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1. INTRODUCTION 

Sigma-Delta (Σ-∆) modulators have been used in many 
applications such as in data converters [1] and frequency 
synthesizers [2]. They employ relatively simple hardware in 
combination with oversampling and noise-shaping to 
acquire high resolution [3], [4]. However, conventional 
discrete-time and digital single-stage  modulators are 
mostly limited to narrowband signal applications due to 
their high oversampling requirements [3-6]. On the other 
hand, emerging technologies such as GSM, GNSS, CDMA, 
DECT have accelerated the need for designers to 
implement Σ-∆ modulators that have extended bandwidths 
while also maintaining relatively relaxed OverSampling 
Ratios OSRs [1], [2], [7]. 

The Time-Interleaving (TI) technique overcomes this 
limitation by using M inter-connected  modulators 
working in parallel, where the processing speed of the 
modulator can be reduced by M times. A further advantage 
of the TI approach is that it offers an elegant means to 

increase the signal bandwidth for both A/D and D/A 
applications without the need to use faster or higher-order 
 modulators [5-7]. 

 There are several behavioural- and circuit-level TI  
modulator topologies reported in the open literature but to 
the best knowledge of the authors, all these topologies have 
concentrated on LowPass (LP) and mid-band resonator 
based  modulators [5-9]. 

In recent studies, analog multi-path TI variable-centre 
frequency  modulators were designed, analysed, 
evaluated and compared using ideal and non-ideal 
behavioural-level models [10], [11]. In [12], the concepts 
proposed on discrete-time TI variable-centre frequency  
modulators were extended to Digital Sigma-Delta 
Modulators (DDSMs), whose Noise Transfer Functions 
(NTFs) employed Butterworth, Chebyshev, Inverse-
Chebyshev and Elliptical filters. The first objective of this 
paper is to implement these designed behavioural-level 
DDSMs on the Xilinx® SpartanTM-3 Development Kit. The 
second objective is to evaluate and compare the 
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performance of these DDSMs with their behavioural level 
counterparts, therefore further validating the design process 
published in [12]. 

A major challenge associated with the design of high-
resolution single-bit quantizer DDSMs is that they are 
highly tonal [13-17]. However, it is a well-known 
phenomenon that single-bit  D/A converters require 
significantly less hardware when compared to their multi-
bit counterparts, as the latter need extra Dynamic Element 
Matching (DEM) circuitry [3], [18]. Digital MASH  
modulators, whose constituent  modulators employ 
single-bit quantizers, overcome this problem by reducing 
the quantization bits step-by-step in each block, therefore 
substantially alleviating the occurrence of spectral tones as 
well as ensuring modulator stability [16], [17], [19].  
In [12], the tonal behaviour caused by the finite 
wordlengths of digital variable centre-frequency single-bit 
based  modulators when excited by sinusoidal input 
signals was mathematically modelled. As this is an 
extension of the reported work in [12], the mathematical 
model is discussed covering the tonal behaviour of the TI 
topologies.   

2. TI VARIABLE‐CENTRE FREQUENCY DDSM DESIGN 

The TI  modulator design starts with the 
conventional SinglePath (SP)  modulator prototype, 
which involves two main steps: the synthesis of the NTF 
followed by the mapping of the NTF to an appropriate 
topology [4].  

The generalized transfer function of an ܮ௧௛-order 
BandStop (BS) NTF is given in (1) which can be obtained 
for a given design by specifying the filter type (i.e. 
Butterworth, Chebyshev, etc.), centre frequency, 
bandwidth as well as the attenuation parameters.  

 

ሻݖሺܨܶܰ ൌ
∏ ൫ଵିଶఈೖ௭

షభା௭షమ൯ಽ
ೖసభ

ଵା௕భ௭
షభା⋯ା௕ಽషభ௭

—ಽశభା௭షಽ
   (1) 

 
In [12], a 4th-order Error-Feedback (EF) topology was 

chosen for the D/A modulators as this topology does not 
cause any signal corruption for its unity-gain Signal 
Transfer Function (STF). 

