
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 141-155

Workload Schedulers - Genesis, Algorithms and Comparisons

Leszek Sliwko1 and Vladimir Getov2

1, 2 Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, United Kingdom

1leszek.sliwko@westminster.ac.uk, 2v.s.getov@westminster.ac.uk

ABSTRACT
In this article we provide brief descriptions of three classes of
schedulers: Operating Systems Process Schedulers, Cluster
Systems Jobs Schedulers and Big Data Schedulers. We describe
their evolution from early adoptions to modern implementations,
considering both the use and features of algorithms. In summary,
we discuss differences between all presented classes of
schedulers and discuss their chronological development. In
conclusion we highlight similarities in the focus of scheduling
strategies design, applicable to both local and distributed systems.

Keywords: Schedulers, Workload, Cluster, Cloud, Process, Big
Data.

1. INTRODUCTION

Designing a good scheduler is a complex task. The area of
scheduling research is concerned with an effective
allocation of available resources with the objective to
optimizing one of more performance measures [60].
Depending on the situation, the resources may be CPU
time, available memory, I/O operations time-slices, BTS
stations in mobile cells network, but also non-IT scenarios,
such as managing construction workers working of a
building site, doctors located at hospitals, etc. Actually, the
first algorithm for the assignment problem was the
Hungarian method in 1955 [58], solving the problem of
assigning available employees to office jobs based on their
skills.
In computer science areas, numerous scheduling
algorithms are currently used to determine an effective
task/jobs allocation – either on CPU cores or networked
nodes. Simple algorithms include: list scheduling (LS)
assigning jobs from pre-specified list as soon as machine
becomes idle [60] largest processing time first (LPT) [36],
highest level first [46] or round robin [72] as well as the
weighted round robin variant [43]. Simple strategies do not
require knowledge of unscheduled jobs or all the jobs
currently being processed which makes them very popular,

especially for online request scheduling [60]. However,
not taking into account additional factors such as current
server load, network infrastructure or storage availability
may result in an inefficient utilization of available
machines and overall higher operational system costs.
More complex algorithms rely on the availability of static
infrastructure data such as CPU speed, installed memory
etc. As an example we find largest remaining processing
time on fastest machine rule (LRPT-FM), where the job
with the most remaining processing time is assigned to
fastest machine [45]. LRPT_FM approach offers clear
advantages in heterogeneous environments, where the
system is composed from machines with different
configurations. However this still does not take into
account jobs being currently executed. Fixed-priority pre-
emptive scheduling is an example of a scheduling
algorithm commonly used in real-time systems. Early
versions of Sun Java Virtual Machine (JVM) implemented
this schema, however current versions of JVM use the
underlying Operating System thread scheduling model.
This scheduling algorithm assumes a hierarchy of task
priorities and ensures the processor always executes the
highest priority task from those that are currently ready to
be executed. This strategy has a serious drawback, as only
highest priority tasks are executed – lower-priority tasks
could be blocked indefinitely. One solution to this
situation is to implement aging, where priority of tasks is
gradually increased, ensuring that they will be eventually
executed [4].
Besides a local CPU processes allocation, schedulers are
commonly used in networked systems. The concept of
connecting computing resources has been an active area of
research for a considerable period of time. The term
‘metacomputing’ was established as early as 1987 [74] and
since then the topic of scheduling has been one of the key
subjects within many research projects – service localizing
idle workstations [61] parallel run-time system developed
at the University of Virginia [37], blueprints for national

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161108378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

142

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

supercomputer [38], Globus (1997) metacomputing
infrastructure toolkit [29].
As the research showed, the requirements of a load
balancer in a distributed system significantly vary from
scheduling jobs on a single machine [41]. One important
difference are network resources – the machines are
usually geographically distributed and transferring data
from one machine to another is costly. Additionally,
besides effectively spreading jobs across networked
machines, the load balancer usually provides a mechanism
for fault-tolerance and user session management.
Nowadays, load balancers are able to schedule incoming
jobs as well as to transfer existing ones to the networked
machines.
Scheduling jobs onto parallel nodes is difficult to solve
optimally within fixed time, therefore approximation
algorithms are usually employed. LS-based techniques
have proven to be effective (a variant of LPT algorithm
has been shown to have 19/12 guarantee ratio, resulting
jobs allocation to optimal jobs allocation in a worst-case
scenario) [22][31]. In addition, Bin Packing techniques are
frequently employed as they naturally share the same
decision, i.e. a bin-packing problem is defined as packing
a number of items of various sizes into a minimum number
of same-size bins) [60]. The heuristic known as first-fit
decreasing has been shown to have 13/11 ratio guarantee,
the worst-case scenario result for optimum items
allocation) [84].
In the following chapters we will briefly explain how
several current and past schedulers and distributed
frameworks work. This will help to develop an
understanding of how scheduling algorithms were
developed over time and how their concepts have evolved
over time. This is by no means a complete survey of all
available schedulers, but rather an analysis of some of the
landmark features and ideas in the history of schedulers. In
Summary and Conclusions sections, we compare all
classes of schedulers, with similarities and differences
being discussed. We also suggest a possible unification of
the future design of various classes of schedulers.

2. OPERATING SYSTEMS PROCESS
SCHEDULERS

Operating System Process Scheduler works within a very
short time frames (‘time-slices’). During scheduling events
an algorithm has to examine planned tasks and assign
appropriate CPU times to them [12][69]. This requires
schedulers to use simple highly-optimized algorithms with
very small overhead. Process schedulers have the difficult
task of maintaining a delicate balance between
responsiveness (minimum latency) and performance
(maximum throughput). This is generally achieved with
prioritizing the execution of processes with a higher
sleep/processing ratio [66].

Nowadays, the most advanced strategies also take into
consideration the latest location (CPU core) where the
process actually ran last time (‘NUMA (Non-Uniform
Access Memory) awareness’), with the aim of reusing the
same CPU memory (the level of CPU cache utilization)
where possible [7]. This also involves prioritizing in
choosing a real idle core first before its logical SMT
sibling (aka ‘hyperthread awareness’). This is a relatively
high data load to examine in a short period of time, thus
implementation needs to be strongly optimized for a faster
execution.
Operating System Process Schedulers generally provide
only a very limited set of tuneable parameters without easy
access to modify them. Some of parameters can be
changed only during the kernel compilation process (e.g.:
compile-time options CONFIG_FAIR_USER_SCHED
and CONFIG_FAIR_CGROUP_SCHED) or by a low-
level tool sysctl (Linux kernel only).
In the following section, we present the most notable
process schedulers used in modern operating systems.

2.1 Cooperative Scheduling

Early multitasking operating systems (Windows 3.1x,
Windows 95, 96 and Me, Mac OS prior to X) implemented
a concept known as cooperative multitasking or
cooperative scheduling (CS). In early implementations of
CS, applications voluntarily ceded time one to another.
Later this was supported natively by the Operating System,
although Windows 3.1x used non-pre-emptive scheduler
(it did not interrupt the program) and the program needed
to explicitly tell the system that it did not need the
processor time anymore.
Windows 95 introduced a rudimentary pre-emptive
scheduler; however this was for 32-bit applications only
[42]. The main issue in CS is the hazard caused by a
poorly designed program. CS relies of processes regularly
giving up control to other processes in the system.
Therefore, if one process consumes all available CPU
power, it causes all systems to hang.

2.2 Multi-Level Feedback Queue

Perhaps the most widespread scheduler algorithm is Multi-
Level Feedback Queue (MLFQ), which is implemented in
all modern versions of Windows NT (2000, XP, Vista, 7
and Server), Mac OS X, NetBSD, Solaris and Linux
kernels (up to version 2.6, when it was replaced with Q(1)
scheduler). It was first described in 1962 in a system
known as the Compatible Time-Sharing System [16].
Fernando Corbató was awarded the Turing Award by
ACM in 1990 “for his pioneering work organizing the
concepts and leading the development of the general-
purpose, large-scale, time-sharing and resource-sharing
computer systems, CTSS and Multics”.

143

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

In MHQ jobs are organized into set of queues Q0, Q1, ….
A job is promoted to higher queue if it does not finish
within 2i time units. At any time, algorithm processes the
job from the front of the lowest queue. In other words,
short processes are given preference [69]. MFQ turns out
to be very efficient in practice, while having very poor
worst-case scenario [5].

