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ABSTRACT Examples of such scenarios can be found in instrumentation

This paper introduces a novel method of estimating the Fourke.g. analysing multiband signals with unknown central fre-
ier transform of deterministic continuous-time signals from aguencies as in spectrum analysers), astronomy (e.g. detecting
finite numberV of their nonuniformly spaced measurements.periodic signals in noise [5]) and wireless communications
These samples, located at a mixture of deterministic and rarfe.g. wideband spectrum sensing for cognitive radio [4]).
dom time instants, are collected at sub-Nyquist rates since rndsing random nonuniform sampling brings new opportunities
constraints are imposed on either the bandwidth or the speter mitigating the aliasing effects and the notionatias-free
tral support of the processed signal. It is shown that the prgsampling was introduced in [6]. Its definition was revised in
posed estimation approach converges uniformly for all frevarious subsequent studies such as [7] and [8]. They consider
guencies at the raf¥ —> or faster. This implies that it signific- the problem of suppressing spectrum aliasing to allow the
antly outperforms its alias-free-sampling-based predecessogscurate estimation of the power spectral density of the un-
namely stratified and antithetical stratified estimates, whictdlerlying stationary continuous-time signal, albeit sampling at
are shown to uniformly convergence at a rate\of!. Simu-  arbitrary low, sub-Nyquist, rates. Such approaches generally
lations are presented to demonstrate the superior performanemploy non-equidistant samples, whose distribution depends
and low complexity of the introduced technique. on the statistical characteristics of the sampling process.
More recently, alias-free-based FT estimators were reported
in [9, 10, 11]. They are distinct from prior work and consider
deterministic signals, whose FTs are complex functions.
In this paper, we tackle the problem of estimating the FT
1. INTRODUCTION of a deterministic continuous-time signa(t) from a finite

. L , , numberN of its samples and propose the Hybrid Stratified
Fourl_er Transf(_)rm (FT) estlmgtloq is an important signal pro'Sampling (HySt) estimator. Since no constraints are imposed
cessing task with diverse application areas such as astronomy, cither the bandwidth, or the spectral support(@j, the in-

seismology, biomedical applications and communications, tgqy, ceq HySt scheme can be classified as sub-Nyquist. It is

hame arl:ew. T.he majr?rlty of ?'g'tal sllgnal processing teCh'shown that the HySt estimation mean square error uniformly
niques that estimate the FT of a continuous-time sigrs) converges to zero at a rate§f-° or faster for all frequencies,

use equidistant data samples. The uniform samplingfgge ¢ z(t) has a continuous third order derivative. Hence, the pro-

has to eX(_:eed the Nyquist f_requenﬁyyq, which is tv_vice posed approach significantly outperforms its alias-free-based
fche total S|ngle-S|de_d bandW|dth_0f the processed S|_gr_1al; Oﬁredecessors, namely Total Random Sampling (ToRa) [9],
gs truncated dba”dw'dth wher(z) is ohserved over 2 finite- e sStratified Sampling (StSa) [10] and Antithetical Stratified
uratl_on_wm owT" as common in practice [;L' 2]. Ot erwise, Sampling (AnSt) [11], whose uniform convergence rates are
the ahasmg phenomenon can render certain processing tasks, 1 ¢ per Theorem 1. The latter provides a generic recipe
i'gﬁ detectlor; and accur?ti signal r(cajco_veryl, _unresEIvable. to establish the uniform convergence rates of a broad class of
: the spectra suppott of the treated signal is not knoven tratification-based FT estimators. Simulations are presented
priori and_ the.processed ra_nge(s) pf frequen_mes (i.e. ban% illustrate the HySt superior performance.
width B) is W'def ﬂ_\e rqu'redfPS is proportional t0|B| ¢ye target spectrum is sparse, exgt) is a multiband signal
and can be prohibitively high.| is the Lebesgue measure. j¢\ - nown spectral suppotE C B, approaches such as

Bandpass sampling [3] or demodulation with low rate Olat"’hniversal sampling [12, 13] (uses deterministic nonuniform

acquisition [4] cannot be effectively applied since the Ioca'sampling) and/or compressed sensing (CS) [14, 15] can offer
tion of the signal spectral components, i#, is unknown.

