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ABSTRACT
This paper introduces a novel method of estimating the Four-
ier transform of deterministic continuous-time signals from a
finite numberN of their nonuniformly spaced measurements.
These samples, located at a mixture of deterministic and ran-
dom time instants, are collected at sub-Nyquist rates since no
constraints are imposed on either the bandwidth or the spec-
tral support of the processed signal. It is shown that the pro-
posed estimation approach converges uniformly for all fre-
quencies at the rateN−5 or faster. This implies that it signific-
antly outperforms its alias-free-sampling-based predecessors,
namely stratified and antithetical stratified estimates, which
are shown to uniformly convergence at a rate ofN−1. Simu-
lations are presented to demonstrate the superior performance
and low complexity of the introduced technique.

Index Terms— Fourier transform estimation, uniform
convergence, nonuniform sampling.

1. INTRODUCTION

Fourier Transform (FT) estimation is an important signal pro-
cessing task with diverse application areas such as astronomy,
seismology, biomedical applications and communications, to
name a few. The majority of digital signal processing tech-
niques that estimate the FT of a continuous-time signalx(t)
use equidistant data samples. The uniform sampling ratefUS

has to exceed the Nyquist frequencyfNyq, which is twice
the total single-sided bandwidth of the processed signal; or
its truncated bandwidth whenx(t) is observed over a finite-
duration windowT as common in practice [1, 2]. Otherwise,
the aliasing phenomenon can render certain processing tasks,
e.g. detection and accurate signal recovery, unresolvable.
If the spectral supportF of the treated signal is not knowna
priori and the processed range(s) of frequencies (i.e. band-
width B) is wide, the requiredfUS is proportional to|B|
and can be prohibitively high;|.| is the Lebesgue measure.
Bandpass sampling [3] or demodulation with low rate data
acquisition [4] cannot be effectively applied since the loca-
tion of the signal spectral components, i.e.F , is unknown.

Examples of such scenarios can be found in instrumentation
(e.g. analysing multiband signals with unknown central fre-
quencies as in spectrum analysers), astronomy (e.g. detecting
periodic signals in noise [5]) and wireless communications
(e.g. wideband spectrum sensing for cognitive radio [4]).
Using random nonuniform sampling brings new opportunities
for mitigating the aliasing effects and the notion ofalias-free
sampling was introduced in [6]. Its definition was revised in
various subsequent studies such as [7] and [8]. They consider
the problem of suppressing spectrum aliasing to allow the
accurate estimation of the power spectral density of the un-
derlying stationary continuous-time signal, albeit sampling at
arbitrary low, sub-Nyquist, rates. Such approaches generally
employ non-equidistant samples, whose distribution depends
on the statistical characteristics of the sampling process.
More recently, alias-free-based FT estimators were reported
in [9, 10, 11]. They are distinct from prior work and consider
deterministic signals, whose FTs are complex functions.
In this paper, we tackle the problem of estimating the FT
of a deterministic continuous-time signalx(t) from a finite
numberN of its samples and propose the Hybrid Stratified
Sampling (HySt) estimator. Since no constraints are imposed
on either the bandwidth, or the spectral support ofx(t), the in-
troduced HySt scheme can be classified as sub-Nyquist. It is
shown that the HySt estimation mean square error uniformly
converges to zero at a rate ofN−5 or faster for all frequencies,
if x(t) has a continuous third order derivative. Hence, the pro-
posed approach significantly outperforms its alias-free-based
predecessors, namely Total Random Sampling (ToRa) [9],
the Stratified Sampling (StSa) [10] and Antithetical Stratified
Sampling (AnSt) [11], whose uniform convergence rates are
N−1 as per Theorem 1. The latter provides a generic recipe
to establish the uniform convergence rates of a broad class of
stratification-based FT estimators. Simulations are presented
to illustrate the HySt superior performance.
If the target spectrum is sparse, e.g.x(t) is a multiband signal
of unknown spectral supportF ⊂ B, approaches such as
universal sampling [12, 13] (uses deterministic nonuniform
sampling) and/or compressed sensing (CS) [14, 15] can offer



