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Abstract Cloud computing offers massive scalability
and elasticity required by many scientific and com-
mercial applications. Combining the computational
and data handling capabilities of clouds with parallel
processing also has the potential to tackle Big Data
problems efficiently. Science gateway frameworks
and workflow systems enable application developers
to implement complex applications and make these
available for end-users via simple graphical user inter-
faces. The integration of such frameworks with Big
Data processing tools on the cloud opens new oppor-
tunities for application developers. This paper inves-
tigates how workflow systems and science gateways
can be extended with Big Data processing capabili-
ties. A generic approach based on infrastructure aware
workflows is suggested and a proof of concept is
implemented based on the WS-PGRADE/gUSE sci-
ence gateway framework and its integration with the
Hadoop parallel data processing solution based on
the MapReduce paradigm in the cloud. The provided
analysis demonstrates that the methods described to

S. Gugnani · C. Blanco · T. Kiss (�) · G. Terstyanszky
Center for Parallel Computing, University of Westminster,
London, UK
e-mail: T.Kiss@westminster.ac.uk

C. Blanco
University of Cantabria, Cantabria, Spain

integrate Big Data processing with workflows and
science gateways work well in different cloud infras-
tructures and application scenarios, and can be used
to create massively parallel applications for scientific
analysis of Big Data.
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1 Introduction

Cloud Computing is a new and emerging computing
paradigm that has the potential to completely change
the way how commercial and scientific applications
are deployed, hosted and executed. By using virtual-
ization technology, Cloud Computing offers scalable,
reliable and flexible resources and services.

Although computational power is increasing with
time, the requirement to process the ever increasing
amount of data is more and more challenging. Tra-
ditional sequential data processing algorithms are not
good enough to analyze this large volume of data.
Hence, new parallel approaches and algorithms are
constantly being proposed. One of such examples
is Apache Hadoop [1], an open-source implemen-
tation of the MapReduce framework [2] introduced
by Google in 2004. It allows users to store and
process large amounts of data using a distributed
cluster environment. In the last few years, Hadoop in
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the cloud has become an extremely popular system
for analyzing Big Data. Many scientific applications
(such as weather forecasting [3], DNA sequencing
[4], molecular dynamics [5], etc.) have now been
parallelized using Hadoop and the MapReduce frame-
work. However, the installation and configuration of
a Hadoop cluster are well beyond the capabilities
of domain scientists, raising significant barriers for
the wider take-up of such technologies in scientific
research.

Scientific workflow systems such as Taverna [18],
Triana [19] or Kepler [6], provide a convenient way
to represent and develop complex applications com-
posed of multiple steps and executables. These work-
flows can be used for large scale experimentation
and can be run on distributed computing infrastruc-
tures to provide fast and efficient program execu-
tion. Workflow systems are also frequently combined
with science gateway frameworks [28], such as WS-
PGRADE/gUSE [7], to provide a user friendly execu-
tion environment for domain scientist end-users. The
integration of Big Data processing frameworks and
solutions, such as MapReduce and Hadoop, to sci-
ence gateways and workflows could take the burden of
setting-up and managing these computation environ-
ments from domain scientists and facilitate the wider
take-up of such technologies.

This paper describes a generic approach based
on infrastructure aware workflows [22] when inte-
grating workflow-based science gateway frameworks
with Big Data processing. It also evaluates a concrete
implementation of this generic approach when inte-
grating Hadoop with the WS-PGRADE/gUSE gate-
way and workflow solution. The paper significantly
extends earlier work of the authors [26] by provid-
ing a far more generic and flexible solution. While
[26] was tightly coupled with a particular implemen-
tation of OpenStack, the current solution successfully
demonstrates its applicability on various open source
and commercial clouds.

2 Related Work

Scientific workflows are an efficient way of represent-
ing applications. Applications developed with Hadoop
generally involve chaining MapReduce jobs and com-
plex relationships between jobs which can be easily

represented with workflows. There have been several
attempts to integrate Hadoop with scientific work-
flows to provide an easy base to execute Hadoop jobs
in applications.