Index Terms— Fourier transform estimation, uniform
convergence, nonuniform sampling.



solutions that permit reconstructing¢) from a small num- Here and similar to [10, 11], the strata are constructed via
ber of its measurements collected at sub-Nyquist rates. Suthe stratifying functiory(t), continuous iri7’, separated from
rates are tied to the spectrum sparsity le\E|, rather than  zero by gnmin(t) < g(t) such that[ g(t)dt = H. The

the overall processed frequency range(s) or bandwidtis-  strata boundariet v, } %, are the solution to the equation:
suming| 7| < |B|. The approaches in [12, 13, 14, 15] entail é‘gw g(t)dt = LH /Ly, implying thatAx; < H/(gminLn).
devising specialised processing algorithms utilising advance

Z\n? compu(t;tionilly gematnd!ntg optlimiﬁgtion techk?iques t9heorem 4 For estimatorX y (f) = IL:%A Ina(f) with
eterminexr(t) or its characteristics. In this paper, however, : s . . .
the objective is estimating FT of deterministic signals, notIN’l g ZI:l aN’l’r(f)x(TA_f’l"')’ usmg_S samplgs mTN’_l' f:
signal recovery, using random nonuniform sampling. A low(®-1) E{Xx(f)} = X(f), i.e. an unbiased estimator; _
complexity linear estimator is introduced without constrain-(A'z) Inyl=1,2,3..Ly, are |r_1dependent from each other;
ing F, unlike in [12, 13, 14, 15]. Most importantly, the (A.3) For anyl and f, thgre existsd,, r = 1,2...,5, such
simple HySt estimator does not involve solving an optim-that|‘”V7lfr(f)| < AN A I

isation problem and yet delivers competitive FT estimatior(A-4) There existD > Osuchthad ;% Ay A, < N='D
results compared with CS as demonstrated in Section 5. then, for anyf andN andD > 0, we then have

En(f) < N7 'i 3
2. PROBLEM FORMULATION ~n(f) K (3)

Sketch of the Prooflt follows from IANJ definition that the

_ MSE Ex(f) < L2 E{ (25 lawar (Dla(rvan))?)

X(f) = / z(t)w(t)e*ﬂ’fﬁdt, (1) utilising (A.1) and (A.2). TShis can be shown to lead to (3)
T wherei = N~'a3 ... D> _| AZ, given (A.3) and (A.4).

The target Fourier transform is defined by

for the finite time windowZ = [0, H] of width |T| = H. .

The windowing function 0< w(t) < 1 aims to keepX(f)  Theorem 1 sets sufficient conditions iy (f) to be guaran-
smooth [1, 2]. LetA(t,f) = w(t)e 7277/t Thomaz = teed to uniformly converge t& (f) at rateN —! or faster.
supyer |28 ()] and N mas (f) = supyer NP2, £)| such

that () (t) and AW (t, f) are thek!" order derivatives of 3.2, Stratified and Antithetical Stratified Estimates

x(t) and\(¢, f) with respect ta, respectively. . ) o N . &

The range of frequencies for which (1) is estimated is arbit¥Vith StSain [10] the sampling instants, },,_, in Xsisan (f)
rary and no assumptions are made about the spectral supp8f€ independent random variables (one per stétra, 1 and
or bandwidth ofz(t). The estimation quality is measured by IV = L) located as per the probability density function (pdf)
the mean square error (MSE)y (f) = E[|Xx (f) — X (f)[2] psisdT) = Ay, if TE Ty, and zero otherwise. The estim-
whereX v (f) denotes the FT estimator constructed from theator of Iy ;(f) is: In.(f) = Anyz(ta) M (7N, f). In the

