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On the multi-dimensionality and sampling of air

transport networks

Abstract

Complex network theory is a framework increasingly used in the study of air
transport networks, thanks to its ability to describe the structures created
by networks of flights, and their influence in dynamical processes such as de-
lay propagation. While many works consider only a fraction of the network,
created by major airports or airlines, for example, it is not clear if and how
such sampling process bias the observed structures and processes. In this
contribution, we tackle this problem by studying how some observed topo-
logical metrics depend on the way the network is reconstructed, i.e. on the
rules used to sample nodes and connections. Both structural and simple dy-
namical properties are considered, for eight major air networks and different
source datasets. Results indicate that using a subset of airports strongly dis-
torts our perception of the network, even when just small ones are discarded;
at the same time, considering a subset of airlines yields a better and more
stable representation. This allows us to provide some general guidelines on
the way airports and connections should be sampled.

Keywords: Air transport, complex networks, network topology.

1. Introduction

During the last decade, the application of complex network theory [1, 2, 3,
4] to the study of air transport has experienced a tremendous growth. Such
theory has demonstrated its usefulness in the analysis of many real-world
complex systems, from social networks, to the Internet or the human brain
[5]; in all these cases, it has been possible to obtain a better understanding of
the system structure, and of the corresponding dynamics. Air transport has
been no exception, with examples including simple topological analyses, its
structural evolution through time, the resilience of the system to perturba-
tions, the dynamics of passengers, or air transport’s contribution to epidemic
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spreading - see [6, 7] and references within for further details.
Creating a network representation of a given system entails two steps:

map the elements composing the system into nodes, and establish links be-
tween pairs of nodes when a relationship is detected among them. Such
processes may be far from trivial, as for instance for spatially extended sys-
tems lacking a characteristic resolution (i.e. a characteristic spatial scale);
or for systems without explicit relationships between elements, in which case
such relationships have to be derived from the dynamics of the composing
elements (the case of functional networks) [8]. Such difficulty is not prima
facie present when creating network representations of an air transport sys-
tem, as nodes and links can directly be mapped - the former from airports,
the latter from direct flights or passenger itineraries. The definition of nodes
and links is nevertheless complicated by two problems.

First, air transport network representations may be subject to a sampling
process, i.e. when a subset of airports is considered, for instance the most
connected ones, or when connections correspond to a subset of airlines. Sev-
eral reasons may be hidden behind such sampling: the need to reduce the
computational cost; the interest in the analysis of one airline, or of a region of
the airspace; the reduced availability and reliability of data for small airports
and airlines; or biases in the source datasets, which may have been collected
according to some incomplete processes. The literature provides numerous
examples of such sampling processes. [6] shows that different analyses of the
same air transport system reported a substantially different number of nodes
(and links).

For instance, China included 128 airports and 1165 connections in [9], 144
and 1018 in [10], and 203 airports and 1877 connections in [11] - additional
intermediate values can be found in [12, 13]. Also of interest is the case of the
USA air transport network, which was represented respectively by 215, 272,
305 and 732 airports in [14, 15, 16, 17]. In both cases, the variation in the
number of reported airports is significant: the largest network is 59% larger
than the smallest one for China, and 240% for the USA - see Table 1 for a
full review. Also, the number of airports is well below credible estimates of
the likely true numbers, respectively 442 for China and 5194 for the USA
[18].

Notably, in some cases the number of airports is not even reported [19, 20].
It is well known that considering a sampled version of a network (i.e. a sub-
network) has important consequences for the observed topological features, as
some properties may be lost and others may emerge in a spurious way [21, 22].

2



US

Year # airports # routes Reference
- 215 ∗116,725 [14]
2005 272 6,566 [15]
2010 305 2,318 [16]
2010 732 6,086 [17]

China

Year # airports # routes Reference
- 128 1,165 [9]
2007-2008 144 1,018 [10]
2008-2009 140 1,044 [25]
2012 170 1,129 [26]
- 186 - [12]

Table 1: Number of airports and routes reported in the literature for the US and Chinese
networks. The number marked with an asterisk (∗) refers to the total number of flights in
the network. A dash symbol (−) indicates that the corresponding value was not reported.

In the previously reported examples of China, for instance, the clustering
coefficient varied between 0.69 [10] and 0.73 [9]; more startling is the case
of the Italian network, which was reported to have clustering coefficients
between 0.07 in [23] and 0.42 in [24]. While the impact of a sampling process
has been studied in different theoretical and applied contexts [21, 22], it has
largely been neglected in air transport.