The final design step involves assigning an appropriate 
loop-filter topology. The Time Delay and Accumulate 
(TDA) topology, commonly known as the Direct Form-1 
IIR filter topology, shown in Figure 2, is preferred for the 
loop-filter as this topology uses smaller feedback and 
feedforward coefficients. Note that in this study, fixed-
point arithmetic is used where these implementations are 
likely to result in overflow due to the recursive nature of 
the IIR filters. Also instead of accumulators, delayers are 
used as the main building blocks to contain the internal 
signals, therefore preventing overflow and hence resulting 
in fewer internal data paths. Table 1 summarizes the 
designed filter specifications and Table 2 shows their 
corresponding coefficients. 

As proposed in [12], the node-equation method is 
applied to convert the designed SP  modulator to its N-
path TI counterpart. It is an easy-to-apply technique and 
results in fewer components when compared to the 
polyphase decomposition method [6], [7]. The main idea of 
the node equation method is to write the node equations of 
the SP topology in the time-domain and individually 
convert these equations in a time-interleaved manner to 
construct the corresponding N-path topology. Figure 3 
depicts the 2-Path TI topology of the SP  modulator 
given in Figures 1, 2. Moreover, a 4-Path topology using 
this developed technique was designed, modelled and 
evaluated as will be reported in Section 4. 

 
 

 X z  Y z


 H z R z  S z
 

Figure 1. Block diagram of the EF topology. 
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Figure 2. The TDA topology. 
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Figure 3. Designed 2‐Path TI topology. 

 
Figure 4. Set‐up environment. 
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Table 1. Designed Filter Specifications.  

Design Specs. Butterworth Chebyshev Inv. Chebyshev Elliptical 

Centre-Frequency 0.2 0.2 0.2 0.2 

Bandwidth 0.02 0.004 0.02 0.02 

Passband Ripple - 1 dB - 1 dB 

Stopband Ripple - - 60 dB 80 dB 

 

Table 2. Feedback and Feedforward Coefficient. 

 ସܮ ଷܮ ଶܮ ଵܮ ସܭ ଷܭ ଶܭ ଵܭ  

Butterworth 
Fractional 0.0549 -0.2099 0.1557 -0.1628 -1.1836 2.1736 -1.0828 0.8372 

sD.15-bit 1799 -6878 5103 -5335 -38785 71223 -35481 27433 

Chebyshev 
Fractional 0.0406 -0.1548 0.1133 -0.1175 -1.1980 2.2287 -1.1252 0.8825 

sD.15-bit 1329 -5072 3713 -3850 -39255 73030 -36870 28918 

Inverse 
Chebyshev 

Fractional 0.2323 -0.8750 0.5650 -0.5381 -1.0037 1.5067 -0.6711 0.4619 

sD.15-bit 7613 -28672 18513 -17634 -32890 49370 -21991 15134 

Elliptical 
Fractional 0.0406 -0.1548 0.1133 -0.1175 -1.1980 2.2287 -1.1252 0.8825 

sD.15-bit 1329 -5072 3713 -3850 -39255 73030 -36871 28918 

 

Table 3. Allocated FPGA Sources.  

Design Specs.  Butterworth Chebyshev Inv. Chebyshev Elliptical 

SP 

# Slices Used 

# LUTs 

# Mult. 18x18 
 

158
40,960ൗ ~1% 

289
40,960ൗ ~1% 

8
40ൗ ൌ 20% 

 

158
40,960ൗ ~1% 

281
40,960ൗ ~1% 

8
40ൗ ൌ 20% 

 

162
40,960ൗ ~1% 

294
40,960ൗ ~1% 

8
40ൗ ൌ 20% 

 

158
40,960ൗ ~1% 

282
40,960ൗ ~1% 

8
40ൗ ൌ 20% 

 

2-Path # Slices Used 

# LUTs 

# Mult. 18x18 
 

174
40,960ൗ ~1% 

435
40,960ൗ ~1% 

16
40ൗ ൌ 40% 

 

174
40,960ൗ ~1% 

435
40,960ൗ ~1% 

16
40ൗ ൌ 20% 

 

179
40,960ൗ ~1% 

458
40,960ൗ ~1% 

16
40ൗ ൌ 20% 

 

174
40,960ൗ ~1% 

435
40,960ൗ ~1% 

16
40ൗ ൌ 40% 

 