N samples. For an unbiased estimafof( f) = o2[Xn(f)].  antithetical stratified estimato¥ans; v (f), two samples per
strata are collected, i.&V = 2L andS = 2 [11]. Whilst the
3. ET STRATIEICATION: AN OVERVIEW first sample is selected randomly similar to StSay; in the

Ith stratum, the second one is taken in an antithetical manner,
ToRa is one of the early alias-free-based FT estimators, withy 2,41 = 2cn,; — Tav,2;- Its estimator is given byl ;(f) =
a convergence rate éf ! [9]. It motivated the stratification 0.5A i [x(7n 2)AN(TN 215 ) + (TN 2041) AN (TN 20415 f)]-
strategies in [10, 11] for highgroint-wiseconvergence rates. It can be shown that both StSa and AnSt satisfy all the as-
sumptions of Theorem 1; (A.4) is fulfilled sinéé = a Ly +b
3.1. Stratification in ET Estimation (e = 1,b > 0). Thus, both estimates uniformly converge at a
rate equal or greater thavi—!. Let PgisaandPanst be the set
Stratification entails selectinf + 1 time instants such that of g rates at which theinbiasedStSa and AnSt estimators
0 <tno <tny <. <try = H and defining the non- ¢can be guaranteed to uniformly convergextor) for any £,
overlapping stratdy ; = [tn g, tng+1], 0 = 0,1, ..., Ly — 1.
Thel' stratumis of widthA v ; = tx 11 —tn g anditscentre o2 [Xgsan (f)] < N Pk; 02 [Xansin (f)] < NP2k (4)
envyg = 0.5(tn 41 +tay). The FT can be written a& (f) =

f:f%*l In.(f) and Iy, (f) = fTN,L z(t)yw(t)e=i27ftqe,  suchthap, € Psisa p2 € Panstands > 0is a constant.

The estimatorf(N(f) of (1) can be expressed by the sum of

1.
individual estimators, one for eadly;(f), as per Corollary 1 Psisa€ (0, 1] andPanst € (0, 1.

Proof SketchGiven Theorem 1, showing that fer> 1, (4)
R Ly—1 does not hold for:(t) = w(t) = g(t) = 1 at f = N suffices.
Xn(f) =Y Inulf). 2)

1The full proof will be published in an extended version of this paper [16].



This corollary combined with (3) stipulates that—! is the andr; are independent far # k, thus,fl(f) andfk(f) are
fastest uniform convergence rate achievable by the StSa amtlependent, i.e. estimator in (5) fulfils assumption (A.2).
AnSt estimators. This is despite the reported expedlitédt-  We note thats = 3 for the hybrid stratified sampling scheme.
wise(i.e. frequency dependent) convergence rat®&of for  Sinceg.u.: = 1 givenw(t) = 1 for somet € 7, it can
AnSt, if 2(t) has a continuous second-order derivative [11]. be shown thatey| < A;! le (tie1 — O|AE, fldt + A =
L.5A;. Similarly, it can be easily seen that;| < A; and
4. HYBRID STRATIFIED FT ESTIMATION |n| < 1.5A;. Hence Xy nysi(f) satisfies assumption (A.3)
of Theorem 14, = A3 = 1.5andA; = 1) as well as (A.1),
Here, we introduce the HySt method and show its notably fagA.2) and (A.4). This concludes the proof that HySt estimator
uniform convergence compared with ToRa, StSa and AnSt. uniformly converges to< (f) at rate at least equal t§ .
Let 75 be some open time interval comprisifigsuch that
4.1. Sampling Scheme and Unbiased Estimator T C 7Tp. The next theorem states the main feature of the