2.3 O(n) Scheduler

O(n) Scheduler was used between Linux kernel versions
2.4-2.6, replacing the previously used simple circular
queue algorithm [52]. In this algorithm, processor time is
divided into epochs. Within each epoch, every task can
execute up to its allocated time slice. The time slice is
given to each task at the start of each epoch and it is based
on the task's static priority added to half of any remaining
time-slices from the last epoch [12]. Thus if a task does
not use all of its time slice in current epoch, then it can
execute longer in the next epoch.
The disadvantage of this approach is relative inefficiency,
lack of scalability (especially for multi-core processors)
and weakness for real-time systems [52]. The scheduler
itself may use a significant amount of time itself if the
number of tasks is large (O(n) scheduler requires iteration
through all currently planned processes during a
scheduling event).

2.4 O(1) Scheduler

Between Linux kernel versions 2.6-2.6.23 came the
implementation of O(1) Scheduler. This design can
schedule processes within a constant amount of time (thus
the name ‘O(1)’), regardless how many processes are
currently running on the kernel [3][82].
The main issue with this algorithm is the complex
heuristics used. To mark a task as interactive or non-
interactive (interactive tasks are given higher priority in
order to boost system responsiveness), O(1) algorithm
analyses the average sleep time of process. Those
calculations are complex and subject to potential errors,
where O(1) may cause non-interactive behaviour from an
interactive process [52][66].

2.5 Completely Fair Scheduler

At present, Linux kernel implements Completely Fair
Scheduler (CFS) algorithm (introduced in kernel version
2.6.23) [82]. The main idea behind CFS is to maintain
balance (‘fairness’) in providing processor time to tasks
[52], in other words each process should have equal share
of CPU time.
CFS implements red-black tree (self-balancing binary
search tree structure) holding a queue for future task
execution, with spent processor time used as a key and

processes with the most sleeping time being prioritized
[66]. When the time for tasks is out of balance (meaning
that one or more tasks are not given a fair amount of time
relative to others), then those out-of-balance tasks should
be given time to execute [52].

2.6 Brain F Scheduler

Brain F Scheduler (BFS) was designed in 2009 and is an
alternative to CFS and O(1) schedulers in the Linux
kernel. The main objective of this algorithm was to
provide a scheduling strategy suitable for desktop
machines (with less CPU cores), that does not require
adjustments of heuristic or tuning parameters [40].
In comparison to CFS, algorithm does have lower latency
(improves interactivity), but has higher processes
turnaround time (lowers performance) [40]. The author
does not plan to integrate this scheduler into mainstream
Linux kernel (scheduler is available as kernel patch ck1),
although there exists several distributions that ship with
BFS-enabled kernel, such as Zenwalk, PCLinuxOS,
Kanotix and NimbleX.

3. CLUSTER SYSTEMS JOBS
SCHEDULERS

While responsiveness and low overheads tend to be the
focus of process schedulers, it is the case that the role of
jobs schedulers is to focus upon scalability and high
throughput. Jobs schedulers usually work with queues of
jobs spanning to hundreds of thousands and sometimes
even millions of jobs [70].
Jobs schedulers usually provide complex administration
tools with a wide spectrum of tuneable parameters and
flexible workload policies. All configurable parameters
can usually be accessed through configuration files or via
GUI interface. However, it has been documented that site
administrators only rarely stray from a default
configuration [24]. The most common scheduling
algorithm is simply a First-Come-First-Serve (FCFS)
strategy with backfilling optimization.
The common issues cluster schedulers have to deal with
are: unpredictable and varying load [64], complex policies,
constraints and fairness [24]. Other factors include a
rapidly increasing workload and cluster size [48], mixed
batch jobs and services [13], legacy software [48],
heterogeneous nodes with varying level of resources and
availability [77]. There are also issues of hardware
malfunctions [24][32] and the detection of
underperforming nodes [48]. Also, Operating System can
simply crash (it is especially common in heterogeneous
cluster systems running mixture of Windows, Linux, Unix
boxes, etc.) and the node and running applications might

144

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

need to be restarted. Specialized frameworks and tools
offer automatic resolutions of some those issues [18].
Another interesting challenge, though rarely tackled in
commercial schedulers, is the reduction of total power
consumption. Typically, idle machines consume less than
half of their peak power [62]. Therefore, the total power
consumed by a given Data Centre can be lowered by
concentrating tasks on a reduced number of machines and
powering down remaining nodes [59][68].
In the following section, we present a few notable
industrial-grade job schedulers used in modern distributed
computer systems and supercomputers.

3.1 Simple Linux Utility for Resource Management

Simple Linux Utility for Resource Management (SLURM)
is free and Open Source job scheduler for the Linux kernel
initially developed for large Linux clusters at the
Lawrence Livermore National Laboratory (LLNL).
SLURM is used by many of distributed computer systems
[83] and supercomputers. TOP500 project, which
originated in 1993, ranks and details the 500 most
powerful non-distributed computer systems in the world
[78] and reports that approximately 50% of world
supercomputers are using SLURM as the workload
manager.
SLURM uses a best fit algorithm based on Hilbert curve
scheduling or fat tree network topology and it can scale to
thousands of processors [67].

3.2 Maui Cluster Scheduler

Maui Cluster Scheduler (Maui) is an open source job
scheduler for clusters and supercomputers. It has been
developed by Cluster Resources, Inc. in early 1990, being
currently maintained and supported, but no longer being
actively developed by Adaptive Computing, Inc. Maui is
currently in use at many government, academic, and
commercial sites throughout the world on hundreds of
IBM SP-2, SGI Origin 2000, and Linux cluster systems
[50].
Maui implements FCFS strategy [24], with a set of
features such as ‘advance reservation’ (the availability of a
set of resources is guaranteed at a particular time),
‘backfilling’ (optimization allowing shorter jobs to execute
while long job at the head of queue is waiting for a free
processor [26] and ‘fair-share’ (when a site administrator
can set system utilization targets for users, groups,
account, classes and QOS levels [24].

3.3 Moab High-Performance Computing Suite

Moab High-Performance Computing Suite (Moab) is a
direct successor of Maui framework. Moab has all features
from Maui and several additional features like basic

trigger support, extended policies configuration, graphical
administration tools, and a Web-based user portal and
better scalability (over 15000 nodes with hundreds of
thousands of queued job submissions and over 500 users).
Moab currently manages workloads for about 40% of the
top 10, top 25 and top 100 on the Top500 list [78] (Young,
2014).

3.4 Univa Grid Engine

Univa Grid Engine is also known as Oracle Grid Engine,
Sun Grid Engine, CODINE (Computing in Distributed
Networked Environments), GRD (Global Resource
Director) or simply Grid Engine. Univa had acquired it
from Oracle in October 2013 [6]. Grid Engine has been
developed as an enhancement of CODINE according to
requirements from many early customers, such as the
Army Research Lab in Aberdeen, and BMW in Munich
[33].
Among other features, UGE supports advance reservation,
job checkpointing (saving a snapshot of the current
application state, which can be used for restarting the
application execution in case of a failure [15], Apache
Hadoop integration and Amazon EC2 integration for cloud
computing. Out of the box, Grid Engine supports two
scheduling strategies: FCFS (default) and an optional fair-
schare (called ‘Equal-Share’), however new strategies can
be added, including the most available and lookahead
strategies used to minimize a number of job migrations
[80].
In late 2010 after purchase of Sun by Oracle, binaries for
version 6.2 update 6 were released without source code.
Grid Engine has been forked into multiple open source
projects. Currently there are two actively maintained
projects: Son of Grid Engine and Open Grid Scheduler.

3.5 LoadLeveler

Designed by IBM, LoadLeveler manages both serial and
parallel jobs over a cluster of servers. LoadLeveler
implements several scheduling strategies such as plain
FCFS, FCFS with backfilling and gang scheduling,
simultaneously running a set of related threads or
processes on different processors allowing them to
exchange messages without sleeping time and context
switching [25]. An administrator can rewrite SYSPRIO
function to implement alternative strategies [24][54].
LL also supports job checkpointing and it is able to
communicate with external schedulers like Maui [24].

3.6 Load Sharing Facility

Load Sharing Facility (LSF) was created by Platform
Computing (acquired by IBM in January 2012 [75] and

145

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

was based on the Utopia project at the University of
Toronto [89].
LSF supports numerous scheduling algorithms like FCFS,
fair-share, backfilling and SLA (Service Level
Agreements). LSF can also interface with external
schedulers like Maui. LSF implements an interesting
feature, where a job’s priority is gradually increased every
time interval (thus the name ‘priority escalation’). This
scheme results in higher priorities to long-waiting jobs
[24].