The second problem emerges when one considers the multi-dimensional
nature of the air transport system [27]. In general terms, a complex system
can be represented as an object composed of networking elements, which lie
in a multi-dimensional space (see Fig. 1). When creating a (single-layer)
network, this multi-dimensional nature is discarded. On the other hand,
some information can be retained when creating a multi-layer representa-
tion, which is tantamount to projecting the original object in one dimension,
such that that dimension is represented by different layers [3, 28]. Neverthe-
less, as represented in Fig. 1, even when just three dimensions are considered,
two multi-layer projections can be obtained; furthermore, for highly dimen-
sional systems, some dimensions have necessarily to be discarded in order
to create the representation. When considering the air transport, several
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Dimension 1

Dimension 3

Dimension 2

Projection 1-2

Projection 2-3 Single layer 
representation

Figure 1: Projecting a multi-dimensional system. The original system (in the centre)
can be represented as a single (right arrow) or as multi-layer networks (left and bottom
arrows). Even in the latter case, some dimensions are discarded, leading to a loss of
information.

dimensions may be included. Some of them, e.g. airlines, are trivial and
have already been considered in past research [29]; others, like aircraft types
or time windows, have mostly been neglected. One problem thus emerges:
is it safe to discard some dimensions to create multi-layer networks? Is the
multi-layer representation obtained still representative of the system under
analysis? Notice how this second problem is strictly connected to the former:
discarding some dimensions is equivalent to discarding some information in
the projection, i.e. to sample links according to some hidden variables.

Merging both ideas, in this work we aim to assess if and to what extent
a sampling process biases the topological and dynamical properties one ob-
serves, with respect to what would be obtained by studying the complete
topology. Additionally, we also study whether a better sampling process ex-
ists, i.e. one that ensures a minimisation of the observed error. We here
tackle these problems by studying the evolution of some commonly used
metrics, as a function of different criteria (number of airports, number of
connections, types of aircraft and time windows), and by comparing differ-
ent sampling strategies. Eight of the most important air transport networks
(Australia, Brazil, Canada, China, Europe, India, Russia and the USA) and
three different datasets are considered.

The remainder of this contribution is organised as follows. Section 2
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introduces the datasets and the complex network metrics analysed. Section
3 presents the observed results, considering airport (Section 3.1), aircraft type
and time window (Section 3.2), and airline (Section 3.3) sampling processes,
the dynamical analysis of the networks (Section 3.4), and the creation of
an optimal sampling process (Section 3.5). Section 4 finally draws some
conclusions, and introduces some recommendations about the best sampling
methods.

2. Materials and methods

2.1. Data sets

In this work, we consider ten air transport networks, corresponding to
eight countries / regions of interest, chosen for having the largest number of
airports: Australia, Brazil, Canada, China, Europe, India, Russia and the
USA. The networks have been reconstructed from three datasets:

• ALL-FT+, a Flight Trajectory (ALL-FT+) data set provided by the
EUROCONTROL PRISME group. It includes information about planned
and executed trajectories for all flights operating within, or crossing,
the European airspace under Instrument Flight Rules (thus excluding
general aviation and leisure aircraft). Intercontinental flights are ex-
cluded. The data set covers the period from 1st March to 31st July
2011.

• On-Time Performance data set, provided by the Research and Inno-
vative Technology Administration (RITA), of the United States De-
partment of Transportation. It includes detailed information about
executed commercial passenger(non freight) US flights, as reported by
the 16 US non-freight certified air carriers that account for at least
one percent of domestic scheduled passenger revenues. Intercontinen-
tal flights are excluded. Data used covered the same time window as
the ALL-FT+ data set.

• OpenFlights. Open source repository of flights and airport data, with
worldwide coverage. It does not include freight flights, nor informa-
tion about the frequency of individual routes. Available at http:

//openflights.org. Downloaded on August 17th 2015.
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Country Data set # airports # airlines A/c avail. Time avail.
Australia OpenFlights 112 12 No No
Brazil OpenFlights 119 12 No No
Canada OpenFlights 204 24 No No
China OpenFlights 185 17 No No
Europe ALL-FT+ 1854 100 Yes Yes
Europe OpenFlights 497 153 No No
India OpenFlights 71 8 No No
Russia OpenFlights 104 36 No No
USA RITA 286 16 Yes Yes
USA OpenFlights 595 81 No No

Table 2: Summary of network characteristics.

Table 2 reports some basic statistics about the ten reconstructed net-
works, including the availability of the aircraft type (fifth column) and of
the time stamp of the flight (sixth column). Fig. 2 depicts the standard
and cumulative distributions of airports as a function of the number of op-
erations. All these are long-tailed distributions, in some cases (Australia,
Canada and USA OpenFlights) presenting a scale-free behaviour. This sug-
gests that air transport networks have no characteristic scales, and that
therefore no threshold can be fixed beforehand for selectively filtering the
network.

The European and USA air transport systems are two special cases, in
that two data sets were available for each. It is worth noting the differences,
both in number of airports and airlines. Specifically, the RITA data set in-
cludes information for a reduced number of carriers, which in turn limits the
number of nodes mapped in the network; on the other hand, the ALL-FT+
representation of the European network includes more airports, but fewer air-
lines, than OpenFlights. This highlights the complexity of the problem: even
for a single country, different datasets obtained through various sources may
present distinctly different characteristics. As each of them samples reality in
a different way, one should be aware that none is a perfect representation of
the actual air transport network. While we use the most commonly-accepted
official data sources for Europe and the USA (RITA and ALL-FT+), the
reader should note that they are not exempt from this problem.
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Figure 2: Normal (left panel) and cumulative (right panel) degree distribution of the 10
air transport network studied.

