litres, p=0.97). The 

difference in quantification of ASAT was 10.39 ± 5.38 (AMRATM Profiler) vs 9.78 ± 

5.36 litres (SliceOmatic), p < 0.001 and for trunk fat 15.12 ± 5.74 (AMRATM Profiler ) 

vs 14.50 ± 5.50 litres (SliceOmatic), p = 0.005.

Excellent agreement between the two methods was observed for all fat depots 

(Figure 2). For IAAT the 95% limits of agreement were -1.06 – 1.07 (Figure 2a). 

Similar findings were observed with ASAT, where the 95% limits of agreement were -

0.36 - 1.60 (Figure 2b). For trunk fat, the linear regression coefficient was 1.03 with 



an offset of 0.19 litres and the 95% limits of agreements were -1.26 – 2.50 litres 

(Figure 2c). However, on average the AMRA rapid semi-automated system volume 

estimates of ASAT and trunk fat were numerically larger, though not significantly, 

than the SliceOmatic analysis (6.3% for ASAT and 4.3% for trunk fat). The 

measurement of IAAT was very similar between the two methods (0.1% for IAAT).  A 

linear regression analysis of the Bland-Altman plots showed a significant linear 

regression coefficient of 0.134 (p = 0.029) for IAAT. For ASAT and trunk fat, there 

was no significant linear regression (p = 0.834 and p = 0.248 respectively). Neither of 

the errors in IAAT or ASAT showed any significant correlation to the amount of trunk 

fat (p = 0.248 and p = 0.335 respectively).

The intra-observer CoV was 0.9 %, 1.5 %, and 2.4 % for operators 1-3 respectively 

(average 1.6 %) for IAAT and 0.6 %, 1.1 % and 1.6 % respectively (average 1.1 %) 

for ASAT. The intra-observer ICC was 1.000, 0.999, and 0.996 for operators 1-3 

respectively (average 0.998) for IAAT and 1.000, 0.999, and 0.998 for operators 1-3 

respectively (average 0.999) for ASAT. The inter-observer CoV was 1.4 %  for  IAAT 

and 1.2 % for ASAT. The inter-observer ICC was 0.999 for both IAAT and ASAT.



Discussion

Rapid scanning protocols as well as automated image analysis are essential in large 

population studies where in vivo imaging modalities are becoming the norm. This 

study shows that quantification of central obesity, including IAAT (“visceral fat”) and 

ASAT can be done using a rapid semi-automated quantification method of MR 

images acquired with a very rapid multi-point Dixon protocol. Furthermore, the 

correlation to the current gold-standard semi-automated segmentation program 

(SliceOmatic) was extremely high for all fat depots. Also the agreement between the 

two methods of quantification was extremely high.

The design of the study was such that not only differences in analysis method were a 

factor, but also the MRI acquisition protocol. Whilst it might seem counter-intuitive to 

both acquire the data using different MRI sequences (T1 vs 3D-Dixon) with the 

patient in a different position (Prone vs supine); it was decided that a true test of the 

standard vs the AMRATM Profiler, must ensure that the optimal and validated protocol 

should be used in each instance, so as to minimise potential bias for any given 

method. Given the variation in acquisition and analysis, it is perhaps more impressive 

that the agreement in measurement particular of IAAT is so high. Indeed, the strong 

linear correlation and excellent agreement between the SliceOmatic and AMRATM 

Profiler results indicates that the latter can be reliably used for quantification of IAAT, 

ASAT and total trunk fat. Moreover, given that the standard segmentation technique 

takes > 40 minutes per subject for a trained operator, making it unfeasible for large 

population studies, the short analysis time of the AMRATM Profiler, less than three 

minutes per subject, opens a realistic possibility for the analysis of MRI data sets 



from large cohort studies. The computation time for the automated processing, of 

course, depends on implementation and hardware. Parallel computing e.g. using a 

GPU implementation or multi-core CPU could of course reduce the current 

computation time.