3.7 Portable Batch System

Portable Batch System (PBS) was originally developed at
NASA Ames research centre under a contract project that
began on June 17, 1991. PBS can operate over a huge
variety of machines, starting from heterogeneous cluster of
loosely coupled workstations to vast parallel
supercomputers [8].
PBS includes a number of scheduler strategies, such as
FCFS, Shortest Job First (SJF) [69], fair-share and also
allows implementation of a custom scheduler in C, TCL or
in a specially designed language BaSL [8]. By default SJF
strategy is used (starvation is mitigated by marking a
particular job as ‘starving’ and withholding execution of
all other jobs until the starving job finishes [24].
There exist three versions of PBS:

 OpenPBS — original open source, suitable for

small clusters

 TORQUE — a fork of OpenPBS maintained by

Adaptive Computing, Inc.

 PBS Professional — the commercial version of

PBS offered by Altair Engineering, Inc.

iPhone/iPad users can also install PBS Express application
from Apple Store. PBS Express allows for the monitoring
and interaction with a PBS cluster from a smart phone.

3.8 Globus toolkit

Globus Toolkit is a set of tools for constructing a
computing grid. It contains security framework, resource
allocation and management strategies, communications
libraries, etc. Its origins go back to Supercomputing '95
conference (San Diego, California, USA), where a team of
researches build a temporary network of 11 research
centres (project ‘I-WAY’ (Information Wide Area Year)).
In order to establish communication between those
networks a set of new protocols has been created to allow
users to remotely execute applications on computers across
the country [29].
Following the success of I-WAY experiment, a Defense
Advanced Research Projects allocated funds for further

research and in 1997 the first version of Globus Toolkit
was released and soon Globus Toolkit was deployed on 80
sites across globe [28].
Occasionally, a computing cluster cannot allocate all
resources need by an application at a given time.
Application might then wait until the cluster has acquired
enough resources, but this will result in bad response time.
Alternative strategy is then to co-allocate resources on
multiple grid systems and run application that way [73]. In
fact, assuming low communication overhead, research
demonstrated co-allocation might increase the overall
performance of a grid [11][23].
Globus Toolkit uses Dynamically-Updated Request Online
Co-allocator (DUROC) and Grid Resource Allocation &
Management (GRAM) services to provide all the resources
needed by a grid application. Globus Toolkit implements
‘gang scheduling’. At first, DUROC service decomposes
jobs requests into tasks (called ‘subjobs’) and sends them
to remote GRAM instance on destination clusters. GRAM
service communicates with local resource manager (e.g.:
Load Sharing Facility, Portable Batch system, Univa Grid
Engine, LoadLeveler, Condor, etc.) and allocates
resources. When ready (i.e.: resources for tasks have been
successfully negotiated), DUROC starts a job [73].
DUROC service does provide only limited support for job
scheduling. It does not implement any jobs queuing
mechanism – a jobs submission will simply fail if required
resources are not immediately available or their acquisition
cannot be successfully negotiated. Also, in situation of
single task failure, the whole job is failed and user receives
error message [73].

3.9 GridWay

GridWay is a meta-scheduler developed by the researches
at the University of Madrid. It was designed with purpose
of providing a flexible and reliable workload manager.
GridWay was built on top of Globus Toolkit framework;
therefore it supports a wide range of cluster and grid
engines [47].
The code module of GridWay system is a submission
agent. Submission agent contains two modules:

 resource selector module, which evaluates

requirements and allocates jobs to hosts (based on

ranking expressions); both requirements and ranking

expressions are provided by jobs and can be updated

dynamically during jobs execution

 performance evaluator module, which monitors

application’s performance in order to detect

slowdown and request job’s migration to an

alternative node

146

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

In GridWay framework, a job can dynamically modify its
requirements (‘self-adapting’) during its execution. An
application might initially define a set of minimal
requirements and keeps updating them later based of its
current state. GridWay scheduler implements a feature
called ‘opportunistic migration’. Scheduler periodically
evaluates available resources and may detect a better node
for a currently executing job (based on dynamically
updated ranking expressions and requirements). Scheduler
then evaluates potential benefits of migrating this job to
alternative node against the migration overhead [63] and
scheduler might migrate the job to better node.
The main drawback of this approach is a need to modify
the source code of an application to support this behavior.

3.10 HTCondor

HTCondor (previously known as Condor). The name was
changed in October 2012 to resolve a trademark lawsuit
[1] and this is the oldest high-throughput software still
successfully running today.
HTCondor development started at the University of
Wisconsin-Madison in 1984 and implemented an idea of
stealing idle cycles from university’s workstations (‘cycle
scavenging’) [61]. Over years of development, HTCondor
architecture remained mostly unchanged, while many new
features have been implemented and the pool of available
nodes grew [77]. Nowadays, HTCondor architecture can
be used to manage a workload on a cluster system.
A number of tools and frameworks have been built on top
of HTCondor infrastructure. One example is DAGMan
(Directed Acyclic Graph Manager). DAGMan handles
inter-job dependencies, where the programs are nodes
(vertices) in the graph and the edges (arcs) identify
dependencies. During execution, DAGMan orchestrates
jobs execution order and schedules jobs directly into the
HTCondor queue. HTCondor then identifies available
machines and allocates jobs to them [30].
HTCondor implements a ‘fair-share’ algorithm, where
users are allocated machine time based on their priority in
the system. Additionally, every user has their own FIFO
queue for personal jobs. Condor also supports ‘priority
pre-emption’, where jobs from lower priority users are
killed in order to allow higher priority jobs to progress
[76].

3.11 Mesos

Mesos originally began as a research project at University
of California, Berkeley [44], but is now hosted in Apache
Software Foundation and is being tested at several
companies including Twitter and Facebook.
Mesos introduces a two-level scheduling mechanism,

where a centralized ‘Mesos master’ acts as a resource
manager that dynamically allocates resources to different
scheduler frameworks (e.g.: Hadoop, Spark, Kafka, etc.).
In case of a master failure Mesos uses ZooKeeper
framework service to elect a new master [53]. Resources
are distributed to the frameworks in the form of ‘offers’,
which contain currently unused resources. Scheduling
frameworks have autonomy in deciding which resources to
accept and which tasks to run on them [44].
Mesos works most effectively when tasks are relatively
small (compared to the cluster’s size), short-lived and have
a high resources ‘churn rate’ eg - relinquish resources
more frequently. In the current design (version 0.20.1 at
the time of writing), only one scheduling framework can
examine a resource offer at any given time. Therefore, this
resource is effectively locked for the duration of a
scheduling decision (i.e. concurrency control is
pessimistic). A slow decision making scheduler can
compromise overall system performance [70].

3.12 Open MPI

Open MPI is an open source implementation of Message
Passing Interface [39] developed and maintained by an
international board of high performance computing
vendors, academic researchers and applications specialists.
Open MPI combines a number of libraries, technologies
and other resources from a set of projects like LAM/MPI,
LA-MPI, FT-MPI and PACX-MPI [32]. It is used in many
TOP500 supercomputers such as Roadrunner or K
computer [78].
The runtime environment of Open MPI provides a set of
services to manage parallel executions in a distributed
environment. A set of high-performance drivers is being
actively developed for communication channels such as
TCP/IP, shared memory, Myrinet, Quadrics and
Infiniband. Framework is also transparently capable of
handling failures of network devices (when node is
equipped with several network devices) [32].
Job scheduling in Open MPI is fairly simple and works
either on a by-slot basis (selection of all available slots) or
by-node basis (selection of all nodes with available slots)
round robin schedule. Each Open MPI node provides a
number of slots available. Frameworks such as SLURM,
PBS/Torque and SGE automatically provide an accurate
number of slots and if not specified the default value of 1
is used. Each execution of application specifies the number
of processes that should be launched (the ‘np’ switch in
mpirun command) and the scheduler then decides where
those processes should be allocated. The scheduler takes
into account the configured scheduling policy, involving
the set of nodes suitable to run processes, defaults and
maximum number of slots.

147

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

3.13 Autopilot

Formerly, the management system for Microsoft’s
Windows Live Messenger and Live Search services,
Autopilot has been expended to support every Windows
Live service and well as some other online services such
as Windows Live Mail (previously Hotmail) resulting in
storage space increasing substantially over previous years
[49].
The main aim of Autopilot is to automate data centre
operations and lower the number of people on 24-hour call
required to maintain it, therefore lowering capital expense.
This is achieved by using more intelligent software to
replace much of the repetitive operations handles by data
centre staff as well as moving failure management to
automated scripts [49].
Autopilot provides basic services needed to keep the data
centre operational – provisioning and deployment of
software, monitoring and hardware lifecycle including
repair and replacement. However, job-scheduling policies,
such as determining which services should run on which
machines are left to individual applications [49].

