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Behavioral/Cognitive

Dynamic Network Mechanisms of Relational Integration

Beth L. Parkin,2 X Peter J. Hellyer,1 X Robert Leech,1 and Adam Hampshire1

1The Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, London SW7 2AZ, United Kingdom, and 2Institute of
Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom

A prominent hypothesis states that specialized neural modules within the human lateral frontopolar cortices (LFPCs) support “relational
integration” (RI), the solving of complex problems using inter-related rules. However, it has been proposed that LFPC activity during RI could
reflect the recruitment of additional “domain-general” resources when processing more difficult problems in general as opposed to RI specifi-
cally. Moreover, theoretical research with computational models has demonstrated that RI may be supported by dynamic processes that occur
throughout distributed networks of brain regions as opposed to within a discrete computational module. Here, we present fMRI findings from
a novel deductive reasoning paradigm that controls for general difficulty while manipulating RI demands. In accordance with the domain-
general perspective, we observe an increase in frontoparietal activation during challenging problems in general as opposed to RI specifically.
Nonetheless, when examining frontoparietal activity using analyses of phase synchrony and psychophysiological interactions, we observe
increased network connectivity during RI alone. Moreover, dynamic causal modeling with Bayesian model selection identifies the LFPC as the
effective connectivity source. Based on these results, we propose that during RI an increase in network connectivity and a decrease in network
metastability allows rules that are coded throughout working memory systems to be dynamically bound. This change in connectivity state is
top-down propagated via a hierarchical system of domain-general networks with the LFPC at the apex. In this manner, the functional network
perspective reconciles key propositions of the globalist, modular, and computational accounts of RI within a single unified framework.
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Introduction
“Relational integration” (RI) is considered to be a definitive com-
ponent of human cognition. It is crucial for abstract thought and
a key aspect of intelligence (Christoff et al., 2001; Penn et al.,
2008; Krawczyk, 2012). Despite much research, the neural basis
of RI remains divisive. In support of the modular perspective
(Christoff et al., 2003; Ramnani and Owen, 2004; Bunge et al.,
2005), the lateral frontopolar cortices (LFPCs) are situated at the
apex of, and receive numerous inputs from, multimodal frontal-
lobe areas (Ramnani and Owen, 2004; Bunge et al., 2009). Fur-
thermore, lesion studies have demonstrated that prefrontal
cortex damage is accompanied by significant impairments in RI
(Duncan et al., 1995; Waltz et al., 1999; Krawczyk et al., 2008).
Finally, neuroimaging studies have reported increased LFPC ac-
tivation when subrule products of compound problems must be
integrated during visuospatial reasoning (Christoff et al., 2001;

Kroger et al., 2002), when integrating semantic relations in prop-
ositional analogies (Wendelken et al., 2008; Bunge et al., 2009),
and during relational matching tasks (Christoff et al., 2003;
Bunge et al., 2009).

However, the existence of an RI module within the LFPC has
been questioned because the observed activation could be a sec-
ondary consequence of a general increase in task difficulty. Spe-
cifically, globalist models (Duncan and Owen, 2000; Cole and
Schneider, 2007; Seeley et al., 2007; Vincent et al., 2008; Duncan,
2010, 2013) propose that activity within “domain-general” cortex
covaries with a broad range of cognitive demands. In this respect
RI, like many other cognitive tasks, may take proxy measures of,
and infer overspecified roles for, domain-general systems
(Hampshire et al., 2012c; Erika-Florence et al., 2014).

To complicate matters further, data-driven analyses support the
view that the human frontoparietal cortices are functionally orga-
nized into distributed networks as opposed to discrete processing
modules (Hampshire et al., 2012c; Erika-Florence et al., 2014). This
observation has led to a refinement of the globalist viewpoint, which
states that cognitive demands should be taxonomized into broad
classes according to the functional networks they recruit (Sporns et
al., 2005; Bullmore and Sporns, 2009; Poldrack, 2011; Yarkoni et al.,
2011; Hampshire et al., 2012c).

Nonetheless, while diverse cognitive demands activate the
same functional networks, they may still differ in terms of the
dynamic processes that those networks engage in. Indeed, com-
putational modeling research has demonstrated how RI may be
encoded by a temporal binding mechanism (Hummel and Ho-
lyoak, 1997; Palva et al., 2010; Knowlton et al., 2012); specifically,
dynamic binding by neural synchrony could encode temporary
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structural relations between knowledge representations distributed
throughout working memory systems. However, there is a lack of
empirical evidence to support this view and, consequently, it re-
mains unclear whether RI should be considered a distinct cognitive
process and, if so, whether it has a basis within a dedicated module, a
specialized functional network, or a specific mode of network dy-
namics. Here, we address this issue by applying a suite of network
analysis methods to data from a novel fMRI reasoning paradigm,
which orthogonally manipulates RI demands while controlling for
task difficulty.

Materials and Methods
Task design. Participants were required to deduce a set of stepwise rules
underlying relationships between abstract shapes in a reasoning display
(Fig. 1) and to then predict the array that would logically follow. A 2 � 2
factorial design was used with reasoning problems differing according to
the number of subrules (NSRs; two or three) and the requirement for RI

(inter-related or parallel rules). Each problem
consisted of sequences of four arrays with each
array divided into three sections housing items
of the sequence. In the two-subrule problems,
the bottom section contained an item that did
not differ across the four arrays to match the
three-subrule problems for visual complexity.
In the parallel problems, the rules governing
the top, middle, and bottom section were step-
wise and unrelated to one another. For exam-
ple, as seen in Figure 1a, the top section
contains a symbol of a triangle and a dot and
the middle section contains an array of eight
triangles. The rules governing the top section is
to rotate the image 90° at each step, and the rule
governing the second section is for the item
that is filled in among the array to move one
position left at each step. In the inter-related
problems, the output of one section forms the
input for another, with the rules governing the
second (and third) sections being related to the
rule in the section above. For example, as seen
in Figure 1c, the rule in the top box is stepwise,
rotating the image right by 90° at each step.
This time the rule in the second section relates
to the rule in the first box. In this example, the
orientation of the triangle above determines
which item is colored in below. Before each
problem, a screen with the word “inter-
related” or “parallel” was presented for 600 ms
to inform the participant which type of prob-
lem would follow.