4-Path 

# Slices Used 

# LUTs 

# Mult. 18x18 
 

196
40,960ൗ ~1% 

747
40,960ൗ ~1% 

32
40ൗ ൌ 80% 

 

196
40,960ൗ ~1% 

747
40,960ൗ ~1% 

32
40ൗ ൌ 80% 

 

201
40,960ൗ ~1% 

794
40,960ൗ ~1% 

32
40ൗ ൌ 80% 

 

196
40,960ൗ ~1% 

747
40,960ൗ ~1% 

32
40ൗ ൌ 80% 
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3. FPGA IMPLEMENTATION 

The designed 4th-order SP, 2-Path and 4-Path D/A  
modulators are implemented in VHDL and synthesized on 

the Xilinx® SpartanTM-3 Development Kit. As explained in 
Section 2, fixed-point arithmetic is chosen and a 16-bit 
single sinusoidal input signal is applied to the system using 
look-up tables. Note that the 16-bit signal is composed of a 
1-bit sign and 15-bits for the fractional component, hence 
any internal path with a bit number bigger than 16 has an 
integer part. In  

Table 3 this arithmetic is symbolized as sD.15-bit where s 
represents the sign bit, D represents the decimal bits and the 
15-bit represents the fractional part of the number. In other 
words, the total bit number can be calculated as s+D+15. 
For instance: to represent a value of 1.6537, 15-bits for the 
fractional part, 1-bit for the decimal part and 1-bit for the 
sign are needed resulting in a 17-bit fixed point 
representation. The binary value is ‘01101001110101100’ 
which equates to an integer number of 54190 that can easily 
be calculated by multiplying 1.6537 with 215.  

The output data is taken via an RS232 connection and 
processed in the MATLAB environment including the 
decimation filtering.  Figure 4 shows the block diagram of 
the designed set-up. 

There are two universal clocks on Xilinx® SpartanTM-3 
Development Kit, 66 MHz and 100 MHz. In this study, it is 
preferred to clock the modulators at 66 MHz. This results 
in a clock frequency of 33 MHz and 16.5 MHz for the 2-
Path and 4-Path modulators’ individual paths respectively. 
Since a normalized input frequency of 0.2 is needed, a 
sinusoid with a frequency of 26.4 MHz is sampled at 66 
MHz and sample values are restored in a look-up table.  

The tonality behaviour of D/A  modulators will be 
discussed in Section 4. It should be pointed out that dithering 
will be used to alleviate the tonal behaviour of the designed 
 modulators. 

A 16-bit Fibonacci Linear Feedback Shift Register 
(LFSR) is built for its relatively white output spectrum. The 
first 14-bits are taken as output to lower the applied noise 
power. As depicted in Figure 6, -70 dB of white noise is 
obtained for normalized frequencies above 0.055. 

In Figure 5, the output spectrums of the implemented 
 modulators are illustrated for different filter types. The 
occurrence of the tones observed for the elliptical based 
DDSM topology will be explained in Section 4.  

The allocated FPGA sources are summarized in  
Table 3. It should be pointed out that the number of 

slices given in  

 
a) Butterworth, SP 

 
b) Chebyshev, 2‐Path 

 
c) Inv. Chebyshev, 4‐Path 

 
d) Elliptical, 4‐Path 

Figure 5. Output spectrums of the FPGA implementations. 

 

Figure 6. Output spectrum of the Fibonacci LFSR. 
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Table 3 includes the number of flip-flops and latches 
used. Since delayers are chosen as the main building blocks 
to confine the internal path number within the minimum 
range, the adding blocks of the integrators are already 
eliminated.  

The number of multipliers can be easily calculated for a 
TI topology using its corresponding SP prototype as ݉ ൈ
ܰ, where ݉ is the number of multipliers used in the SP 
prototype and ܰ is the path number of the TI topology. 
However, all other components are realized using the slices 
and LUTs of the FPGA, including the upsamplers, 
downsamplers, adders, input LUT, reset circuitry and 
RS232 circuitry. Therefore, it is hard to estimate number of 
slices and LUTs used for a TI topology using its 
corresponding SP prototype. 