solutions that permit reconstructingx(t) from a small num-
ber of its measurements collected at sub-Nyquist rates. Such
rates are tied to the spectrum sparsity level|F|, rather than
the overall processed frequency range(s) or bandwidthB, as-
suming|F| � |B|. The approaches in [12, 13, 14, 15] entail
devising specialised processing algorithms utilising advanced
and computationally demanding optimization techniques to
determinex(t) or its characteristics. In this paper, however,
the objective is estimating FT of deterministic signals, not
signal recovery, using random nonuniform sampling. A low
complexity linear estimator is introduced without constrain-
ing F , unlike in [12, 13, 14, 15]. Most importantly, the
simple HySt estimator does not involve solving an optim-
isation problem and yet delivers competitive FT estimation
results compared with CS as demonstrated in Section 5.

2. PROBLEM FORMULATION

The target Fourier transform is defined by

X(f) =
∫

T
x(t)w(t)e−j2πftdt, (1)

for the finite time windowT = [0, H ] of width |T | = H.
The windowing function 06 w(t) 6 1 aims to keepX(f)
smooth [1, 2]. Letλ(t, f) = w(t)e−j2πft, xk,max =
supt∈T |x(k)(t)| andλk,max(f) = supt∈T |λ(k)(t, f)| such
that x(k)(t) and λ(k)(t, f) are thekth order derivatives of
x(t) andλ(t, f) with respect tot, respectively.
The range of frequencies for which (1) is estimated is arbit-
rary and no assumptions are made about the spectral support
or bandwidth ofx(t). The estimation quality is measured by
the mean square error (MSE):EN (f) = E[|X̂N (f)−X(f)|2]
whereX̂N (f) denotes the FT estimator constructed from the
N samples. For an unbiased estimator,EN (f) = σ2[X̂N (f)].

3. FT STRATIFICATION: AN OVERVIEW

ToRa is one of the early alias-free-based FT estimators, with
a convergence rate ofN−1 [9]. It motivated the stratification
strategies in [10, 11] for higherpoint-wiseconvergence rates.

3.1. Stratification in FT Estimation

Stratification entails selectingLN + 1 time instants such that
0 < tN,0 < tN,1 < ... < tLN

= H and defining the non-
overlapping strataTN,l = [tN,l, tN,l+1], l = 0, 1, ..., LN − 1.
Thelth stratum is of widthΔN,l = tN,l+1−tN,l and its centre
cN,l = 0.5(tN,l+1 + tN,l). The FT can be written asX(f) =
∑LN−1

l=0 IN,l(f) and IN,l(f) =
∫
TN,l

x(t)w(t)e−j2πftdt.

The estimatorX̂N (f) of (1) can be expressed by the sum of
individual estimators, one for eachIN,l(f), as per

X̂N (f) =
LN−1∑

l=0

ÎN,l(f). (2)

Here and similar to [10, 11], the strata are constructed via
the stratifying functiong(t), continuous inT , separated from
zero by gmin(t) 6 g(t) such that

∫
T g(t)dt = H. The

strata boundaries{tN,l}
LN

l=0 are the solution to the equation:
∫ tN,l

0
g(t)dt = lH/LN , implying thatΔN,l 6 H/(gminLN ).

Theorem 11: For estimatorX̂N (f) =
∑LN−1

l=0 ÎN,l(f) with
ÎN,l =

∑S
r=1 aN,l,r(f)x(τN,l,r), usingS samples inTN,l, if:

(A.1) E{X̂N (f)} = X(f), i.e. an unbiased estimator;
(A.2) ÎN,l, l = 1, 2, 3...LN , are independent from each other;
(A.3) For anyl andf , there existsAr, r = 1, 2..., S, such
that|aN,l,r(f)| 6 ΔN,lAr;
(A.4) There existD > 0 such that

∑LN−1
l=0 ΔN,lAr 6 N−1D

then, for anyf andN andD > 0, we then have

EN (f) 6 N−1κ̂ (3)

Sketch of the Proof: It follows from ÎN,l definition that the

MSE EN (f) 6
∑LN−1

l=0 E
{

(
∑S

s=1 |aN,l,r(f)||x(τN,l,r)|)2
}

utilising (A.1) and (A.2). This can be shown to lead to (3)
whereκ̂ = N−1x2

0,maxD
∑S

r=1 A2
r, given (A.3) and (A.4).