The participant was required to indicate,
with a button press, when they had derived the
rules and had formed a prediction of what the
next array in the sequence should be. The rule
answer screen then displayed one array, and
participants had to indicate whether that array
matched their prediction. The correct answer
was displayed in 50% of the trials. Participants
were required to indicate their answer (yes or
no) with a button press. Completion of the task
was self-paced and all problems were displayed
on the screen until a response was made. To
motivate and guide behavior, feedback consist-
ing of either the word “correct” in green or
“incorrect” in red was presented in the middle
of the screen for 600 ms after the response.
Subsequently there was a 4 s blank screen be-
fore the presentation of the next problem.

The task consisted of 32 problems in total
with eight of each of the four types of problems.

The surface features that were used in the arrays were matched across the
four conditions to control for visual complexity. Problems were pre-
sented in a predefined pseudorandomized sequence to control for any
effects of rule or task familiarity across the conditions.

Participants. Twenty right-handed participants (10 female) aged
19 –27 years were recruited from the Medical Research Council Cogni-
tion and Brain Sciences Unit subject panel. Two participants were ex-
cluded from the behavioral analysis due to poor performance (�50%
correct) and one was removed from the group level region of interest
(ROI) analyses due to outlier values (�3 SDs from the mean). All par-
ticipants had normal or corrected-to-normal vision and no history of
neurological or psychiatric illness. Participants were reimbursed for their
time.

Data acquisition and preprocessing. The scans were acquired on a Sie-
mens 3T Tim Trio scanner in the Wolfson Brain Imaging Centre at
Addenbrookes Hospital, Cambridge, United Kingdom. Data were col-
lected in one continuous block; the scan continued until the participant

Figure 1. The nonverbal reasoning task. Initially the text “integrated” or “parallel” was presented to inform the participant
which type of problem would follow. Then, the rule derivation screen was presented, which presented the reasoning problem. Last
was the rule application phase, whereby participants indicated whether the item shown to them was the next logical item in the
sequence.
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had completed the task or until 20 minutes had elapsed. Thirty-two 3
mm slices (0.75 interslice gap) gave an in-plane resolution of 3 � 3 mm
and were acquired using a time repetition of 2 s. The T2*-weighed echop-
lanar images depicting the blood oxygenation level-dependent (BOLD)
contrast were acquired with a flip angle of 78°. The stimulus display was
projected onto a screen located behind the bore of the magnet and viewed
via a mirror mounted on the headcoil. Each display subtended a visual
angle of �9°. Before analysis, images were preprocessed using SPM8
(Wellcome Department of Cognitive Neurology). Data were slice-timing
and motion corrected, spatially normalized to the standard Montreal
Neurological Institute template, and spatially smoothed with an 8 mm
full-width at half-maximum Gaussian kernel.
fMRI analyses. In brief, we assessed functional connectivity in terms of
phase synchronization. We then addressed significant changes in re-
gional coupling using psychophysiological interactions. Finally, we
tested for condition-specific effects on (hierarchical) effective connectiv-
ity using dynamic causal modeling. Data were analyzed using these com-
plementary approaches, each designed to address a specific research
question. First, to ensure an unbiased selection of ROIs for subsequent
connectivity analyses, we performed independent component analysis
(ICA) on voxel activation time courses from within the lateral prefrontal
cortices. ICA was conducted using the FSL [FMRIB (Functional Mag-

netic Resonance Imaging of the Brain) Software Library)] MELODIC
(Multivariate Exploratory Linear Optimized Decomposition into Inde-
pendent Components) command line function (Smith et al., 2009) with
the concatenate option. The ICA was restricted to an anatomical mask,
which included bilateral lateral frontal cortex and insula as defined by the
Automatic Anatomical Labeling templates (Tzourio-Mazoyer et al.,
2002) to try to achieve a complete and accurate decomposition of this
region (Braga et al., 2013). Next, seed analyses were conducted to deter-
mine whether the regions identified by the ICA were associated with
different large-scale networks. Specifically, seed time courses were ex-
tracted from the most prominent peak from each (physiologically plau-
sible) ICA component using the MarsBaR ROI toolbox (Brett et al.,
2002), which calculates the average value from all voxels within the ROI.
Data were extracted from seed ROIs as opposed to using raw component
time courses to ensure that time courses did not concurrently capture
variance from distal regions within the mask, which could affect subse-
quent connectivity analyses. This approach enabled us to construct a
two-tier layer network or graph that comprised three key networks and
their constituent nodes. Our subsequent analyses of activity and connec-
tivity among the network nodes were based upon this (data-led) charac-
terization of distributed responses.

Figure 2. Behavioral data for the different task conditions. a, Mean latencies (seconds) and
SEMs, both NSRs and RI caused an increase in response times. b, Percentage of correctly solved
problems and SEMs. RI caused a decrease in the number of correctly solved problems.

Table 1. Coordinates for peak voxels within the frontal cortex for the seven
components of the ICA (1a) and seed connectivity analysis (1b)

1a: Coordinates for peak voxels within the frontal cortex for the seven components of the ICA

Component, region x y z

C1
LFPC left �34 56 �4
LFPC right 34 56 �8

C2
IFS left �46 34 14
IFS right 50 40 18

C3
AIFO left �38 18 �4
AIFO right 46 18 �4
ACC/pre-SMA left �2 24 38

C4
Middle orbitofrontal cortex/ventromedial

prefrontal cortex left
�2 48 �8

ACC right 6 26 26
C5

Superior frontal gyrus/ACC left �4 42 42
Superior frontal gyrus/ACC right 10 38 42

C6
Premotor cortex left �24 2 56
Premotor cortex right 28 8 56

C7
Middle frontal gyrus left �24 40 30
Precentral gyrus left �6 26 42

1b: Seed connectivity analysis

Seed, region x y z t

LFPC
pDLPFC left �46 16 42 8.21
pDLPFC right 40 20 48 5.70
Parietal cortex left �46 �58 44 9.05
Parietal cortex right 44 �62 44 9.05

IFS
Inferior parietal cortex left 32 �66 34 4.22
Inferior parietal cortex right �28 �72 34 4.71
Caudate left �12 10 4 8.93
Caudate right 12 12 4 9.25

AIFO
ACC left �6 26 26 11.93
ACC right 6 26 26 13.82
Temporal parietal junction left �58 �30 26 9.66

