
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

A Meta-Heuristic Load Balancer for Cloud Computing Systems

Sliwko L. and Getov V.

This is a copy of the author’s accepted version of a paper, Sliwko L. and Getov V. (2015)

A Meta-Heuristic Load Balancer for Cloud Computing Systems, subsequently published

in The Proceedings of the 2015 IEEE 29th Annual Computer Software and Applications

Conference (COMPSAC), Taichung, Taiwan 01 Jul 2015 IEEE .

It is available online at:

https://dx.doi.org/10.1109/COMPSAC.2015.223

© 2015 IEEE . Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161107913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1109/COMPSAC.2015.223
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

A Meta-Heuristic Load Balancer for Cloud Computing Systems

Leszek Sliwko
School of Electronics and Computer Science

University of Westminster
London, United Kingdom

e-mail: lsliwko@gmail.com

Vladimir Getov
School of Electronics and Computer Science

University of Westminster
London, United Kingdom

e-mail: V.S.Getov@westminster.ac.uk

Abstract—This paper introduces a strategy to allocate services
on a cloud system without overloading the nodes and
maintaining the system stability with minimum cost. We
specify an abstract model of cloud resources utilization,
including multiple types of resources as well as considerations
for the service migration costs. A prototype meta-heuristic load
balancer is demonstrated and experimental results are
presented and discussed. We also propose a novel genetic
algorithm, where population is seeded with the outputs of
other meta-heuristic algorithms.

Keywords-cloud computing; load balancing; meta-heuristic

I. INTRODUCTION
Modern day applications are often designed in such a

way that they can simultaneously use resources from
different computer environments. System components are
not just properties of individual machines and in many
respects they can be viewed as though they are deployed in a
single application environment. In recent years the most
advanced technologies offer cloud solutions [9]. A cloud
system connects multiple individual servers and maintains
the communication between them in order to process related
tasks in several environments at the same time. Clouds are
typically more cost-effective than single computers of
comparable speed and usually enable applications to have
higher availability than on a single machine.

Software as a service, where functionality is delivered to
end users directly from distributed data centers, is a typical
paradigm of the use of cloud systems [20]. Companies no
longer need to be concerned about maintaining a huge IT
infrastructure. Instead they can simply rent thousands of
servers for a required time [9]. A few well-known examples
of services backed up by cloud computing are Dropbox,
Gmail, Facebook, Youtube and Rapidshare.

This elasticity of resources, without paying a premium
for a large-scale usage, is unprecedented in the history of IT
[9]. However, it introduces a new set of challenges and
problems, which need to be solved. The cloud systems are
usually made up of machines with very different hardware
configurations and different capabilities. These systems can
be rapidly provisioned as per the user's requirements [4] thus
resource sharing is a necessity.

This piece of research outlines the significance of
resource management strategies in cloud systems – a class of

systems that are characterized by dynamic changes in their
environments. The conventional containers for applications
in cloud systems are virtual machines (VM), which can be
quickly booted up or shut down on demand [8] and therefore
the strategy needs to be robust enough to accommodate rapid
changes in available resource configurations. In this paper,
we specify an abstract model of cloud resources utilization
(Section II), including multiple types of resources and
consideration of service migration costs. Using an abstract
model, Section III describes the research problem
formulation. We then present the design of a prototype meta-
heuristic load balancer (Section IV), which can be used to
manage medium-size cloud systems. Sections V and VI
provide the details of the experiments setup and results. In
Section VII we conclude by discussing various employed
strategies and highlight their advantages and weaknesses.

II. MODEL OF CLOUD RESOURCES UTILIZATION
Our model consists of nodes and services where the load

balancer task is to keep a good load balance through resource
vector comparisons. In considering what is actually
constituted as a ‘service’ in a cloud environment an example
may be seen in a popular cloud environment such as
Amazon’s EC2, where applications are deployed within the
full operating system VM. One might question the
effectiveness of this approach; however this schema has
many benefits such as the almost complete separation of
execution contexts and a complete control over the local
system environment parameters.

Services run constantly, which means they are not tasks
which can be defined as a finite piece of work to be done
[12] and do require resources, which are provided by the
nodes. Every node has a certain amount of variable resources
available, referred to in this paper as the available resources
set. All resources on nodes are considered renewable and
continuous. Assigning a service to a node only temporarily
lowers available resource levels. Both the resources needed
by the service and the resources available on the node are
described by the vector of integer values. In this experiment
we use four types of resources: CPU, allocated memory,
network bandwidth and I/O operations speed.

