
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Wind Resource Mapping Using Landscape Roughness and 

Spatial Interpolation Methods

van Acker, S., Van Eetvelde, G., Van Wyngene, K., Vandevelde, L. 

and Papa, E.

 

This is a copy of a book chapter published in Energy Policy and Climate Change MDPI 

Publishing, pp. 72-94.  ISBN 9783038421573.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are 

Open Access distributed under the Creative Commons Attribution license (CC BY),

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


Printed Edition of the Special Issue Published in Energies

Energy Policy and 
Climate Change
Edited by

Vincenzo Dovì and Antonella Battaglini

www.mdpi.com/journal/energies



Vincenzo Dovì and Antonella Battaglini (Eds.) 
 
 
Energy Policy and Climate Change 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



This book is a reprint of the Special Issue that appeared in the online, open access journal, 
Energies (ISSN 1996-1073) in 2015 (available at: 
http://www.mdpi.com/journal/energies/special_issues/energy-policy-climate-change). 
 
 
Guest Editors 
Vincenzo Dovì 
University of Genoa  
Italy 
 
Antonella Battaglini 
Potsdam Institute for Climate Impact Research (PIK)  
Germany 
 
 
 
Editorial Office 
MDPI AG 
Klybeckstrasse 64 
Basel, Switzerland 
 
 
Publisher 
Shu-Kun Lin 
 
 
Senior Assistant Editor 
Guoping (Terry) Zhang 
 
 
 
 
1. Edition 2016 
 
MDPI • Basel • Beijing • Wuhan • Barcelona
 
ISBN 978-3-03842-157-3 (Hbk) 
ISBN 978-3-03842-158-0 (PDF) 
 
 
 
 
 
© 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are 
Open Access distributed under the Creative Commons Attribution license (CC BY), which 
allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited, which ensures maximum 
dissemination and a wider impact of our publications. However, the dissemination and 
distribution of physical copies of this book as a whole is restricted to MDPI, Basel, 
Switzerland.  



III 
 

 

Table of Contents 

List of Contributors ..............................................................................................................IX 

About the Guest Editors..................................................................................................... XIV 

Preface 
Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem 
Reprinted from: Energies 2015, 8(12), 13473-13480 
http://www.mdpi.com/1996-1073/8/12/12379..................................................................... XV 

Chapter 1: Technology 

Seok-Hyun Kim, Kyung-Ju Shin, Bo-Eun Choi, Jae-Hun Jo, Soo Cho 
and Young-Hum Cho 
A Study on the Variation of Heating and Cooling Load According to the Use of Horizontal 
Shading and Venetian Blinds in Office Buildings in Korea 
Reprinted from: Energies 2015, 8(2), 1487-1504 
http://www.mdpi.com/1996-1073/8/2/1487 ............................................................................ 3 

Kew Hong Chew, Jiří Jaromír Klemeš, Sharifah Rafidah Wan Alwi,  
Zainuddin Abdul Manan and Andrea Pietro Reverberi 
Total Site Heat Integration Considering Pressure Drops 
Reprinted from: Energies 2015, 8(2), 1114-1137 
http://www.mdpi.com/1996-1073/8/2/1114 .......................................................................... 21 

Charlotte Bay Hasager, Pauline Vincent, Jake Badger, Merete Badger,  
Alessandro Di Bella, Alfredo Peña, Romain Husson and Patrick J. H. Volker 
Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms 
Reprinted from: Energies 2015, 8(6), 5413-5439 
http://www.mdpi.com/1996-1073/8/6/5413 .......................................................................... 45 

Samuel Van Ackere, Greet Van Eetvelde, David Schillebeeckx, Enrica Papa,  
Karel Van Wyngene and Lieven Vandevelde 
Wind Resource Mapping Using Landscape Roughness and Spatial Interpolation Methods 
Reprinted from: Energies 2015, 8(8), 8682-8703 
http://www.mdpi.com/1996-1073/8/8/8682 .......................................................................... 72 

 



IV 
 

 