The LFPC seed showed connectivity with pDLPFC and parietal cortex. The IFS showed connectivity with inferior
parietal cortex and caudate. The AIFO showed connectivity with the anterior cingulate cortex and temporal parietal
junction.
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Having defined the networks of interest in a model-free manner, fixed
effects analyses were then performed on each individual’s fMRI data
using general linear modeling (GLM) in SPM. The data were high-pass
filtered (cutoff period, 180 s) to remove low-frequency drifts in the MRI
signal. Regressor functions for each condition were created by convolv-
ing timing functions indicating the onset and duration of each event with
a basis function representing the canonical hemodynamic response. Ex-
plicitly modeling the duration of each event was necessary as it ensured
that the resultant parameter estimates represented an estimate of the
neural activity per unit time spent solving the problem. This meant the
model controlled for systematic differences in the time taken to solve
different types of problems with any activation differences observed in
harder problems being due to a heightened as opposed to prolonged
neural responses. Our long response times were beneficial as they en-
abled us to model each event as a miniblock, giving our analysis good

statistical power and allowing us to compare
the first and second halves of each problem
when investigating time-dependent effects.
Activation during the task was modeled with
10 psychological predictor functions. These
consisted of two regressors for each of the four
reasoning conditions (two-subrule parallel,
three-subrule parallel, two-subrule inter-
related, three-subrule inter-related), one for
the rule-derivation phase, and one for the an-
swer phase. Two regressors were used to model
any confounding effects of positive and nega-
tive feedback events. A further six regressors
were included representing the translational
and rotational movement parameters within
the x, y, and z planes.

Task-related changes in network connectiv-
ity were examined using three types of analyses,
each of which provides a complementary per-
spective on distrusted responses. First, phase
synchrony analyses were applied to time course
data extracted from each ROI using MarsBaR.
The phase analysis was applied because it pro-
vides an efficient approach for examining
global changes in connectivity across all re-
gions simultaneously. The time course data
were high-pass filtered at 60 s and an instanta-
neous measure of phase was estimated by ap-
plying the Hilbert transform (Laird et al.,
2002). Phase synchrony across time was then
estimated using the Kuramoto order parame-
ter (Hellyer et al., 2014). Essentially, a time
course representing the phase synchrony was
calculated by taking the exponent of the phase
multiplied by the square root of �1 for each
data point, providing a complex representation
with magnitude of one and argument depen-
dent on phase angle. The absolute of the mean
of this representation across the time courses at
each time point provides a convenient measure
of phase co-ordination according to the fol-
lowing equation:

R(t) �
1

N�
n�1

N

ei�n	t


where R is a vector representing the level of
phase synchrony between N time courses
(ROIs or voxels) at each time point (t) and �
represents the N*t matrix of instantaneous
phases (1, fully synchronous time courses; 0,
fully asynchronous time courses). The model
from the univariate GLM, including all psy-
chological events, movement parameters, and
the constant term, was regressed onto the syn-

chronicity time course R. The RI and NSR contrast values were calculated
from the regression parameter estimates and these were collated for
group-level analysis to determine whether there were consistent task-
related changes in connectivity across the networks. This analysis was
then repeated with time courses extracted from all voxels within the brain
to determine whether RI or NSR manipulations evoked a global change
in synchronization within the brain, which can be interpreted as a task-
related change in global network metastability (Hellyer et al., 2014).

Next, psychophysiological interaction (PPI) analyses were performed
across the graph of network nodes to determine whether task-related
changes in connectivity differed between the networks of interest. PPIs
were conducted using SPM8 in the following standard manner. BOLD
activation time courses were extracted from bilateral masks composed of
10 mm spheres within the inferior frontal sulcus (IFS), LFPC, and ante-

Figure 3. Comparisons between ICA components and representative contrasts reported in previous publications. a, On the right
is the LFPC ICA cluster and on the left is the pattern of activation observed during contingency reversal learning (Hampshire et al.,
2006). b, On the right is the IFS ICA cluster and on the left is the “Reasoning” component from a recent study comparing activations
across 12 challenging cognitive tasks (Hampshire et al., 2012). c, On the right is the AIFO ICA cluster and to the left is a contrast of
targets minus distractors during target detection (Hampshire et al., 2007). All contrasts are thresholded at p�0.05 false-discovery
rate corrected for the whole brain mass.
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rior insula and frontal operculum (AIFO) us-
ing the volume-of-interest (VOI) function,
which extracts the first eigenvector across all
voxels within the mask. VOIs were centered at
peak voxels from the ICA. The neural signal
underlying the BOLD response was estimated
using the deconvolution function before being
interacted with psychological time courses for
the RI (interrelated, 1; parallel, �1) and NSR
(three rules, 1; two rules, �1) factors to pro-
duce the PPIs. The physiological, psychologi-
cal, and psychophysiological time courses were
convolved with the hemodynamic response
function to produce predictor functions. Each
set of predictors was tested with a separate
GLM. That is, one set each for the three seed
regions and for each factor (RI and NSRs).
Movement parameters were also included in
the GLMs. Mean parameter estimates for the
PPI predictor functions were extracted for each
GLM and from each ROI using the MarsBaR
ROI toolbox. These data were exported for
group level analyses in SPSS.

As discussed above, the reasoning problems
applied here involve relatively long average
processing times; therefore, the trials were
modeled as miniblocks as opposed to rapid and
interspersed events. This design allowed us to
investigate the basis of connectivity effects in
more detail within the timescale of each trial.
To assess whether the PPI effect related to the
early or late stage of problem solving, separate
PPIs were created for each of the four condi-
tions of the factorial design with the first half of
the trials set to �1, the latter half set to 1, and
all other time points set to 0. The resultant pa-
rameter estimates for PPI predictors were ex-
tracted for each ROI and were contrasted for the RI and NSR
manipulations. That is, we compared the change in PPI across first and
second halves of the trials for the contrast of RI (integrated minus parallel
conditions) and the contrast of NSRs (three vs two rules).

Finally, dynamic causal modeling (DCM; Friston et al., 2003) was
conducted using SPM12 to examine directed effective connectivity be-
tween network nodes. Each model was fitted to time course data from
three ROIs. In the analysis of between-network connections, time
courses were extracted from masks composed of bilateral 10 mm spheres
based at the peak coordinates from the ICA within the lateral prefrontal
cortex. In the analysis of within-network connections, data were ex-
tracted in the same manner from 10 mm spheres located at peak coordi-
nates from the seed analysis. All ROIs were reciprocally connected and
self-connected (A matrix). The driving input (C matrix) was a time
course that included the durations for all four types of reasoning problem
within the 2 � 2 factorial design. The driving input was connected to all
three ROIs in parallel. The modulatory input (B matrix) included a single
time course with the durations of all parallel problems set to �1 and all
inter-related problems to �1. DCMs only differed with respect to the
connections that were targeted by the modulatory inputs because hy-
potheses related to the basis of the observed increase in network connec-
tivity in response to RI. The models were compared using Bayesian
model selection with fixed-effects analysis because it was assumed that
healthy controls have consistent network architecture (Stephan et al.,
2010); however, we note that model selection with random-effects anal-
ysis favors the same models.