A cloud system environment is characterized by very
dynamic changes in resource availability. During its
operations, some nodes might become idle or overloaded,

fi n() ≥ 0

additional nodes might become available, demand for
particular service changes or part of a cloud network could
go offline. Therefore it is critical to provide a mechanism to
automatically migrate services to alternative nodes.

Distributed systems often store or process large amounts
of ‘states’ – a state consists of data such as a database, files,
relations, session data and identifiers, which are frequently
updated [20]. Service migration is similar to jobs check-
pointing [5]. During service migration the service VM is
stopped and its state saved to a state snapshot file. This file
then gets copied over the network to an alternative node,
where the same VM is then restored. Therefore, a service
will always carry some of the system state. Our tests
(VMware) show that saved state size (collapsed snapshot
file) is proportional to application disk usage combined with
memory usage (see ‘general formula’ in [25]).

When we move a service to an alternative node, the state
also has to be transferred. In this model, every service has its
integer cost value assigned which is an abstract
representation of the impact the service migration will.

Figure 1. System transformation and migration cost

III. PROBLEM FORMULATION
Let us define Λ = τ,η,ψ, a, r, c() as a problem space and
system as a pair Λ,μ() . In the d-resource system

optimization problem, we receive a set τ of l mobile
services τ = t1, t2,..., tl{ } and a set η of m fixed
nodes η = n1,n2,...,nm{ } . We call μ :τ →η as a service

assignment function, where each service has to be assigned
to the node.
We also consider:

• ψ = i1, i2,..., id{ } as a set of all different kinds of

resources. To illustrate, for 3=d we could define
ψ = CPU, memory, network{ } .

• a :ψ ×η → Ν∪ 0{ } as a fixed available resources on the
nodes. ()nai is the available level (integer value) of a

resource i on the node n .
• r :ψ ×τ → Ν ∪ 0{ } as a fixed required resources for

services. ri t() is the required level (integer value) of a

resource i of service t .
• c :τ → Ν∪ 0{ } as a service migration cost function. c t()

means cost incurred migrating service executables and
its state and preparing service environment.

For every node η∈n we define a set (){ }nttAn =∈= μτ : of

all services assigned to the node n . We also
define f :ψ ×η → Ν ∪ 0{ } as remaining resources on the

nodes:

 (1)

i.e.: We consider system ()μ,Λ as stable, if

, for every η∈n , ψ∈i (2)

Otherwise the system ()μ,Λ is overloaded.

Each service t is initially assigned by service assignment
function 0μ to some node η . During the system
transformation ()10 μμ → service τ∈t can be reassigned
to any different node η∈n . The process of moving the

service to a different node is referred to as service migration
and this feature generates a service reassigning cost:

c μ0→μ1() t() =
0,

c t(),
⎧
⎨
⎪

⎩⎪

μ0 t() = μ1 t()
μ0 t() ≠ μ1 t()

Every system transformation process ()10 μμ → has its system

transformation cost:
c μ0→μ1() = c μ0→μ1() t()

t∈τ
∑

(3)

Consider initial service assignment 0μ ; service assignment
*μ is optimal for

0μ , if *μ renders system ()*, μΛ stable

and:
c

μ0→μ*() ≤ c μ0→μ() , for every stable system ()μ,Λ .

N.b.: when ()0,μΛ is stable for initial service assignment
0μ , the system transformation cost equals zero as it is

considered optimal.

fi n() = a
i

n() − ri
t∈An

∑ t()

ri
t∈An

∑ t() ≤ a
i

n()

We also consider two service assignment functions μ0 and μ1
 to be neighbors if:

t ∈ τ : μ0 t() ≠ μ1 t(){ } =1 (4)

The d-resource system optimization problem (D-RSOP)
is a variant of classical Resource-Constrained Project
Scheduling Problem (RCPSP), thus D-RSOP also belongs to
the NP-hard (Nondeterministic Polynomial-time hard)
problems class. RCPSP has been examined numerous times
by researchers and numerous solutions have been proposed,
implemented and tested [1][2][3][6][15][18]. RCPSP is
solvable by simple heuristics such as the H1m (heuristic
procedure where each job is assigned a fixed continuous
resource amount equal to 1/m) and HCRA (heuristic
procedure for continuous resource allocation) algorithms
[17], however the result quality is low. Exact methods have
been explored, but either they have a limitation of problem
size or focus only on deriving new lower bounds as an
optimal solution can be found and verified only in small
problem instances [15][21]..