4. TONALITY 

The quantization of a sinusoid creates tones, whose 
amplitudes and frequencies can be mathematically 
determined. This applies to variable-centre frequency  
modulators when excited by sinusoidal inputs. Extra care 
must be taken especially in the case of digital  
modulators as these tones are caused both by the quantizer 
and finite wordlengths. These tones can be modelled using 
the sawtooth quantization error model [20]. However, since 
the quantization error is highly input signal dependent, the 
actual power of these tones may become extremely difficult 
to predict. 

The first step of the sawtooth quantization noise model 
is to use the additive noise model. Figure 7 depicts the 
additive noise approximation of the quantizer [4]. 

The second step is to define this additive quantization 
error as an input signal dependent sawtooth function. To 
have better understanding of this theory, the simulated 
quantization error of a sinusoid for a 1-bit quantizer is 
shown in Figure 8. As seen, the quantization error of a 
sinusoid is a sawtooth signal with a frequency of 2 ௖݂ 
multiplied by a sinusoidal signal with a frequency of ௖݂, 
where ௖݂ is the input signal frequency. 

Note that for an m-level quantizer, the frequency of the 
sawtooth signal will be 2݉ ௖݂ as expressed in (2), where Q is 
the quantization step size and ܣ is the input amplitude. 
Also, εଵ and εଶ are the input amplitude dependent errors 
that are assumed to have a white distribution. However, in 
this case they are assumed to be negligible and are 
approximated to zero. 

ܳ௘௥௥ ൌ ቀ
஺

ଶ
െ ଵቁߝ 	ሺ݊ሻݐݓܽݏ	

ொ

ቀ
ಲ

మ
ିఌమቁ

ߨሺ2ݏ݋ܿ	 ௖݂݊ሻ   (2) 

ሺ݊ሻݐݓܽݏ ൌ
ଶ

గ
∑ ሺെ1ሻ௞ାଵ


௞ୀଵ

௦௜௡ሺଶగሺଶ௠௙೎ሻ௡ሻ

௞
    (3) 

ܳ௘௥௥ ൌ
ଶொ

గ
ߨሺ2ݏ݋ܿ ௖݂݊ሻ	∑ ሺെ1ሻ௞ାଵ


௞ୀଵ

௦௜௡ሺଶగሺଶ௠௙೎ሻ௡ሻ

௞
    (4) 

An ideal sawtooth wave function can be written as the 
sum of sinusoids with integer multiples of the fundamental 
frequency which is 2݉ ௖݂ in this case (3). Hence, the 
sawtooth signal is multiplied by a cosine (4), the process of 
calculating the quantization error signal is similar to 
double-sided AM modulation. 

It is well known that, if a sinusoidal signal with a 
frequency of ଵ݂ is AM-modulated by another sinusoid with 
a frequency of ଶ݂, the resulting tones will be at ሺ ଶ݂ െ ଵ݂ሻ, ଶ݂, 
ሺ ଶ݂ ൅ ଵ݂ሻ. Since ଵ݂ ൌ 2݉ ௖݂, 4݉ ௖݂, 6݉ ௖݂ … and ଶ݂ ൌ ௖݂ , the 
resulting tones will be at ሾ… ሺ6݉െ1ሻ ௖݂, ሺ4݉െ1ሻ ௖݂, ሺ2݉ െ

1ሻ ௖݂, ሺ2݉ሻ ௖݂, ሺ2݉ ൅ 1ሻ ௖݂, ሺ4݉ ൅ 1ሻ ௖݂, ሺ6݉ ൅ 1ሻ ௖݂ …]. 
In order to explain it clearly, an example of the sawtooth 

quantization error model is given. It is assumed that a 
sinusoid with a normalized frequency of 0.15 (5) is applied to 
a 1-bit quantizer. This results in a quantization error of (6). 
For the ideal case, the quantization error is not input 
amplitude dependent. 

