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Abstract

The thiopurine antimetabolites 6-thioguanine and 6-mercaptopurine are important chemotherapeutic drugs in the 
treatment of childhood acute lymphoblastic leukaemia. Measurement of metabolites of these thiopurines is 
important because correlations exist between levels of these metabolites and the prognosis in childhood acute 
lymphoblastic leukaemia. The reversed-phase method for the determination of extracellular thiopurine nucleosides 
and bases was previously developed and has been modified such that methylthiopurine nucleosides, bases, 
thioxanthine and thiouric acid can be measured also. The anion-exchange method enables the determination of 
intracellular mono-, di- and triphosphate (methyl)thiopurine nucleotides in one run. Extraction on ice with 
perchloric acid and dipotassium hydrogenphosphate results in good recoveries for (methyl)thiopurine nucleotides in 
lymphoblasts and peripheral mononuclear cells and for methylthioinosine nucleotides in red blood cells. Measure
ment of the low concentrations of mono-, di- and triphosphate thioguanine nucleotides in red blood cells (detection 
limit 20 pmol/109 cells) is possible after extraction with methanol and methylene chloride, followed by oxidation of 
thioguanine nucleotides with permanganate and fluorimetric detection.

1. Introduction

Purines and pyrimidines play an essential role 
in human cell metabolism. The thiopurine an
timetabolites 6-thioguanine (6TG) and 6-mer
captopurine (6MP) are important chemothera
peutic drugs in the treatment of childhood acute 
lymphoblastic leukaemia (ALL). Since 1953 6MP 
and 6TG have been administered orally in cases 
of childhood ALL and other leukaemias. Recent

* Corresponding author.

ly the administration of high-dose 6MP infusions 
has started in clinical trials [1].

Several studies showed correlations between 
levels of extracellular and intracellular metabo
lites of low-dose oral 6MP and prognosis of
childhood ALL [2,3]- Because 6MP and 6TG are 
prodrugs and exhibit their cytotoxic effects by 
various intracellular metabolic routes, it is im
portant to develop methods by which extracellu
lar as well as intracellular metabolites can be 
measured as nucleosides and nucleobases and as 
mono-, di- and triphosphate nucleotides.

The metabolism of 6TG and 6MP is indicated
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in Fig, 1. Thioguanine nucleotides (TGN), which 
cause a delayed cytotoxic reaction after incorpo
ration into DNA and RNA, and methyl- 
thioinosine monophosphate (MetIMP), which is 
an inhibitor of the purine de novo synthesis, are 
responsible for the cytotoxic action of 
thiopurines in vitro [4-6]. Conflicting data exist 
about the relative importance of each cytotoxic 
pathway in vivo. Because thiopurine methyltran- 
sferase, an important enzyme involved in the 
metabolism of thiopurines and the formation of 
MetIMP, shows a genetic polymorphism [7], it is 
important to elucidate the intracellular cytotoxic
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Fig. 1. Thiopurine metabolism. (Methyl)thiopurine nu
cleotides: tGM(D,T)P = 6-thioguanosine mono-(di-, tri-)- 
phosphate, MetIM(D,T)P = 6-methylthioinosine mono-(di-, 
tri-)phosphate, tIMP -  6-thioinosine monophosphate. 
(Methyl)thiopurine nucleosides: TGR ~ 6-thioguanine 
riboside, MPR = 6-mercaptopurine riboside, MeMPR = 6- 
methylmercaptopurine riboside. (Methyl)thiopurine bases: 
6TG -  6-thioguanine, 6MP = 6-mercaptopurine, MeMP = 6- 
methylmercaptopurine.

pathways in vivo in order to select patients at 
risk for high toxicity or for undertreatment.

Previously, v/e published HPLC methods for 
the detection of purine and pyrimidine nu
cleotides [8], nucleosides and bases [9] and 
thiopurine nucleosides and bases [10,11], In the 
present article we describe two HPLC methods, 
one for measurement of methylthiopurine and 
thiopurine nucleosides and bases, and another 
for measurement of (methyl)thiopurine nu
cleotides. Both methods are used in the clinical 
randomized ALL-8 trial of the Dutch Childhood 
Leukaemia Study Group.