Results
Latencies and accuracies
In the task design (Fig. 1), problems had either two or three
subrules (NSRs) and those rules were either parallel or inter-
related (RI) with the output of one rule providing the input of

another. Thus, there were two difficulty manipulations in a 2 � 2
factorial design. Mean reaction times (from stimulus onset to
participant responding that they had deduced rule) and error
rates are displayed in Figure 2a. A 2 � 2 repeated-measures
ANOVA was performed in which the factors were NSR (3 vs 2
subrules) and RI (inter-related vs parallel). Critically, there were
significant increases in response times for both factors (NSR:
F(1,17) � 18.173, p � 0.001; RI: F(1,17) � 13.320 p � 0.002) and no
significant interaction (F(1,17) � 2.193, p � 0.157; calculated from
correct trials only), demonstrating that both manipulations re-
quired additional processing time. The total numbers of correctly
solved problems were examined using the same design, revealing
a significant main effect of RI (F(1,17) � 11.524, p � 0.003), no
significant main effect of NSR (F(1,17) � 0.014, p � 0.907) and no
significant interaction (F(1,17) � 0.052, p � 0.154).

Determining the functional topography of the frontal cortex
In the ICA analysis, calculation of the Akaike Information Crite-
ria indicated 10 significant components. Three of the compo-
nents related to movement artifacts and were discarded. The
remaining seven components (Table 1a, C1–C7) included well
established functional subdivisions of the lateral prefrontal cor-
tex. Notably, C1 was a good candidate for the RI module as it
included anterior and lateral regions of the orbitofrontal cortex
bilaterally, extending into the LFPC. This region was also similar
(Fig. 3a) to the pattern of activation that we have previously
observed during spatial planning (Williams-Gray et al., 2007)
and contingency reversal learning (Hampshire and Owen, 2006).
C2 included the IFS bilaterally, a region previously associated
with “rule processing” demands (Hampshire et al., 2012c; Fig.

Figure 4. Task-related ICA activation maps FWE corrected at p � 0.05 for the whole brain mass for seed analysis with ICA ROIs
C1–C7. The LFPC, IFS, and AIFO networks (bottom right) were selected for further analysis.
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3b). C3 included the AIFO bilaterally, areas previously implicated
in attentionally demanding tasks, including target detection and
attentional switching (Hampshire and Owen, 2006; Hampshire et
al., 2007; Fig. 3c). The other four components centered on the medial
orbitofrontal cortex (C4), anterior superior frontal gyrus (C5), pre-
motor cortex (C6), and the left middle frontal gyrus (C7). For fur-
ther analysis, 5 mm spherical ROIs were defined at peak coordinates
of these components.

Localizing functional networks within the whole brain
In the seed analysis, activation time courses for each participant
were extracted from the 5 mm ROIs and were averaged across
hemispheres. These “seed” time courses were entered together

into a GLM in which voxel time courses across the entire brain
were the dependent variables (Braga et al., 2013). Whole-brain
maps depicting parameter estimates for each of the seed time
courses were examined at the group level, using a design with seed
as the within-subject factor (C1–C7; Figs. 4, 5a). When the LFPC
was contrasted against the other six seed ROIs at the group level,
significantly greater connectivity was evident across a distributed
cortical network that included bilateral posterior middle frontal
gyrus and parietal cortex. The IFS seed produced greater func-
tional connectivity within a network including bilateral caudate
head, dorsal and ventral visual processing streams, and inferior
parietal cortex. Contrasting the AIFO against the other six seed

Figure 5. a, Frontal cortex regions form subcomponents of distributed cortical networks. Blue represents LFPC seed; green represents IFS seed; red represents AIFO seed. FWE corrected at p �
0.05 for the whole brain mass. b, Phase sychrony and SEM for RI and NSR are presented. The RI but not the NSR contrast was associated with a global increase in phase synchrony throughout the
networks. c, Schematic diagram representing analysis of activation magnitude and connectivity. The LFPC network responds to increased task difficulty in general; however both within-network and
between-network connectivity increases to RI alone. Orange, Significant effect of the NSRs; purple, significant effect of RI; yellow, significant effect of NSRs and RI; gray, no significant effects. PC,
Parietal cortex; IPC, inferior parietal cortex; ACC, anterior cingulate cortex; pDLFC, posterior dorsolateral prefrontal cortex; TPJ, temporopatietal junction.
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ROIs produced significantly greater functional connectivity
within the anterior cingulate cortex/pre-SMA and temporal pa-
rietal junction bilaterally. The other four seeds also produced
distinctive distributed functional networks; however, this study fo-
cuses on the first three due to their established roles in relational
integration, reasoning, and attentional task demands. For further
analysis, 5-mm-radius ROIs were defined at peak-activation coordi-
nates from the three seeded contrasts (Table 1b). The ROIs from the
ICA and seed analysis were structured into a two-layer hierarchical
graph (Fig. 5c), in which the top layer was formed from the LFPC,
IFS, and AIFO ROIs, and the bottom layer was formed from the
networks of ROIs identified in the seed analysis.

The relationship between RI and network activation magnitudes
To test the hypothesis of a dedicated RI module, we examined the
orthogonal contrasts of RI (inter-related minus parallel trials)
and NSR (three-subrule minus two-subrule trials). Contrast val-
ues were calculated for each ROI within the two-layer graph, for
each participant, and these data were examined at the group level
using a GLM where the within-subject conditions were Contrast
(two), Network (three), ROI (six), and Hemisphere (two). There
was a significant interaction of Contrast � Network (F(2,36) �
6.98, p � 0.003), a significant main effect of Network (F(2,36) �
41.74, p � 0.001), and a significant main effect of Hemisphere
(F(1,18) � 7.45, p � 0.014). One-sample t tests demonstrated that,
in accordance with a role in RI, the LFPC ROIs were significantly
more active during RI; however, the broader LFPC network [pos-
terior DLPFC (pDLPFC) and parietal cortex] responded in the
same manner. Furthermore, the LFPC and its associated network
showed significantly greater activation when processing prob-
lems with a higher NSRs. Paired t tests were conducted to directly
compare RI and NSR contrasts within this network and revealed
no significant differences. Conversely, the IFS network showed sig-
nificant increases in activation to NSR task manipulations only, as
demonstrated by both one-sample t tests and pairwise comparisons
of NSR versus RI contrasts. There were no significant main effects,
interactions, or pairwise comparisons within the AIFO network (Ta-
ble 2). Thus, results were consistent throughout networks and across
hemispheres, which is counter to the notion of functionally unique
and anatomically discrete neural modules.