௜ܵ௡ ൌ  0.15݊ሻ    (5)	ߨሺ2ݏ݋ܿ	ܣ

ܳ௘௥௥ ൌ
ଶொ

గ
∑	0.15݊ሻ	ߨሺ2ݏ݋ܿ ሺെ1ሻ௞ାଵ


௞ୀଵ

௦௜௡ሺଶగ	଴.ଷ௡ሻ

௞
     (6) 

Figure 9a shows the spectrum of the sawtooth with a 
fundamental frequency of 0.3 and Figure 9b depicts its AM 

               

a) Quantization block diagram                  b) Linear model of the quantization 

Figure 7. Additive White Noise Block Diagram. 

 
a ) ܣ ൌ 0.9 

 

b) ܣ ൌ 0.2 

Figure 8. Quantization error of a sinosoid for a 1‐bit quantizer. 
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modulation by a cosine with a frequency of 0.15. It should 
be remembered that tones beyond 0.5 are folded back and 
added to the already existing tones within the range of [0, 
0.5] as their frequency is mapped to f୒ െ f୒ہ ൅  The .ۂ0.5
operator ہxۂ represents the largest integer less than or equal 
to ہxۂ and f୒ is the normalized frequency of the signal.  

Finally, Figure 9c shows the output of the quantizer that 
is equal to the sum of the quantization error shown in (6) 
and the input signal given in (5). The only difference 
between Figure 9b and Figure 9c is the amplitude increase 
of the input frequency tone. 

The sawtooth quantization error model can be summed 
up as follows:  

 

1. The expected high tones in a  modulator 
resulting from the quantization of a sinusoid, not the 
limit cycle tones, can be calculated in terms of their 
frequency and amplitude. 
 

2. These tones can be whitened by dithering, especially 
for multi-level quantizers due to their smaller Q 
resulting in lower amplitude tones when compared 
to the 1-bit quantizer. However, at some particular 
frequencies such as 0.25, 0.125, 0.375…etc dithering 
may not work sufficiently for all the tones. This is 
because harmonics of the sawtooth signal are 
mapped and added to each other at the same 
frequencies resulting in higher amplitude tones. On 
the other hand, variable centre frequency  
modulators exhibit more but smaller amplitude 
tones that can be reduced sufficiently when dithering 
is employed. This makes the proposed topologies 
more attractive compared with their mid-band 
counterparts. 

 
3. Input frequencies, whose values are irrational, result 

in a higher number of tones since the harmonics of 
the sawtooth signal are not folded back to the same 
frequencies. Therefore, the resulting tones are 
expected to have lower amplitudes. On the other 
hand, it is apparent from (3) that the amplitude series 
of the sawtooth harmonics is divergent. Besides, 
irrational frequency tones are mapped close to each 
other and may not be sufficiently suppressed within 
the signal-band, thus resulting in significant SNR 
reduction.  
 

4. The white noise approximation still applies as can 
easily be seen from the noise floor of Figure 9. This 
noise floor is caused by ߝଵ and ߝଶ errors. Needless to 
say that in a  modulator, both the quantization 
noise and the tones will be accumulated and shaped.  

 
5. As already explained, both the quantizer and the 

finite wordlengths of the D/A  modulators cause 
the sawtooth signal tones. Interestingly, the tones 
created by the finite wordlength effects are whitened 
during the accumulation process of the loop-filter 
since their amplitudes are very small for a 16-bit or 
higher wordlength quantization. However, for 
shorter wordlengths, they are not whitened 
sufficiently well and are subsequently processed by 
the 1-bit quantizer. Since these resulting tones’ 
amplitudes are not input amplitude dependent, these 
finite wordlength based tones create extra tonality, 
which may result in  modulator instability. 
Moreover, using EF modulator topologies, as already 
explained, helps to diminish the finite wordlength 
based tones since the already whitened/accumulated 
feedback signal is extracted from the finite 
wordlength input sinusoid. 

 

a) Sawtooth signal’s harmonics

 

b) The resulting quantization error 

 

c) Output of the quantizer 

Figure 9. 1‐bit quantizer under sinusoidal excitation. 
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4.1. Quantization Tones in TI  modulators 

The sawtooth quantization error is caused both by the 
quantizer and the finite wordlengths of the DDSMs as 
mentioned earlier. Hence, both SP and TI DDSMs are 
excited by a quantized sinusoid. The quantization tones are 

also given as input to these modulators and may affect the 
stability and the SNRs especially for the TI DDSMs.  