One such attempt is demonstrated by Wang J. et al.
[8]. They present an approach to integrate Hadoop
with the Kepler workflow system. They do so by using
sub-workflows to define Mapper and Reducer func-
tions in theMapReduce framework to define a Hadoop
job. This allows users to create Hadoop jobs with ease
via a GUI.

Another example is by Fei X. et al. [9] where
they propose a new framework with XML based sci-
entific workflow language called WSL. They create
constructs to incorporate Map and Reduce functions in
the workflow specification language. Their workflow
composition framework is unique in that workflows
are the only operands for composition.

A paper by Phuong Nguyen and Milton Halem
[10] presents a MapReduce based workflow system
for executing data intensive applications. The system
consists of a C++ API for workflow design, a job
scheduler and a runtime support for Hadoop. They
show performance improvements by executing a cli-
mate satellite data analysis application using the new
workflow system.

Oozie [11] is a workflow scheduler for Hadoop
developed by Yahoo that has recently come to light.
It uses directed acyclic graphs to define workflows. It
is integrated with the Hadoop stack supporting several
types of Hadoop jobs out of the box as well as system
specific jobs (such as Java programs and shell scripts).

Chen Q. et al. [12] present a MapReduce enabled
workflow system for Geographical Systems called
MRGIS. The system consists of a design interface,
a job scheduler and a runtime support system. The
scheduler analyzes data dependencies and accordingly
dispatches MapReduce jobs to Hadoop clusters. The
user has the option of designing workflows with either
a GUI-based designer or a python API.

As the above summary shows, there have been sev-
eral efforts previously to execute Hadoop/MapReduce
jobs in the cloud and to combine these with com-
putational workflows. However, all these approaches
were either suggesting new workflow systems or were
tightly coupled to an existing workflow solution. The
integration approach suggested in this paper allows
existing and well established workflow and science
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gateway frameworks to be extended with Big Data
processing capabilities in general.

3 Proposed Generic Approach

In order to extend a workflow system with Big Data
processing capabilities in the cloud, three major tasks
need to be performed. First, the specific processing
environment, for example a Hadoop cluster, needs to
be set up and configured in the cloud. This set-up
needs to be part of the workflow and needs to be
automatic and easily parameterized. Second, the data
processing tasks, in our case the Hadoop jobs, need to
be run in workflow nodes utilizing the virtual infras-
tructure set up in the previous step. In other words, the
input and output files of data processing jobs have to
be mapped into the inputs and outputs of a workflow
node. Finally, the resources of the Big Data process-
ing infrastructure, in this case the Hadoop cluster, need
to be released in the cloud. This step again should be
automated and part of the workflow.

In general, we can call the above concept as an
infrastructure aware workflow, as introduced in [22].
Infrastructure aware workflows consist of the above
described three steps (deploy, execute, release) and
can be implemented as one or as multiple workflow
nodes, as it will be demonstrated later in this paper.

When compared to the work in [22], this paper does
not utilize the infrastructure aware workflow concept
to address workflow interoperability, but it applies
the same concept to integrate applications requiring
specific external execution environments to workflow
systems. The method is generic in the sense that once
components of the infrastructure aware workflow are
implemented as applications, these components can
be easily embedded and called from any workflow
system.

Utilisation of the infrastructure aware workflow
concept, combined with a workflow repository, for
the integration of big data processing capabilities to
workflow systems is illustrated in Fig. 1. In order to
utilize the infrastructure aware workflow, the three
basic operations, deploy, execute and release, need to
be implemented as workflows in the targeted work-
flow system. Once these workflows are available,
they can be published in a generic workflow repos-
itory and made available for workflow developers.
When building a custom workflow, these infrastruc-
ture aware workflows can be retrieved from the repos-
itory, parameterized, and embedded into the custom
workflow. The basic operations’ executables can be
reused in different workflow systems for the imple-
mentation of these operations of the infrastructure
aware workflow (supposing that the workflow system
can submit this application to a cloud resource as a

Fig. 1 Generic Integration
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batch job), making the approach easily extendable to
various workflow systems.

