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Abstract—Freshness and safety of muscle foods are generally 
considered as the most important parameters for the food 
industry. To address the rapid detection of meat spoilage 
microorganisms during aerobic or modified atmosphere storage, 
an electronic nose with the aid of fuzzy wavelet network has been 
considered in this research. The proposed model incorporates a 
clustering pre-processing stage for the definition of fuzzy rules. 
The dual purpose of the proposed modelling approach is not only 
to classify beef samples in the respective quality class (i.e. fresh, 
semi-fresh and spoiled), but also to predict their associated 
microbiological population directly from volatile compounds 
fingerprints. Comparison results against neural networks and 
neurofuzzy systems indicated that the proposed modelling 
scheme could be considered as a valuable detection methodology 
in food microbiology. 

Keywords—Fuzzy systems; neural networks; clustering; meat 
spoilage; modelling; classification; wavelets 

I. INTRODUCTION 
One of the most commonly consumed food item globally is 

meat, including beef. However, the shelf life of meat is low 
and the consumption of spoiled meat products could cause 
serious health hazards. Ensuring fast and reliable systems to 
determine safety/quality of meat products would benefit the 
public immensely, and also prevent unnecessary economic 
losses. Beef is one of the commercially extensively consumed 
muscle foods throughout the world. Although it is a good food 
source for proteins and other vital nutrients, it is also 
considered as an ideal substrate for the growth of pathogenic 
microorganisms and consequently spoilage.  

Spoilage usually occurs when the formation of off-flavours, 
off-odours, discoloration, or any other changes in physical 
appearance or chemical characteristics make the food 
unacceptable to the consumer. Currently, meat safety is mainly 
relied on regulatory inspection and sampling protocols. This 
methodology, however, seems insufficient because it cannot 
guarantee consumer protection, as 100% inspection and 
sampling is simply difficult to be achieved. Additionally, 
although more than 50 chemical and microbiological methods 
have been proposed for the detection and measurement of 
bacterial spoilage in meat, most of them are considered as 
time-consuming processes [1]. Hence, the development of 
rapid and non-invasive sensors to detect spoilage and 
pathogenic bacteria is very desirable for Meat Industry. 

Various methods based on analytical instrumental techniques, 
such as Fourier transform infrared spectroscopy (FTIR) [2], 
Raman spectroscopy [3] and hyperspectral imaging [4] have 
been investigated for their potential in assessing meat quality. 
The “mechanism” of these approaches is based on the 
assumption that the metabolic activity of micro-organisms on 
meat results in biochemical changes, with the simultaneous 
formation of metabolic by-products, which could contribute to 
spoilage. The quantification of these metabolic activities is 
associated to a unique “signature”, providing thus information 
about the type and rate of spoilage [5]. 

In the past two decades, awareness about the food safety 
from the point of specific pathogenic bacteria has considered 
the need for a rapid and accurate detection system for 
microbial spoilage by checking the volatile organic compounds 
(VOCs) generated by these microorganisms [6]. The practical 
application of human nose as a smell assessment instrument is 
limited by the fact that our sense of smell is subjective, gets 
tired easily, and is therefore difficult to use. Consequently, 
there was substantial need for an instrument that could mimic 
the human sense of smell and its use in routine industrial 
applications. To promote this technology to industrial 
application, gas/odour sensors became exemplary candidates in 
areas like food industry, environment control, automobile 
industry, indoor air quality check and monitoring, industrial 
production and medicine [7]. 

The electronic nose (enose) is a system initially created to 
mimic the function of human nose. An enose consists of an 
array of chemical gas sensors with broad and partly 
overlapping selectivity that measure volatile compounds, a 
signal-preparation system, and a pattern-recognition system. 
Such device is usually characterised by reproducibility and 
reliability. It is also highly efficient, with a short reaction and 
recovery time as well as a low cost. Although this instrument 
does not allow the identification of compounds and has a high 
detection limit in comparison with GC–MS, it has been 
successfully used in processing monitoring, shelf-life 
investigation, freshness evaluation and authenticity assessment 
in a wide range of food products, including meat products [8]. 