Voxelwise analyses were conducted within the whole brain
using a 2 � 2 factorial design to determine whether there were any
other voxels in the brain that were specifically sensitive to RI
demands (Table 3; Fig. 6). The positive effect of condition (t

contrast collapsed across all four conditions) rendered activation
within a bilateral set of brain regions including IFS and inferior
parietal cortex. The main effect of RI rendered a set of brain
regions including the LFPC bilaterally. However, in accordance
with the ROI analyses, a similar pattern of activation was evident
for the main effect of NSRs. Contrasting RI minus NSR main
effects rendered no voxels within the frontal lobes that were spe-
cifically sensitive to RI demands.

The relationship between RI and network phase synchrony
To determine whether RI involves a global increase in activation
synchrony across the frontoparietal networks, we estimated the
instantaneous phase of each network node using the Hilbert
transform (see Materials and Methods). The instantaneous phase
can be used to assess aspects of synchrony across many activation
time courses and how these change with task demands. Compar-
ing the spread of phases across the network nodes at each time
point generated a time course of global phase synchrony
throughout the two-tier graph. Each individual’s time courses of
psychological events and movement parameters were extracted
from the GLMs and regressed together with a constant onto the
phase synchrony time course. The resultant parameter estimates
were contrasted for the RI and NSR main effects at the group
level. There was a significant increase in the phase synchrony for
the RI contrast (t � 2.71, p � 0.014) and no significant effect for
the NSR contrast (t � �0.25, p � 0.81; Fig. 5b). There were also
no significant effects for the six movement parameters on phase
synchrony measures (all p � 0.1). The greater effect of RI on
network connectivity was further supported when comparing di-
rectly between the RI and NSR contrasts with a paired t test (t �
2.26, p � 0.037). A second analysis examined phase synchrony in
the same manner but with time courses extracted separately for
all voxels within the brain. Again, there was a significant effect of
RI on phase synchrony (t � 3.23, p � 0.005) and no effect of
NSRs (t � �0.75, p � 0.46), demonstrating that the RI synchrony
effect was widespread throughout much of the brain. When the
analysis was repeated but focused only on brain regions that
showed deactivation during more difficult reasoning trials (con-
sisting primarily of sensorimotor areas), there was no significant
effect of RI (t � 1.43, p � 0.17) or NSRs (t � �0.19, p � 0.86) on
synchrony. That is, while there was a global increase in phase
synchrony throughout frontoparietal networks and more broadly,
this increase was not evident for all brain regions.

Table 2. Activation magnitudes within the three networks in response to NSR and RI task manipulations

ROI

Number of subrules (test value, 0) Rule integration (test value, 0) Paired t test, NSRs versus RI

t Significance (one-tailed) t Significance (one-tailed) t Significance (two-tailed)

LFPC network
LFPC left 2.675 0.008* 2.393 0.014* �0.303 0.765
LFPC right 1.702 0.053* 1.737 0.050* 0.181 0.859
pDLPFC left 3.801 0.001* 3.245 0.002* �0.412 0.685
pDLFPC right 1.467 0.080* 2.821 0.006* �1.004 0.329
Parietal cortex left 3.219 0.003* 2.813 0.006* �0.361 0.722
Parietal cortex right 2.806 0.006* 4.070 0.001* �1.264 0.222

IFS network
IFS left 4.344 0.000* 0.112 0.456 3.901 0.001*
IFS right 3.688 0.001* 0.420 0.339 2.513 0.022*
Inferior parietal cortex left 2.436 0.013* 0.608 0.275 1.686 0.109
Inferior parietal cortex right 2.961 0.004* �0.212 0.417 2.179 0.043*
Caudate left 1.458 0.081 �0.312 0.379 1.573 0.133
Caudate right 0.603 0.277 �0.640 0.265 0.952 0.354

The LFPC network showed increased activation during NSR and RI manipulations. The IFS showed increased activation to NSR only.

*Statistically significant at p � 0.05.
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Table 3. Peak activation coordinates for whole-brain analysis

x y z t Region Approximate BA

Positive effect of condition
32 �88 4 13.04 Occipital cortex (V2) right 18
�26 �90 �4 11.89 Occipital cortex (V2) left 18
26 �62 46 11.72 Superior parietal cortex right 7
28 6 52 10.03 Premotor right 6
�24 8 54 8.98 Premotor left 8
�44 30 24 8.30 Inferior frontal gyrus (triangularis) left 48/45
46 36 28 4.11 Inferior frontal gyrus (triangularis) right 45
�42 4 34 6.45 Inferior frontal gyrus (opercularis) left 44
50 12 26 5.12 Inferior frontal gyrus (opercularis) right 44
�28 �70 �50 4.56 Cerebellum left Not applicable

General difficulty (3-subrule integrated vs 2-subrule parallel)
50 �66 44 5.97 Inferior parietal cortex right 39
�4 44 44 5.90 Superior frontal gyrus midline 9
�14 32 58 5.11 Frontal eye fields left 8
�42 48 �8 4.96 LFPC left 47/10
�2 �62 34 4.94 Precuneus n/a
2 �82 24 4.56 Cuneus n/a
�58 �44 �8 4.48 Inferior temporal gyrus left 20
�60 �26 18 4.39 Superior temporal sulcus left 42
20 �80 �32 4.11 Cerebellum right n/a
�10 76 �2 3.95 Medial frontopolar cortex left 10
66 �34 �6 3.58 Middle temporal gyrus right 21
54 �12 �24 3.48 Inferior temporal gyrus right 20
66 �50 18 3.31 Superior temporal sulcus right 22
24 20 �20 3.15 LFPC right 11
�38 �74 48 2.96 Inferior parietal cortex left 7
�42 �8 �30 2.75 Inferior temporal gyrus left 20
�26 58 18 2.74 LFPC left 10
54 38 �2 2.72 LFPC right 45
62 �40 12 2.63 Superior temporal sulcus right 42
42 18 �30 2.61 Temporopolar right 38
�52 �60 18 2.60 Inferior parietal cortex left 39
52 36 �4 2.58 LFPC right 45
�2 �42 �32 2.58 Vermis n/a
64 �38 10 2.57 Superior temporal sulcus right 22
�2 54 12 2.57 Medial frontopolar cortex 10