) o _ proposed HySt estimates:
In the HySt technique, the sampling instants are a mixture of

deterministic, i.e. the strata boardefis},, and random Theorem 2: If the signalz(t) has continuous third order
time instants, i.e.{r};/~" that are selected in the same derivative in7p, the hybrid stratified sampling estimator con-
manner as in StSa. For example, fhe random sample is verges uniformly taX (f) in (1) at the rateV — or faster.
located in7; according to the pdfp(r;) = A~tif r, € 7

and zero elsewhere (the subscipts discarded for the brev-  Sketch of Proof Let ¥;(f) = fz(f) — I,(f) and&n(f) =

ity of notation). Hence, the total number of processed signaElL_Ag—l E {|¥;(f)[2}. The second order Taylor expansion
samples isV = 2Ly + 1 and it follows that the strata width :;(t) aboutc, is: (1) = (cr) + (t — ¢)aM () + 0.5(t —

is upper bounded bA; < 3H/Ngmin, assumingV > 3. .12,.2) () 4 7,(t). Sincex((¢) is bounded in7, it can
Similar to StSa and AntY = aLy + bimplies that the HySt 2 chown thatr (1) < Az mad/48 Wheret € T, vi(t) =

fulfilis assumption (A.4) of Theorem 1. (t — )z () /6 andt € T; . After several manipulations,

The HySt estimator ok (f) is given by we reach,(£)] < N—*C andéx (f) = o2 { X n mysi )} <
. Ly-1 N=5C2/2; C = %ﬁ’sxz,maﬁ fgiffl'g,max-
XN hyst(f) = E I(f) Iimin 9

=0 This theorem illustrates that the HySt estimator provides
Lyl a frequency-independent upper bound on the Fourier trans-
= > a(Nat) + Bi(H(n) +w(Hz(tisa), ) form estimation errors that decays to zero at the Mté (o
=0 faster) and the achieved accelerated convergence transpires

where the estimator of FT in thé" stratum, i.e. I;(f) = simultaneously across all frequencies, unlike StSa and AnSt.

J7 x(t)w(t)e~7*"/!dt, is a linear combination af(t;), z(m)

andx(t;4.1) such that 5. SIMULATIONS

ap = A7 [ (i = O At — (i — 7)A(T, f),

v o= A! le (t — t)A(E, f)dt — (. — t)M(7, f), and  We present an example to demonstrate the gains attained by
B = AN, f). SinceX(f) = ZLZI\E)*l I,(f) and the the proposed hybrid stratified FT estimator and compare its

random sampling instants in separate strafagnd r, for ~ Performance to ToRa [9], StSa [10], AnSt [11] and a com-
k # 1) are independent, showing thét(f) is an unbiased Pressed sensing FT estimator. The latter uses random partial
estimator off; (f) implies thatIE[XN myst(H)] = X (f)- Fourier sensing matrices and the efficient greedy subspaces
We start withE[o; (f)z(t,)] = A;l f’T (trer — DA, f)dt — pursuit method [14, 17]; CS is pot considered in [16]. _ As—_
E[(t11 — 7)A(m, )] = 0 since the pdf ofy is p(r) — Afl sume that the overall double-sided processed bandwidth is

. S B =]-250,250] KHz, without prior knowledge of the spec-
i T)\E 7 anddzeE) Ielsewrrllzg. S'm""’;r'ﬁ[ﬁlﬂff_(?” (;_ tral support of the present signalt), i.e., fuyg = 500 KHz.
fTI (7, fa(r)dr = L(f)a hl(f)x(_l“)] -l f’fz( Letx(¢) be a multiband signal comprising four components of
LA, f)di—E[(n—t)A(7, )] = 0. Noting that[/v 1 (f)] = distinct magnitudes, bandwidths and central frequencies such
Elea(£x(ty)] + E[Bi(f)a(n)] + Eln(fz(ti)], we con- thatg(t) = S5 | A,,sinc(Bu(t — d)) cOS(27 fin (t — d))
clude thatX y nyst(f) is an unbiased estimator &f (f) and whered, = 104,_31 — 4KHz, fi = 10 KHz, Ay = 107,
it accordingly satisfies assumption (A.1) of Theorem 1. B, = 8 KHz, f» = 40 KHz, A3 = 40, By = 0 (sinusoid),

f3 = 70 KHz, A4 =2 X 103, B, = 10 KHz, f4 = 210 KHz
4.2. Fast Uniform Convergence Rate andd = H/2. A Hanning window of widthH = 10 ms is