The main applications of enose with respect to meat are in 
assessing quality, spoilage identification, detection of off-
flavours, taints and classification of bacterial strains. In one of 
the earliest research studies in the application of enose to meat 



quality analysis, the changes in the headspace of vacuum 
packaged beef strip sides vaccinated with Salmonella 
typhimurium were evaluated using a metal oxide based enose 
[9]. The volatile compounds of pork, other meats and meat 
products such as sausages were also studied using an enose for 
halal verification [10]. An enose, consisting 18 MOS gas 
sensors, has been used for measuring and modelling flavour 
quality changes of refined chicken fat during controlled 
oxidation. Partial least squares regression (PLS) was utilised as 
a prediction model [11]. An integrated olfactory sensor system 
has been considered for the detection of Salmonella 
contamination in packaged beef steaks utilising neural network 
classifiers [12]. The prediction of total viable counts (TVC) in 
chilled pork using an enose using support vector machine 
(SVM) has been also investigated. In this specific experiment, 
enose and bacteriological measurements were performed on 
pork samples stored at 4 °C for up to 10 days [13].  

The main objective of this paper is to associate, for the first 
time according to literature, volatile fingerprints (snapshots) of 
odour profile with beef spoilage through a multi-input-multi-
output (MIMO) clustering-based fuzzy wavelet neural network 
(CFWNN) system. The proposed CFWNN system classifies 
beef fillets stored either aerobically or under modified 
atmosphere packaging to one of three quality classes (i.e. fresh, 
semi-fresh, and spoiled) and simultaneously predicts the 
microbial load (as total viable counts – TVC) on meat surface, 
based on the biochemical profile provided by the enose dataset. 
Results from CFWNN scheme are compared against models 
based on Adaptive Neural Fuzzy Inference System (ANFIS) 
and multilayer neural networks (MLP). Such comparison is 
considered as a essential test, as we have to emphasise the need 
of induction to the area of food microbiology, advanced 
learning-based modelling schemes, which may have a 
significant potential for the accurate estimation of meat 
spoilage.  

II. EXPERIMENTAL CASE 

A. Sample Preparation and Microbiological Analysis 
The entire experimental case study was performed at the 

Agricultural University of Athens, Greece. A detailed 
description of the experimental methodology, as well as the 
related microbiological analysis of the meat samples, is 
described in [14]. Briefly, the samples were prepared by 
cutting fresh pieces of beef into small pieces and then stored 
aerobically (AIR) and in modified atmosphere packaging 
(MAP) (40% CO2, 30% O2, 30% N2) at different temperatures. 
Meat samples were stored under controlled isothermal 
conditions at 0, 4, 8, 12, 16 and 20°C in high precision 
incubators for up to 434 h, depending on storage temperature, 
until spoilage was pronounced. At the beginning and during 
storage, after appropriate time intervals, duplicate meat 
samples were taken for microbiological, sensory and chemical 
analysis via enose. It was assumed that the microbial 
population at these parts would be comparable. Samples were 
not subjected to any prior pre-treatment such as fat and 
connective tissue removal, or inoculation with selected species 
of bacteria. Samples stored under aerobic conditions were 
analyzed every 24, 24, 12 and 8 h for 0, 4, 8 and 12°C 
respectively. Finally, samples stored at 16 and 20°C were 

analyzed at 4–6 h intervals. Similarly, samples stored under 
MAP  conditions were analyzed every 48, 24, 16, 12, 8 and 6 h 
for 0, 4, 8, 12, 16 and 20°C respectively.    

In parallel, microbiological analysis was performed, and 
resulting growth data from agar plate counts were log10 
transformed and fitted to the primary model of Baranyi in order 
to verify the kinetic parameters of microbial growth (maximum 
specific growth rate and lag phase duration) [14].   

 
Fig. 1.  Population dynamics of TVC at various temperatures (AIR)  
 

The growth curves of total viable counts (TVC) for beef fillet 
storage at different temperatures under aerobic and MAP 
conditions as a function of storage time are illustrated in Figs 
1&2. The growth curves for both TVC cases are similar, with 
the exception that the maximum specific growth rate (μmax) 
for the AIR packaged condition is different than of that of the 
MAP case.  

 
Fig. 2.  Population dynamics of TVC at various temperatures (MAP)  
 

It has been found that packaging under modified atmosphere 
delay the growth rates of all members of the microbial 
association, as well as the maximum population attained by 
each microbial group compared with aerobic storage. Aerobic 
storage accelerates spoilage due to the fast growing 



Pseudomonas spp.; in addition such growth can be 
significantly inhibited by the presence of gas carbon dioxide 
[15]. However, for both aerobic and MAP conditions, the 
growth rate is increased faster, as the storage temperature 
increases.  