2.2. Topological metrics

Following the standard notation [1, 2, 3], a network composed of n nodes
is fully represented by its adjacency matrix A of size n × n, whose element
ai,j = 1 if a link exists connecting nodes i and j, and ai,j = 0 otherwise.

Note that, with the exception of the analysis performed in Sections 2.3
and 3.4, we here consider unweighted and directed networks; in other words,
the number of flights connecting pairs of airports is discarded, and it may be
that a pair i, j is connected by a direct flight i→ j but not by the reciprocal
j → i.

Different topological metrics can then be extracted from A, each of them
describing some specific structural characteristic of the network [30]. In this
work, we consider the following:

Link density Is defined as the proportion of links that are active, with respect
to the total number of potential links, i.e.

ld =

∑
i,j

ai,j

n2
=

l

n2
. (1)

It is therefore defined in the interval [0, 1], 0 and 1 respectively indi-
cating a void and a fully connected network.
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Maximum degree The maximum degree of a network is defined as the degree
of the most connected node: kmax = max

i
ki. Here ki represents the

degree of node i, i.e. ki =
∑
j

ai,j.

Clustering coefficient The clustering coefficient, also known as transitivity,
measures the presence of triangles in the network [31]. It is mathemat-
ically defined as the relationship between the number of triangles in the
network N∆ (three vertices with edges between each pair of them), and
the number of connected triples N3 (set of three vertices where each
vertex can be reached from all other, directly or indirectly):

C = 3N∆

N3
,where

N∆ =
∑

k>j>i

aijaikajk,

N3 =
∑

k>j>i

(aijaik + ajiajk + akiakj).

(2)

C close to 1 indicates that all triangles are closed; or, as usually depicted
in social network analysis, that ‘the friend of my friend is also my
friend’.

Degree correlation This metric, also called ‘assortativity’, represents the con-
ditional probability P (k′|k), i.e. the probability of a link from a node
of degree k to point to a node of degree k′. When expressed by means
of a Pearson correlation coefficient, it is defined as [32]:

1

M

∑
j>i

1

2
(ki + kj) aij, (3)

M being the total number of links in the network.

Entropy of the degree distribution The entropy of the degree distribution pro-
vides a measure of the heterogeneity of the network [33], and is defined
as:

Edd = −
∑
k

p(k) log2 p(k). (4)

Values close to 1 indicate a uniform degree distribution, while the min-
imum Edd = 0 is achieved when all vertices have the same degree.
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Efficiency The efficiency of a network represents how easily one can move
between two nodes, i.e. how many intermediate nodes one has to visit
in order to reach the ‘destination’. While the length of the shortest
path between two nodes might be used to estimate this property, it has
an important drawback: when the network is disconnected, no path
may exist connecting two nodes i and j, and therefore dij = ∞ and
l = ∞. The efficiency solves this by considering the inverse of the
distance [34]:

E =
1

N (N − 1)

∑
i 6=j

1

dij
. (5)

Information content (IC) This metric assesses the presence of regularities in
the adjacency matrix, and thus the presence of mesoscale structures
[35]. It is calculated by first identifying pairs of nodes that share a sim-
ilar connectivity pattern, which are thus redundant and whose merging
would suppose the smallest information loss (from a Shannon informa-
tion theory perspective). Once the best pair has been detected, both
nodes are merged (thus yielding a network one node smaller), and the
quantity of information lost in the process is calculated. The final infor-
mation content is then the sum of all information loss when shrinking
the original network to a single node, normalized with respect to an
ensemble of random networks. The metric thus represents the quantity
of information needed to reconstruct the network, or the quantity of
information encoded in its structure. The lower such information, the
more regular the underlying topology, as for instance certain patterns
of connectivity are repeated; thus, a relatively low IC indicates the
presence of mesoscale structures, e.g. communities.

2.3. Dynamical analysis

In order to understand how the observed differences in topology may
affect a dynamical process taking place in the network, here we also consider
a simple dynamical model mimicking delay propagation. Such a model is
based on a random propagation process, similar to other models used to
simulate rumour spreading [36]. We suppose delays are generated at airports
in a random fashion, and then propagated through the network according
to its flight structure. It should be noted that this model does not aim at
understanding the real propagation process, as it does not include elements
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such as aircraft, crew or passenger dependencies (connectivities), which may
contribute to the generation of (additional) reactionary delays, or indeed the
sequestering thereof. For the sake of simplicity, all complex details about the
real process have been disregarded, in order to better highlight the biases
introduced by the different sampling strategies studied here - see Section 3.4
for further details.