Luis Puigjaner, Mar Pérez-Fortes and José M. Laínez-Aguirre 
Towards a Carbon-neutral Energy Sector: Opportunities and Challenges of Coordinated 
Bioenergy Supply Chains-A PSE Approach 
Reprinted from: Energies 2015, 8(6), 5613-5660 
http://www.mdpi.com/1996-1073/8/6/5613 .......................................................................... 95 

Petras Punys, Antanas Dumbrauskas, Egidijus Kasiulis, Gitana Vyčienė  
and Linas Šilinis 
Flow Regime Changes: From Impounding a Temperate Lowland River to Small  
Hydropower Operations 
Reprinted from: Energies 2015, 8(7), 7478-7501 
http://www.mdpi.com/1996-1073/8/7/7478 ........................................................................ 145 

Chapter 2: Corporate Policies and Investment Decisions 

Luís Bernardes, Júlio Carneiro, Pedro Madureira, Filipe Brandão and Cristina Roque 
Determination of Priority Study Areas for Coupling CO2 Storage and CH4 Gas Hydrates 
Recovery in the Portuguese Offshore Area 
Reprinted from: Energies 2015, 8(9), 10276-10292 
http://www.mdpi.com/1996-1073/8/9/10276 ...................................................................... 173 

Reynir Smari Atlason, Gudmundur Valur Oddsson and Runar Unnthorsson 
Theorizing for Maintenance Management Improvements: Using Case Studies from the 
Icelandic Geothermal Sector 
Reprinted from: Energies 2015, 8(6), 4943-4962 
http://www.mdpi.com/1996-1073/8/6/4943 ........................................................................ 190 

Patrik Thollander and Jenny Palm 
Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic 
System Perspectives and Situated Action in Combination 
Reprinted from: Energies 2015, 8(6), 5694-5703 
http://www.mdpi.com/1996-1073/8/6/5694 ........................................................................ 210 

Shahriyar Nasirov, Carlos Silva and Claudio A. Agostini 
Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile 
Reprinted from: Energies 2015, 8(5), 3794-3814 
http://www.mdpi.com/1996-1073/8/5/3794 ........................................................................ 220 

  



V 
 

 

Dagmar Kiyar and Bettina B. F. Wittneben 
Carbon as Investment Risk—The Influence of Fossil Fuel Divestment on Decision Making at 
Germany’s Main Power Providers 
Reprinted from: Energies 2015, 8(9), 9620-9639 
http://www.mdpi.com/1996-1073/8/9/9620 ........................................................................ 241 

Saskia Ellenbeck, Andreas Beneking, Andrzej Ceglarz, Peter Schmidt and  
Antonella Battaglini 
Security of Supply in European Electricity Markets—Determinants of Investment Decisions 
and the European Energy Union 
Reprinted from: Energies 2015, 8(6), 5198-5216 
http://www.mdpi.com/1996-1073/8/6/5198 ........................................................................ 262 

Chapter 3: Public Policy Issues 

Xuankai Deng, Yanhua Yu and Yanfang Liu 
Temporal and Spatial Variations in Provincial CO2 Emissions in China from 2005 to 2015 
and Assessment of a Reduction Plan 
Reprinted from: Energies 2015, 8(5), 4549-4571 
http://www.mdpi.com/1996-1073/8/5/4549 ........................................................................ 283 

Wei Li, Hao Li and Shuang Sun 
China’s Low-Carbon Scenario Analysis of CO2 Mitigation Measures towards 2050 Using a 
Hybrid AIM/CGE Model 
Reprinted from: Energies 2015, 8(5), 3529-3555 
http://www.mdpi.com/1996-1073/8/5/3529 ........................................................................ 306 

Pengfei Sheng, Jun Yang and Joshua D. Shackman 
Energy’s Shadow Price and Energy Efficiency in China: A Non-Parametric Input Distance 
Function Analysis 
Reprinted from: Energies 2015, 8(3), 1975-1989 
http://www.mdpi.com/1996-1073/8/3/1975 ........................................................................ 334 