Several methods have been described for the 
measurement of (methyl)thiopurine nucleotides 
in red blood cells (RBC) [12-18] and in 
lymphoid cells [19-21]. Many of these methods 
[13-16,19] measure these nucleotides only in
directly after hydrolysis to their bases and thus 
require an extra measurement of 
(methyl)thiopurine nucleosides and bases before 
hydrolysis to establish which part of the base 
originates from the hydrolyzed nucleotides. 
Moreover, no distinction can be made between 
the concentrations of mono-, di~ and triphos
phate nucleotides. An ion-pairing HPLC assay 
enables the measurement of thioguanosine 
monophosphate (tGMP) and thioinosine mono
phosphate (tIMP) [20] and an anion-exchange 
fluorimetric method detects tGMP, tGDP and 
tGTP [21] in human neoplastic cells. Extraction 
of tGMP, tGDP and tGTP from RBC was 
performed with mercurial cellulose resin and 
mercaptoethanol, with extraction efficiencies of 
75-90% [17]. A less laborious procedure for 
extraction of TGN from RBC has recently been 
developed by Rabel et al. [18]. RBC are de- 
proteinized and TGN extracted with methanol 
and methylene chloride. After this TGN are 
oxidized with permanganate [18,21], separated by 
capillary electrophoresis and detected with laser- 
induced fluorescence [22]. This procedure results 
in extraction efficiencies of 86-95% [18] and in 
attomole detection limits [22].

The anion-exchange HPLC method we de
scribe in this article enables the detection in one 
run of separate (methyl)thiopurine nucleotides in 
lymphoblasts and peripheral mononuclear cells.
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Detection of methylthioinosine nucleotides 
(MeTIN) and TGN in RBC still has to be done 
by two separate runs in our system.

2, Experimental

2.1. Chemicals

(Methyl)thiopurine nucleosides and bases, 
thioinosine monophosphate (tIMP), dithiothrei- 
tol, 5-phosphorylribose-l-pyrophosphate, bovine 
serum albumin, xanthine oxidase and hypoxan- 
thine guanine phosphoribosyltransferase were 
obtained from Sigma (St. Louis, MO, USA). 
Thioinosinetriphosphate (tITP) was from Phar
macia/LKB (Woerden, Netherlands). All other 
chemicals were obtained from E. Merck (Darm
stadt, Germany). Water used for all buffers was 
purified in a Milli-Q System (Millipore, Bedford, 
MA, USA).

2.2. Enzymatic preparation o f thiouric acid

Thiouric acid was produced by enzymatic 
oxidation of thioxanthine with xanthine oxidase, 
according to the procedure described by the 
manufacturer of the enzyme. The conversion into 
thiouric acid was 100% as determined by HPLC.

23 . Preparation o f TG N

tGMP was prepared by enzymatic conversion 
of 6TG with hypoxanthine guanine phosphoribo
syltransferase in the presence of 5-phosphor- 
ylribose-1-pyrophosphate (PRPP). The reaction 
was performed at 37°C overnight with 500 p i  0.4 
IxM 6TG, 500 /¿I 8 mM  PRPP, 480 ¡i\ Tris- 
MgCl2 buffer (0.5 M Tris + 0.05 M Tris-MgCl?, 
pH 7.4), 20 ¡x\ hypoxanthine guanine phosphori
bosyltransferase (250 units in 500 /xl) in Tris- 
MgCl2 buffer and 50 ¿¿1 Triton X-100 10%. The 
conversion into tGMP was 100% as determined 
by HPLC.

Thioguanosinediphosphate (tGDP) and 
thioguanosinetriphosphate (tGTP) were ob
tained by incubating Molt-F4 lymphoblasts with

6-thioguanine and separating the TGN by HPLC 
from the cell free extracts.