IV. LOAD BALANCER DESIGN
Our load balancer prototype was implemented in a

functional programming language Scala (version 2.11.4).
The source code of this load balancer is available at:
https://github.com/lsliwko/MASB. All computations were
performed on a MacBook Pro with 2.4GHz dual-core Intel
Core i5 and Java 1.6.

The core of the load balancer is a decision-making
module based on meta-heuristic algorithms, which assigns
services to nodes. The load balancer sequence was designed
as shown in Figure 2.

Figure 2. Load balancer sequence

Our load balancer has to maintain a difficult balance
between the speed and quality of its decisions as badly
assigned services can cause global system instability. The
selection of the most efficient algorithm is critical. Based on
previous research [16], as well as our existing work not
every algorithm will perform well with this problem. For the
purpose of the experiment, we have selected several of the
most promising strategies as outlined below.

A. Greedy is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum. In
many problems, a greedy strategy is effective; however, it
usually does not produce an optimal solution in this research.
Nevertheless, a greedy heuristic will yield locally optimal
solutions in a very quick time.

B. Tabu Search (TS) was introduced by Fred W. Glover
in 1986 [10] and further formalized in 1989 [11]. This
algorithm has been suggested by previous research on a
similar problem [14]. TS searches for an improved solution
in immediate neighbors (solutions that are similar except for
one or two minor details). TS enhances its performance by
maintaining a list of visited solutions so that the algorithm
does not consider that possibility repeatedly.

C. Simulated Annealing (SA) is a general method for
finding the global optimum by a process inspired from
annealing in metallurgy heating and controlled cooling of a
material to increase the size of its crystals and reduce their
defects [26]. This effect is implemented in the SA algorithm
as a slow decrease in the probability of accepting worse
solutions as it explores the solution space. Previous research
over use of this strategy in load balancing can be found [16].

D. Genetic Algorithm (GA) — is a search heuristic that
mimics the process of natural selection. GA belong to the
larger class of evolutionary algorithms, which generate
solutions to optimization problems using techniques inspired
by natural evolution, such as inheritance, mutation, selection,
and crossover. Unmodified GA has been previously
examined with good results [15]. In this research we have
deployed a variant with Genetic Drift step — detailed in
[23].

E. Seeded Genetic Algorithm (SDA) — the generation of
random solutions is the most costly step in GA strategy,
sometimes taking up to 60-70% of a total computation time.
Therefore, we have implemented a novel approach, where
Genetic Drift step has been replaced with locally optimal
solutions (i.e.: solutions seeding) found by Greedy, Tabu
Search (TS) and Simulated Annealing (SA) algorithms. This
approach should allow us to dramatically lower the total size
of population (as individual genotypes are of better quality).
To test this approach, respective strategy variations were
created: SGA-Greedy, SGA-TS and SGA-SA.

F. Full Scan (FS) – this strategy performs a full search
over all available configurations. FS strategy is convergent
meaning it is able to find the globally optimal solution in
finite time, under appropriate modeling assumptions.
Multiple optimization techniques have been implemented in
this algorithm, including shaving and path cut [7] and
largest-migration-cost-first.

V. EXPERIMENTS SETUP
The characteristics of a cloud workload in a data center

significantly differ from traditional grid computing [8].
There exists only a limited number of publicly available
cloud system workload traces and those are stripped of
useful details [21]. The research community is mostly
relying on simulations and models to conduct their
experiments. The quality of input data and its realistic nature
is a very important factor as it has a direct impact on the
accuracy of results. In this experiment we have generated
system configuration based on the previous research
[8][13][21][22] and also on our professional experience
while working with Amazon EC2 cloud instances (see Table
1 and Table 2).

TABLE I. EXPERIMENTAL DATA – NODES CONFIGURATION

TABLE II. EXPERIMENTAL DATA – SERVICES CONFIGURATION

VI. EXPERIMENTAL RESULTS
Three strategies (Greedy, Tabu Search and Simulated

Annealing) were designed with the end state (i.e. no more
steps were possible). If a strategy finished before given time
it was continuously re-run and the best result selected. The
number of runs significantly varied per strategy, especially in
the lower sizes of the solutions space (see Figure 3).