Wenyan Wang, Wei Ouyang and Fanghua Hao 
A Supply-Chain Analysis Framework for Assessing Densified Biomass Solid Fuel Utilization 
Policies in China 
Reprinted from: Energies 2015, 8(7), 7122-7139 
http://www.mdpi.com/1996-1073/8/7/7122 ........................................................................ 349 



VI 
 

 

Carlos Benavides, Luis Gonzales, Manuel Diaz, Rodrigo Fuentes, Gonzalo García, 
Rodrigo Palma-Behnke and Catalina Ravizza 
The Impact of a Carbon Tax on the Chilean Electricity Generation Sector 
Reprinted from: Energies 2015, 8(4), 2674-2700 
http://www.mdpi.com/1996-1073/8/4/2674 ........................................................................ 367 

Alberto Gutierrez-Escolar, Ana Castillo-Martinez, Jose M. Gomez-Pulido,  
Jose-Maria Gutierrez-Martinez, Zlatko Stapic and Jose-Amelio Medina-Merodio 
A Study to Improve the Quality of Street Lighting in Spain 
Reprinted from: Energies 2015, 8(2), 976-994 
http://www.mdpi.com/1996-1073/8/2/976 .......................................................................... 394 

Gerard Reid and Gerard Wynn 
The Future of Solar Power in the United Kingdom 
Reprinted from: Energies 2015, 8(8), 7818-7832 
http://www.mdpi.com/1996-1073/8/8/7818 ........................................................................ 414 

Wei Sun, Yujun He and Hong Chang 
Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based 
LSSVM Model 
Reprinted from: Energies 2015, 8(2), 939-959 
http://www.mdpi.com/1996-1073/8/2/939 .......................................................................... 429 

Chapter 4: Global Phenomena and Global Governance 

Christopher A. Scott and Zachary P. Sugg 
Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral 
Constraints, and Policy Imperatives 
Reprinted from: Energies 2015, 8(8), 8211-8225 
http://www.mdpi.com/1996-1073/8/8/8211 ........................................................................ 453 

Martin Jänicke 
Horizontal and Vertical Reinforcement in Global Climate Governance 
Reprinted from: Energies 2015, 8(6), 5782-5799 
http://www.mdpi.com/1996-1073/8/6/5782 ........................................................................ 469 

 

 



VII 
 

 

Chapter 5: Juridical Framework 

Rosario Ferrara 
The Smart City and the Green Economy in Europe: A Critical Approach 
Reprinted from: Energies 2015, 8(6), 4724-4734 
http://www.mdpi.com/1996-1073/8/6/4724 ........................................................................ 491 

Markus Klimscheffskij, Thierry Van Craenenbroeck, Marko Lehtovaara, Diane Lescot, 
Angela Tschernutter, Claudia Raimundo, Dominik Seebach and Christof Timpe 
Residual Mix Calculation at the Heart of Reliable Electricity Disclosure in Europe—A Case 
Study on the Effect of the RE-DISS Project 
Reprinted from: Energies 2015, 8(6), 4667-4696 
http://www.mdpi.com/1996-1073/8/6/4667 ........................................................................ 502 

Chapter 6: Societal Issues 

Karen Stenner and Zim Nwokora 
Current and Future Friends of the Earth: Assessing Cross-National Theories of  
Environmental Attitudes 
Reprinted from: Energies 2015, 8(6), 4899-4919 
http://www.mdpi.com/1996-1073/8/6/4899 ........................................................................ 535 

Elisha R. Frederiks, Karen Stenner and Elizabeth V. Hobman 
The Socio-Demographic and Psychological Predictors of Residential Energy Consumption:  
A Comprehensive Review 
Reprinted from: Energies 2015, 8(1), 573-609 
http://www.mdpi.com/1996-1073/8/1/573 .......................................................................... 556 

Nadejda Komendantova, Marco Vocciante and Antonella Battaglini 
Can the BestGrid Process Improve Stakeholder Involvement in Electricity  
Transmission Projects? 
Reprinted from: Energies 2015, 8(9), 9407-9433 
http://www.mdpi.com/1996-1073/8/9/9407 ........................................................................ 594 

  