The main effect of RI
2 40 42 5.52 Superior frontal sulcus midline 9
54 �64 40 5.48 Inferior parietal cortex right 39
�42 50 �8 5.10 LFPC left 47/11
46 48 �12 4.78 LFPC right 47
38 22 54 4.60 Posterior middle frontal gyrus/DLPFC right 9
38 20 44 4.46 Posterior middle frontal gyrus/DLPFC right 46
�2 �62 34 4.09 Precuneus n/a
�44 �58 36 4.04 Inferior parietal cortex left 39
�40 20 42 3.85 Posterior middle frontal gyrus/DLPFC left 46
�34 18 �18 3.68 Temporopolar left 38
66 34 �6 3.57 LFPC right 47
�38 14 56 3.48 Posterior middle frontal gyrus/DLPFC left 9
�14 30 50 3.30 middle frontal gyrus/DLPFC left 9
�62 �24 �18 3.29 Inferior temporal gyrus left 20
52 �12 �22 3.24 Inferior temporal gyrus right 20

The main effect of the NSRs
2 �82 22 5.27 Cuneus
�8 �76 2 4.70 Occipital cortex (lingual V1) left 17
10 �70 2 4.48 Occipital cortex (lingual V1) right 18
�48 �40 2 4.47 Middle temporal gyrus left 21/37
�48 �28 14 4.44 Posterior superior temporal gyrus left 48
�50 22 �10 4.44 Temporopolar left 38
�14 32 58 4.37 Frontal eye fields 8
�6 46 46 4.32 Middle frontal gyrus/DLPFC left 9
�50 �56 26 3.92 Inferior parietal cortex left 39
48 �68 44 3.73 Inferior parietal cortex right 39
20 48 24 3.44 Middle frontal gyrus/DLPFC right 46

(Table Continues)
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PPIs
Functional connectivity effects were ex-
amined in greater detail using PPI models
focused on the RI and NSR contrasts. Un-
like the phase synchronization measures,
which considered all nodes simultane-
ously in terms of phase and so provided a
global measure of connectivity, the PPI
analysis considered specific connections
in terms of task-related changes in inter-
regional regression coefficients, either be-
tween networks and nodes or between
networks. PPIs were calculated across all
edges of the two-tier graph for the RI and
the NSR contrasts using the LFPC, IFS,
and AIFO as seed regions (see Materials
and Methods). A GLM was conducted on
the upper tier edges of the graph (between
networks), with the conditions Contrast
(two), Seed ROI (three), and Target ROI
(two). There was a significant Contrast *
Seed interaction (F(2,36) � 4.86, p �
0.014) and no other significant effects (all
p � 0.1). One-sample t tests showed that
this interaction was driven by an asym-
metrical and task-specific change in con-
nectivity with increases in the IFS¡LFPC
and the IFS ¡ AIFO PPIs for RI but not
for NSRs. None of the other edges within
the upper tier of the graph showed signif-
icant PPI effects. Three GLMs were conducted examining con-
nections from the upper to the lower tier of the graph for each of
the three networks. Conditions were Contrast (two), ROI (two),
and Hemisphere (two). Analysis of the LFPC network showed a
significant main effect of Contrast (F(1,18) � 6.77, p � 0.018) and
a subthreshold interaction of Contrast � Hemisphere (F(1,18) �
3.95, p � 0.062). Similarly, analysis of the IFS network showed a
significant main effect of Contrast (F(1,18) � 6.98, p � 0.017) and
an interaction of Contrast � Hemisphere (F(1,18) � 4.52, p �
0.048). There were no significant effects for the analysis of the
AIFO network (all p � 0.1). One-sample t tests showed that these
effects were driven by increased functional connectivity within
the LFPC and IFS networks for the RI contrast but not for the
NSR contrast (Fig. 5c; Table 4). Analysis of the within-trial PPI
effects (see Materials and Methods) showed that there was a
greater increase in connectivity toward the end of each trial when
processing integrated relative to parallel rules. By contrast, there
was no such effect when comparing trials with three minus two
rules (Fig. 7). Thus, connectivity was greatest toward the end of
RI trials, when rules had been identified and integrated.

Relational integration and effective connectivity
The PPI results indicated a possible asymmetry in internetwork
connectivity during RI; however, while this method is optimal for
examining changes in connectivity strengths in response to psy-
chological manipulations, it is not ideal for determining direc-
tions of information flow between regions. Consequently, a
pertinent question regards whether a particular region formed
the source of the observed increase in connectivity. To address
this question, we compared seven DCMs, which include driving
psychological inputs to network nodes, connectivities between
nodes, and psychological modulators of the strengths of those
connections. All models were fitted to the observed activation
time courses from the AIFO, IFS, and LFPC regions. Two psycho-
logical time courses were generated: one “Task” captured the
onsets and durations for all four types of trials (task, 1; rest, 0); the
other “RI” captured the RI contrast (inter-related, 1; parallel,
�1). The models (Fig. 8) were fitted to each individual’s ROI
data. In all seven models, Task was applied as a driving input to all
three regions and all three regions had reciprocal connections.
The RI contrast formed the modulatory input in all models; how-
ever, the models differed with respect to the connection targeted
by RI modulation. Specifically, in three of the models, the mod-

Figure 6. Voxelwise contrasts false-discovery rate corrected at p � 0.05 for the whole brain mass. a, Positive effect of condi-
tion. b, General difficulty (3-subrule integrated vs 2-subrule parallel problems). c, Main effect of RI. d, Main effect of NSRs. There
were no differences between the main effects.