Theorem 1 sets sufficient conditions forX̂N (f) to be guaran-
teed to uniformly converge toX(f) at rateN−1 or faster.

3.2. Stratified and Antithetical Stratified Estimates

With StSa in [10] the sampling instants{τn}
N
n=1 in X̂StSa,N (f)

are independent random variables (one per statra,S = 1 and
N = LN ) located as per the probability density function (pdf)
pStSa(τ) = Δ−1

N,l if τ ∈ TN,l and zero otherwise. The estim-

ator of IN,l(f) is: ÎN,l(f) = ΔN,lx(τN,l)λ(τN,l, f). In the
antithetical stratified estimator̂XAnSt,N (f), two samples per
strata are collected, i.e.N = 2LN andS = 2 [11]. Whilst the
first sample is selected randomly similar to StSa,τN,2l in the
lth stratum, the second one is taken in an antithetical manner,
τN,2l+1 = 2cN,l − τN,2l. Its estimator is given by:̂IN,l(f) =
0.5ΔN,l[x(τN,2l)λ(τN,2l, f) + x(τN,2l+1)λ(τN,2l+1, f)].
It can be shown that both StSa and AnSt satisfy all the as-
sumptions of Theorem 1; (A.4) is fulfilled sinceN = aLN +b
(a > 1, b > 0). Thus, both estimates uniformly converge at a
rate equal or greater thanN−1. LetPStSaandPAnSt be the set
of all rates at which theunbiasedStSa and AnSt estimators
can be guaranteed to uniformly converge toX(f ) for anyf ,

σ2[X̂StSa,N (f)] < N−p1κ; σ2[X̂AnSt,N (f)] < N−p2κ (4)

such thatp1 ∈ PStSa, p2 ∈ PAnSt andκ > 0 is a constant.

Corollary 11: PStSa∈ (0, 1] andPAnSt ∈ (0, 1].
Proof Sketch: Given Theorem 1, showing that forp > 1, (4)
does not hold forx(t) = w(t) = g(t) = 1 atf = N suffices.

1The full proof will be published in an extended version of this paper [16].



This corollary combined with (3) stipulates thatN−1 is the
fastest uniform convergence rate achievable by the StSa and
AnSt estimators. This is despite the reported expeditedpoint-
wise(i.e. frequency dependent) convergence rate ofN−5 for
AnSt, if x(t) has a continuous second-order derivative [11].

4. HYBRID STRATIFIED FT ESTIMATION

Here, we introduce the HySt method and show its notably fast
uniform convergence compared with ToRa, StSa and AnSt.

4.1. Sampling Scheme and Unbiased Estimator

In the HySt technique, the sampling instants are a mixture of
deterministic, i.e. the strata boarders{tl}

LN

l=0, and random
time instants, i.e.{τl}

LN−1
l=0 that are selected in the same

manner as in StSa. For example, thelth random sample is
located inTl according to the pdf:p(τl) = Δ−1 if τl ∈ Tl

and zero elsewhere (the subscriptN is discarded for the brev-
ity of notation). Hence, the total number of processed signal
samples isN = 2LN + 1 and it follows that the strata width
is upper bounded byΔl 6 3H/Ngmin, assumingN ≥ 3.
Similar to StSa and Ant,N = aLN + b implies that the HySt
fulfills assumption (A.4) of Theorem 1.
The HySt estimator ofX(f) is given by

X̂N,HySt(f) =
LN−1∑

l=0

Îl(f)