4 Background

The investigation and results presented in this paper
are focused around the extension of science gate-
way frameworks and grid/cloud workflow systems
with Big Data handling and MapReduce based par-
allelism. As implementation environment, the WS-
PGRADE/gUSE science gateway framework and
some of its related and extending technologies
have been applied. This section briefly describes
these base-line technologies. This set of technologies
enables the execution and sharing of scientific work-
flows in a cloud computing environment providing the
basis for the cloud-based Big Data integration.

4.1 WS-PGRADE/gUSE

gUSE (Grid and Cloud User Support Environment)
[7] is an open source scientific gateway framework
providing users with easy access to cloud and grid
infrastructures. gUSE provides with WS-PGRADE, a
Liferay based portal to create and execute scientific
workflows in various Distributed Computing Infras-
tructures (DCIs) including clusters, grids and clouds.

WS-PGRADE offers a user friendly interface for
easy creation and execution of workflows. It has a
graph editor which can be used to build workflows
and specify job con?gurations. Application develop-
ers can create complex applications by using this
workflow editor and upload these applications to inter-
nal and external repositories. For domain scientists,
WS-PGRADE gives full access to the parameteriza-
tion and execution of applications downloaded from
repositories. Thus, end-users can import applications
available in these repositories, configure them with
their own input files/parameters and run them in the
infrastructure of their choice.

WS-PGRADE supports parameter sweep applica-
tions [23]. Parameter sweep applications are scien-
tific simulations where the same simulation needs to
be executed for multiple input data sets. This fea-
ture enables the same workflow to be submitted with
multiple input data sets simultaneously.

gUSE utilizes the DCI-Bridge for submitting jobs
to different DCIs using the OGSA Basic Execution

Service 1.0 (BES) interface [24]. The DCI-Bridge
enables nodes of a complex workflow to be executed
in different DCIs providing access to a large vari-
ety of resources. In addition, two sets of APIs are
provided for remote access [25]. The Application Spe-
cific Module (ASM) API allows developers to create
a portal interface for a speci?c scientific application,
while the Remote API enables developers to inte-
grate gUSE functionality into existing graphical user
interfaces.

4.2 CloudBroker Platform

The CloudBroker Platform [13] is an easy-to-use plat-
form and application store primarily for high perfor-
mance computing in the cloud, developed and pro-
vided by CloudBroker GmbH. The user can simply
use a web browser or one of the available program-
ming interfaces to select from different scientific and
technical applications and immediately execute them
on one of the available cloud infrastructures, using
various payment options. In the platform market-
place, the user can also offer his/her own software
application in the cloud, as well as access to insti-
tutional private cloud compute and storage infras-
tructure resources. The CloudBroker Platform can
interface with various cloud middleware and infras-
tructure including both commercial (e.g. Amazon or
CloudSigma) and open source (e.g. OpenStack or
OpenNebula) cloud solutions.

The CloudBroker Platform has been integrated with
gUSE/WS-PGRADE framework via an API provided
by CloudBroker [27]. This allows a WS-PGRADE
workflow node to execute a job through the Cloud-
Broker Platform using applications already deployed
in the platform. A generic wrapper is also available
facilitating the execution of any job in the cloud
without requiring pre-deployment on the CloudBroker
Platform.

4.3 SHIWA Workflow Repository

The SHIWA Workflow Repository [15] is an online
repository that stores and manages workflow appli-
cations. Workflow developers can upload their work-
flows to the repository and domain researchers can
browse and search the repository to ?nd and download
workflows they want to run. In addition, the repository
is integrated with WS-PGRADE/gUSE so that users
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can download and execute workflows from the portal
with ease.

5 Design and Implementation

5.1 Implementation Architecture

Based on the generic concept described in Section
3, the solution was implemented using the WS-
PGRADE/gUSE gateway framework and workflow
system integrated with the CloudBroker Platform
to submit jobs to academic and commercial cloud
resources. As CloudBroker has several cloud adapters,
the implemented solution is able to utilize a large
variety of clouds (e.g. CloudSigma, OpenStack and
OpenNebula clouds are shown on Fig. 2) and not
bound to one specific cloud middleware. Figure 2
shows the overall architecture of the implementation
and also illustrates how an end-user can interact with
WS-PGRADE and CloudBroker to run Hadoop jobs
on different types of clouds.