We start with cqnfirming that Theorem 1 applies t(_) the pro-  2the full proofs of all stated theorems will be published in an extended
posed HySt estimator. We recall that the random instgnts version of this paper, analysing the HySt estimates in more details; see [16].
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Fig. 1. MSE (in dB) of the FT estimation for ToRa, StSa, AnSt,
HySt and CS-based techniques at selected frequency poifits in

employed;Nnyq = 5000. For CS recovery, the sparsity level
is set toK = 200 (to avoid prohibitively high time-memory
requirements of inverting larger matrices/dsncreases).

Fig. 1 depicts the MSESN(f), of the FT estimates as a
function of the number of utilised signal samplés,< Nyq
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Fig. 2: Average relative run tim&lcs/Thyst, of CS and HySt

creases, namely fofs and fy, and forN < Nyyg. It can
reduce the estimation MSE by 15 dB. Unlike the HySt
method, it can be noticed that StSa and AnSt estimators are
sensitive to the frequency for which the FT is estimated (for
f4 their results are similar to the basic ToRa). Their reported
point-wise expedited convergence rates can only be observed
for relatively low frequencies or excessivé. Conversely,

the HySt uniform and point-wise convergence are the same,
i.e. N~?, leading to a consistent performance allyeftor the

low frequencyf;, HySt and AnSt produce similar results).
Compared to the CS-based estimation, HySt delivers a com-
petitive performance; it achieves more accurate estimation
results forf; and f4. The fact that CS produces better res-
ults in Fig.1a is not surprising since the componentfat
has the highest magnitude spectrum. Additionalfyf),
which is identical to the signal’s DFT at the examined fre-
guencies, is notably sparse whe¥e > K. Nevertheless,
Fig. 2 shows that CS is immensely more computationally
demanding than the HySt approach, with its run time being
500 to 920 times longer (the brief increase in the complexity
ratio for low N can be explained by the CS suffering from
instability/low-convergence in such cases). This highlights
the computational cost of the CS technique, which can be ex-
cessive, especially for a portable platform with limited power,
memory and processing capabilities (setting highievalues
leads to even higher complexity/run-time of the CS recovery,
however, it can produce more accurate results). Conversely,
the HySt utilises a simple linear estimator that can be im-
plemented using a modified FFT-type process. A complete
comparison between the HySt estimator and other CS-based
FT estimation methods is outside the scope of this paper.

6. CONCLUSION

A simple sub-Nyquist hybrid-stratified-sampling method to

(i.e. for sub-Nyquist rates), at the selected frequency pointgstimate the FT of a deterministic continuous-time signal, at
f1, f3 and f4. Whereas, Fig. 2 exhibits the average ratio ofarbitrary frequencies, from a number of its samples is intro-

the run time Tcs/Thyst, of an unoptimised MATLAB imple-

duced. It does not impose constraints on the bandwidth of

mentations of the compressed sensing and HySt estimatattse processed signal. The HySt estimator mean square error
on a standard PC (Intel i7 CPU, 3.4 GHz) for various valuess shown to uniformly converge to zero at a rate of at least
of N. All plots in Figs. 1 and 2 are obtained from averaging N —?, enabling it to deliver more consistent estimates com-

the outcome 02000 independent Monte Carlo simulations.

pared with its alias-free-type predecessors. This paper serves

Fig.1 reveals that the HySt significantly outperforms its aliasto motivate further research into using alias-free sampling for
free sampling predecessors as the assessed frequency sub-Nyquist processing, e.g., for spectrum sensing [18, 19].
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