=
LN−1∑

l=0

αl(f)x(tl) + βl(f)x(τl) + γl(f)x(tl+1), (5)

where the estimator of FT in thelth stratum, i.e. Il(f) =∫
Tl

x(t)w(t)e−j2πftdt, is a linear combination ofx(tl), x(τl)
andx(tl+1) such that
αl = Δ−1

l

∫
Tl

(tl+1 − t)λ(t, f)dt − (tl+1 − τl)λ(τl, f),

γl = Δ−1
l

∫
Tl

(t − tl)λ(t, f)dt − (τl − tl)λ(τl, f), and

βl = Δlλ(τl, f). SinceX(f) =
∑LN−1

l=0 Il(f) and the
random sampling instants in separate strata (τk and τl for
k 6= l) are independent, showing thatÎl(f) is an unbiased
estimator ofIl(f) implies thatE[X̂N,HySt(f)] = X(f).
We start withE[αl(f)x(tl)] = Δ−1

l

∫
Tl

(tl+1 − t)λ(t, f)dt −

E[(tl+1 − τl)λ(τl, f)] = 0 since the pdf ofτl is p(τ) = Δ−1
l

if τ ∈ Tl and zero elsewhere. Similarly,E[βl(f)x(τl)] =∫
Tl

λ(τ, f)x(τ)dτ = Il(f) andE[γl(f)x(tl+1)] = Δ−1
l

∫
Tl

(t−

tl)λ(t, f)dt−E[(τl−tl)λ(τl, f)] = 0. Noting thatE[ÎN,l(f)] =
E[αl(f)x(tl)] + E[βl(f)x(τl)] + E[γl(f)x(tl+1)], we con-
clude thatX̂N,HySt(f) is an unbiased estimator ofX(f) and
it accordingly satisfies assumption (A.1) of Theorem 1.

4.2. Fast Uniform Convergence Rate

We start with confirming that Theorem 1 applies to the pro-
posed HySt estimator. We recall that the random instantsτk

andτl are independent forl 6= k, thus,Îl(f) and Îk(f) are
independent, i.e. estimator in (5) fulfils assumption (A.2).
We note thatS = 3 for the hybrid stratified sampling scheme.
Sinceλ0,max = 1 given w(t) = 1 for somet ∈ T , it can
be shown that|αl| 6 Δ−1

l

∫
Tl

(tl+1 − t)|λ(t, f)|dt + Δl =
1.5Δl. Similarly, it can be easily seen that|αl| 6 Δl and
|γl| 6 1.5Δl. Hence,X̂N,HySt(f) satisfies assumption (A.3)
of Theorem 1 (A1 = A3 = 1.5 andA2 = 1) as well as (A.1),
(A.2) and (A.4). This concludes the proof that HySt estimator
uniformly converges toX(f) at rate at least equal toN−1.
Let TB be some open time interval comprisingT such that
T ⊂ TB . The next theorem states the main feature of the
proposed HySt estimates:

Theorem 22: If the signalx(t) has continuous third order
derivative inTB , the hybrid stratified sampling estimator con-
verges uniformly toX(f) in (1) at the rateN−5 or faster.

Sketch of Proof: Let Ψl(f) = Îl(f) − Il(f) andEN (f) =
∑LN−1

l=0 E
{
|Ψl(f)|2

}
. The second order Taylor expansion

of x(t) aboutcl is: x(t) = x(cl) + (t − cl)x(1)(cl) + 0.5(t −
cl)2x(2)(cl) + rl(t). Sincex(3)(t) is bounded inTB , it can
be shown that|rl(t)| 6 Δ3

l x3,max/48 wheret ∈ Tl, rl(t) =
(t − cl)3x(3)(t̃)/6 and t̃ ∈ Tl . After several manipulations,
we reach|Ψl(f)| 6 N−3C andEN (f) = σ2{X̂N,HySt(f)} 6

N−5C2/2; C = 45H3

8g3
min

x2,max + 45H4

16g4
min

x3,max.

This theorem illustrates that the HySt estimator provides
a frequency-independent upper bound on the Fourier trans-
form estimation errors that decays to zero at the rateN−5 (or
faster) and the achieved accelerated convergence transpires
simultaneously across all frequencies, unlike StSa and AnSt.