From the developers’ point of view, three major
tasks need to be performed: CloudBroker deploy-
ment, workflow development on WS-PGRADE, and

workflow publication in the SHIWAWorkflow Repos-
itory. Before actually running an application on the
gUSE portal through the CloudBroker Platform, the
application must first be deployed on the platform.
This includes deploying the required software to a vir-
tual instance and saving it as a snapshot to be used
by the application later. Hence, the Hadoop applica-
tion was first deployed in the platform and Hadoop
installed in a virtual instance of choice. Next, the
actual infrastructure aware WS-PGRADE workflows,
which will be described in full detail in Sections 5.2
and 6, needed to be developed and deployed in the
SHIWA Workflow Repository. Once these workflows
are available, users can import and incorporate them
in their workflow applications.

From the users’ point of view the system works
as follows. A typical end-user accesses the WS-
PGRADE portal from his/her computer and creates
a workflow to execute a Hadoop job. The Hadoop
related workflow components are already published
in and can be directly downloaded from the SHIWA
Workflow Repository significantly simplifying and
speeding up the workflow development process. The
user is also provided with a catalog of all available
clouds, regions and flavors to classify nodes easily

Fig. 2 Implementation Architecture
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(e.g. Small, Medium, and Large). Thus, besides the
number of nodes of the Hadoop cluster, the user
can also select other features such as the number
of cores or the RAM memory that the application
requires.

Support for four different storage sources was
added to allow flexibility in specifying the input and
output data and allowing to manage large sets of files.
The storage sources supported are local storage (on
users’ local machine), FTP and SFTP storage, Open-
Stack swift object storage, and Amazon S3 storage.
FTP/SFTP, Swift and S3 were added to allow large
input and output files to be transferred with ease.
The problem with local storage is that files are trans-
ferred multiple times generating a bottleneck in case
of large file-sizes. For example, when uploading local
input files, the files are first copied from the WS-
PGRADE portal to the CloudBroker Platform, then
to the bootstrap node, and finally to HDFS (Hadoop
Distributed File System), resulting in three file trans-
fers. However, with OpenStack swift, FTP/SFTP and
Amazon S3 the files are copied directly from the
source to HDFS. Additionally, the files are transferred
using Hadoop’s distributed copy application where a
MapReduce program is launched for transferring the
files, (one map task is run for each input file) thus
making it even faster. The replication factor used is the
same as the number of nodes, and it is specified at file
creation time. The storage plugins were implemented
in a transparently interoperable way, i.e. input files of
a workflow could come from any data-source and out-
put files could also go to any destination. The user can
specify these input and output data sources in the job
configuration file.

In order to optimize Hadoop cluster node deploy-
ment, if a submitted job finds available running
instances then these instances will be used rather than
creating new ones. If there are no instances avail-
able or the number of them is not enough according
to job configuration, the system will launch as many
instances as needed. When the job finishes, all running
instances can continue running or can be destroyed by
the job. If they are not destroyed then these instances
can be recycled by future jobs reducing significantly
the start-up time. Moreover, as the number of nodes
increases, the time needed to set up and destroy these
nodes also increases linearly. To address this issue,
the process of starting and destroying instances is
concurrently managed by a pool of python threads
which interact directly with the CloudBroker Plat-
form. Therefore, the job execution time is independent
from the Hadoop cluster size. It only depends on the
availability of instances in each cloud.

5.2 Methods for implementing the architecture aware
workflows

Two methods have been implemented to realize the
infrastructure aware workflows: Single Node Method
and Three Node Method.

The Single Node Method uses a single node work-
flow to deploy the Hadoop environment, execute the
application and destroy the cluster. Figure 3 shows the
working of this method. A python script was written
which launches a bootstrap node so that it will cre-
ate all cluster nodes by using the CloudBroker API. If
there are running instances available it only gets their
IP addresses to connect to them. Then, the bootstrap

Fig. 3 Single Node Method
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Fig. 4 Three Node Method

node sets up the cluster, executes the job, gets the
result back and destroys all cluster nodes. If it is
indicated in the cluster configuration file, instances
will also be destroyed.