Let’s assume that the accumulated delay at an airport i is proportional
to the sum of the delays of neighbouring (connected) airports 1:

di =
1

λ

∑
j∈M(i)

dj, (6)

M(i) being the set of neighbouring nodes of i, and λ a proportionality
constant. The set of neighbours can be obtained through the adjacency
matrix, such that:

di =
1

λ

∑
j

Ai,jdj. (7)

Finally, the previous equation can be rewritten as:

Ad = λd, (8)

A being the full adjacency matrix, and d the vector of centralities (d1, d2, . . . , dn).
The previous equation is an eigenvector equation, and the vector d corre-
sponds to the stationary distribution of the Markov chain represented by the
row-normalised adjacency matrix. In other words, d represents the expected
equilibrium distribution of delays when they propagate according to a ran-
dom process in the flight network. This measure, assessing the importance
of each node, is called ‘eigenvector centrality’, and has been extensively used
to understand the importance of individuals in social networks [37]. This
approach has the advantage of being analytically solvable, as d corresponds
to the eigenvector associated with the largest eigenvalue of the A matrix 2.

1Note that this model makes no assumptions on the way delays are generated, but only
considers how they would propagate once they have appeared. As such, the delay observed
at one airport only depends on external contributions, and not on internal generation.

2The existence of an unique d is ensured by the Perron-Frobenius theorem for positive
and non-negative matrices. Additionally, this theorem guarantees that the largest eigen-
value is associated with the only eigenvector with all non-negative and real elements, and
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2.4. Optimisation procedure

In order to better understand which nodes are responsible for the observed
network structure, and should thus be retained in a sampling procedure, we
have here implemented a greedy optimisation algorithm.

The process starts with the full network, which is characterised by a set
of topological metrics t. The node i is then temporarily deleted from the
network, to assess how its deletion affects the topological structure (repre-
sented by a new set of metric values t′i); this process is repeated for all nodes.
Finally, the error introduced by the deletion of each node i is quantified as:

ei =
1

nt

nt∑
j=1

(tj − t′j)2, (9)

nt being the number of elements of t. The node associated with the
smallest error is permanently deleted from the network, and the whole process
is repeated until just one node remains.

Note that, in order to obtain meaningful results, all metrics included in t
should have similar values and be defined in similar domains; this condition
will be fulfilled in Section 3.5, where C and E (both defined in [0, 1]) are used.
Additionally, it is important to note the difference between the optimisation
procedure implemented here, and the concept of ‘backbone’ in network theory
[38]. While both concepts aim at extracting a subset of nodes representing
the basic connectivity structure, the latter explicitly considers only highly
connected nodes (the ‘rich club’), disregarding other network properties.

3. Results

3.1. Sampling airports

Air transport networks are known to have a scale-free like structure with
a degree probability distribution showing a long tail [6], that is, they are
composed of a few highly connected nodes (the hubs of the system), and a
large number of secondary nodes (e.g. regional airports). This is confirmed
by Fig. 2, depicting the standard and cumulative distribution of degrees
- i.e., the probability of finding an airport with a given number of flights
(in the case of the cumulative distribution, this probability corresponds to

that thus these elements can be interpreted as probabilities.
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finding at least a given number of flights). While the sampling properties
of scale-free networks are well known [21], previous studies have focused on
random sampling, i.e. the selection of nodes is performed on a random basis.
This is generally not the case with the air transport network: both when
the sampling is purposive, and when it reflects the limitations of the original
dataset, larger airports are over-represented to the detriment of smaller ones.

In order to simulate such bias, we here introduce a sequential sampling
process, in which nodes (airports) are sequentially added to the considered
network following their number of connections, from highly to sparsely con-
nected ones. Fig. 3 represents the evolution of the seven topological metrics
defined in Section 2.2, as a function of the fraction of nodes sampled from
the original data set, for the ten studied networks.

Some interesting facts can be observed from Fig. 3. First of all, all
topological metrics strongly vary when the number of considered airports is
changed. The most extreme example is represented by the entropy of the
degree distribution Edd, which starts from zero when the core of the network
is considered (i.e. all airports are connected to all others and thus all have
the same degree), to stabilise around one, representing a large heterogeneity
in airport sizes. This confirms the presence of a rich club, i.e. the fact that
the most important nodes of the network are more interconnected compared
with what would be expected from a random structure, and thus that their
importance is not only the result of connections with secondary nodes [38, 39].
Additionally, while most of them have a monotonic behaviour, some (e.g.
Edd and IC) change the direction of their evolution. Thirdly, metrics like the
clustering coefficient, efficiency, and Edd do not saturate, i.e. they do not
reach a stable value, even for high node fractions. These three facts imply
that the network topology is continuously changing when nodes, even small
ones, are added, and therefore there is no natural threshold according to
which nodes may be safely discarded. While this is partly due to the scale-
free nature of the air transport network, the phenomenon described here is
quite remarkable and specific to air transport. Past studies have shown that
sampling 60% of the nodes is sufficient to achieve a good approximation of
the full network (e.g. the Internet and the online pre-print repository arXiv)
[22]. Nevertheless, these results were based on random sampling procedures,
while the usual approach in air transport is guided by external information,
such as airport sizes, or data availability constraints. Our sampling approach
is probably the reason behind the results observed in Fig. 3.