2.4. Preparation o f MeTIN

MetIMP was synthesized by méthylation of 
tIMP: 0,026 mmol of tIMP was dissolved in 500 
fjb\ 2 M  ammonia, 5 /¿1 0.40 mM  methyliodide 
was added and the mixture was mixed immedi
ately and incubated at room temperature for 2 h. 
The suspension was flushed with N2 for 10 min in 
order to remove the excess of ammonia, frozen 
and lyophilized.

The same procedure was used to synthesize 
methylthioinosinetriphosphate (MetlTP) and 
methylthioinosinediphosphate (MetIDP) from a 
mixture of tITP and thioinosinediphosphate 
(tIDP). With this procedure the méthylation of 
thioinosine nucleotides was 100% as determined
by HPLC.

2.5. Stock solutions

Stock solutions of the (methyl)thiopurine nu
cleosides and bases were prepared as described 
before [10]. The exact concentrations were de
termined spectrophotometrically. Molar absorp
tion coefficients were used at pH 4.6 as described 
[23].

Stock solutions of tIMP and tITP were pre
pared by dilution of 10 mg nucleotide in 10 ml 
distilled water. Exact concentrations were calcu
lated at pH 4.6 with: émax = 27.6 m M '1 cm“1 at 
Amax -  322 nm. TGN and MeTIN were prepared 
as described above and the concentrations were 
measured spectrophotometrically at pH 4.6 with 
emax = 26.7 m c m ' 1 at Amax=342 nm for 
TGN and emax = 18.9 mM ~ l cm"1 at Amax=291 
nm for MeTIN [23].

2.6. Extraction o f (methyl)thiopurine nucleosides 
and bases

Extraction of plasma was performed with 1 / 20 
volume of ice-cold 8 M  perchloric acid (PCA). 
The suspension was mixed and kept on ice for 10 
min. After centrifugation at 10,000 g for 5 min
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the supernatant was adjusted to pH 6-7 with 
1/ 10 volume of ice-cold 4 M  dipotassium hydro
genphosphate. and kept on ice for another 10 
min. The precipitated potassium perchlorate was 
removed bv centrifugation at 10,000 g for 5 min 
and the supernatant was stored at -20°C until 
measurement.

27. Extraction o f (methyl)thiopurine nucleotides

Peripheral mononuclear cells were separated 
from defibrinated blood by a ficoll isolation 
procedure. Contaminating RBC were removed 
by a NH4Cl-shock [24]. Lymphoblasts of the 
Molt-F4 T-ALL cell line were cultured as de
scribed [5]. Cell pellets of peripheral mononu
clear cells or Molt-F4 cells were resuspended in 
100 /¿I phosphate buffered saline with 1% (w/v) 
bovine serum albumin and 5% (w/v) dithiothrei- 
tol. Extraction was performed on ice with 50 /¿I 
of 1.2 M PCA and the supernatant was adjusted 
to pH 6-7 with 25 ¡i\ of 4 M  dipotassium 
hydrogenphosphate.

RBC were isolated from heparinized blood 
and washed thrice with 0.9% saline. One volume 
of RBC was resuspended in approximately 2 
volumes 0.9% saline with 1% (w/v) dithiothrei- 
tol. Extraction of MeTIN was performed with 
PCA as described above with 1/20 volume of 8 
M PCA and 1/10 volume of 4 M  dipotassium 
hydrogenphosphate. Extraction of TON from 
100 t±\ RBC was performed with 150 ¡il 55 mM 
EDTA (pH 10.5), 100 ytd methanol and 500 fi\ 
methylene chloride as described by Rabel et al.
[18]. All cell extracts were stored at -80°C until 
measurement.

2.8. Oxidation o f TGN in RBC

Oxidation of TGN was performed with 100 jul\
RBC extract, 10 ¿d 1 M  sodium carbonate (pH
10.1), 100 ¡i\ 0.24% potassium permanganate and
10 /¿I hydrogen peroxide as described by Rabel 
et al. (22).