3.14 TORQUE

TORQUE (Terascale Open-source Resource and QUEue
Manager) is a fork of OpenPBS project maintained by
Adaptive Computing, Inc. TORQUE Resource Manager
provides control over batch jobs and distributed computing
resources. In this architecture, the master node runs the
pbs_server and the slave nodes run the pbs_mom daemons.
Client command interface can be installed on any host (not
necessary on system node).
In default configuration, the simple FIFO job scheduler is
deployed on the master node. The job scheduler interacts
with pbs_server daemon allocate nodes to jobs based on
configured resource usage policies. TORQUE users can
choose to use an alternative scheduler such as Maui or
Moab.
At the time of writing, Czech National Grid Infrastructure
MetaCentrum is evaluating an experimental extension to
TORQUE Resource Manager [57], where an ad-hoc jobs
placement mechanism has been replaced by a more
sophisticated planning-based approach. This strategy will
allow users to see when and where their jobs will be
executed and predict behavior of the cluster system [14].
In the new approach, the constructed schedule is
periodically (every 5 minutes) evaluated and incrementally
improved by a Tabu Search algorithm (algorithm’s
runtime is bounded by 2 seconds in each iteration) [56].
Various metrics such as makespan, slowdown, response
time or wait time may be used as optimizations criteria
[14].

Research also points to an interesting fact of notorious
inaccuracy of job’s runtime estimations, due to a need to
prevent job being killed due to an overrun. Jobs in fact
often complete earlier than expected and this phenomena
results in cumulative gaps and unnecessary high waiting
times [55]. As demonstrated such ‘corrupted schedule’ can
be immediately fixed by re-running optimization routine
and ‘compressing schedule’ [14].
Initial experiments show very promising results in
comparison to various backfilling strategies [14].

3.15 Borg and Omega

To support its operations, Google utilizes a high number of
data centres around the world (at the time of writing,
Google has 12 data centres [2]. To orchestrate all its jobs
in such a complex environment, Google has been using a
custom job-scheduling system unofficially known as Borg
[13].
Google’s Borg is effectively a monolithic scheduler. It
uses a single, centralized scheduling algorithm for all jobs.
In contrast, two-level or dynamic schedulers such as Mesos
or TORQUE have a single resource manager that makes a
resource offers to multiple independent scheduler
instances. However, regardless of various optimizations
acquired over years including internal parallelism and
multi-threading, to address head-of-line blocking and
scalability problems, Google decided to rewrite a
scheduler as part of project Omega [13].
The concept behind Omega is to deploy several schedulers
working in parallel. The scheduler instances are using a
share state of available resources, however the resource
offers are not locked during scheduling decisions
(optimistic concurrency control). In case of conflict, when
two or more schedulers allocated jobs to the same
resources, all involved jobs are returned to the jobs queue
and scheduling is re-tried [70].
This approach seems to be rather successful as shown in a
study. It eliminates head-of-line job blocking problems
and offers better scalability, however it also generates
additional overhead for solving resource collisions.
Nevertheless, the better scalability benefits often outweigh
the incurred additional computations costs and scalability
targets have been achieved [70].
A point to note is that similar to MetaCentrum users,
Google cluster users tend to overestimate memory
resources needed to complete their jobs to prevent jobs
being killed due to an exceeding of allocated memory. In
over 90% of cases, users tend to overestimate the amount
of resources that they require, wasting in some cases close
to 98% of the requested resource [64].

148

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

4. BIG DATA SCHEDULERS

Big Data is a term given to the storage and processing of
any collection of data sets so large and complex that it
becomes unrealistic to process using traditional data
processing applications (generally based on relational
database management systems). Big Data also applies to
statistics and visualization packages.
Due to size Big Data is generally difficult to work with.
Analyzing large data sets requires parallel software
running on huge farms of servers [51] and that introduces
new challenges of managing the workload and optimizing
the usage of a cluster. It depends on the individual
organization how much data will be called Big Data, but
the following examples may be considered to get an idea
of scale:

 New York Stock Exchange produces about one

terabyte of new trade data per day

 Facebook hosts approximately 10 billion photos

and currently about one petabyte of storage

 The Large Hadron Collider (Geneva,

Switzerland) produces about 15 petabytes of data

per year [81]

Big Data systems tend to be more specialized in their
design, usually tackling only a very limited set of
problems [48]. They often provide their own api [81] [87]
and sometimes even the custom programming language, as
seen with Skywriting in CIEL [65]. Despite these
limitations Big Data systems are relevant to this research,
as jobs scheduling and performance optimization remain
common challenges.
Big Data frameworks have a dual purpose, storing system
data on its nodes (usually three replicas of each data block
are used for fault-tolerance purposes [34][81] and
secondly, to process this data via parallel tasks using the
same nodes. A common optimization is applied, namely
‘data locality’, where a scheduler attempts to schedule
tasks near the data blocks required.
Recently, many specialized frameworks have been created.
Below, we will discuss and assess some of the most
interesting and important, providing a brief description and
focusing on job scheduling aspect in each.

4.1 Dryad

Dryad is a general-purpose framework for execution of
data-parallel applications in distributed computers network
developed at Microsoft Research. The project had several
preview releases, but was ultimately dropped in October
2011 [27] and Microsoft shifted focus to the development
of Hadoop.

The development of an application for Dryad is modeled
as a directed acyclic graph (DAG) model. The developer
defines an application dataflow model and supplies
subroutines to be executed at specified graph vertices. The
developer has also a fine-control over the communication
protocols (e.g.: files, TCP pipes, shared memory) used in
graph. The result is a developing style similar to ‘piping’
in Unix bash utilities (i.e.: streaming output from one tool
to another, such as: cat file.txt | grep ‘word’ | wc –l), but in
distributed flavor [48].
In comparison to MapReduce, Dryad features a much
more lower-level programming schema, but all
parallelization and task allocation and distribution
mechanisms are effectively hidden from the developer.
Therefore user does not need to have understanding of
concurrency control mechanisms such as threads,
semaphores or locks.
The Dryad’s scheduler keeps a record of state and history
of each vertex in a graph. A vertex might be re-executed in
case of a failure (e.g.: node hardware malfunction) and
more than one instance of a given vertex might be
executed at the same time, meaning execution is versioned
to avoid conflicts among runs. Upon a successful
execution, one version is selected and returned as a result
[48].
A vertex or any pre-defined channels might have
preferences and constraints for the node it is to be run [48]
and this allows the developer to implement a very basic
‘location optimality’, where task and input data are forced
to be located on the same machine.
The Dryad’s job scheduler implements Greedy strategy. In
this approach the scheduler assumes that currently
scheduled job is the only job running on a cluster and
always selects the best node available. Tasks are run by
remote daemon services, which periodically update the job
manager about vertex’s execution status. If any task has
failed more than a configured number of times, the entire
job is marked as failed [48].

4.2 MapReduce

At the time of writing, MapReduce is the most widespread
adopted principal for processing large sets of data in
parallel. The name MapReduce originally referred only to
the Google technology, developed in 2003 [20] and
patented in [21] to simplify building of the inverted index
for handling searches at Google.com, however the term is
now widely used to describe a wide range of software (e.g.
Hadoop, CouchDB, Infinispan, MongoDB, Riak, etc.)
based on this concept.
The concept behind MapReduce was first presented in
2004 [19] and was inspired by ‘map’ and ‘reduce’
operations (hence the name ‘map-reduce’ or MapReduce)
present in Lisp and many other functional programming
languages [35].

149

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

However, the key contributions of MapReduce are the
scalability and fine-grained fault-tolerance. This means
that a failure in the middle of a multi-hour execution does
not require restarting the job from scratch achieved for a
variety of purposes by optimizing the execution engine
once [20]. ‘Map’ is an operation that performs filtering
and sorting all key-value pairs from the input data set,
while ‘reduce’ performs summary operations (e.g.:
counting the number of rows matching specified
condition/s, yielding fields frequencies). ‘Map’ operation
is used in the first step of computation by being applied to
all available data. Due to its nature, ‘map’ can be executed
in parallel on multiple machines (i.e. on distributed data
set) and it is highly scalable. In the next step, the job goes
into an intermediate state in which the framework gathers
all values returned by ‘map’ workers. Then, a ‘reduce’
operation is fed with all received values supplied using an
iterator, thus allowing the framework to process list which
may not fit into machine memory [35].