Additionally, sensory evaluation of meat samples was 
performed during storage, based on the perception of colour 
and smell before and after cooking [14].  Each sensory attribute 
was assigned to a three-point scale corresponding to: 1=fresh 
(acceptable meat quality and the absence of off-flavours); 
2=semi-fresh (presence of slight off-flavours but not spoiled); 
and 3= spoiled (clearly off-flavour development). In total, 210 
meat samples were evaluated by a sensory panel and classified 
into the selected three groups as fresh (n = 48), semi-fresh (n = 
72), and spoiled (n = 90) for the aerobic case, while 213 meat 
samples were classified as fresh (n = 51), semi-fresh (n = 84), 
and spoiled (n = 78) for the MAP case. 

B. Volatile Samples Acquisition  
Libra enose is a compact analytical device used to identify 

complex odours produced by Technobiochip [16]. The instru-
ment is composed by an array of sensors and a data analysis 
system. Sensors work like biological receptors and the data 
analysis system allows transposing extracted from an odour in 
an “olfactory” image analogous with our “sensation” of a 
smell. The detection of odours is then likely as different odours 
have different “olfactory” images. This distinguishes enose 
from gas chromatography which identifies and measure single 
molecular classes inside a gaseous mixture. Enose recognises 
an odour as a whole, showing the synergic activity of different 
molecular species in a single “olfactory” image. 

 

 

 
Fig. 3.   Libra Electronic Nose  
 

Libra enose uses a set of eight 20MHz piezoelectric 
transducers placed in a measuring chamber. Fig 3 illustrates its 
details.  The device can be quickly reused after a short cycle of 
cleaning using clean filtered air obtained via a carbon active 
filter. The measuring chamber is held at a constant temperature 
during the measurements by a thermostatic electronic system. 
A flow system formed by a micro-electric valve and a micro-
pump conveys the gas sample to the measuring chamber in a 
controlled, by the connected computer, way. For each 
measurement, a beef fillet sample of 5 g was introduced inside 
a 100 ml volume glass jar and left at room temperature (20°C 

±2°C) for 15 min to enhance desorption of volatile compounds 
from the meat into the headspace. The headspace was then 
pumped over the sensors of the electronic nose and the 
generated signal was continuously recorded to a computer.  

Datasets related to volatile extracted information from 
Libra enose as well as the associated microbiological analysis 
from meat samples for both aerobic and MAP cases, were 
provided by Agricultural University of Athens, Greece and 
were further utilised towards the development of the proposed 
intelligent model. 

III. CFWNN ARCHITECTURE 
Generally, the FWNN is a combined structure based on 

fuzzy rules that includes wavelet functions in their consequent 
parts, in the form of a wavelet neural network. In these FWNN 
schemes, such combination is achieved through a Takagi–
Sugeno–Kang (TSK) structure, which allows us to develop a 
system that has fast training speed, and describe nonlinear 
objects that are characterized with uncertainty. The domain 
interval of each input is separated into fuzzy regions and each 
region is associated with a membership function (MF) in the IF 
part of the fuzzy rules. The rules are then defined either by 
experts or are learnt adaptively similarly to ANFIS scheme 
[17]. 

In this research study, a novel Multi-Input Multi-Output 
(MIMO) Clustering Fuzzy Wavelet Neural Network 
(CFWNN) is proposed for the detection of meat spoilage. In 
the general case of FWNNs, the number of fuzzy rules is 
important as it affects the accuracy and the efficiency of the 
developed prediction system. A second problem is related to 
the initialization stage. In fact the initial parameters of the 
network greatly affect the accuracy result, the time required for 
learning and even the convergence and stability of the training 
process.  

 
Fig. 4.  CFWNN architecture 
 
A clustering algorithm is applied initially, as a pre-processing 
step, to the training dataset in order to organize feature vectors 
into clusters, such that points within a cluster are closer to each 
other than vectors belonging to different clusters. The fuzzy 
rule base is derived using results obtained from a clustering 
algorithm. In the proposed scheme, the number of 
memberships for each input variable is directly associated to 



the number of rules, hence, the “curse of dimensionality” 
problem is significantly reduced. Fig. 4 illustrates the 
architecture of the MIMO CFWNN architecture. 