The Greedy algorithm was the fastest strategy, testing the
highest number of candidate solutions. It is especially visible
in small-size problems (i.e.: the number of neighbor
candidate solutions is small). However, the returned
solutions have a low quality (see Figure 5).

Figure 3. Runs count (per minute)

Each algorithm creates a number of candidate solutions
during their run. Deciding if a candidate solution is stable
(i.e.: no nodes are overloaded) tends to be the most
expensive step in computations, with around 50-70% of CPU
time (depending on tested strategy) spent on the validation of
solution feasibility routines. As an optimization,
implementations were caching newly created solutions,
meaning the same tasks assignment setup is never tested
twice for being stable as the result is retrieved from memory.
In the chart shown in Figure 4 we have plotted the average
number of unique candidate solutions created in each test
scenario.

Figure 4. Unique candidate solutions created (per minute)

We designed five testing scenarios to see how each
strategy copes with the increasing complexity of the
problem. We have assumed that new nodes are added only
when new services are deployed [21] and a demand for
computing resources increases. We are simulating this
scenario with enabling additional nodes (in each test two
additional nodes and ten more services are added). We have
assumed that the load balancer will be run periodically, thus
we have selected an arbitrary computation time, after which
the best-found solution was selected as output result (see
Table 3).

The Full Scan strategy was used only as a benchmark if a
global optimal solution was found and such limit was not
imposed. The Full Scan strategy was not able to finish
scenarios Test IV and Test V in reasonable time (24 hours
and 5 days respectively). All other strategies’ results were
plotted on the chart above (the lower system transformation
costs are better).

TABLE III. EXPERIMENTAL DATA – NODES CONFIGURATION

Scenario Deployed
services

Enabled
nodes

Computati
on time

Search
space size

Test I 1-20 A-D 30 seconds 204

Test II 1-30 A-F 1 minute 306

Test III 1-40 A-H 2 minutes 408

Test IV 1-50 A-J 4 minutes 5010

Test V 1-60 A-L 8 minutes 6012

VII. RESULTS

As it was demonstrated in previous research [17][19][23],
when solving classical Resource-Constrained Project
Scheduling Problem and its variants, more complex meta-
heuristics (e.g.: TS, SA, GA) perform significantly better
than simple algorithms such as Greedy.

It was confirmed in our results (Figure 5), where more
sophisticated algorithms had generally better results (i.e.
lower system transformation cost). Below we present a
discussion on outcome of each strategy.

Figure 5. Results

A. Greedy – a very short execution time allowed strategy
to be repeatedly run and therefore a few stable solutions were
found in each test. Result solutions were of average quality;
the most time consuming step was the generation of
solution’s neighbors (e.g.: during the Test V scenario, each
step required 60 x 12 = 720 configurations to be examined).

B. Tabu Search (TS) – the main bottleneck in this
approach was the last step where all of all same-value
solutions had to be visited and marked as Tabu. Therefore,
we have introduced a maximum limit of dull (without
bettering solution) moves the strategy will perform, before
the strategy gives up and returns the actual solution. Overall,
the TS algorithm was working very well in small instances
of a problem, which confirms results documented in [14].

C. Simulated Annealing (SA) strategy did require a much
larger number of computations, often reaching only a
fraction of runs in the same time as Greedy or TS. However,
it did not require costly generation of all the solution
neighbors, therefore re-runs count decreased at a much
slower pace than above strategies. This strategy benefited the
most from introducing the solution cache.

D. Genetic Algorithm (GA) variant was previously
examined [23] and its main drawback is a costly generation
of random solutions in the Genetic Drift step, especially
when more types of resources are considered and a solution
space grows in size. Performance was shown to be sufficient
when examining two kinds of resources. However, due to the
number of random generations required in order to create
initial population the strategy performed quite poorly when
four resources were introduced. As in [15], the larger the
problem size, the lower the quality of the found solution was;
while simpler algorithm’s performance (i.a.: Greedy, TS and
SA) was not impacted that much. Upon detailed
examination, we have found out that randomized solutions
pool often contained a significant number of solutions of low
quality. They were often eliminated in the next step;
however, this process had a computation cost. This became
noticeably apparent in instances of a larger problem, where
ten or more nodes are involved.