2.9. HPLC apparatus

Measurements were performed with a Thermo 
Separation Products HPLC system, which con

sists of a ternary HPLC pump (SP 8800), an 
automatic sampler (SP 8880) and a variable UV- 
Vis absorbance detector (SpectraFocus 2000 HR 
system), set at three wavelengths (290, 320 and 
342 nm). Fluorimetric detection was performed 
with a Japan Spectroscopic Co fluorescence de
tector (Model 821-FP). For measurement of 
TGN Acx = 329 nm and Aem = 410 nm [17]. Mea
surements were performed at room temperature 
and during elution all solutions were deaerated 
with helium. Injection volumes were 100 fil.

2.10. Chromatography o f (methyl)thiopurine 
nucleosides and bases

Separation of (methyl)thiopurine nucleosides 
and bases was performed in 1-h runs on a 
reversed-phase column (Supelcosil LC-18-DB, 
250x4.6 mm I.D., particle size 5 jxm, Supelco, 
Bellefonte, PA, USA). Chromatography was car
ried out as presented in Table 1.

2.11, Chromatography o f (methyl)thiopurine 
nucleotides

Separation of (methyl)thiopurine nucleotides 
was performed on an anion-exchange column

Table 1
Mobile-phase sequence used for separation of 
(methyl )thiopurine nucleosides and bases

Time
(min)

A
(%, v/v)

B
(%, v/v)

0 98 2
5 96 4
8 85 15

10 80 20
20 40 60
22 40 60
25 20 80
45 20 80
48 98 2
60 98 2

A = 0.025 M  potassium dihydrogenphosphate; B = 0.05 M  
potassium dihydrogenphosphate, 25% (v/v) methanol. Flow- 
rate 1.25 ml/min.
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Table 2
Mobile-phase sequence used for separation of 
(methyl )thiopurine nucleotides

Time
(min)

A
(%, v/v)

B
(%, v/v)

C
(%, v/v)

0 10 90 0
6 20 80 0
8 44 44 12

14 40 40 20
30 10 10 80
68 10 10 80
69 10 90 0
90 10 90 0

A = 0.05 M  potassium dihydrogenphosphate, 3% acetonitrile, 
adjusted to pH 3.25 with phosphoric acid; B = 3% acetoni
trile; C = 0.5 M  potassium dihydrogenphosphate, 1.5% ace
tonitrile, adjusted to pH 5.25 with potassium hydroxide. 
Flow-rate 1.30 ml/min.

(Partisil-10-SAX, 250 X 4.6 mm I.D., particle size 
10 jtim, Whatman, Clifton, NJ, USA). Chroma
tography was carried out with a minor modi
fication of the method described earlier [8]. The 
gradient, indicated in Table 2, allows a reduced

runtime as compared to the method described 
before [8] without loss of resolution.

2/2 . Recovery o f (methyl)thiopurine 
nucleosides, bases and nucleotides

Dithiothreitol was added in a concentration of 
60 mg/1 [10] to plasma, RBC and suspensions of 
peripheral mononuclear cells or Molt-F4 lym
phoblasts, an ALL cell line used for the study of 
thiopurine metabolism [5]. Standards of 
(methyl)thiopurines were added in various con
centrations and extractions were performed im
mediately as described above.

3. Results

3.1. Chromatograms

Retention times of standards of the 
(methyl)thiopurines are indicated in Table 3. 
Chromatograms of these compounds, measured 
in plasma, urine and RBC of patients treated

Table 3
Retention times of (methyl)thiopurines

Retention time 
(min)

Optimal wavelength 
(290,320 or 342 nm)

Nucleosides and bases:
Thiouric acid 5 342
Thioguanine 10 342
6-Mercaptopurine 11 320
Thioxanthine 13 342
Thioguanine riboside 17 342
Mercaptopurine riboside 18 320
Methylthioguanine 28 320
Methylmercaptopurine 33 290
Methylmercaptopurine riboside 42 290

Nucleotides:
MetIMP, MetIDP, MetlTP 12, 23, 35a 290
tIMP, tIDP, tITP 13, 26, 39 320
tGMP, tGDP, tGTP 15, 30, 50 342
Oxidized tGMP, tGDP, tGTP 12, 23, 34a X 329 nm

C À

Aenl 410 nm

*' After thè oxidation procedure for TGN MeTIN are not detectable with fluorimetrie detection.
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with a 6MP infusion (1300 mg/m'“ in 24 h) are 
shown in Figs* 2 and 3.