Gaussian membership functions (MF) are commonly used 
in Neuro-Fuzzy (NF) systems. A deficiency of Gaussian-based 
NF networks is their limited ability to localize in the frequency 
domain. By comparison, the proposed CFWNN, where wavelet 
functions are utilized, has the ability to localize in both the time 
and frequency domains. In this paper, the following 
generalized Mexican Hat wavelet function with translation 
( )µ  and dilation ( )σ parameters has been considered as MF: 

2 2

1 exp 0.5x x xµ µ µψ
σ σ σ

   − − −     = − −                   
          (1) 

Translation parameter determines the center position of the 
wavelet, while dilation parameter controls the spread of the 
wavelet. As MF values cannot be negative and larger than 
unity, the Mexican Hat MF has been normalized as follows: 
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where constant 0.446ε = . The structure of the CFWNN is 
explained below layer by layer: 

• Layer 1: This layer is simply the input layer. Nodes in this 
layer pass on the input signals 1 2, ,..., nx x x  to L2. 

• Layer 2: This layer is the fuzzification layer, and its nodes 
represent the fuzzy sets used in the antecedent parts of the 
fuzzy rules. A fuzzification node receives an input and 
determines the degree to which this input belongs to in the 
node’s fuzzy set. The outputs of this layer are the values of 
wavelet MFs for the input values. The normalised Mexican 
Hat MF ijA presented at Eq. 2 have been utilized for the 
proposed CFWNN, where, index j  is associated with the 

input variable, while index i  is linked with MF’s thj input. 
The initial translation variables ijµ at Eq. 3 are equal to the 
values of the components of the vectors iv , which come 
from the second stage of the clustering pre-processing step. 
The dilation values σ ij  are initialised according to  
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These values are calculated based on the matrix U , where 
its elements correspond to the fuzzy memberships of kx  in 

the thi  cluster and have values obtained again from the 
fuzzy c-means part of the clustering step. 

• Layer 3: This layer is the firing strength calculation layer. 
Since each fuzzy rule’s antecedent part has AND 
connection operator, the firing strengths are calculated 

using the product T-norm operator. The most commonly 
used fuzzy AND operations are intersection and algebraic 
product. In this case, the multiplication has been used, and 
the output of this layer has the following form:  

  ( )
n

j ji i
i

R A x=∏                      (4) 

The number of nodes, at this layer, is equal to the number 
of clusters, as it was defined by the clustering pre-
processing step. 

• Layer 4: This layer is the normalization layer. Each node in 
this layer calculates the normalized activation strength of 
each rule by:  

  

1

i
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j
j

R
R

R
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∑
                 (5) 

The normalized activation strength is the ratio of the 
activation strength of a given combination to the sum of 
activation strengths of all combinations. It represents the 
contribution of a given combination to the final result. 

• Layer 5: This layer is related to the defuzzification /output 
part of the CFWNN. Each node at this layer combines the 
output of each node in L4 by algebraic sum operation after 
being multiplied by the output weight value ijw : 

  
1

c
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j
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A. Clustering-based Initialization 
The applied clustering algorithm at layer L2 consists of two 
stages [18]. In the first stage the method similar to Learning 
Vector Quantization (LVQ) algorithm generates crisp c-
partitions of the data set. The number of clusters c and the 
cluster centres ,   1,..., ,iv i c= obtained from this stage are used 
by Fuzzy c-means (FCM) algorithm in the second stage. The 
first stage clustering algorithm determines the number of 
clusters by dividing the learning data into these crisp clusters 
and calculates the cluster centres which are the initial values of 
the fuzzy cluster centres derived the second stage algorithm. 
Let np

1[ , ..., ]    R= ∈nX x x  be a learning data. The first cluster 
is created starting with the first data vector from X and the 
initial value of the cluster centre is taking as a value of this data 
vector. Then other data vectors are included into the cluster but 
only these ones which satisfy the following condition 

     k ix v D− <                         (7) 

where , 1,...,k   X  k nx ∈ =  and ,  1,...,iv i c=  are cluster centres, 
cp

1[ ,..., ]    RnV v v= ∈ , the constant value D is fixed at the 

beginning of the algorithm. Cluster centres iv are modified for 
each cluster (i.e., 1,...,i c= ) according to the following 
equation 



 ( 1) ( ) ( ( ))i i t k iv t v t a x v t+ = + −            (8) 

where 0,1, 2,..t = denotes the number of iterations, [0,1]ta ∈
is the learning rate and it is decreasing during the execution of 
the algorithm (depending on the number of elements in the 
cluster). At the end of first stage, the number of clusters c is 
defined, while the dataset is divided into the clusters. In 
addition, the values of cluster centres iv , 1,...,i c= , which 
can be used as initial values for the second stage clustering 
algorithm, are calculated. In the second stage the fuzzy c-
means algorithm has been used to optimize the values of 
cluster centres.  