Table 3. Continued

x y z t Region Approximate BA

16 50 14 3.02 Anterior cingulate right 32
32 22 40 2.93 Middle frontal gyrus/DLPFC left 46
36 �46 �24 3.25 Cerebellum Not applicable
54 �64 �16 3.16 Posterior inferior temporal gyrus right/fusiform gyrus 37
68 �44 18 3.24 Superior temporal gyrus right 22
70 �28 14 2.90 Superior temporal gyrus right 22
12 �40 4 2.91 Precuneus right 27

7668 • J. Neurosci., May 20, 2015 • 35(20):7660 –7673 Parkin et al. • Dynamic Network Mechanisms of Relational Integration



ulatory input was applied to both efferent connections from the
LFPC, the IFS, or the AIFO node. These models tested the hy-
pothesis that RI-related functional connectivity changes were
driven directly from one network to all others. In another two
models, either all of the between-node connections or none of the
connections were modulated by RI to test the hypothesis that
there was no specific source of RI-related functional connectivity.
Finally, AIFO ¡ IFS and IFS ¡ LFPC connections were modu-
lated in a “bottom-up” model and LFPC ¡ IFS and IFS ¡ AIFO
connections were modulated in a “top-down” model to test the
hypothesis that RI functional connectivity is propagated through
a hierarchical arrangement of networks. Bayesian model selec-
tion with fixed effects analysis clearly favored the top-down
model (Fig. 8), supporting a hierarchical interaction between
frontoparietal networks during RI with the LFPC as the ultimate
source. Three further models were compared focusing on connec-
tions between ROIs (collapsed across hemisphere) within the LFPC
network to test the hypothesis that within this network it is the LFPC
that drives RI functional connectivity. In the three models, Task was
the driving input to all nodes and all nodes were connected with RI
modulating all connections, just the bottom-up connections, or just
the top-down connections (Fig. 9). In accordance with the internet-
work analysis, Bayesian model selection with fixed effects analysis
favored the top-down intranetwork model.

Discussion
This study examined the relative validity of the modular, global-
ist, and network perspectives on the neural basis of RI by applying
a combination of neuroimaging methods that measure different
aspects of brain activity and connectivity. As opposed to favoring
any of these apparently disparate models, the results demon-

strated how aspects of each can be recon-
ciled within an alternative framework,
which captures the interactions of distrib-
uted frontoparietal networks.

Notably, the modular perspective of RI
is largely based on neuroimaging studies
that have reported increases in LFPC activ-
ity during tasks designed to target RI pro-
cesses (Christoff et al., 2001, 2003; Kroger et
al., 2002; Wendelken et al., 2008; Bunge et
al., 2009). These studies have typically ap-
plied mass-univariate analyses that do not
capture network dynamics because they
treat activations in different regions inde-
pendently. The modular perspective is
further supported by the observation that
damage to LFPC is associated with im-
pairments in tasks involving RI (Duncan
et al., 1995; Waltz et al., 1999; Krawczyk et
al., 2008). Together, this suggests that
LFPC is both “active during” and “neces-
sary for” RI, fulfilling a central tenet of
cognitive neuroscience for associating a
function with a region. However, al-
though this relationship provides support
for a critical involvement of LFPC in RI, it
does not necessarily equate to proof of a
discrete and dedicated LFPC module.

Interestingly, the globalist perspective
is largely based on the same function-to-
region mapping approach; however, it
considers how a common pattern of fron-

Figure 7. Early-to-late modulator PPI effect for RI and NSRs. There was increased functional connectivity in late versus early
stages of each problem for the RI contrast but not for the NSR contrast.

Table 4. Connectivity within and between networks in response to NSR and RI task
manipulations

Connectivity

NSRs (test value, 0) RI (test value, 0)

t
Significance
(one-tailed) t

Significance
(one-tailed)

Within networks
LFPC

pDLPFC left �0.742 0.234 4.054 0.001*
pDLPFC right 0.153 0.440 2.976 0.004*
Parietal cortex left �0.657 0.260 2.999 0.004*
Parietal cortex right �0.139 0.446 3.539 0.001*

AIFO
ACC right �0.114 0.456 0.579 0.285
ACC left �0.301 0.384 1.297 0.106
Temporoparietal junction left �0.935 0.181 0.997 0.166
Temporoparietal junction right �0.214 0.417 0.534 0.300

IFS
Inferior parietal cortex left �0.894 0.192 1.281 0.108
Inferior parietal cortex right �0.676 0.254 2.125 0.024*
Caudate left �0.123 0.452 2.638 0.009*
Caudate right �0.880 0.195 2.927 0.005*

Between networks
LFPC

AIFO �1.260 0.112 0.669 0.256
IFS �0.892 0.192 1.222 0.119

AIFO
LFPC �0.819 0.212 1.185 0.126
IFS �0.026 0.490 0.609 0.275

IFS
LFPC �0.717 0.241 2.307 0.017*
AIFO �1.135 0.136 2.205 0.021*

There is increased connectivity in response to the RI within the LFPC and IFS networks as well as between IFS¡ LFPC
and IFS¡ AIFO networks.

*Statistically significant at p � 0.05.
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toparietal brain activation is observed during a broader range of
cognitive tasks, which are often assumed to be distinct (Duncan
and Owen, 2000). Based on this observation, the globalist per-
spective proposes that domain-general cortex (Cole and Sch-
neider, 2007; Seeley et al., 2007; Duncan, 2010) rapidly adapts to
support whichever task is currently being undertaken. Electro-
physiology research supports this interpretation, because neurons
within the domain-general cortex adapt to selectively represent task-
relevant information, including stimulus dimensions, rules, and
responses (Freedman et al., 2001; Miller and Cohen, 2001; Stokes
et al., 2013).

Here, when we applied a similar mass-univariate mapping
approach, the results clearly supported the globalist perspective.
Specifically, while we observed significant activation within the
LFPC in response to RI, the LFPC also responded when the num-
ber of nonintegrated subrules increased. Furthermore, other
frontoparietal brain regions showed a similar response to RI de-

mands. This result accords poorly with the hypothesis of a dedi-
cated LFPC module. However, it does not necessarily follow that
the frontal and parietal cortices house a functionally homoge-
neous domain-general resource; nor is it necessarily the case that
RI is a proxy for more general cognitive processes.

There is growing evidence that the frontoparietal cortices
house multiple functionally distinct networks, each supporting a
different aspect of cognition. These networks are evident when
applying data-driven analyses to extract spatial components from
fluctuations in regional activation at rest (Smith et al., 2009),
during task performance (Dosenbach et al., 2007; Erika-Florence
et al., 2014), or from task-rest activation patterns under different
task conditions (Poldrack, 2011; Hampshire et al., 2012c). In
close accordance, applying ICA to activation time courses from
within the lateral frontal cortices delineated multiple distinct
subregions. Each subregion formed part of a different large-scale
network and these networks corresponded closely with those re-

Figure 8. DCM of internetwork connections. Bayesian model selection with fixed effects analysis (right) favored the “top-down” model (7) in which RI modulated connectivity from anterior to
posterior regions of the frontal cortex, with the LFPC acting upon IFS and IFS acting upon the AIFO.