4.3 Hadoop

Following publication of MapReduce concept [19],
Yahoo! engineers have started Open Source project
Hadoop. February 2008, Yahoo! announced that it’s
production search index was being generated by a 10000-
core Hadoop cluster [81]. Subsequently, many other major
Internet companies (e.g.: Facebook, LinkedIn, Amazon,
Last.fm [85]) have joined the project and deployed it in
their architectures [35]. Hadoop is currently hosted in
Apache Software Foundation as Open Source project.
Hadoop runs on top of a Hadoop Distributed File System
(HDFS, similar to Google’s implementation of
MapReduce, which runs on Google File System [34].
Users submit MapReduce jobs, which consist of ‘map’ and
‘reduce’ operations/ implementations. Hadoop splits each
job into multiple ‘map’ and ‘reduce’ tasks, which then
process each block of input data (typically 64MB or
128MB).
Since its first release, Hadoop acquired a number of
optimizations:

A. ‘locality optimization’ was introduced, where the
scheduler allocates ‘map’ task to the closest
possible node to the input data required by it (the
following allocation order is used: the same node,
the same rack or finally the remote rack [86].

B. Hadoop also uses ‘backup tasks’, where a
speculative copy of a task is run on a separate
machine to finish computation faster. If the first
node is available, but behaving poorly (such node is
called ‘straggler’, this behaviour can arise from
many reasons such as faulty hardware or
misconfiguration), a job would be as slow as the
misbehaving task [85]. Google estimated that using

‘backup tasks’ can improve job response times by
44% [19].

Currently, MapReduce in Hadoop comes with a selection
of schedulers:

4.3.1 FIFO scheduler

Early versions of Hadoop had a very simple default
scheduling system where the user jobs were scheduled
using a simple FIFO queue with five priority levels [86].
Typically, jobs were using whole cluster, so jobs had to
wait their turn. When then job scheduler was choosing the
next job to run, it was selecting jobs with the highest
priority, thus it could result in low-priority jobs being
delayed endlessly. Alternatively, as FIFO scheduler was
not supporting pre-emption, a high-priority job could be
blocked by a long-running low-priority job that started
before the high-priority job was added to schedule [81].

4.3.2 Fair Scheduler

Fair Scheduler (together with Capacity Scheduler
described in the next section) is part of a cluster
management technology YARN (Yet Another Resource
Negotiator) framework, which is one of the key features in
the second-generation Hadoop 2 version [79].
Fair Scheduler focuses on giving each cluster user a fair
share of cluster resources over time, thus creating an
illusion for each user of owning a private cluster [86].
Each user has their own pool of jobs and scheduler uses a
version of ‘max-min fairness’ [9] with minimum capacities
guarantees (specified as the number of ‘map’ and ‘reduce’
task slots) to allocate tasks across pools. As more jobs are
submitted, free tasks slots are given to the jobs in such a
way as to give each user a fair share of the cluster
computation capacity [81]. Thus, in busy environment,
submitting more jobs by a user will not result in more
cluster resources being used by this user. When one pool is
idle (not using minimum share of his task slots), other
pools are allowed to use available task slots.

Jobs pools can have variable weights configurations.
Usual scenario is to create one pool per user and special
pools for production jobs [86].
Fair Scheduler also supports pre-emption, thus if any
given job pool is running over its capacity, its tasks will be
killed to make free slots for under-running job pools [81].

4.3.3 Capacity Scheduler

In Capacity Scheduler, a cluster is made up of a number of
FIFO queues. Those queues might be hierarchical (a queue
might have children queues) and each queue has allocated
task slots capacity (separate for ‘map’ and ‘reduce’ tasks).
Task slots allocation between queues is similar to sharing
mechanism between pools as seen in Fair Scheduler [81].

150

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

Essentially Capacity Scheduler can be seen as a
number of separate MapReduce clusters with FIFO
scheduling for each user or organization.

4.4 HaLoop

HaLoop framework has been developed on top of Hadoop
in response to the poor performance of the former when
running iterative jobs (Bu et al., 2010). The reason for this
behaviour is a default mechanism, where Hadoop writes
the output of each MapReduce job to the distributed file
system and reads it back on during the next iteration [35].
By adding various caching mechanisms and optimizations
and making framework loop-aware (e.g. adding
programming support for iterative application, storing the
output data on the local disk), iterative jobs performance
has been massively improved. HaLoop reduces query
runtimes by 1.85, and shuffles only 4% of the data
between mappers and reducers [10].
HaLoop’s scheduler keeps a record of every data block
processed by each task on physical machines and tries to
schedule subsequent tasks taking inter-iteration locality
into account [10]. This feature helps to minimize costly
remote data retrieval, thus tasks can use data cached on a
local machine.

4.5 Spark

Similarly to HaLoop, Spark’s authors noted a suboptimal
performance of iterative MapReduce jobs in Hadoop
framework [87]. Spark is built on top of HDSF, however it
does not follow the two-stage model of MapReduce.
Instead it introduces resilient distributed datasets (RDD)
and parallel operations on these datasets:

 ‘reduce’ – combines dataset elements using a

provided function

 ‘collect’ – sends all the elements of the dataset to

the user program

 ‘foreach’ – applies a provided function onto every

element of a dataset

Additionally, this framework provides two types of shared
variables:

 ‘accumulators’ – variables onto each worker can

apply associative operations (therefore they are

efficiently supported in parallel)

 ‘broadcast variables’ – sent once to every node,

with nodes then keeping a read-only copy of those

variables

For certain kind of applications (e.g. iterative machine
learning algorithms and interactive data analysis tools),
Spark outperforms Hadoop in order of magnitude, while

retaining the scalability and fault tolerance of MapReduce
[87].
Spark job scheduler implementation is conceptual similar
to Dryad’s, however it takes into account which partitions
of RDD are available in memory (framework re-computes
missing partitions) and tasks are sent to the closest
possible node to the input data required (‘locality
optimization’) [88].
Another interesting feature implemented in Spark is a
concept of ‘delayed scheduling’. When a head-of-line job
that should be scheduled next (according to fairness)
cannot launch a local task, it lets other jobs start their tasks
instead and repeatedly re-tries. However, if the job has
been skipped long enough (typically up to 10 seconds), it
launches non-local task. As typical Spark workload
consists of short tasks (i.e. it has a high task slots churn),
tasks have higher chance to be executed locally (there is
no cost of retrieving the input data from a remote node).
This feature helps to achieve almost optimal ‘data locality’
with a minimal impact on fairness and the cluster
throughput might be increased by up to two times
(analysis has been performed on Facebook’s workload
traces) [88].

4.6 CIEL

Designed and implemented at the Cambridge Computer
Laboratory (University of Cambridge), CIEL is a universal
execution engine for distributed computation. CIEL
implements master-slave architecture, where the master is
responsible for coordinating and dispatching tasks to
workers. Workers execute tasks and also can store result
state to objects, which might be an input to following
tasks. This data can be directly exchanged between
workers by making remote calls to workers’ store objects
[65]. A task can dynamically spawn ‘children’ tasks,
effectively delegating the production of its output to its
children [71].
CIEL uses its own scripting language for writing CIEL
jobs – ‘Skywriting’. Skywriting is a full Turing-complete
language, which allows developers to mix task creation
and data-dependent control flow [65].
CIEL is an open-source project licensed under the BSD
license. Author also implemented CIEL variant running on
multi-core machines (i.e. HTTP transport mechanism
replaced by shared memory and communication between
tasks re-implemented with OS-level pipes and semaphores)
[71].