B. CFWNN Learning Phase  
The learning algorithm of CFWNN involves the use of the 
gradient descent (GD) method to optimize the various network 
parameters. For each training pair ( , )x y , the system output iO
is obtained in forward pass after feeding an input pattern into 
the network. Then the purpose of this learning phase is that, for 
a given thp training data pair ( , )p px y , the parameters are 
adjusted so as to minimize the error function  
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where P is the number of outputs and pD  the desired response 

of the pth output. Variable pO is defined as in Eq. 6. According 
to the GD method, the weights in the defuzzification layer are 
updated by the following equation 
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where 1,2,..,i p=  and 1,2,..j c= denote the number of 
output and normalization units respectively. The weights of the 
output units are updated according to the following equation 

  ( 1) ( )ij ij ijW t W t Wη+ = + ∆        (11) 

where η  is the learning rate. The ijµ  and ijσ  parameters of 
the wavelet membership function are adjusted by the amount 
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Analytically, the partial derivatives are defined as 
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All modelling schemes have been implemented in MATLAB 
(ver. R2014a, Mathworks.com). 

IV. DECISION SUPPORT SYSTEM DEVELOPMENT  
A machine learning approach, based on the proposed 

CFWNN model, has been adopted in order to create a decision 
support system acting in parallel as an efficient classifier, in an 
effort to classify meat samples in three quality classes (fresh, 
semi-fresh, spoiled), as well as a prediction system. The real 
challenge in this paper is to propose a learning-based structure 
which could be considered as a new benchmark method 
towards the development of efficient intelligent methods in 
food quality analysis. For this reason, CFWNN’s results are 
compared with those obtained by MLP neural networks, and 
ANFIS neurofuzzy identification models which are considered 
as well-recognised tools in chemometric analysis. The 
proposed concept involves the development of two CFWNN 
models for aerobic and MAP storage respectively. 

Pre-processing of the data obtained from enose sensors is 
required to obtain the “olfactory image” of the sample. This 
process involves extracting certain significant characteristics 
from the sensor response curves in order to produce a set of 
data that can be processed by the recognition system of the 
enose. Different features can be extracted and used depending 



on the characteristics of the enose used such as the type of 
sensors adopted, and the stability of the responses of the latter 
to the reference gas, to variations in humidity and temperature 
levels.  

 
Fig. 5. Enose responses during storage of beef fillets at 4°C (AIR) 
 

The responses of all sensor signals classes for meat samples 
stored at 4°C are for the aerobic case are shown in Fig. 5, while 
the related diagram for the MAP case in Fig. 6. 

 
Fig. 6. Enose responses during storage of beef fillets at 4°C (MAP) 

 

Considering that each measurement can be represented as a 
point in an 8-dimensional space, a dimensionality reduction 
algorithm has been applied on those enose data used for 
training purposes. The robust PCA (RPCA) scheme has been 
utilized to obtain principal components that are not influenced 
much by outliers. The RPCA procedure is implemented in 
three main steps. First, the data were pre-processed such that 
the transformed data are lying in a subspace whose dimension 
is at most 1n − . A preliminary covariance matrix was then 
constructed and used for selecting the number of components 
k  that will be retained in the sequel, yielding a k-dimensional 
subspace that fits the data well. Then the data points were 
projected on this subspace where their location and scatter 
matrix are robustly estimated, from which its k nonzero 

eigenvalues 1,..., kl l   are computed. The corresponding 
eigenvectors are the k robust principal components [19]. 
RPCA scheme was implemented in MATLAB, with the aid of 
PLS_Toolbox (ver. 8.0 Eigenvector.com). 