E. Seeded Genetic Algorithm (SGA) was the most
interesting strategy in our experiment. As mentioned in GA,
the randomized solutions pool contains low quality solutions
and elimination of those is costly, therefore we have
introduced solutions seeding to replace the previously
designed Genetic Drift step [23] in the Genetic Algorithm.
This allowed us to downsize the available genetic pool to
25% of its original size, which greatly reduced the
computation time (around 50-70%) required to find good
solutions without a reduction in quality. SGA returned the
best results within the set time frame. In each case (Greedy
vs. SGA-Greedy, TS vs. SGA-TS, SA vs. SGA-SA), the
found solution was improved and generally less candidate
solutions were examined (in Test V ca.14% less candidates
were visited). In this experiment the variant with TS strategy
returned the best results.

F. Full Scan strategy guarantees a globally optimum
solution is found. Over the course of a research, this strategy
has been heavily optimized: currently only about 9% of a
solutions tree is traversed, the strategy starts moving services
with the highest migration costs first, algorithm cuts leaves
as soon as partial solution is deemed unstable. However, this
still cannot be considered an efficient strategy due to a large
number of computations required. In this experiment, Full
Scan strategy was used to produce a global optima solution
only in minor instances of a problem.

VIII. CONCLUSIONS
In this paper after analyzing the algorithms performance,

we came to the following conclusions, which might help us
design new and/or enhance already existing algorithms:

1. The meta-heuristic algorithms rely on traversing a
search space in small steps, meaning the next selected
solution is usually similar to current one, but usually better.
It might be beneficial to give higher priority to moving
already-migrated services (as they already increased
migration cost) and also prioritize moving services with
smaller migration cost (due to reduced impact upon total
migration cost). However, this step requires building
problem-specific knowledge into algorithms.

2. The initial random generation of candidate solutions is
expensive. This behavior is well visible in the upward trend
in the number of candidate solutions created and tested
(Figure 3) in Genetic Algorithms strategy. The number of
tested solutions does not correlate with the quality of
solutions and better results can be achieved if the solutions
pool is initially created from already pre-computed set.

3. A few strategies succeed in reaching a certain solution
level and they have difficulty to move out from this or
recognize a last state (e.g.: only one neighbor solution is
better). Especially the Tabu Search is prone to this issue. In
this implementation we encountered a counter of steps
without increasing quality of solution. When an arbitrary
limit of steps is reached, strategy returns the current solution.
However, we believe this can be handled in more intelligent
way.

In our experiments, we tested the load balancer on a
medium-sized networked system and found it capable of
generating a huge (6012 possible combinations) solution
search space. We have also shown that increasing the
number of tested resources did not hinder the performance of
examined meta-heuristic strategies. In [23] we tested two
resources, and in [24] we tested three resources. Finally, in
the current experiments a four-resource metric was used.
Without doubt there is an opportunity to develop this area of
research further and to focus on even more complex
configurations.

REFERENCES
[1] Boctor, F. (1990) “Some efficient multi-heuristic procedures

for resource-constrained project scheduling.” European
Journal of Operational Research 49, no. 1 : 3-13.

[2] Bouleimen, K. and Lecocq, H. (2003) “A new efficient
simulated annealing algorithm for the resource-constrained
project scheduling problem and its multiple mode version.”
European Journal of Operational Research 149, no. 2 : 268-
281.

[3] Brucker, P. Andreas Drexl, Rolf Möhring, Klaus Neumann,
and Erwin Pesch. (1999) “Resource-constrained project
scheduling: Notation, classification, models, and methods.”
European journal of operational research 112, no. 1 : 3-41.

[4] Buyya, R. Chee Shin Yeo, Srikumar Venugopal, James
Broberg, and Ivona Brandic. (2009) “Cloud computing and
emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility.” Future Generation
computer systems 25, no. 6 : 599-616.

[5] Chtepen, M., Filip HA Claeys, Bart Dhoedt, Filip De Turck,
Piet Demeester, and Peter A. Vanrolleghem. (2009)
“Adaptive task checkpointing and replication: Toward
efficient fault-tolerant grids.” Parallel and Distributed
Systems, IEEE Transactions on 20, no. 2 : 180-190.

[6] Demeulemeester, E. and Willy Herroelen. (1992) “A branch-
and-bound procedure for the multiple resource-constrained
project scheduling problem.” Management science 38, no. 12
: 1803-1818.