72 
 

 

Wind Resource Mapping Using Landscape Roughness and 
Spatial Interpolation Methods 

Samuel Van Ackere, Greet Van Eetvelde, David Schillebeeckx, Enrica Papa,  
Karel Van Wyngene and Lieven Vandevelde 

Abstract: Energy saving, reduction of greenhouse gasses and increased use of renewables are key 
policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, 
integrated with spatial planning, require novel methods to optimise supply and demand. In contrast 
with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive 
impact on the use of space and the power system, nevertheless, a significant spatial footprint is still 
present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, 
detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this 
article, wind measurements and roughness maps were used to create a reliable annual mean wind 
speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface 
wind speed measurements were converted into meso- and macroscale wind data. The data were 
further processed by using seven different spatial interpolation methods in order to develop regional 
wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale 
wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for 
decision-making on optimal production sites for SMWTs in Flanders (Belgium). 

Reprinted from Energies. Cite as: Van Ackere, S.; Van Eetvelde, G.; Schillebeeckx, D.; Papa, E.;  
van Wyngene, K.; Vandevelde, L. Wind Resource Mapping Using Landscape Roughness and Spatial 
Interpolation Methods. Energies 2015, 8, 8682-8703. 

1. Introduction 

Next to energy savings and reduction of emissions, an increased share of renewables in the 
European energy mix is a key priority of the Energy Union [1]. With a target of 20% by 2020 and 
27% by 2030, Europe has set ambitious goals for renewable energy, requiring a broad mix of clean 
technologies, both large and small scale, to take a share.  

Over time, technical research and innovation projects on distributed renewable energy sources 
(DRES)—such as small and medium wind turbines (SMWTs)—have been a primary focal area of 
interest. However, wind energy generation is difficult to manage because of the irregular nature of 
wind flows. Further, the current transition in energy demand and supply also encompasses many 
aspects, such as the resource availability evaluation, the compliance with environmental and legal 
constraints, and many more technical aspects. In this complex context, understanding the spatial 
distribution of the long-term average wind speed is essential for decision-making, particularly in 
regards to the siting of wind turbines. Hence, the current transition in distributed energy demand and 
supply prompts a new area of research: spatial energy planning. Further, by combining technical and 
spatial wind research and integrating it with regulatory, economic and social constraints, a new 
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interdisciplinary research and innovation area is unfolded with a high valorisation potential for 
energy prosumers on a local scale. 

Understanding the spatial distribution of the long-term mean wind speed is essential for  
decision-making, particularly in regards to the siting of wind turbines. However, there is often a lack 
of measurements to enable accurate wind speed mapping. Despite the long evolution of wind 
mapping and method development for assessing wind as a resource, along with increasing 
computational capabilities, a single general method for creating predicative wind maps does not exist. 
Indeed, a reliable approach depends on a number of factors that are context-related: the size of the 
analysed area, the required resolution of the results, the climatic and topographical characteristics of 
the analysed area, the density of the available meteorological measurements, etc. [2].  

In regions like Flanders (Belgium), an area of 13,522 km2 with ca. 6.4 million inhabitants and a 
high potential in terms of wind power generation, efficient energy planning based on renewables is 
a complex task. In fact, the region is characterised by a composite topography, a compound of land 
covers and dispersed buildings. The open space is no longer a monofunctional agricultural production 
area but, rather, a complex structure of fragments with varying densities and functions [3]. Marked 
by a dense matrix of meteorological stations, this region is challenging for identifying optimal 
SMWT locations. 

Next to meteorological data, basic wind speed measurements are equally available at various 
heights, covering the entire Flemish region. As shown in Figure 1, a primary wind study for Belgium 
was performed in 1984 by Hirsch. Although an interesting effort, it provides insu�cient insight in 
local wind availabilities to enable detailed siting for SMWTs. In 2014, a roughness map was generated 
for the Flemish region by converting land cover categories into sequences of roughness length [4]. 