TABLE I.  ROBUST PCA SCHEME 

PCs Robust PCA 
 Eigenvalue Prop. % Cum. prop. % 
1 7.17e+004          71.45           71.45           
2 1.11e+004          21.88           93.34 
3 2.40e+003           4.11           97.45 
4 9.47e+002           1.55           99.01 
5 2.70e+002           0.50           99.50 

 
For this particular experimental case study, the first four 
principal components (PC) were associated with the 99% of the 
total variance, as shown in Table I. These specific PCs were 
extracted and utilised as inputs variables to the learning-based 
models developed for this specific case study, together with 
information from the various storage temperatures, as well as 
the related sampling times. A mandatory check however is 
required to validate the integrity and applicability of the 
developed models in predicting/classifying unknown samples 
to make sure that models could work in the future for new and 
similar data. For the aerobic and MAP cases, 140 and 142 
samples were considered as training subsets respectively, while 
remaining 70 and 71 samples were included in the testing 
subsets. 

V. RESULTS & DISCUSSION 

A. Aerobic storage case study 
CFWNN’s structure consists of an input layer which contains 
six input nodes (i.e. storage temperature, sampling time, and 
the values of the first four principal components). The output 
layer consists of two nodes, corresponding to the predicted 
quality class (fresh, semi-fresh, spoiled) of meat samples and 
the related microbiological attribute, respectively. As both 
output parameters are not independent, in the sense that quality 
class is related to microbiological counts and vice versa, a 
model that combines both these measurements have been 
considered to be desirable.  

In the proposed CFWNN model, 10 final rules have been 
created, using the clustering pre-processing stage. Although the 
classic GD method utilised as a learning scheme, the training 
time was completed in less than 1000 epochs, much faster from 
the equivalent time used to train the MLP neural network. The 
classification accuracy of the model was determined by the 
number of correctly classified samples in each sensory class 
divided by the total number of samples in the class. The 
performance of the model for the prediction of TVC for each 
meat sample was determined by the bias (Bf) and accuracy (Af) 
factors, the mean relative percentage residual (MRPE) and the 
mean absolute percentage residual (MAPR), and finally by the 
root mean squared error (RMSE) and the standard error of 
prediction (SEP) [20]. 

Results revealed that the classification accuracy of the 
CFWNN model was very satisfactory in the characterization of 
beef samples, indicating the advantage of a hybrid intelligent 



approach in tackling complex, nonlinear problems, such as 
meat spoilage. The classification accuracy is presented in the 
form of a confusion matrix in Table II. The model overall 
achieved a 95.7% correct classification, and 100%, 87.5% and 
100% for fresh, semi-fresh and spoiled meat samples, 
respectively.  

TABLE II.  CONFUSION MATRIX FOR CFWNN (AIR) 

 
The sensitivity (i.e. how good the network is at identifying 

correctly the positive samples) as well as the specificity index 
(i.e. how good the network is at identifying correctly the 
negative samples) were high, indicating satisfactory 
discrimination between these three classes. It is characteristic 
that no fresh samples were misclassified as spoiled and vice 
versa, indicating that the biochemical information provided by 
enose data could discriminate these two classes accurately.  

 
Fig. 7.  CWFNN prediction model for TVC (AIR) 
 

The plot of predicted (via CFWNN) versus observed total 
viable counts is illustrated in Fig. 7, and shows a very good 
distribution around the line of equity (y=x), with all the data 
included within the ±1 log unit area. A more comprehensible 
picture of the CFWNN’s prediction performance is however 
provided in Fig 8 where the % relative error of prediction is 
shown against the observed microbial population. Based on 
this plot, data were distributed above and below 0, with 
approximately the majority of predicted microbial counts 

included within the ± 10% RE zone. Samples “6A9”, “8A9”, 
“10A9”, “8A5”, and “8A7” are clearly placed outside the ± 
10% RE zone. The “6A9”, “8A9”, “10A9”, cases correspond 
to AIR samples stored at the same time (16 oC) and collected at 
18h, 24h and 30h respectively. The cases “8A5” and “8A7” 
correspond to AIR samples collected at 24h and stored at 10 oC 
and 12 oC respectively. 

 
Fig. 8.  CFWNN’s Residual Error performance (AIR) 
 

The performance of the CFWNN model to predict TVCs in 
beef samples in terms of statistical indices is presented in Table 
III. Based on the calculated values of the bias factor fB , it can 
be assumed that the proposed model under-estimated TVCs in 
fresh and spoiled samples ( fB <1), whereas for semi-fresh 
samples over-estimation of microbial population was evident (

fB >1). The overall fB was almost optimal (ca. 1.0).  