[7] Demassey, S., Christian Artigues, and Philippe Michelon.
(2005) “Constraint-propagation-based cutting planes: An
application to the resource-constrained project scheduling
problem.” INFORMS Journal on computing 17, no. 1: 52-65.

[8] Di, Sheng, D. and Walfredo Cirne. (2012) ”Characterization
and comparison of cloud versus grid workloads.” In Cluster
Computing (CLUSTER), 2012 IEEE International Conference
on, pp. 230-238.

[9] Fox, A. Rean Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, and I. Stoica. (2009) “Above
the clouds: A Berkeley view of cloud computing.” Dept.
Electrical Eng. and Comput. Sciences, University of
California, Berkeley, Rep. UCB/EECS 28: 13.

[10] Glover, F. (1986) “Future paths for integer programming and
links to artificial intelligence.” Computers & Operations
Research 13, no. 5: 533-549.

[11] Glover, F. (1989) “Tabu search-part I.” ORSA Journal on
computing 1, no. 3: 190-206.

[12] Guo, L. Shuguang Zhao, Shigen Shen, and Changyuan Jiang.
(2012) “Task scheduling optimization in cloud computing
based on heuristic algorithm.” Journal of Networks 7, no. 3:
547-553.

[13] Iosup, A. Simon Ostermann, M. Nezih Yigitbasi, Radu
Prodan, Thomas Fahringer, and Dick HJ Epema. (2011)
“Performance analysis of cloud computing services for many-
tasks scientific computing.” Parallel and Distributed Systems,
IEEE Transactions on 22, no. 6: 931-945.

[14] Józefowska J. Grzegorz Waligóra, and Jan Węglarz. (1996)
“A tabu search algorithm for discrete-continuous scheduling
problems” Modern Heuristic Search Methods: 169-182.

[15] Józefowska, J. Marek Mika, Rafal Różycki, Grzegorz
Waligóra, and Jan Węglarz. (1998) “Local search
metaheuristics for discrete–continuous scheduling problems.”
European Journal of Operational Research 107, no. 2: 354-
370.

[16] Józefowska, J. Marek Mika, Rafał Różycki, Grzegorz
Waligóra, and Jan Węglarz. (2001) “Simulated annealing for
multi-mode resource-constrained project scheduling.” Annals
of Operations Research 102, no. 1-4: 137-155.

[17] Józefowska, J. Marek Mika, Rafał Różycki, Grzegorz
Waligóra, and Jan Węglarz. (2002) “A heuristic approach to
allocating the continuous resource in discrete–continuous
scheduling problems to minimize the makespan.” Journal of
Scheduling 5, no. 6: 487-499.

[18] Kolisch, R. and Sönke Hartmann. (1999) Heuristic algorithms
for the resource-constrained project scheduling problem:
Classification and computational analysis. Springer US

[19] Leung, J. ed. (2004) Handbook of scheduling: algorithms,
models, and performance analysis. CRC Press

[20] Limoncelli, T. Strata R. Chalup, and Christina J. Hogan. The
Practice of Cloud System Administration: Designing and
Operating Large Distributed Systems. Vol. 2. Addison-
Wesley Professional, 2014.

[21] Mishra, A. Joseph L. Hellerstein, Walfredo Cirne, and Chita
R. Das. (2010) “Towards characterizing cloud backend
workloads: insights from google compute clusters.” ACM
SIGMETRICS Performance Evaluation Review 37, no. 4: 34-
41.

[22] Moreno, I. Peter Garraghan, Paul Townend, and Jie Xu.
(2013) “An approach for characterizing workloads in google
cloud to derive realistic resource utilization models.” In
Service Oriented System Engineering (SOSE), 2013 IEEE 7th
International Symposium on, pp. 49-60.

[23] Sliwko, L. (2008) “A reinforced evolution-based approach to
multi-resource load balancing.” Journal of Theoretical and
Applied Information Technology, Vol. 4, No. 8: 717-724.

[24] Sliwko, L. and Zgrzywa, A. (2007) “Multi-resource load
optimization strategy in agent-based systems” Lecture Notes
in Computer Science 4496: 348-357.

[25] VMware (2015) “Verifying sufficient free disk space for an
ESX/ESXi virtual machine (1003755)” VMware Knowledge
Base, Article id: 1003755. Retrieved 28.04.2015.

[26] Weinberger, E. (1990) “Correlated and uncorrelated fitness
landscapes and how to tell the difference.” Biological
cybernetics 63, no. 5: 325-336.