 

Figure 1. Annual mean wind speed map of Belgium [5]. 
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This article starts from the results of the latter study and develops a detailed low-height wind 
speed map, providing a useful tool for the identification of optimal locations for SMWTs in Flanders.  
The research aim is not to develop new methodologies, although some are described in Section 3, 
but to analyse data by applying already existing methods and producing an updated wind map, which 
is valuable for deployment of micro-wind energy.  

Another advantage of the proposed methodology is that it uses open source data and software. 
Compared to the method we propose here, more sophisticated models (i.e., Wasp or windPRO) and 
data assimilation techniques have been developed in literature, but they are not affordable for use by  
small municipalities.  

In Section 2, the wind speed measurements for Flanders and the roughness map are presented, 
providing the geo-database used in this study. Section 3 describes two types of exposure corrections 
and introduces the seven interpolation methods assessed in this study. The results are discussed and 
mapped in Section 4, and presents the conclusions of the selected methodologies for wind resource 
mapping. In order to demonstrate how the Annual Energy Production (AEP) can be calculated for a 
specific small or medium wind turbine, an AEP map is created in Section 5 for a 10 kW 3-blade, 
upwind, horizontal axis wind turbine. A Rayleigh distribution, which is identical to a Weibull 
distribution with shape factor 2, is used as the reference wind speed frequency distribution.  

2. Data collection  

2.1. Wind speed Measurements 

This work is based on the wind data recorded in a number of Flemish meteorological stations 
spread over the region. The study used recent observed data since both the wind climate and the 
environment have changed in the past decades. The collected data, location of meteorological 
stations, relative recording dates and local wind speed measurements used in this study are 
summarised in Table 1. The geographic location of the meteorological stations is visualised in Figure 2. 

Daily wind speed observations obtained from the National Climatic Data Center (NCDC) of the 
US National Oceanic and Atmospheric Administration (NOAA) [6] were collected for all available 
stations in Belgium, with the addition of some frontier mast data from the Netherlands and France. 
All stations are equipped with an anemometer at the height of 10 m, hence, the observed wind speed 
is the so-called “surface wind speed”, which is further averaged over a calendar year so as to rule out 
seasonal bias. Data validation is performed by using the more accurate and precise dataset created 
by the Royal Meteorological Institute (RMI), which refers to a smaller group of 18 stations selected 
from the original number.  

The data from NCDC include the average wind speed at 10 m for France, the Netherlands and 
Belgium. The data are validated through comparison with the corresponding dataset from RMI (for 
Flanders). Apart from being rounded to one decimal place, both sets are identical, therefore the 
extensive open-source database of NCDC is selected for producing regional wind maps in this study. 
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Figure 2. Location of the measurement stations used. 

Since recent studies suggest that climate change is affecting the prevailing wind profiles,  
40-year-old observations are considered inadequate for future wind modelling [7]. Likewise, the 
landscape in Flanders has significantly changed over the past decades due to the development of 
built-up areas [8]. Therefore, meteorological stations with recent wind data (2010–2014) were 
selected and the annual mean wind speed was calculated based on five years of measurements, with 
the exception of Sint-Katelijne-Waver (only 2013–2014 available). Even with a reduced number of 
recent observations as recorded in Table 1, it is observed that there is a decreasing trend of the annual 
mean wind speed over the last five years. 

2.1.1. Roughness Map Flanders  

To account for the different surfaces in Flanders, a roughness map, developed in 2014 [4], was 
used. The map uses the roughness length of a land mark as indicator, defined by [9]. In this case, a 
resolution of 250 by 250 meters is presented (see Figure 3). 
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Table 1. Summary of the measurement stations (height 10 m). The recent data is  
(2010–2014) indicated in bold letter type [6].  