As a fourth point, it is interesting to compare the topologies of the US
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and European networks for the two datasets available for each of them, i.e.
RITA and OpenFlights for the former, and ALL-FT+ and OpenFlights for
the latter. Both pairs of data sets present different characteristics, the most
important one here being the different number of airports: OpenFlights is
more complete in the case of the USA, but includes fewer airports for Europe.
Such a difference is represented in Fig. 3 by the two vertical dashed lines,
each one representing the proportion of airports in the large data set that
corresponds to the size of the small one. Remarkably, all metric evolutions
follow the same shape for the same region. The most clear example is the local
maxima and minima for the clustering coefficient of the two USA networks,
respectively at 0.25 and 0.6. If both pairs of datasets had been constructed
using similar sampling criteria, topological metrics should be expected to
converge to similar values for an equal number of airports. In other words,
the topological metrics for the full OpenFlight European network should be
equal to those obtained in the ALL-FT+ case when including the 497 most
important airports; a similar result should be obtained in the case of the US
network. On the contrary, this does not happen: when the same number of
nodes are considered, topological metrics are different (see vertical dashed
line in Fig. 3), while both final values appear to be quite similar. As the
RITA data set is obtained by just considering a subset of all available airlines,
such an effect may be the result of introducing an airline sampling process -
this topic will be further discussed in Section 3.3.

Lastly, it is worth noting that, while the evolution of topological metrics
presents a qualitatively similar behaviour for most regions, an important
exception is represented by China, India and partly Russia. Specifically,
the link density ld displays a flat slope, while the clustering coefficient CC
increases slowly with the fraction of airports added. While Fig. 3 alone does
not provide enough information to understand the causes of such different
behaviour, in the case of China, we suspect that it is related to the fact that
it is not a fully competitive market - this issue will be further discussed in
Section 3.3.

3.2. Sampling aircraft types and time windows

A different, although less common, way of sampling air transport net-
works is to filter specific aircraft types, or consider only specific time win-
dows.

Aircraft types are related to the kind of operation performed, and se-
lecting only some types allows the creation of specific networks for different
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Figure 3: Evolution of network topological metrics, as a function of the fraction of airports
included in the sampling process (i.e. the horizontal axis represents the normalised number
of airports). Airports are included in decreasing order of degree.

markets: for instance, widebodies for higher density and long-haul routes;
narrowbodies and turboprops for shorter hauls. Cargo-only and business
aviation also need to be considered. Such specificity may be relevant to un-
derstand social and economic processes [27]. Fig. 4 depicts the evolution
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Figure 4: Evolution of topological metrics of the European (ALL-FT+) network, as a
function of the fraction of aircraft types included. Aircraft are included in decreasing order
of number of operations.

of four main topological metrics for Europe as a function of the fraction of
aircraft types included, sorted in decreasing order of frequency. The complex
nature of the air transport network appears only when most of the aircraft
types are included - see, for instance, the decrease in the mesoscale com-
plexity above the sampling fraction of 0.6, as highlighted by the increasing
IC. Additionally, considering only a few aircraft types yields a mostly dis-
connected network, as indicated by the low initial efficiency and clustering
coefficient.

It is further known that the topology of the air transport network strongly
changes when considering different time windows: for instance, between sum-
mer and winter, but also when considering different days of the week. In spite
of this, some research works focus on small time windows, for instance to un-
derstand the system behaviour under specific abnormal conditions [16]. Fig.
5 depicts how four major topological metrics are affected by this sampling,
by considering random time windows of a given size. Similarly to what ob-
tained in Fig. 4, realistic and complex structures are obtained only when
large time intervals are analysed, thus averaging weekly and seasonal effects.

3.3. Sampling airlines

As already introduced, air transport networks can also be sampled across
the airline dimension. This may be done intentionally, for instance when the
topology of one airline (or of one alliance) is the focus of the study [9, 7, 40],
or, indeed, represents the only data available. However, it may also be the
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Figure 5: Evolution of topological metrics of the European (ALL-FT+) network, as a
function of the number of days analysed. Each point is the average of 200 time-window
calculations, and vertical whiskers indicate the standard deviation.

result of the way a data set is collected, as in the RITA case. It is therefore
of interest to understand the biases introduced by such sampling.

Analogously to Fig. 3, Fig. 6 reports the evolution of the seven topolog-
ical metrics considered, as a function of the fraction of airlines included in
the sampled networks. This sampling method yields results quite different
from those previously observed. Specifically, we note that a low number of
airlines is usually sufficient to recover a good topological approximation of
the complete topology.

The Chinese network presents an abnormal behaviour in Fig. 6, as it did
in Fig. 3. Specifically, few airlines are not enough to recover the complete
structure, and topological metrics (except IC) do not stabilise before at least
one third of the airlines are included. As previously speculated, this may
be due to the nature of the Chinese market: with the exception of Cathay
Pacific/Dragonair in Hong Kong, which operates like a typical western airline,
airlines are tightly controlled by the Civil Aviation Administration of China,
which allocates them routes or regions they can operate, and determines the
aircraft they are allowed to order. Due to this, including only a few airlines,
even if major ones, may leave some regions of the network under-represented.