The TI concept depends on the idea of the perfect 
cancellation of the signal images created by the 
downsampling process [5-7]. However, the quantization 
tones’ images and the input signal images produced by 
downsampling cannot be cancelled perfectly due to the 
finite wordlength of the internal paths. This situation can 
be analogous to the path mismatches that characterize 
discrete-time A/D  modulators [20-23].  

The input normalized signal frequency is 0.2 thus 
causing quantization tones at frequencies: 0.1, 0.3, 0.4 and 
0.5. Figure 10 depicts some of the FPGA implementation 
output spectrums of the designed DDSMs. It is apparent 
that the power of the quantization error tones depends on 
the topology coefficients as well as the path number of the 
DDSM. Unfortunately,  modulators are non-linear 
therefore making it hard to mathematically model the 
effects of the coefficients and the path number on the 
amplitude of these tones.  

Consequently, the tones seen in Figure 10a are 
quantization tones whilst the tones seen at random 
frequencies in Figure 10b, Figure 10c and Figure 10d are 
caused by the limit cycle oscillations.  

 
a) Butterworth, 2‐Path 

   
b) Butterworth, 4‐Path 

 

c) Elliptical, 2‐Path 

 
d) Elliptical, 4‐Path 

Figure 10  Output spectrums of the FPGA implementation. 

 

a) Butterworth, behavioural model 

 

b) Butterworth, FPGA implementation 

Figure 11. SNR Plots for the Butterworth Filter. 
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5.    SIMULATIONS AND EXPERIMENTAL RESULTS 

The SNR curves of the SP, 2-Path and 4-Path DDSMs 
for an OSR of 64 are shown in Figure 11-Figure 14 both for 
the behavioural-level models and FPGA implementations. 
The effective OSR of the SP is 64, whilst it is 128 for the 2-
Path and 256 for the 4-Path topologies.  

Extensive behavioural-level simulations for various 
centre frequencies and bandwidths demonstrate that the 
Inverse Chebyshev and Elliptical filters provide superior 
SNR values compared to their Butterworth and Chebyshev 
counterparts. This is attributed to the evenly distributed 
zeros and steeper transition bands of the former two which 
result in lower quantiztion noise power over the signal 
bandwidth. Furthermore, Inverse Chebyshev filters can be 
designed to have normalized bandwidths up to 0.001 
(asuming Nyquist to be at 0.5) without causing the  
modulator to become unstable. 

On the other hand, the highest SNR difference occurs 
for the Chebyshev filter. This is due to the chosen design 
specifications and resulting coefficients of the loop-filter. 
Therfore it is intended to further extend the work for 
different frequencies and different design specifications in 
order to have a better understanding of this discrepancy. 
For the remaining filter types, an SNR decrement of 3-5 dB 
is observed when implemented on FPGA due to the circuit 
imperfections and clock jittering effects. 

6. CONCLUSIONS 

Novel variable centre frequency dual- and quadruple TI 
 modulators, which employ an assortment of filter 
types and topologies, were designed, modelled and 
analysed. The proposed TI  modulators are well suited 
for a wide range of applications as they offer designers and 
practitioners the flexibility of defining the centre-
frequency, bandwidth as well as the pass-band and stop-
band parameters. The topology complexity, SNRs, stability 
and tonality of the aforementioned multi-path topologies 
were evaluated and compared with each other and against 
their single-path counterparts.  

The designed topologies were implemented and 
synthesized on Xilinx® SpartanTM-3 Development Kit using 
fixed-point arithmetic. Circuit outputs were taken via 
RS232 connection provided on the FPGA board and 
evaluated using the MATLAB routines developed by the 
authors. These routines included the decimation process as 
well. The experiments undertaken by the authors further 
validated the design methodology presented in the paper. 
Furthermore, the implemented topology outputs also 
confirmed the proposed mathematical model of the 
quantization tones of these digital multi-path  
modulators, when excited by sinusoidal input signals. 

 

a) Chebyshev, behavioural model 

 

b) Chebyshev, FPGA implementation 

Figure 12. SNR Plots for the Chebyshev filter. 

 

a) Inv. Chebyshev, behavioural model 

 

b) Inv. Chebyshev, FPGA implementation 

Figure 13. SNR plots for the Inv. Chebyshev filter. 
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a) Inv. Elliptical, behavioural model 
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