TABLE III.  PERFORMANCE OF CFWNN MODEL FOR TVC 

Statistical index  (AIR) - CWNN Fresh Semi-
fresh 

Spoiled Overall 

Mean squared error (MSE) 0.0911 0.1112   
0.0681 

0.0881 

Root mean squared error (RMSE) 0.3019 0.3334 0.2610 0.2969 
Mean relative percentage residual 
(MRPR %) 

1.6654 -2.2672 0.5252 -0.1716 

Mean absolute percentage residual 
(MAPR %) 

5.2899 4.4713 2.3303 3.7409 

Bias factor (Bf) 0.9805 1.0212 0.9943 1.0002 
Accuracy factor (Af) 1.0559 1.0446 1.0238 1.0382 
Standard error of prediction (SEP %) 8.1776 5.9582 3.0053 4.5785 

 

The mean relative percentage residual index (MRPR) similarly 
verified the over-prediction for semi-fresh samples (MRPR < 
0) and under-prediction for fresh and spoiled samples (MRPR 
> 0). Finally, the standard error of prediction (SEP) index is a 
relative typical deviation of the mean prediction values and 
expresses the expected average error associated with future 
predictions. The value of the index was 4.57% for the overall 
samples, indicating good performance of the network for 
microbial count predictions. However in the case of fresh 
samples, the index gave higher values (i.e. 8.17%). 



In addition to CFWNN, in this research work, an ANFIS and 
an MLP neural model have been developed to predict TVCs. 
The same validation technique, as well as the same training 
dataset has been utilized also for these cases. Under these 
conditions, ANFIS performed satisfactory, its performance 
however was achieved with a high computational cost, by 
utilizing two membership functions for each input variables 
and 64 fuzzy rules.  Statistical information for ANFIS model is 
illustrated at Table IV. MLP was implemented with two hidden 
layers (with 12 and 6 nodes respectively) and two output 
nodes, one for the sensory class and one for the TVCs.  

TABLE IV.  PERFORMANCE OF ANFIS MODEL FOR TVC 

Statistical index  
 (ANFIS case) - AIR 

Fresh Semi-
fresh 

Spoiled Overall 
ANFIS 

Overall 
MLP 

Mean squared error 
(MSE) 

0.1858 0.2943 0.1821 0.2214 0.2397 

Root mean squared error 
(RMSE) 

0.4310 0.5425 0.4267 0.4705 0.4896 

Mean relative percentage 
residual (MRPR %) 

-2.3051 0.0791 0.7813 -1.1780 -0.4163 

Mean absolute percentage 
residual (MAPR %) 

8.7771 7.9101 3.6923 6.3007 6.2523 

Bias factor (Bf) 1.0162 1.0245 0.9909 1.0081 1.0002 
Accuracy factor (Af) 1.0924 1.0793 1.0381 1.0644 1.0643 
Standard error of 
prediction (SEP %) 

11.6759 9.6944 4.9139 7.2567 7.5514 

 

B. Modified Atmosphere Packaging  case study 
An important advancement in food packaging techniques is 

the development of Modified Atmosphere Packaging (MAP). 
Modified atmospheric packaged foods have become 
increasingly more available, as food manufactures are 
interested for foods with extended shelf life. In addition to 
aerobic TVCs prediction, a CFWNN model has been also 
applied for meat samples packaged under modified atmosphere 
conditions. For this particular case, 14 final rules have been 
created, using the clustering pre-processing stage. 

TABLE V.  CONFUSION MATRIX FOR CFWNN (MAP) 

 
The classification accuracy of CFWNN model again it was 
very satisfactory in the characterization of beef samples, 
however, a comparison against CFWNN’s performance for 
AIR case, reveals an increased level of difficulty in 
predicting/classifying meat samples packaged under MAP 
conditions. The classification accuracy is presented in the form 
of a confusion matrix in Table V. The model overall achieved a 
92.95% correct classification, with 5 misclassifications, 

especially in the semi-fresh category. The sensitivity as well as 
the specificity index was obviously lower than the previous 
case. 

 
Fig. 9.  CWFNN prediction model for TVC (MAP) 
 

The plot of predicted vs. observed TVCs for MAP spectra is 
illustrated in Fig 9, and shows a good distribution around the 
line of equity, with all the data included within the ±1.0 log 
unit area. Based on Fig. 9, three samples (i.e. “12M11”, 
“54M1”, “22M5”) were however in the border line of the ±1.0 
log unit area. “12M11” corresponds to a beef sample stored at 
20oC and collected after 36h of storage, while “54M1” 
corresponds to a sample stored at 0oC and collected after 359h 
of storage. Finally, “22M5” corresponds to a beef sample 
stored at 8oC and collected after 60h of storage.  