5. SIMULATIONS

We present an example to demonstrate the gains attained by
the proposed hybrid stratified FT estimator and compare its
performance to ToRa [9], StSa [10], AnSt [11] and a com-
pressed sensing FT estimator. The latter uses random partial
Fourier sensing matrices and the efficient greedy subspaces
pursuit method [14, 17]; CS is not considered in [16]. As-
sume that the overall double-sided processed bandwidth is
B = [−250, 250] KHz, without prior knowledge of the spec-
tral support of the present signalx(t), i.e.,fNyq = 500 KHz.
Letx(t) be a multiband signal comprising four components of
distinct magnitudes, bandwidths and central frequencies such
that x(t) =

∑4
m=1 Amsinc(Bm(t − d)) cos(2πfm(t − d))

whereA1 = 104, B1 = 4 KHz, f1 = 10 KHz, A2 = 103,
B2 = 8 KHz, f2 = 40 KHz, A3 = 40, B3 = 0 (sinusoid),
f3 = 70 KHz, A4 = 2 × 103, B4 = 10 KHz, f4 = 210 KHz
andd = H/2. A Hanning window of widthH = 10 ms is

2The full proofs of all stated theorems will be published in an extended
version of this paper, analysing the HySt estimates in more details; see [16].



(a) At frequencyf1 = 10 KHz.

(b) At frequencyf3 = 70 KHz.

(c) At frequencyf4 = 210 KHz.

Fig. 1: MSE (in dB) of the FT estimation for ToRa, StSa, AnSt,
HySt and CS-based techniques at selected frequency points inB.

employed;NNyq = 5000. For CS recovery, the sparsity level
is set toK = 200 (to avoid prohibitively high time-memory
requirements of inverting larger matrices asN increases).
Fig. 1 depicts the MSE,EN (f), of the FT estimates as a
function of the number of utilised signal samples,N < NNyq

(i.e. for sub-Nyquist rates), at the selected frequency points
f1, f3 andf4. Whereas, Fig. 2 exhibits the average ratio of
the run time,TCS/THySt, of an unoptimised MATLAB imple-
mentations of the compressed sensing and HySt estimators
on a standard PC (Intel i7 CPU, 3.4 GHz) for various values
of N . All plots in Figs. 1 and 2 are obtained from averaging
the outcome of2000 independent Monte Carlo simulations.
Fig.1 reveals that the HySt significantly outperforms its alias-
free sampling predecessors as the assessed frequency in-

Fig. 2: Average relative run time,TCS/THySt, of CS and HySt.

creases, namely forf3 andf4, and forN � NNyq. It can
reduce the estimation MSE by≈ 15 dB. Unlike the HySt
method, it can be noticed that StSa and AnSt estimators are
sensitive to the frequency for which the FT is estimated (for
f4 their results are similar to the basic ToRa). Their reported
point-wise expedited convergence rates can only be observed
for relatively low frequencies or excessiveN . Conversely,
the HySt uniform and point-wise convergence are the same,
i.e. N−5, leading to a consistent performance albeitf (for the
low frequencyf1, HySt and AnSt produce similar results).
Compared to the CS-based estimation, HySt delivers a com-
petitive performance; it achieves more accurate estimation
results forf3 andf4. The fact that CS produces better res-
ults in Fig.1a is not surprising since the component atf1

has the highest magnitude spectrum. Additionally,X(f),
which is identical to the signal’s DFT at the examined fre-
quencies, is notably sparse whereN � K. Nevertheless,
Fig. 2 shows that CS is immensely more computationally
demanding than the HySt approach, with its run time being
500 to 920 times longer (the brief increase in the complexity
ratio for low N can be explained by the CS suffering from
instability/low-convergence in such cases). This highlights
the computational cost of the CS technique, which can be ex-
cessive, especially for a portable platform with limited power,
memory and processing capabilities (setting higherK values
leads to even higher complexity/run-time of the CS recovery,
however, it can produce more accurate results). Conversely,
the HySt utilises a simple linear estimator that can be im-
plemented using a modified FFT-type process. A complete
comparison between the HySt estimator and other CS-based
FT estimation methods is outside the scope of this paper.

6. CONCLUSION

A simple sub-Nyquist hybrid-stratified-sampling method to
estimate the FT of a deterministic continuous-time signal, at
arbitrary frequencies, from a number of its samples is intro-
duced. It does not impose constraints on the bandwidth of
the processed signal. The HySt estimator mean square error
is shown to uniformly converge to zero at a rate of at least
N−5, enabling it to deliver more consistent estimates com-
pared with its alias-free-type predecessors. This paper serves
to motivate further research into using alias-free sampling for
sub-Nyquist processing, e.g., for spectrum sensing [18, 19].
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