Station 
Roughness 

[m] 
Latitude 

[°]  
Longitude 

[°]  
Begin Date End Date  

Mean Wind 
Speed  
[m/s] 

Mean Wind  
Speed (2010–2014) 

[m/s] 
Beauvechain  0.03 50.758 4.768 1/01/1973 42.004 3.88 3.70  

Beitem  0.469 50.900 3.116 1/02/2008 42.035 3.69 3.67  
Brasschaat  0.14 51.333 4.500 1/02/1973 31/01/2006 3.26  

Brussels NATL  0.037 50.902 4.485 1/01/1973 31/12/2014 3.99 3.62  
Brussels South  0.2 50.459 4.453 1/01/1973 31/12/2014 3.96 4.00  

Buzenol  0.6 49.616 5.583 26/10/2009 25/10/2014 2.76 2.74  
Casteau/Heli  0.8 50.500 3.980 1/01/2011 31/12/2014 2.18  

Chievres  0.1 50.575 3.831 1/01/1973 31/12/2014 3.73 3.75  
Deurne  0.896 51.189 4.460 1/01/1973 31/12/2014 3.55 3.58  

Diepenbeek  0.08 50.916 5.450 1/01/2010 31/12/2014 2.92 2.92  
Dourbes  0.6 50.100 4.600 1/01/2010 31/12/2014 2.52 2.52  

Elsenborn  0.6 50.466 6.183 1/01/1987 31/12/2014 3.11 3.12  
Ernage  0.1 50.583 4.683 1/01/2008 31/12/2014 4.06 4.04  

Florennes  0.15 50.243 4.645 1/01/1973 31/12/2014 3.75 3.69  
Genk/Zwartberg  0.676 51.012 5.522 7/01/1973 6/01/2004 3.60  
Gent/Industrie  0.021 51.187 3.799 1/01/1985 31/12/2014 3.31 3.32  

Humain  0.4 50.200 5.250 1/03/2010 28/02/2015 3.69 3.66  
Kleine Brogel  0.054 51.168 5.470 1/01/1973 31/12/2014 3.01 3.01  

Koksijde  0.06 51.090 2.652 1/01/1973 31/12/2014 4.68 4.57  
Liege  0.15 50.637 5.443 1/01/1973 31/12/2014 4.07 4.11  
Melle  0.2 50.983 3.816 1/01/2010 31/12/2014 3.42 3.42  

Mont-Rigi  0.2 50.516 6.066 16/01/2008 15/01/2015 3.83 3.74  
Oostende  0.64 51.198 2.862 1/01/1973 31/12/2014 5.22 4.75  

Oostende (Pier)  0.98 51.235 2.914 1/01/1973 31/12/2005 6.91  
Retie  0.118 51.216 5.033 26/10/2009 25/10/2014 2.64 2.63  

Saint Hubert Mil  0.2 50.035 5.404 1/01/1973 31/12/2014 3.88 3.29  
Schffen  0.03 51.000 5.066 2/01/1973 1/01/2015 3.93 3.21  

Semmerzake  0.231 50.933 3.666 1/01/1973 31/12/2014 3.70 3.26 
Sinsin 0.3 50.266 5.250 20/09/1984 19/09/1995 3.49  
Sint  

Katelijne-waver  
0.278 51.070 4.535 1/10/2012 30/09/2014 3.02 3.05  

Sint Truiden  0.03 50.791 5.201 1/01/1973 31/12/1991 3.62  
Spa/La 

Sauveniere  
0.1 50.483 5.916 1/01/1974 31/12/2014 3.87 3.74 

Uccle 0.621 50.800 4.350 1/01/1973 31/12/2014 3.48 3.44 
Zeebrugge  0.001 51.350 3.200 26/10/2009 25/10/2014 6.05 6.02 
Dunkerque  0.01 51.050 2.333 2/01/1973 1/01/2015 6.20 5.26 

Lesquin  0.1 50.561 3.089 1/01/1973 31/12/2014 4.37 4.09 
Eindhoven  0.1 51.450 5.374 1/01/1973 31/12/2014 3.94 3.64 
Ell AWS  0.15 51.200 5.766 1/01/2002 31/12/2014 3.53 3.46 
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Table 1. Cont. 