3.2. Calibration

Concentrations of thiouric acid were calculated 
from the amount of thioxanthine from which it 
was prepared. Since MetIDP and MetlTP were

 ̂ ^  30 ” To SO GO
Mvvries

Fig. 2. Chromatograms of (methyl)thiopurine nucleosides and 
bases in plasma (A and B) and urine (C) of patients with 
ALL treated with a 24-h infusion of methotrexate (5 g/m2) 
followed by a 24-h infusion of 6MP (1300 mg/m2). (A) 
Plasma sample at 290 nm at the end of the 24 h 6MP infusion: 
31.4' = presently, an unidentified peak, which is only present 
during and shortly after the infusion in plasma of patients 
treated with a high-dose 6MP infusion. This peak probably 
represents a metabolite of 6MP, but certainly is not 
methylthioxanthine or methylthiouric acid, and is presently 
being investigated for identification. 32,9' = methyl- 
mercaptopurine (478 nM),  41.7' = methylmercapto- 
purine riboside (3792 nM).  (B) Plasma sample of (A) at 320 
nm: 11.6' ~ 6MP (1363 n M ). (C) Urine sample (diluted 10 X  ) 
at 342 nm of 6 h urine, collected from 6 till 12 h after start of 
the 6MP infusion: 5.8' = thiouric acid (360 /¿mol/mmol 
creatinine), 13.6'~ thioxanthine (14 /¿mol/mmol creatinine).

l y i  „ 1  —  Y  * — . - y

2 0  30 40 50 60
Mmulos

Fig. 2 (continued).
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Fig, 3. Chromatograms of (methyl)thiopurine nucleotides in RBC 24 h after termination of a high-dose 6MP infusion. One patient 
with non-Hodgkin lymphoma (A) was treated with a high-dose 6MP (1300 m g/m 2 in 24 h) and another patient with ALL (B ) was 
treated with a 24-h infusion of methotrexate (5 g /m 2) followed by a 24-h infusion of 6MP (1300 m g /m 2). (A) U V  absorbance 
detection at 290 nra: 12.5' =  MetIMP (342 pm ol/108 RBC), 22.6' =  MetIDP (97 pm ol/108 RBC), 34.8' =  M etlTP (430 pm ol/108 
RBC). (B) Fluorimetrie detection with excitation at 329 nm and emission at 410 nm: 12.4' =  tGMP (51 pm ol/S.108 RBC), 
23.6' = tGDP (50 pmol/8.108 RBC), 34.1' =  tGTP (122 pmol/8.108 RBC).
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prepared from tiDP and tITP their concentra
tions were calculated from the areas under the 
peaks. Absorbance of MetIMP, determined spec- 
trophotometrically under chromatographic con
ditions of MetIDP and MetlTP, did not differ 
from these two compounds.

Detection limits for the (methyl )thiopurine 
nucleosides and bases were between 20-50 nM, 
except for thiouric acid (100 nM). Detection 
limits measured by UV absorption were 110 nM 
for tIMP 380 nM  for tGMP and 130 nM for 
MetIMP (11, 38 and 13 pmol per 100 ¡x\ injec
tion). The detection limits measured fluorimetri- 
cally were 15-35 nM for tGMP, tGDP and tGTP 
(1.5-3.5 pmol per injection).

3.3. Reproducibility

The within-day (n = 5) and the day-to-day 
(/z -3 ) coefficients of variation for 6TG, 6MP, 
TGR and MPR were in similar ranges as de
scribed previously (1.4-12.5%) [10]. These co
efficients of variation were also determined for 
thioxanthine, MeMP and MeMPR. The within- 
day variation for these three compounds was in 
the range of 0.4-2.7% for concentrations above 
150 nM  and 5.6-11.2% for concentrations below 
150 nM. The day-to-day variations were 0.1- 
2.7% for concentrations above 150 nM and 6.5- 
14.7% for concentrations below this level. MeTG 
was not detectable at levels below 150 nM and 
coefficients of variation at levels above 150 nM 
were 4-8.5% for within-day variation and 5.9- 
6.0% for day-to-day variation.