5. SUMMARY

In this survey we presented a number of available
schedulers from early implementations to modern
versions. It may be noted that each class of scheduler

151

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

started with a simple job queue and developed over time as
specific sets of problems emerged:
A. Operating System Process Schedulers evolved with
focus on maximizing responsiveness [66], while still
providing good performance. While CPU switches
between processes in a very rapid manner, the modern
operating system process scheduling algorithms were
designed with a very low overhead [82]. The majority of
end-users for operating system process schedulers are non-
technical; therefore those schedulers usually have a
minimum set of configuration parameters [40].
Introduction and popularization of multi-core processors
by Intel and AMD in early 2000s (i.e.: Intel Core Duo and
AMD Phenom II X2), enabled applications to execute in
parallel and Operating Systems Schedulers started
developing in similar direction as distributed systems
schedulers. Modern Operating System Process Schedulers
also implement cache ‘locality optimization’ when
deciding which CPU core the task will be allocated to.
B. Cluster Systems Jobs Schedulers have a difficult
mission of ensuring ‘fairness’ [9] (i.e.: sharing cluster
resources proportionally to every user) while maintaining
stable throughput in a very dynamic environment. Cluster
systems usually allow administrators to implement
complex resource sharing policies with multiple input
parameters. Cluster systems usually implement fault-
tolerance strategies (i.e.: ‘checkpointing’ [15]) and
sometimes also focus on minimizing power consumption
[59]. Surprisingly, the most popular approach to
scheduling is simple First-Come-First-Served strategy
with variants of backfilling. However, due to rapidly
increasing cluster size, current research focuses on
parallelization, as seen with models such as Google’s
Omega [15]. Cluster users are notorious in overestimating
resources needed for completion of their tasks, which
results in cluster system job schedulers often over-
allocating resources [55][64].
C. Big Data systems are still rapidly developing. Nodes in
Big Data systems fulfil the dual purpose of storing
distributed file system parts (e.g.: Google File System
[34], its successor Colossus [17] or Hadoop Distributed
File System [35]) and providing a parallel execution

environment for system tasks. Job schedulers in this class
inherit general design from cluster system’s jobs
schedulers, but are usually very specialized for the purpose
of a framework and focused on ‘locality optimization’ or
running a given task on a node where input data is stored
or in the closest proximity to it.

6. CONCLUSIONS

The design of modern scheduling strategies and algorithms
is a challenging and evolving field of study. While early
implementations were often based on very simplistic
approaches such as a circular queue (also known as
‘Round Robin’), it is the case that modern solutions use
complex load balancing schemas (i.e.: Google’s Omega,
where multiple schedulers are working in parallel and
competing for resources [70]) and introduce concepts like
previously mentioned ‘fairness’, ‘checkpointing’, ‘backup
tasks’, etc.
During this research, we have noted many similarities
between scheduling strategies used in all classes of
schedulers. Early Operating System level schedulers were
focused primarily on responsiveness and performance
[16][69]. However, their design focus changed
dramatically with introduction of multi-core processors
and modern scheduler implementation strategies
supporting parallel execution [82] and similar to those
designed for distributed Cluster systems.
The experiments with CIEL scheduler demonstrate that
strategies used in allocating tasks in a distributed system of
nodes can be adapted to effectively work on the Operating
System level [71]. A recent introduction of Completely
Fair Scheduler (based on a model of ‘fairness’) to Linux
kernel (since kernel version 2.6.23) also highlights current
trends of mixing concepts from both local and distributed
systems when designing scheduling strategies.
In the future, we expect research on all classes of
schedulers to be increasingly more joined and design
combining ideas from both the Operating System level as
well as distributed Cluster systems.

152

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

Table 1: Schedulers Comparison

S
ch

ed
ul

er

cl
as

s

R
es

ou
rc

es

re
qu

ir
em

en
ts

kn

ow
n

pr
e-

ex
ec

ut
io

n

F
au

lt
-t

ol
er

an
ce

m

ec
ha

ni
sm

s

C
on

fi
gu

ra
ti

on

C
om

m
on

al

go
ri

th
m

s

S
ch

ed
ul

in
g

de
ci

si
on

ov

er
he

ad

D
es

ig
n

fo
cu

s
(a

si
de

pe

rf
or

m
an

ce
)

Operating
System
Process

No No
Simple (compile-
time and runtime

kernel parameters)

MLFQ, O(n), O(1), CFS,
BFS (with locality

optimization)

very low -
low

 single machine
 responsiveness
 simple configuration Cluster

System Job
Schedulers

Yes Yes
Complex

(configuration files
and GUI)

FCFS (with backfilling
and gang-scheduling), SJF

low - high
 distributed nodes
 fairness
 complex sharing policy

Big Data
Schedulers

No(1) Yes
Complex

(configuration files
and GUI)

FIFO (with locality
optimization and gang-

scheduling), Fair

low - medium
 specialized frameworks
 parallelism
 distributed data storage

(1) MapReduce jobs tend have consistent resource requirements (i.e.: in majority of cases, every map task processes roughly the same amount of
data (input data block size is constant), while reduce task requirements shall be directly correlated to the length of returned data)

REFERENCES

[1] “Condor name changing to HTCondor.” University of
Wisconsin-Madison. October 25, 2012. Available from:
http://research.cs.wisc.edu/htcondor/ Retrieved November
14, 2014.

[2] “Google Data Centers.” Google About. Available from:
https://www.google.com/about/datacenters/ Retrieved
November 15, 2014.

[3] Aas, J. “Understanding the Linux 2.6. 8.1 CPU
scheduler.” Silicon Graphics, Inc. February 17, 2005.
Retrieved 15 November, 2014. Available from:
http://www.inf.ed.ac.uk/teaching/courses/os/coursework/l
cpusched-fullpage-2x1.pdf

[4] Audsley, Neil C., Alan Burns, Robert I. Davis, Ken W.
Tindell and Andy J. Wellings (1995) “Fixed priority pre-
emptive scheduling: An historical perspective.” Real-
Time Systems 8, no. 2-3: 173-198.

[5] Becchetti, L, Stefano Leonardi, Alberto Marchetti-
Spaccamela, Guido Schäfer, and Tjark Vredeveld. (2006)
“Average-case and smoothed competitive analysis of the
multilevel feedback algorithm.” Mathematics of
Operations Research 31, no. 1 : 85-108.

[6] Bendov N. “Univa Completes Acquisition of Grid Engine
Assets, Becoming the Sole Commercial Provider of Grid
Engine Software” Univa Corporation. October 22, 2013.
Available from:
http://www.univa.com/about/news/press_2013/10222013.
php

[7] Blagodurov, S., Sergey Zhuravlev, Alexandra Fedorova,
and Ali Kamali. (2010) “A case for NUMA-aware
contention management on multicore systems.” In
Proceedings of the 19th international conference on
Parallel architectures and compilation techniques, pp.
557-558. ACM.

[8] Bode, B, David M. Halstead, Ricky Kendall, Zhou Lei,
and David Jackson. (2000) “The portable batch scheduler
and the maui scheduler on linux clusters.” In Proceedings
of the 4th Linux Showcase and Conference, Atlanta,
USA.

[9] Bonald, T., Laurent Massoulié, Alexandre Proutiere, and
Jorma Virtamo (2006) “A queueing analysis of max-min
fairness, proportional fairness and balanced fairness.”
Queueing systems 53, no. 1-2: 65-84.

[10] Bu, Y. Bill Howe, Magdalena Balazinska, and Michael D.
Ernst (2010) “HaLoop: Efficient iterative data processing
on large clusters.” Proceedings of the VLDB Endowment
3, no. 1-2: 285-296.

[11] Bucur, A. and Epema, D.H.J. (2000) “The influence of
the structure and sizes of jobs on the performance of co-
allocation”. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing,
volume 1911 of Lect. Notes Comput. Sci., pages 154–
173. Springer Verlag

[12] Bulpin, J. (2005) “Operating system support for
simultaneous multithreaded processors.” Computer Lab,
University of Cambridge: Technical Report UCAM-CL-
TR-619.

[13] Cade M. “Return of the Borg: How Twitter Rebuilt
Google’s Secret Weapon.” Wired. May 3, 2013.
Retrieved November 15, 2014. Available from:
http://www.wired.com/2013/03/google-borg-twitter-
mesos/all/

[14] Chlumsky, V. Dalibor Klusacek, and Miroslav Ruda.
(2012) “The extension of TORQUE scheduler allowing
the use of planning and optimization in grids.” Computer
Science 13: 5-19.

[15] Chtepen, M., Filip HA Claeys, Bart Dhoedt, Filip De
Turck, Piet Demeester, and Peter A. Vanrolleghem.
(2009) “Adaptive task checkpointing and replication:
Toward efficient fault-tolerant grids.” Parallel and
Distributed Systems, IEEE Transactions on 20, no. 2 :
180-190.

[16] Corbató, F., Marjorie Merwin-Daggett, and Robert C.
Daley. (1962) “An experimental time-sharing system.” In
Proceedings of the May 1-3, 1962, spring joint computer
conference, pp. 335-344. ACM

[17] Corbett, James C., Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter

153

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford (2013)
“Spanner: Google’s globally distributed database.” ACM
Transactions on Computer Systems (TOCS) 31, no. 3: 8.