The Three NodeMethod works similarly to the Sin-
gle NodeMethod but divides the task into three stages.
The first stage creates the Hadoop cluster, the second
executes the Hadoop job and the third destroys the
cluster. Each stage can be considered as a workflow
node executing a particular task. Figure 4 shows the
working of this method. For the Three Node Method,
the python script is divided into three parts to support
the three node types. For each node of the workflow
submitting jobs to the CloudBroker Platform, only one
instance will be launched in the cloud that will be
reused by each job. This instance is considered as a
bootstrap instance from which the cluster nodes are
created, set and destroyed. The deploy node, as it is
illustrated on Fig. 6, receives an input tar file that con-
tains cluster configuration data (port 1), and also the
script that needs to be executed on the bootstrap node
(port 0). The deploy node launches virtual machines,
sets up the Hadoop cluster and creates two output files,
a python pickle file which contains all information

about the cluster (port 3), and a cluster node IP list
file (port 2). The execute node uses the cluster node
IP list file to get the IP address of the master node,
and transfers the input data (if the input data source
is local), the job executable and other required files to
the master node. It then launches a script on the mas-
ter node which transfers input files to HDFS, starts
the Hadoop job and then copies the result folder from
HDFS to the appropriate output source (as specified
by the user). The destroy node uses the python pickle
file and destroys all instances.

The main idea behind dividing the complete pro-
cess into three stages was to decouple the set-up
and release of the Hadoop cluster from executing the
Hadoop jobs. With this decoupled structure, users can
keep and reuse deployed Hadoop clusters for multi-
ple Hadoop jobs. As an additional advantage users can
place these three nodes anywhere in the workflow, as
long as the Deploy Hadoop Cluster is placed before
any Execute Job and the Destroy Hadoop Cluster is
placed after all Execute Hadoop Jobs. This allows
the user complete freedom and control of the Hadoop
cluster so that it can be used according to his/her
application and workflow.

Fig. 5 Single Node Method
- Node Configuration
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Please note that in both methods only a single
bootstrap node in one of the target clouds is enough
to create several Hadoop clusters in any of the con-
nected clouds. The user has to configure the number
of clusters and their desired destination. This flexibil-
ity also permits deploying a Hadoop cluster composed
of nodes from several clouds supposing that each
cluster node has a public IP address. Therefore, the
user can simply indicate the number of nodes per
cloud and the bootstrap node will make arrangements
for assembling and integrating all nodes into one
cluster.

6 Results and Evaluation

The experimental testbed consisted of the CloudSME
production WS-PGRADE/gUSE gateway (set up for
the CloudSME, Cloud-based Simulation platform for
Manufacturing and Engineering, European project)
[14] configured to submit jobs via the CloudBroker
Platform. An application was deployed in the Cloud-
Broker Platform which installed Hadoop 2.7.1 on an
Ubuntu 14.04 trusty server and saved the instance as
a snapshot to be used for submitting jobs and for
launching nodes in the Hadoop cluster. For testing and
benchmarking purposes, jobs were submitted to two
target clouds: the University of Zaragoza BIFI Open-
Stack [20] cloud, and the commercial CloudSigma
[21] cloud. The goal of the following evaluation is to
test and compare the performance of the two designed

methods and various storage solutions on different
cloud infrastructures.

For testing both Single Node and Three Node
methods, numerous experiments were conducted to
compare the methods as well as to demonstrate their
ability to handle large scale and diverse applications.
Figures 5 and 6 show the node workflow configura-
tions of both methods. For each experiment, the base
case used was the same, and different parameters were
varied to see the effect they had on the execution
time of the workflow. The base case was executing
the Hadoop Wordcount example with negligible input
data size on a 2 node Hadoop cluster using local
input data source and running instances through the
CloudBroker Platform. The parameters that were var-
ied were: number of nodes in Hadoop cluster, Hadoop
application executed, number of sequential Hadoop
jobs to be run, input data source, type of the instance
and whether a running instance is used or not. Launch-
ing instances in both clouds and transferring data files
are tasks where the execution time may vary at dif-
ferent times. To ensure that this did not affect our
observations, we ran each test three times and took the
average time of the three runs as the final execution
time of that test.