The linear regression coefficient was close to one for both compartments, though the 

AMRATM Profiler volume estimates were numerically larger for ASAT, though not 

significantly, than the SliceOmatic analysis. The differences between techniques 

were independent of the BMI and/or the total body fat content of the volunteers. 

Therefore it is possible that the methods of defining which slices from the whole body 

dataset to equate to the abdominal compartment generally used (the top of the liver 

to top of femoral head) could account for this difference rather than a difference 

between the analysis methods per se. There was, however, a positive linear 

correlation between the differences in IAAT measures and the IAAT volume, 

indicating that for subjects with more IAAT, the AMRATM Profiler tends to give smaller 

IAAT estimates than the reference method. The different acquisition approaches 

necessitated identifying the selecting matching top and bottom slices from an axial 

acquisition with relatively thick slices and inter-slice gaps and from a 3D dataset. A 

small mismatch particularly in the lower slices containing the femoral heads and 

could have a significant impact of the amount of subcutaneous adipose tissue 

included (but not internal adipose tissue), since this covers the area where 

anatomically a small change in position can result in a substantial difference in 

subcutaneous fat content.



A limitation with the AMRATM Profiler is that it requires fat-water separated or 

complex-valued Dixon images, and can therefore not be used for analysing already 

existing data acquired with, for example, a more traditional T1-weighted protocol. 

However, the proposed rapid Dixon protocol has several advantages compared to 

the more traditional T1-weigthed protocol used as reference in this study. First of all, 

the close to isotropic image resolution, in combination with the breath-hold technique, 

gives a complete three-dimensional data volume rather than a stack of more or less 

independent two-dimensional image slices. This significantly simplifies the use of 

tree-dimensional image processing, which facilitates volumetric measurements of 

also other anatomical structures and organs. Secondly, the calibrated fat image is 

specifically sensitive to fat, which is not the case for T1-weighted images. A 

calibrated fat image enables quantification also of diffuse fat infiltration e.g. in 

muscles and internal organs. 

It should also be stressed that the AMRATM Profiler gives an objective, user-

independent quantification of the fat signal. Only the anatomical definition of the 

compartment of interest is subject to segmentation as well as inspection and manual 

interaction. This is important e.g. in the visceral compartment where intestinal content 

easily can be mistaken for adipose tissue. The excellent inter- and intra-observer ICC 

and the very low inter- and intra-observer variability shown in this study confirm this. 

The CoV for the intra-observer comparison of 1.6% for IAAT and 1.1% for ASAT can 

be compared to values reported in an earlier study (32) where the investigated 

method (Hippo Fat) had a CoV of 7.25% for IAAT and 1.77% for ASAT and the 

SliceOmatic analysis had a CoV of 4.53 % for IAAT and 1.85 % for ASAT. 



The use of a quantitative fat image also means that, as opposed to methods based 

on classification of individual voxels into adipose or non-adipose tissue such as (14-

16), the method used here is much less affected by partial volume effects (21) since 

also the fat in voxels containing a mix of adipose and non-adipose tissue will be 

included. Estimation errors caused by partial volume effects increase with lower 

resolution, which is a consequence of rapid whole body acquisition. Furthermore, the 

AMRATM Profiler used in this study has also been used for compartmental muscle 

volume measurements (33) which also is a relevant factor in metabolic studies.
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Figure Captions

Figure 1. MR images from typical volunteer. (a) shows the calibrated fat image with 

intra-abdominal and subcutaneous segmentations made by the AMRATM Profiler 

overlaid in red and green respectively. The right panel show the approximately 

corresponding transverse slice (b) from the same subject analysed by SliceOmatic. 

In this example both images were acquired with the volunteer positioned in a supine 

position to make the images more readily comparable.

Figure 2. Bland and Altman plots describing agreement between fat volumes 

measured using SliceOmatic and the AMRATM Profiler method for (a) intra-abdominal 

adipose tissue (IAAT), (b) abdominal subcutaneous adipose tissue (ASAT) and (c) 

Total trunk adipose tissue



Table 1. Measurements of IAAT, ASAT and Trunk AT with the two analysis 

methods.