[18] Corsave, S. and Vladimir Getov. (2003) “Intelligent
architecture for automatic resource allocation in computer
clusters.” In Proceedings of Parallel and Distributed
Processing Symposium 2003, pp. 8. IEEE

[19] Dean, J. and Sanjay Ghemawat. (2004) “MapReduce:
simplified data processing on large clusters.” OSDI'04:
Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, December

[20] Dean, J. and Sanjay Ghemawat. (2010) “MapReduce: a
flexible data processing tool.” Communications of the
ACM 53, no. 1: 72-77.

[21] Dean, J. and Sanjay Ghemawat. (2010) “System and
method for efficient large-scale data processing.” U.S.
Patent 7,650,331, issued January 19

[22] Dobson, G. (1984) “Scheduling independent tasks on
uniform processors.” SIAM Journal on Computing 13,
no. 4: 705-716.

[23] Ernemann, C., Hamscher, V., Schwiegelshohn, U., Streit,
A., and Yahyapour, R. (2002) “On advantages of grid
computing for parallel job scheduling”. In Cluster
Computing and the GRID, 2nd IEEE/ACM International
Symposium CCGRID2002, pages 39–46

[24] Etsion, Y. and Dan Tsafrir. (2005) “A short survey of
commercial cluster batch schedulers.” School of
Computer Science and Engineering, The Hebrew
University of Jerusalem 44221: 2005-13.

[25] Feitelson, D. and Morris A. Jettee. (1997) ”Improved
utilization and responsiveness with gang scheduling.” In
Job Scheduling Strategies for Parallel Processing, pp.
238-261. Springer Berlin Heidelberg

[26] Feitelson, D., Larry Rudolph, and Uwe Schwiegelshohn.
(2005) “Parallel job scheduling—a status report.” In Job
Scheduling Strategies for Parallel Processing, pp. 1-16.
Springer Berlin Heidelberg

[27] Foley, M. “Microsoft drops Dryad; puts its big-data bets
on Hadoop.” ZDNet, November 16, 2011. Retrieved 14
November, 2014. Available from:
http://www.zdnet.com/blog/microsoft/microsoft-drops-
dryad-puts-its-big-data-bets-on-hadoop/11226

[28] Foster, I. (2005) “Globus Toolkit Version 4: Software for
Service-Oriented Systems.” IFIP International
Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13

[29] Foster, I. and Carl Kesselman. (1997) “Globus: A
metacomputing infrastructure toolkit.” International
Journal of High Performance Computing Applications 11,
no. 2: 115-128.

[30] Frey, J. (2002) “Condor DAGMan: Handling inter-job
dependencies.” University of Wisconsin, Dept. of
Computer Science, Tech. Rep

[31] Friesen, D. (1987) “Tighter bounds for LPT scheduling
on uniform processors.” SIAM Journal on Computing 16,
no. 3: 554-560.

[32] Gabriel, E. Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal
Sahay et al. (2004) “Open MPI: Goals, concept, and
design of a next generation MPI implementation.” In
Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pp. 97-104. Springer Berlin
Heidelberg

[33] Gentzsch, W. (2001) “Sun grid engine: Towards creating
a compute power grid.” In Cluster Computing and the
Grid, 2001. Proceedings. First IEEE/ACM International
Symposium on, pp. 35-36. IEEE

[34] Ghemawat, S. Howard Gobioff, and Shun-Tak Leung.
(2003) ”The Google file system.” In ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 29-43.
ACM

[35] Gog, I. (2012) “Dron: An Integration Job Scheduler.”
Imperial College London

[36] Graham, R. (1969) “Bounds on multiprocessing timing
anomalies.” SIAM journal on Applied Mathematics 17,
no. 2: 416-429.

[37] Grimshaw, A. (1990) ”The mentat run-time system:
Support for medium grain parallel computation.” In
Distributed Memory Computing Conference, 1990.,
Proceedings of the Fifth, vol. 2, pp. 1064-1073. IEEE

[38] Grimshaw, A. William A. Wulf, James C. French, Alfred
C. Weaver, and Paul Reynolds Jr. (1994) Legion: The
next logical step toward a nationwide virtual computer.
Technical Report CS-94-21, University of Virginia

[39] Gropp, W. Ewing Lusk, and Anthony Skjellum. (1999)
Using MPI: portable parallel programming with the
message-passing interface. Vol. 1. MIT press

[40] Groves, T. Jeff Knockel, and Eric Schulte. (2009) “BFS
vs. CFS Scheduler Comparison.”

[41] Hamscher, V. Uwe Schwiegelshohn, Achim Streit, and
Ramin Yahyapour. (2000) “Evaluation of job-scheduling
strategies for grid computing.” In Grid Computing—
GRID 2000, pp. 191-202. Springer Berlin Heidelberg

[42] Hart, J. (1997) Win32 systems programming. Addison-
Wesley Longman Publishing Co., Inc.,

[43] Helmy, T. and Abdelkader Dekdouk. (2007) “Burst
Round Robin: As a Proportional-Share Scheduling
Algorithm.” In Proceedings of The fourth IEEE-GCC
Conference on Towards Techno-Industrial Innovations,
pp. 424-428

[44] Hindman, B. Andy Konwinski, Matei Zaharia, Ali
Ghodsi, Anthony D. Joseph, Randy H. Katz, Scott
Shenker, and Ion Stoica. (2011) “Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center.” In
NSDI, vol. 11, pp. 22-22

[45] Horvath, E. Shui Lam, and Ravi Sethi. (1977) “A level
algorithm for preemptive scheduling.” Journal of the
ACM (JACM) 24, no. 1: 32-43.

[46] Hu, T. (1961) “Parallel sequencing and assembly line
problems.” Operations research 9, no. 6: 841-848.

[47] Huedo, E. Rubén S. Montero, and Ignacio Martín
Llorente. (2001) “The GridWay framework for adaptive
scheduling and execution on grids.” Scalable Computing:
Practice and Experience 6, no. 3

[48] Isard, M. (2007) “Autopilot: automatic data center
management.” ACM SIGOPS Operating Systems Review
41, no. 2: 60-67.

154

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

[49] Isard, M. Mihai Budiu, Yuan Yu, Andrew Birrell, and

Dennis Fetterly. (2007) “Dryad: distributed data-parallel
programs from sequential building blocks.” In ACM
SIGOPS Operating Systems Review, vol. 41, no. 3, pp.
59-72. ACM

[50] Jackson, D. Quinn Snell, and Mark Clement. (2001)
“Core algorithms of the Maui scheduler” In Job
Scheduling Strategies for Parallel Processing, pp. 87-102.
Springer Berlin Heidelberg

[51] Jacobs, A. (2009) “The pathologies of big data.”
Communications of the ACM 52, no. 8: 36-44.

[52] Jones, T. “Inside the Linux 2.6 Completely Fair
Scheduler - Providing fair access to CPUs since 2.6.23”
In IBM DeveloperWorks. December 15, 2009. Retrieved
November 5, 2014. Available from:
http://www.ibm.com/developerworks/library/l-
completely-fair-scheduler/

[53] Kamburugamuve, S. (2013) “Survey of Apache Big Data
Stack.”

[54] Kannan, S. Mark Roberts, Peter Mayes, Dave Brelsford,
and Joseph F. Skovira. (2001) “Workload management
with loadleveler.” IBM Redbooks 2: 2.

[55] Klusacek, D. and Hana Rudova. (2010) “The Use of
Incremental Schedule-based Approach for Efficient Job
Scheduling.” In Sixth Doctoral Workshop on
Mathematical and Engineering Methods in Computer
Science (MEMICS 2010)

[56] Klusacek, D. and Hana Rudova. (2011) “Efficient grid
scheduling through the incremental schedule-based
approach.” Computational Intelligence 27, no. 1: 4-22.

[57] Klusacek, D. Vaclav Chlumsky, and Hana Rudova.
(2013) “Optimizing User Oriented Job Scheduling within
TORQUE.” The International Conference for High
Performance Computing, Networking, Storage and
Analysis SC13

[58] Kuhn, H. (1955) “ The Hungarian method for the

assignment problem.” Naval research logistics quarterly

2, no. 1‐2: 83-97.
[59] Lang, Willis, and Jignesh M. Patel. (2010) “Energy

management for mapreduce clusters.” Proceedings of the
VLDB Endowment 3, no. 1-2: 129-139.

[60] Leung, J. ed. (2004) Handbook of scheduling: algorithms,
models, and performance analysis. CRC Press.