An alternative strategy may involve sampling airlines using some criteria
not depending on the number of flights operated. This may be the case,
for instance, of a study involving a set of airlines of some characteristics,
e.g. region of operation, alliance membership, etc.; this may also occur due
to some limitations in the data set used, such that not all major airlines
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were included. For the sake of simplicity, we here emulate this process by
considering two possibilities:

a. A random process, in which a set of airlines is randomly drawn from
the complete pool.

b. A substitution process. Airlines are selected in decreasing order of
number of operations, but some of them are discarded and randomly
replaced by other airlines. For instance, we start with the set of the
five highest-operation airlines, e.g. DLH, RYR, EZY, AFR and BER3;
one of them is then discarded (e.g. RYR) and substituted by an airline
not included in the top 5 (e.g. SAS).

Results of both processes are reported in Fig. 7, for the European net-
work and as a function of the number of airlines sampled. Specifically, the red
solid lines report the evolution of the resulting topology for the random draw
process (a), while the black and blue squares correspond to the substitution
process (b). In this latter case, black symbols represent a 5:1 substitution ra-
tio (every 5 airlines, one is substituted), blue representing 10:1; additionally,
the symbols represent the average value, while the whiskers the correspond-
ing standard deviation. It can be seen that the second strategy provides a
much more stable representation of the complete topology: five airlines (four
of the biggest ones, and one drawn at random) are enough for obtaining, on
average, the topology of the true network. These results are easy to explain
in terms of sampling probabilities: when sampling at random, there is a high
probability of picking only small airlines, with a subsequent distortion of the
topology; on the other hand, the substitution process ensures that the core
of the network, as created by the biggest airlines, is represented.

3.4. Dynamical analysis

While complex networks have initially been studied from a structural per-
spective, i.e. encompassing the analysis of their topology as a fixed object,
it was soon realised that an important problem was gaining an understand-
ing of the dynamics of networks. According to this framework, nodes of the
network represent dynamical systems, which are coupled according to the
network topology. The structure of the network is thus the background on

3Respectively: Deutsche Lufthansa, Ryanair, EasyJet, Air France and Air Berlin.
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Figure 6: Evolution of network topological metrics, as a function of the fraction of airlines
included in the sampling process. Airlines are included in decreasing order of number of
operations.

top of which some dynamical processes take place [41, 42]. Some notable
examples include the synchronisation of groups of chaotic oscillators inter-
acting between them [43], and contact processes such as opinion formation
and epidemic spreading [44].
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Figure 7: Topological metrics vs. a mixed sequential-random airline sampling process
for the European (ALL-FT+) network see main text for details. Red lines indicate the
evolution of metrics for a completely random sampling process.

The relationships between the topologies and dynamics of networks are
far from trivial. In some cases, the topology may have little influence on the
way the dynamics take place, such that different networks may be equivalent
from a dynamical point of view. Nevertheless, in many other instances certain
topological properties have a strong impact on the dynamics - as a relevant
and practical example, it was shown that vaccination, even of a large fraction
of people, cannot stop epidemics in a scale-free network [45].

Shedding light on such topological-dynamical relationships is clearly of
interest also in the case of air transport. While a characterisation of the air
transport network structure may be relevant from a theoretical point of view,
one is usually interested in understanding how such topology influences some
dynamical processes, e.g. delay propagation [16] or system resilience [6]. It
is in principle possible that a change in the observed topological metrics has
no impact on the dynamics of interest, especially if the network retains some
global characteristic (e.g. scale-freeness); nevertheless, the opposite may also
occur. It is therefore necessary to ascertain to what extent the representation
biases previously described may affect our comprehension of the dynamics of
the system.

In this section we are to study whether the biases observed in network
topology caused by the sampling processes may affect dynamical processes.
For the sake of simplicity, we have chosen a minimal model of propagation,
which mimics a random delay diffusion process and is similar to other models
used to simulate rumour spreading [36] - see Section 2.3 for details. While
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such a simple model cannot reproduce all the complexities lying behind the
actual propagation of delay, it presents the advantage that results are easy
to relate to topological differences, not being potentially masked by the com-
plexity of the model. In other words, if the sampling process modifies the
output of this simple dynamical model, one can conclude that any other
model would (very likely) be equally affected, especially if additional non-
linearities were included.

The left panel of Fig. 8 depicts the evolution of the eigenvector central-
ity (d) for the 5 most important (i.e. highly connected) nodes of the USA
air transport network (according to the RITA data set), as a function of
the number of airports included (airports are added in descending order of
number of connections). Note that values are normalised such that the most
important node in the network has a centrality of 1, i.e. di = di/max(d).
Also, horizontal dashed lines correspond to the centrality as calculated by
only using the number of flights operated at each airport (i.e., its raw con-
nectivity, or its strength centrality in network terms). Centralities slowly
converge to a final value; nevertheless, even considering 200 airports distorts
the centrality of Denver International Airport DEN (pink line) by 50%, from
0.6 to 0.9.