7670 • J. Neurosci., May 20, 2015 • 35(20):7660 –7673 Parkin et al. • Dynamic Network Mechanisms of Relational Integration



ported previously. Furthermore, the sensitivity of each network
to the task manipulations was quite distinct, which accords with
the view that they support different aspects of cognition.

For example, the LFPC network, which includes the putative
RI module, responded to both RI and NSR manipulations. The
observation of a broader role in cognition for this network ac-
cords with previous studies in which we have reported similar
activation patterns during contingency reversal learning (Hamp-
shire and Owen, 2006; Hampshire et al., 2012a, 2012b) and spa-
tial planning (Williams-Gray et al., 2007; Grant et al., 2013;
Hampshire et al., 2013). Notably, low-level demands, such as
stimulus discriminability, which has no explicit hierarchical con-
trol component, can also activate the LFPC (Reynolds et al., 2012;
Fedorenko et al., 2013; Crittenden and Duncan, 2014).

In direct contrast, the AIFO network was insensitive to both
RI and NSR manipulations. This result is partially supported by
Fedorenko, Duncan, and Kanwisher (Fedorenko et al., 2013),
who reported only a weak multiple-demand pattern in the left
ACC across a number of task difficulty manipulations. The ob-
servation of the AIFO’s relative insensitivity to reasoning de-

mands also replicates our previous work,
from which we have reported that analog-
ical reasoning, rule complexity, grammat-
ical complexity, and spatial planning, all
activate other frontoparietal areas, yet
have little impact on AIFO activation
(Hampshire et al., 2011, 2012c). Con-
versely, the AIFO activates more strongly
than the IFS in response to simple atten-
tional and motor control demands, in-
cluding target detection, attentional
switching, working memory mainte-
nance, and response inhibition (Hamp-
shire and Owen, 2006; Hampshire et al.,
2007, 2010; Erika-Florence et al., 2014).
Thus, engaging in an effortful task may be
sufficient to recruit the AIFO network,
while the complexity of the reasoning pro-
cesses has a more pronounced effect on
dorsal and anterior frontal lobe areas.

Unexpectedly, the IFS network re-
sponded to the NSR, but not to the RI,
manipulation. The observed sensitivity to
NSR demands replicates our previous
studies, where we have reported strong
IFS-inferior parietal cortex activation in
response to spatial manipulations, com-
plex nonverbal reasoning problems,
and, more generally, tasks that require the
mental transformation of stimulus in-
puts (Hampshire et al., 2012b,c). How-
ever, the dissociation in the context of
LFPC activation indicates that the NSR
and RI manipulations most likely tap
different neural processes.

In stronger support of this view, only
RI demands modulated network dy-
namics, increasing phase synchrony and
cross-correlation within the graph of
frontoparietal networks. Unexpectedly,
the phase synchrony analysis conducted
across all voxels showed a global increase
in connectivity during RI. This result may

be interpreted as a global decrease in network metastability; how-
ever, it was not significant for all networks. For example, there
was no significant effect within regions that were deactivated
during performance of the task relative to rest, including the
default mode network. Moreover, the strength of the PPI effect
was differential across the lateral frontal cortices, being nonsig-
nificant for the AIFO network, and varied across each individual
RI trial, being greatest during the latter half when subrules had
been identified and were being integrated.

The DCM analyses added further insight into the basis of the
functional-connectivity results. Specifically, Bayesian model se-
lection indicated that the global change in network connectivity
during RI was best explained by a change in top-down effective
connectivity from the LFPC, via the IFS and to the AIFO. Similar
top-down effects were evident when contrasting DCMs of the
lateral orbitofrontal cortex network ROIs alone. This top-down
flow accords with, but also extends, studies that have proposed a
hierarchical organization within the human frontal cortices
(Koechlin et al., 2003; Ramnani and Owen, 2004; Hampshire et
al., 2007; Badre and D’Esposito, 2007, 2009). Therefore, cognitive

Figure 9. DCM of intranetwork connections. Comparison of models of connectivity within the LFPC network using Bayesian
model selection with fixed effects analysis favored a model (3) in which RI modulated top-down connections from LFPC¡pDLPFC
and pDLPFC¡ parietal cortex over models in which bottom-up or all connections were modulated.
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control would appear to be an emergent property of multiple
networks, comprising a hierarchically organized domain-general
system.

Our results lead us to propose a tentative account for the novel
observation of increased network connectivity during RI. During
the performance of complex tasks, the subrules that form distinct
components of the task may be differentially encoded across an-
atomically distinct nodes of the domain-general networks. While
in accordance with the globalist perspective, an increase in the
NSRs, or other increases in difficulty, lead to the recruitment of
more network nodes, which can be activated in a relatively inde-
pendent manner within the temporal domain. When the rules
that these nodes support are closely interrelated, as is the case for
RI problems in the current study, these distinct nodes must work
in a more coherent manner, leading to an increase in the corre-
lations of the activation time courses. Thus complex cognitive
functions, such as relational reasoning, which comprise the amal-
gamation of subcomponent processes, require the dynamic bind-
ing of items within the global workspace. From this perspective,
the effect that we observe may be analogous to the “communica-
tion by coherence” theory of perceptual binding (Fries, 2005),
where phase-locked gamma oscillations in disparate visual corti-
cal regions are believed to integrate distinct stimulus features and
are enhanced during attention (Bosman et al., 2012). While pre-
vious studies have also shown greater frontoparietal synchrony
during conjunctive compared with nonconjunctive feature
search using EEG (Phillips et al., 2012), here we present evidence
that increased temporal synchrony mediates integration of infor-
mation for higher-level cognitive processes too. This hypothesis
accords well with some computational models, which have pro-
posed that binding through synchrony may enable the dynamic
and transient representation of higher-level inter-relationships
(Hummel and Holyoak, 1997; Knowlton et al., 2012). Future
studies, using electrophysiology/MEG techniques with higher
temporal resolution should be applied to further elucidate the
oscillatory basis of the effects reported here. Relatedly, an impor-
tant future direction is to examine the RI effect in the context of
individual differences in intelligence and as a potential functional
anatomical marker of executive dysfunction (Williams-Gray et
al., 2007; Chamberlain et al., 2008; Hampshire et al., 2013).
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