Figure 7a shows the variation of the workflow exe-
cution time in relation to the number of nodes (task-
trackers) in the cluster for both methods and clouds. It
can be observed that the execution time varies linearly
with the number of nodes in case of both methods
and clouds, and the results are almost always better

Fig. 6 Three Node Method
- Node Configuration



Extending Science Gateway Frameworks to Support Big Data Applications. . . 597

Fig. 7 a. Number of task-trackers v/s Execution Time, b. Number of serial Hadoop jobs v/s Execution time

on CloudSigma. In addition, the Single Node Method
works better than the Three Node Method for execut-
ing a Hadoop job irrespective of the cluster size and
the cloud type. The difference between these meth-
ods was expected as running the Three Node Method
involves executing two more workflow nodes than in
case of the Single Node Method, resulting in more
execution overhead.

Figure 7b shows the variation of the workflow exe-
cution time with the number of sequential Hadoop
jobs run for both methods and clouds. For the Single
NodeMethod, the same node was placed in a sequence
one after the other. For the Three Node Method, the
Deploy Hadoop Cluster was placed before all Execute
Hadoop Jobs, executed one after the other, and then
the Destroy Hadoop Cluster was placed after the last
Execute Hadoop Job. For both methods the same job

with the same input files was executed multiple times.
It can be seen that the Single Node Method works
better for executing a single Hadoop job, whereas the
Three Node Method works better for executing three
or more Hadoop jobs in sequence in both clouds. Inter-
estingly, when executing exactly two Hadoop jobs
then all methods and clouds performed almost identi-
cally. For the Single Node Method, for each Hadoop
job, the method launches a new Hadoop cluster and
then destroys the cluster, but not the running instances
which are recycled by all jobs. On the other hand, the
Three Node Method just creates the Hadoop cluster
once and then executes all Hadoop jobs in sequence on
the same cluster. Therefore, the Three Node Method
works better for executing larger number of Hadoop
jobs in sequence. This pattern is repeated in both
CloudSigma and BIFI clouds.

Fig. 8 a. Effect of Running Instance on Execution Time, b. Effect of Running Instance and flavor on Execution
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Figure 8a shows the variation of the workflow exe-
cution time depending on whether a running instance
is used or not, for both methods and clouds. Using a
running instance greatly reduces the execution time,
especially on the Single Node Method, which reduc-
tion is more than double the time. This reduction in
time is as expected because of running instance use.
There is no need to launch a new instance when a job is
submitted. Additionally, this is independent from the
type of cloud the tests were run on.

Figure 8b shows the combined effect of whether a
running instance is used or not and also the flavor of
the instance in both clouds. For this test only the Sin-
gle Node Method was run. As it is shown in Fig. 8b,
if running instances are used then the more powerful
the instance gets, the shorter the execution time is, as
expected. However, if running instances are not used
then execution time actually increases with introduc-
ing more powerful instances. This can be explained as
although the instance is becoming more powerful and
it takes less time to execute jobs, it also takes more
time to create a larger instance in the targeted clouds.
Please note that instance set-up times and patterns are
hugely cloud dependent and results can vary in case
of different cloud providers. Therefore, in case of not
using running instances, there should be careful con-
sideration of instance types and job execution times
before selecting the right flavor.

Figure 9a shows the workflow execution time
for three different Hadoop applications using the
Single Node Method. The applications used were:
WordCount - the standard example that comes with
Hadoop, Rule Based Classification [17]- a classification

algorithm adapted for MapReduce, and Prefix Span
[16] - MapReduce version of the popular sequential
pattern mining algorithm. This experiment was exe-
cuted to show that the method developed is generic
and could be used for a wide range of Hadoop appli-
cations.