In Fig. 8 (left panel), the asymptotic centrality values are clearly different
from the expected strength ones; this may be due to the simplification intro-
duced by considering unweighted links, i.e. by discarding the actual number
of flights connecting two airports. This has been addressed in Fig. 8 (right
panel), representing the same information for the corresponding weighted
network. In order to achieve this objective, the adjacency matrix A of Eq. 8
has been substituted by the weight matrix W , whose element wij represents
the number of flights between airports i and j. This modification solves the
bias in the asymptotic values, and slightly improves the sensitivity of results
to the number of nodes (although more than 150 are still needed to get a
good approximation of the dynamics).

In summary, the results presented in Fig. 8 highlight the fact that the
biases observed in Section 3.1 are not restricted to the topological domain,
but also have important repercussions in dynamical models. Even when
taking into account the weight of nodes, disregarding part of the network
can result in an invalid estimation of the importance of nodes, and therefore,
for instance, of the most important airports from the point of view of delay
propagation.
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Figure 8: Eigenvector centrality (see Section 2.3 for definition) of the top five USA RITA
airports, as a function of the number of airports sampled in the network, disregarding (left
panel) and including (right panel) link weights. Horizontal dashed lines correspond to the
node centrality calculated as the number of destinations (left) and as the number of flights
(right) operated at each airport.

3.5. Structure optimisation

Once it has been proved that sampling airports according to their degree
introduces a strong error in the topology of the network, one may ask whether
a better criterion exists to guide such sampling; and what is the distance
between any given criterion and the optimal one, i.e. the one ensuring a
minimum topological bias in a static analysis.

In order to shed light on this issue, Fig. 9 (left panel) depicts the evolution
of two topological metrics (namely, the clustering coefficient and efficiency,
black and blue lines, respectively) for the US RITA network, when sampled
using the greedy algorithm presented in Section 2.4. Note that, with both
C and E defined in [0, 1], no adverse scaling effects emerge. Even though
it only performs a local optimisation, the greedy procedure ensures a good
solution, while significantly reducing the computational cost of the analysis.
In creating Fig. 9 (left panel), the error minimised corresponds to the devia-
tion of both C and E - see Eq. 9. Additionally, the grey circles indicate the
degree (right ordinate) of the node that is deleted at each step. In general, it
can be appreciated that the efficiency is quite stable, maintaining the same
value even with just 100 nodes; on the other hand, the clustering coefficient
is stable up to 200 nodes (a reduction of 30% in the network size), after
which it significantly decreases. At the beginning of the sampling process
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Figure 9: Evolution of C and E when the sampling process is guided by a greedy opti-
misation algorithm - see main text for details. The left panel corresponds to an optimal
process, the right one to an optimisation guided by Edd. Graphs should be read from left
to right, i.e. starting from the complete network and ending with a single node. Grey
circles (right ordinate) indicate the degree of the airport deleted at each step.

(i.e. left part of the graph), the deleted nodes present a high heterogeneity
in degree (from 1 to 70 connections), confirming that the elimination of just
the smallest nodes introduces an important topological bias.

If deleting small nodes is not a good option, one may suspect that a strat-
ification strategy may yield better results: that is, maintain the proportion
of small and large nodes, or, in other words, keep constant the distribution
of degrees. Fig. 9 (right panel) depicts the results of the greedy optimisa-
tion minimising the error associated with Edd. Notably, the evolution of the
efficiency is very similar to that of Fig. 9 (left panel), maintaining constant
down to 110 nodes. As for the clustering coefficient, its evolution is simi-
lar to the optimal case, although the drop is faster here. All in all, Fig. 9
shows that minimising the error associated with the entropy of the degree
distribution is a good criterion, if a network sampling procedure has to be
executed.

4. Conclusions

In this contribution, we present a study of the topological stability of
complex network representations of air transport systems, aimed at under-
standing how observed properties are affected by representation choices, and
specifically, by different sampling strategies. While one ought to use a repre-
sentation of the system as true to reality as possible, this may not be possible
or desirable: for instance, due to the limited coverage of available data sets;
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due to the deliberate choice of discarding part of the airports/airlines, to
focus the study on specific regions; or simply to reduce the computational
cost. Numerous examples can be found in the literature of different sam-
pling processes [9, 10, 14, 15, 16, 19, 20]. The aim is thus to understand how
the topological and dynamical metrics observed are biased by representation
choices and limitations.

Theoretical and applied studies [21, 22] suggest that sampling 60% of the
nodes is usually enough to recover the statistical properties of the whole sys-
tem. However, the nature of the air transport system appears to make such
simplifications ineffective. Results indicate that selecting a subset of airports
from the full system is not a good strategy. Due to the sensitivity of the
network topology to small airports, almost all airports should be included to
maintain the representation error below 10%, suggesting that a sampling pro-
cess based on including highly connected airports should be avoided whenever
possible - see Tab. 3 for details. In the case of the USA RITA network, the
only exception found, an acceptable error can be obtained with 84% of the
airports, probably because of the way the data set was created; nevertheless,
one should take into account that this data set is not representative of the
whole network, but just the part created by 16 airlines. Even considering
this most favourable situation, it is clear that the heterogeneity of network
sizes reported in the literature (see Table 1) is likely to imply an unreliable
estimation of the topological properties of air transport systems.