IAAT (l) ASAT (l) Trunk AT (l)

Subject # SliceOmatic AMRA SliceOmatic AMRA SliceOmatic AMRA

1 1.30 1.16 11.73 11.48 13.03 12.63

2 5.85 6.70 4.44 5.38 10.29 12.08

3 6.24 6.28 11.71 12.52 17.94 18.80

4 4.12 4.03 20.67 21.63 24.79 25.66

5 5.50 5.20 5.29 5.72 10.79 10.92

6 3.36 3.33 2.94 3.46 6.30 6.79

7 5.14 4.74 5.82 6.56 10.96 11.29

8 4.00 3.48 7.79 7.90 11.80 11.38

9 3.74 3.13 15.39 15.42 19.13 18.56

10 7.23 8.69 7.73 9.76 14.96 18.45

11 2.51 2.16 7.84 8.52 10.36 10.68

12 4.18 3.40 10.16 9.74 14.34 13.14

13 7.38 7.14 9.54 10.75 16.92 17.89

14 2.09 2.36 7.21 7.93 9.30 10.29

15 6.66 6.52 9.92 10.22 16.58 16.74

16 5.72 5.00 7.35 7.75 13.06 12.75

17 4.09 4.10 10.86 11.75 14.95 15.84

18 4.31 4.50 4.30 4.92 8.62 9.42

19 6.06 6.03 11.27 11.67 17.32 17.70

20 7.75 8.37 6.05 6.76 13.81 15.12

21 3.39 3.53 18.71 19.64 22.09 23.17

22 2.87 2.81 4.71 5.40 7.58 8.21



23 5.22 6.17 23.41 24.14 28.63 30.31

Volumes of intra-abdominal (IAAT), abdominal subcutaneous (ASAT) and total trunk 

adipose tissue measured in litres for each volunteer measured using SliceOmatic 

and AMRATM Profiler.



Table 2. Measurements of IAAT and ASAT using AMRATM Profiler by three 

different operators

IAAT (l) ASAT (l)

Subject # Op. 1 Op. 2 Op. 3 Op. 1 Op. 2 Op. 3

1 7.58 7.67 7.66 12.59 12.67 12.72

2 7.31 7.36 7.32 12.15 12.22 12.26

3 3.68 3.78 3.88 9.43 9.39 9.54

4 2.53 2.60 2.56 8.40 8.38 8.60

5 1.32 1.29 1.29 11.08 10.98 11.22

6 5.73 5.77 5.73 5.95 5.83 6.05

7 9.28 9.41 9.23 7.72 7.75 7.79

8 3.84 3.94 3.91 3.63 3.57 3.56

9 6.73 6.86 6.73 5.39 5.26 5.36

10 7.05 7.18 7.04 11.51 11.44 11.59

11 6.78 6.95 6.79 13.25 13.24 13.23

12 4.45 4.45 4.39 21.63 21.67 22.10

13 4.35 4.53 4.49 19.39 18.86 19.03

14 3.15 3.18 3.11 15.80 15.74 15.70

15 9.61 9.76 9.50 10.61 10.51 10.52

16 4.36 4.39 4.47 13.66 13.65 13.87

17 3.34 3.40 3.37 5.56 5.57 5.61

18 2.35 2.43 2.54 9.35 9.35 9.58

19 4.98 5.07 5.02 4.88 4.84 4.94

20 5.38 5.45 5.28 7.44 7.34 7.38

21 4.43 4.52 4.56 12.93 12.91 13.12

22 6.96 7.38 7.14 24.23 23.38 22.92

23 5.11 5.18 5.30 6.50 6.44 6.42

Volumes (means + SD) of intra-abdominal (IAAT), abdominal subcutaneous (ASAT) 

measured three times by three different operators. The coefficient of variation (CoV) 

for the intra-observer comparison was 1.6 % for IAAT and 0.51.1 % for ASAT. The 

inter-subject CoV for IAAT and ASAT was 1.6% and 1.1% respectively.