Figure 9b illustrates the variation of the work-
flow execution time depending on the input source
used. This is an important feature because Hadoop
was designed to manage Big Data. For this exper-
iment a dataset composed of 40 files of 1GB each
was used. No Hadoop job was run in these exper-
iments. The execution time is the sum of the time
for setting up the Hadoop cluster, transferring files to
HDFS and destroying the cluster. Because of limita-
tions on local data size exposed by the CloudSME
WS-PGRADE portal (max 512 MB local input data
is allowed), only FTP, swift and S3 were selected to
test. These remote storages were the same for the two
clouds. When comparing the results, it can be seen
that the performance of FTP storage is the poorest.
This can be explained with the legacy nature of this
storage protocol that typically demonstrates lower per-
formance. Using swift object storage is much better
than using FTP storage, and using S3 storage is the
fastest. Therefore, it is recommended to use the S3 or
swift storage over FTP for large datasets. Addition-
ally, there is a noticeable difference between the two
clouds with CloudSigma significantly outperforming
the BIFI OpenStack cloud.

Our final experiment was executing multiple
Hadoop jobs simultaneously using the Parameter
Sweep feature of WS-PGRADE. For this experiment,

Fig. 9 a. Single Node Job Execution of Different Applications b. Variation of Setup Time Depending on Input Source
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Fig. 10 ParameterSweep
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five simultaneous Hadoop jobs were submitted, each
with a two node cluster and different input data. The
three different applications used for this experiment
were the same as used in Fig. 9a. The objective was
to verify the convenience and measure the speedup
of Parameter Sweep jobs where the same application
should be executed with different input sets. Figure
10 shows the execution time of the workflows for
different Hadoop applications. The execution time is
calculated as the time between the submission of the
jobs and the time the final job is completed. When
comparing the execution time of experiments in Figs.
9a and 10, it can be seen that in case of Param-
eter Sweep Jobs, the execution time is longer, not
achieving the ideal speed-up. This is explained by
the fact that both cloud infrastructures (OpenStack
and CloudSigma) take more time to launch instances
when a large number of simultaneous launch requests
are submitted. Despite this, the speed up when using
the Parameter Sweep execution in both clouds is still
quite significant, around or exceeding three for all
applications.

7 Conclusion and Future Work

This paper presented a generic method based on
infrastructure aware workflows, and a concrete imple-
mentation of this concept to integrate Big Data
processing based on the MapReduce paradigm and
Hadoop to scientific workflow systems. A number
of experiments were run to test and evaluate the
implemented solution on different cloud infrastruc-
tures. Although the implementation was based on
the WS-PGRADE/gUSE gateway framework and the

CloudBroker Platform, the infrastructure aware work-
flow concept is generic and can be extended for any
gateway and workflow environment and cloud.

By integrating Hadoop with WS-PGRADE, the
user can configure one or more workflow nodes to
execute Hadoop jobs and can also define the type of
Hadoop cluster required based on job requirements.
The user can then use this system to create complex
applications for large scale scientific simulations and
can also utilize the Parameter Sweep feature of WS-
PGRADE to run Hadoop jobs with multiple input
datasets simultaneously.

As demonstrated by the experiments, the solution
works for different Hadoop applications. Experiments
also demonstrated that the two developed methods
work well in different scenarios. The Single Node
Method is better for executing a single job whereas the
Three Node Method works better for multiple Hadoop
jobs. Although there is an overhead when deploy-
ing and destroying a Hadoop cluster even when using
running instances, this overhead (around seconds) is
negligible when compared to hours of CPU time to
execute large Hadoop applications.

As future work, further scientific applications will
be identified that can utilize the methods developed
in this paper, and workflow implementations of these
applications will be created. We also plan extend-
ing the implementation described in this paper to
support more clouds and gateway frameworks. Specif-
ically, this includes extension towards the EGI (Euro-
pean Grid Infrastructure) Federated Cloud that would
enable large user communities to utilize the solu-
tion. A specific area of further investigation is to be
concerned with transferring input and output data to
and from the HDFS in the cloud. Although some
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measurements regarding the correlation between over-
all performance and the location of input data have
been presented in this paper, in case of exception-
ally large datasets it can still cause problems, even
when utilizing Hadoop’s distributed copy mechanism.
Future work needs to investigate how this file trans-
fer scales up and how other options, e.g. streaming
data during execution time, could affect performance
positively. Finally, further experiments with the Three
Node Method are also planned to identify when it is
the best to deploy and destroy the cluster and achieve
optimal performance.
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