Sampling aircraft types or different time windows does not yield better
results. As for the former, complex mesoscale structures start to appear only
when more than half of the aircraft types have been included, suggesting that
narrowbody and turboprop aircraft are essential to maintain the topology of
the network. Similarly, structural properties are correctly estimated only
when more than 40 days are taken into account, thus merging weekly and
seasonal variations.

A better strategy is to select a subset of the most important airlines, es-
pecially when some of them are randomly substituted with smaller ones. In
this case, even considering just 5 airlines in the European network allows, on
average, the recovery of all major topological metrics - see Fig. 7. Note that,
due to the random nature of the substitution process, some specific combi-
nations may still yield biased results. The reason behind such effectiveness
seems attribuable to the fact that sampling airlines is equivalent to sampling
both big and small airports, effectively retaining the structure of the system.
Sampling airlines is thus like sampling structures that are coherent with the
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global structure of the system (as the latter is composed of many airlines).
This suggests the existence of an optimal and coherent sampling strategy
to sample networks reproducing the structure of the whole system and sta-
bilising the metrics using the lowest possible proportion of nodes. This is
confirmed in Section 3.5, in which we present a sampling process guided by
the entropy of the degree distribution. By including both major and small
airports, it is possible to reduce by half the size of the network, while still
preserving metrics like the clustering coefficient and the efficiency.

Finally, Section 3.4 confirms that the topological bias introduced by the
sampling process produces impacts on simple dynamics taking place in the
network. While considering a minimal model for delay propagation, obtain-
ing a good estimation of airport importance requires the sampling of a great
fraction of nodes - 200 nodes out of 286 for achieving a 12% error.

It is important to note that the results presented here do not mean that
one should not consider a network created by a subset of nodes, by a single
aircraft type, or by a single day of the week. This may make perfect sense,
to understand the role of a given type of connection inside the global air
transport picture. What should certainly be avoided is taking such a partial
representation as a proxy of the complete network. This is especially im-
portant when studying processes like delay propagation: the researcher must
ascertain whether the network representation used is a complete representa-
tion of the system, and that some dimensions (e.g. aircraft types, airport
sizes, etc.) are not distorted.

The sampling analysis performed here can be further extended if addi-
tional elements are considered. First of all, regional air transport networks
are not independent entities, but comprise a larger scale, worldwide sys-
tem; therefore, the sampling problem can affect the topological properties
observed at the global scale. For instance, as the clustering coefficient de-
creases when more airports are included (see Fig. 3), a sparser sampling of
the global network may be associated with an increase of the observed mod-
ularity - as each module, or regional network, would have a denser topology.
Second, the topology of airlines is partly defined by their business model,
with many legacy operators having hub-and-spoke structures, and low cost
carriers usually preferring point-to-point ones. Sampling only airlines of one
type may introduce further biases in the structure of the resulting network -
see [29] for an extensive discussion on this topic. Third, one should be aware
that the flight network is only one of the many elements contributing to the
dynamics of the system. For instance, the role of passengers has extensively
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5% error threshold

Country No. of nodes ld CC E Edd IC
Europe - ALL-FT+ 1375 (98.2%) 3.72% 0.78% 0.82% 0.90% 4.37%
USA - RITA 579 (97.3%) 4.81% 1.18% 1.81% 1.34% 0.57%
USA - OpenFlight 281 (98.3%) 3.32% 1.79% 0.66% 0.91% 1.70%
China 182 (98.4%) 3.38% 1.64% 3.33% 1.50% 4.91%
Australia 109 (97.3%) 4.38% 2.81% 0.62% 1.49% 0.29%

10% error threshold (excluding ld)

Country No. of nodes ld CC E Edd IC
Europe - ALL-FT+ 1350 (96.4%) 7.45% 1.51% 1.73% 1.76% 8.63%
USA - RITA 499 (83.9%) 5.71% 2.77% 5.64% 2.52% 8.31%
USA - OpenFlight 281 (98.3%) 13.80% 9.02% 3.12% 4.60% 8.86%
China 180 (97.3%) 36.54% 7.85% 9.22% 9.89% 7.89%
Australia 103 (92.0%) 3.32% 1.79% 0.66% 0.91% 1.70%

Table 3: Minimum number of airports vs. acceptable metric errors.

been studied within the context of delay propagation [46, 47], as passengers
represents another network of connections, which does not correspond well
with the simple flight network. Therefore, the problem tackled in this con-
tribution may be encountered when managing (sampled) passenger data, or
indeed, not having such data at all.

Beyond what is presented here, this analysis of statistical and dynamical
properties of air transport networks opens new doors towards the understand-
ing and measurement of the topology of complex systems in general. Similar
problems can be found in other multi-dimensional real-world systems, as for
instance the human brain [8, 42], for which data available are already the
result of a sampling process - in this case, due to the limitations of available
technology.
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vas, R. Vázquez, M. Zanin, Applying complexity science to air traffic
management, Journal of Air Transport Management 42 (2015) 149–158.

30