[61] Litzkow, M. Miron Livny, and Matt W. Mutka. (1988)
“Condor-a hunter of idle workstations.” In Distributed
Computing Systems, 1988., 8th International Conference
on, pp. 104-111. IEEE

[62] McCullough, John C., Yuvraj Agarwal, Jaideep
Chandrashekar, Sathyanarayan Kuppuswamy, Alex C.
Snoeren, and Rajesh K. Gupta. (2011) “Evaluating the
effectiveness of model-based power characterization.” In
USENIX Annual Technical Conference.

[63] Montero, R. Eduardo Huedo, and Ignacio M. Llorente.
(2003) ”Grid resource selection for opportunistic job
migration.” In Euro-Par 2003 Parallel Processing, pp.
366-373. Springer Berlin Heidelberg

[64] Moreno, I. Peter Garraghan, Paul Townend, and Jie Xu.
(2013) “An approach for characterizing workloads in
google cloud to derive realistic resource utilization
models.” In Service Oriented System Engineering

(SOSE), 2013 IEEE 7th International Symposium on, pp.
49-60. IEEE

[65] Murray, D. Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, and Steven Hand.
(2011) “CIEL: A Universal Execution Engine for
Distributed Data-Flow Computing.” In NSDI, vol. 11, pp.
9-9.

[66] Pabla, C. (2009) “Completely fair scheduler.” Linux
Journal no. 184: 4.

[67] Pascual, J. Javier Navaridas, and Jose Miguel-Alonso.
(2009) “Effects of topology-aware allocation policies on
scheduling performance.” In Job Scheduling Strategies
for Parallel Processing, pp. 138-156. Springer Berlin
Heidelberg

[68] Pinheiro, E., Ricardo Bianchini, Enrique V. Carrera, and
Taliver Heath. (2001) “Load balancing and unbalancing
for power and performance in cluster-based systems.” In
Workshop on compilers and operating systems for low
power, vol. 180: 182-195.

[69] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. “Operating Systems: Three Easy Pieces”,
Arpaci-Dusseau Books. May, 2014 (Version 0.80)

[70] Schwarzkopf, M. Andy Konwinski, Michael Abd-El-
Malek, and John Wilkes. (2013) “Omega: flexible,
scalable schedulers for large compute clusters.” In
Proceedings of the 8th ACM European Conference on
Computer Systems, pp. 351-364. ACM

[71] Schwarzkopf, M. Derek G. Murray, and Steven Hand.
(2011) “Condensing the cloud: running CIEL on many-
core.” In Proceedings of the 1st Workshop on Systems for
Future Multicore Architectures

[72] Shreedhar, M. and George Varghese. (1995) “Efficient
fair queueing using deficit round robin.” In ACM
SIGCOMM Computer Communication Review, vol. 25,
no. 4, pp. 231-242. ACM

[73] Sinaga, J. Hashim H. Mohamed, and Dick HJ Epema.
(2005) “A dynamic co-allocation service in multicluster
systems.” In Job Scheduling Strategies for Parallel
Processing, pp. 194-209. Springer Berlin Heidelberg

[74] Smarr, L. and Charles E. Catlett. (1992)
“Metacomputing.” Communications of the ACM 35, no.
6: 44-52.

[75] Sullivan, T. “IBM Closes on Acquisition of Platform
Computing” IBM Media Relations. January 9, 2012.
Retrieved November 5, 2014.

[76] Tannenbaum, T. Derek Wright, Karen Miller, and Miron
Livny. (2001) “Condor: a distributed job scheduler.” In
Beowulf cluster computing with Linux, pp. 307-350. MIT
press

[77] Thain, D. Todd Tannenbaum, and Miron Livny. (2005)
“ Distributed computing in practice: The Condor

experience.” Concurrency and Computation: Practice

and Experience 17, no. 2‐4: 323-356.
[78] TOP500 Project. “Top500 List - June 2014”. June, 2014.

Retrieved November 5, 2014.
[79] Vavilapalli, Vinod Kumar, Arun C. Murthy, Chris

Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, Thomas Graves et al. (2013) ”Apache hadoop
yarn: Yet another resource negotiator.” In Proceedings of
the 4th annual Symposium on Cloud Computing, p. 5.
ACM

155

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015

L. Sliwko and V. Getov

[80] Wen, Y, and Sheng-De Wang. (2007) “Minimizing

Migration on Grid evironments: An Experience on Sun
Grid Engine.” National Taiwan University, Taipei,
Taiwan Journal of Information Technology and
Applications: 297-230.

[81] White, T. (2012) “Hadoop: The definitive guide. “
O'Reilly Media, Inc.

[82] Wong, C. I. K. T. Tan, R. D. Kumari, J. W. Lam, and W.
Fun. (2008) “Fairness and interactive performance of o(1)
and cfs linux kernel schedulers.” In Information
Technology, 2008. ITSim 2008. International Symposium
on, vol. 4, pp. 1-8. IEEE

[83] Yoo, A. Morris A. Jette, and Mark Grondona. (2003)
“SLURM: Simple linux utility for resource management.”
In Job Scheduling Strategies for Parallel Processing, pp.
44-60. Springer Berlin Heidelberg

[84] Yue, M. (1990) “On the exact upper bound for the
multifit processor cheduling algorithm.” Annals of
Operations Research 24, no. 1: 233-259.

[85] Zaharia, M. Andy Konwinski, Anthony D. Joseph, Randy
H. Katz, and Ion Stoica. (2008) “Improving MapReduce
Performance in Heterogeneous Environments.” In OSDI,
vol. 8, no. 4, p. 7.

[86] Zaharia, M. Dhruba Borthakur, J. Sen Sarma, Khaled
Elmeleegy, Scott Shenker, and Ion Stoica. (2009) “Job
scheduling for multi-user mapreduce clusters.” EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-55

[87] Zaharia, M. Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. (2010)
“Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling.” In
Proceedings of the 5th European conference on Computer
systems, pp. 265-278. ACM

[88] Zaharia, M. Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. (2012) ”Resilient
distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing.” In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pp. 2-2. USENIX Association

[89] Zhou, S., Zheng, X., Wang, J., and Delisle, P. (1993)
“Utopia: a load sharing facility for large, heterogeneous
distributed computer systems.” Software: Practice and
Experience 23, no. 12: 1305-1336.

AUTHOR PROFILES

Leszek Sliwko is currently pursuing a PhD at University of
Westminster, London (UK). Leszek interests include Cloud
computing, jobs scheduling, Artificial Intelligence and functional
programming. He has over ten years experience as IT contractor
in Java/JEE, Scala and Cloud systems development. He has
worked in multiple fields, including Investment Banking,
Financial Consultancy, Telecoms, Automotive, TV Media and
Publishing. Roles have included Technical Architect, Front
Office Support Analyst and Senior Software Developer positions.

Vladimir Getov graduated with distinction from the Technical
University of Sofia (Bulgaria) in 1975 and earned his Ph.D. in
Computer Science from the Bulgarian Academy of Sciences in
1980. As a Senior Research Fellow he spent several years leading
both R&D and academic research projects in Bulgaria. During
that time Dr Getov was Project Manager of the first Bulgarian
IBM PC/XT compatible computer (1984). In 1989 he moved to
England where he joined the Concurrent Computations Group at
the University of Southampton, led at that time by Professor
Tony Hey. Since 1995, Vladimir has been an academic staff
member at the University of Westminster in London where he
was awarded the titles Reader (1999) and Professor (2001). At
the University of Westminster Professor Getov was responsible
for the RAE 2008 submission in UoA 23 Computer Science and
Informatics.

	2.1 Cooperative Scheduling
	2.2 Multi-Level Feedback Queue
	2.3 O(n) Scheduler
	2.4 O(1) Scheduler
	2.5 Completely Fair Scheduler
	2.6 Brain F Scheduler
	3.1 Simple Linux Utility for Resource Management
	3.2 Maui Cluster Scheduler
	3.3 Moab High-Performance Computing Suite
	3.4 Univa Grid Engine
	3.5 LoadLeveler
	3.6 Load Sharing Facility
	3.7 Portable Batch System
	3.8 Globus toolkit
	3.9 GridWay
	3.10 HTCondor
	3.11 Mesos
	3.12 Open MPI
	3.13 Autopilot
	3.14 TORQUE
	3.15 Borg and Omega
	4.1 Dryad
	4.2 MapReduce
	4.3 Hadoop
	4.3.1 FIFO scheduler
	4.3.2 Fair Scheduler
	4.3.3 Capacity Scheduler
	4.4 HaLoop
	4.5 Spark
	4.6 CIEL