 
Fig. 10.  CFWNN’s Residual Error performance (MAP) 

 

Similarly to the aerobic case, CFWNN’s prediction 
performance is also illustrated in Fig 10 where the % relative 
error of prediction is shown against the observed microbial 
population. Based on this plot, data were distributed above and 



below 0, with approximately the majority of predicted 
microbial counts included within the ± 10% RE zone.  

TABLE VI.  PERFORMANCE OF CFWNN MODEL FOR TVC 

Statistical index  (CFWNN case)  
MAP 

Fresh Semi-
fresh 

Spoiled Overall 

Mean squared error (MSE) 0.0737 0.1419 0.0652 0.0975 
Root mean squared error (RMSE) 0.2715 0.3767 0.2554 0.3123 
Mean relative percentage residual 
(MRPR %) 

-2.066 0.6115 -0.1570 -0.3112 

Mean absolute percentage residual 
(MAPR %) 

5.7326 5.7387 2.9474 4.7151 

Bias factor (Bf) 1.0182 0.9907 1.0008 1.0010 
Accuracy factor (Af) 1.0573 1.0589 1.0299 1.0478 
Standard error of prediction (SEP %) 7.1594 7.2481 3.7681 5.7401 

 

The performance of the CFWNN model to predict TVCs in 
beef samples in terms of statistical indices for this case is 
presented in Table VI. The mean relative percentage residual 
index (MRPR) revealed an under-prediction for semi-fresh 
samples (MRPR > 0) and over-prediction for fresh and spoiled 
samples (MRPR <0). Finally, the standard error of prediction 
(SEP) index was 5.74% for the overall samples, indicating an 
inferior performance compared to previous aerobic case. In 
addition to CFWNN, an ANFIS and an MLP neural model 
have been developed to predict TVCs for the MAP case. 
ANFIS performed less satisfactory, while MLP’s performance 
revealed MLP’s deficiency in handling highly non-linear 
problems.  Table VII summarized these performances. 

TABLE VII.  PERFORMANCE OF ANFIS MODEL FOR TVC 

Statistical index   
(ANFIS case)  - MAP 

Fresh Semi-
fresh 

Spoiled Overall 
ANFIS 

Overall 
MLP 

Mean squared error (MSE) 0.0870 0.2518 0.3238 0.2387 0.3029 
Root mean squared error 
(RMSE) 

0.2949 0.5018 0.5690 0.4886 0.5503 

Mean relative percentage 
residual (MRPR %) 

2.1699 -1.3843 1.2657 0.4371 1.2118 

Mean absolute percentage 
residual (MAPR %) 

5.9772 7.9051 6.0712 6.7719 7.8681 

Bias factor (Bf) 0.9756 1.0079 0.9836 0.9912 0.9829 
Accuracy factor (Af) 1.0634 1.0799 1.0640 1.0701 1.0831 
Standard error of 
prediction (SEP %) 

7.7764 9.6556 8.3949 8.9815 10.1169 

VI. CONCLUSIONS 
In conclusion, this simulation study demonstrated the 
effectiveness of the detection approach based on electronic 
nose which in combination with an appropriate machine 
learning strategy could become an effective tool for monitoring 
meat spoilage during aerobic storage at various temperatures. 
The collected “volatile” data could be considered as 
biochemical “signature” containing information for the 
discrimination of meat samples in quality classes 
corresponding to different spoilage levels, whereas in the same 
time could be used to predict satisfactorily the microbial load 
directly from the sample surface. The realization of this 
strategy has been fulfilled with the development of a MIMO 
fuzzy-wavelet network which incorporates a clustering pre-
processing stage. Classification performance was very 
satisfactory, while overall prediction for TVCs has been 
considered as very promising, although lower performance was 
observed especially for samples stored under MAP conditions.  
Prediction performances of MLP and PLS schemes revealed 

the deficiencies of these systems which have been used 
extensively in the area of Food Microbiology. There is need to 
explore further the use of hybrid intelligent systems, and this 
paper has attempted for the first time to associate enose data 
with such systems. Further research will be focused in 
incorporating to the data analysis, specific microbiological 
data, such as Pseudomonas spp., Brochothrix thermosphacta, 
Lactic acid bacteria and Enterobacteriaceae. 
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