3A, Recovery o f (methyl)thiopurine nucleosides 
and bases in plasma

Standards of 6MP, thioxanthine, MPR, MeMP
and MeMPR, metabolites which are produced
during high-dose 6MP infusions, were added to
plasma in a concentration range of 0.4-15 /jlM .
The recovery of 6MP was in the range of 80-
98%, of thioxanthine 68-81%, of MPR 89-
101%, of MeMP 75-89% and of MeMPR 68- 
102%.

3 S  Recovery o f (methyl)thiopurine nucleotides

The recoveries after extraction with PCA of 
(Me)TIN and of tGMP added to Molt-F4 lym
phoblasts in varying concentrations are indicated 
in Table 4. More than 89% of the standards was
recovered in all cases.

Recoveries of MetIMP after extraction with 
PCA in RBC (31-309 pmol/108 cells) were in 
the range of 87-109% and in peripheral mono
nuclear cells (18-180 pmol/106 cells) in the 
range of 70-106%. Recovery of tIMP and tGMP 
after extraction with PCA in peripheral mononu
clear cells (18-180 pmol/106 cells) were 71- 
104% and 87-104%, respectively. TGN were 
poorly extracted from RBC or hemolysates with 
PCA.

Extraction of RBC with EDTA, methanol and 
methylene chloride [18] and measurement with 
UV absorbance detection (290-340 nm) resulted 
in a large peak, which was caused by the combi
nation of DTT and EDTA and which disturbed 
the chromatogram from 15 to 25 min as well as 
the recoveries. After oxidation of the RBC 
extract and fluorimetric detection TGN could be 
reproducibly measured in RBC at levels above 
20 pmol per 109 RBC and the DTT-EDTA peak 
was not observed under these conditions. 
Simultaneous measurement with UV of MeTIN 
in the oxidized supernatant gave poor results at 
levels which are clinically obtained and became 
only reproducible at levels above 100 ¡xM. Thus, 
the MeTIN and TGN levels in RBC have to be 
measured by separate runs.

Table 4
Recovery of (methyl)thiopurine nucleotides in 4.7 • 106 Molt- 
F4 lymphoblasts

Standard Concentration range Recovery
(pmol/106 cells) (%)

tIMP 51-819 93-98
tIDP 41-866 96-99
tITP 78-1016 97-99
tGMP 65-720 89-98
MetIMP 46-937 92-99
MetIDP 62-817 92-99
MetlTP 87-874 94-99
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4. Conclusion

The two HPLC methods described here enable 
measurement of extracellular and intracellular 
(methyl )thiopurine metabolites in ALL cell lines 
and in patients materials. These methods are 
needed for preclinical [5] and clinical [25, 26] 
research, involving the metabolism and cytotoxic 
pathways of thiopurines and the relation between 
thiopurine metabolites and treatment outcome in 
childhood ALL.

The method for the measurement of extracel
lular thiopurine nucleosides and bases previously 
described [10] has been modified. The present 
method includes also measurement of thioxan- 
thine, thiouric acid and methylthiopurine nu
cleosides and bases in the same run. The re
coveries of (methyl)thiopurine nucleosides and 
bases from plasma with PCA are good. The 
recovery of 6MP from plasma with trichloro
acetic acid is even better (94%) [9].

The HPLC method with UV absorbance detec
tion at two wavelength channels for intracellular 
metabolites enables the measurement of the 
(methyl)thiopurine mono-, di- and triphos- 
phatenucleotides in a single run. Extractions on 
ice with PCA result in good recoveries for 
(methyl)thiopurine nucleotides in lymphoblasts 
and peripheral mononuclear cells and for MeTIN 
in RBC. This extraction procedure is inadequate 
for TGN levels in RBC. Extraction and oxidation 
of TGN in RBC, according to the method of 
Rabel et al. [18], and measurement with a fluo
rescence detector enables the detection of sepa
rate TGN in RBC at low concentrations.
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