Station  
Roughness 

[m] 
Latitude 

[°]  
Longitude 

[°]  
Begin Date End Date  

Mean Wind 
Speed  
[m/s] 

Mean Wind  
Speed (2010–2014) 

[m/s] 
Gilze Rijen  0.05 51.567 4.931 1/01/1973 31/12/2014 3.81 3.53 
Maastricht  0.05 50.911 5.770 1/01/1973 31/12/2014 4.25 4.06 
Vlissingen  0.25 51.450 3.600 1/01/1973 31/12/2014 6.07 6.10 
Westdorpe  0.25 51.233 3.866 1/01/1995 31/12/2014 4.02 4.00 

Woensdrecht  0.3 51.449 4.342 1/01/1996 31/12/2014 3.45 3.48 

 

Figure 3. Roughness map of Flanders [4]. 

Whilst the roughness length (z0) is not a physical length, it can be considered as a length-scale 
representing the roughness of the surface: for example, forests have a much larger roughness length 
than open sea areas. At a low height above the ground, or the surface layer, the roughness of a terrain 
affects the turbulence intensity as well as the vertical wind pattern and, by consequence, the wind 
speed. The roughness map was constructed by the Flemish Institute for Technological Research 
(VITO) based on the CoORdination of INformation on the Environment (CORINE) Land Cover 2000 
data set [9]. In this project, the National Geographic Institute (NGI) constructed the national land 
cover map using high resolution (Landsat Thematic Mapper) satellite images [10]. The detailed map 
enables correction of the observations for local sheltering and topography.  

3. Methodology 

In this section, the statistical interpretation process of the wind time series is explained. In detail,  
the section describes how seven different interpolation methods are tested and assessed in order to 
select the most performant way to generate a wind resource map of Flanders. 
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3.1. The PBL Two Layer Model 

Over the last two decades, several studies have been carried out with the aim of creating an 
adequate statistical model for describing the wind speed frequency distribution. One of the more 
recent studies developed for the Netherlands [11] used the Planetary Boundary Layer (PBL)  
two-layer model. This two-layer transformation model from Wieringa [12] was further developed by 
Verkaik [13–17] and more recently by Wever and Groen [18]. The methodology is generally 
accepted and recommended [19–22], however, the report admits to not having explored the potential 
benefits of using Kriging (see Section 3.2.2), as detailed in Section 3.3 of [11]. 

In the research carried out by Wieringa in the 70s and 80s [12,23], wind speed variations on a 
resolution of 250 by 250 meters are caused mainly by differences in atmospheric stability and surface 
roughness. At a certain so-called blending height [12] these variations become negligible compared 
to the average speed, yielding a spatially homogeneous dataset suitable for interpolation. A roughness 
correction is applied to the observations by using the measured surface wind speed to calculate the 
regional wind speed that is representative for a larger area by using the roughness length of the 
meteorological station. After completion of the spatial interpolation, the regional winds are used to 
calculate the wind speed at 10 m by using the inverse roughness correction and by using the 
roughness map of Flanders [24]. Finally, according to this methodology, two different regional wind 
speeds are used for interpolation. This “roughness blending height” is set to be zb = 60 m [23]. The 
macrowind speed is measured at the top of the PBL. 

3.1.1. Mesowind  

At the blending height zb defined above, land covers and local obstacles have a minimal influence 
on the wind speed. This height is set to be zb = 60 m. The observed surface wind speed, Us, can be 
used to calculate the mesowind speed, Umeso, by assuming a logarithmic wind profile [24]:  

Umeso=Us  (1) 

with z0s as the roughness length at the meteorological station site and zs as the anemometer height, 
equal to 10 m for all stations in this study. For all stations in Flanders, Wallonia, France and the 
Netherlands, the roughness length z0s was estimated from a terrain description and by using data 
based on satellite images of the sites [25].  

It is shown that the mesoscale wind climate is spatially more homogeneous than the surface  
wind [11], hence, it is better suited for interpolation. The interpolated Umeso values in Flanders are 
then reconverted to the surface wind speed at 10 m, U10m, by using [24]:  

U10m = Umeso  (2) 

with z0 as the roughness length at each 250 m pixel from the roughness map. 
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3.1.2. Macrowind  

The use of macrowind for interpolation purposes is described by Wieringa and is further used to 
create a gridded wind speed map of the Netherlands [11]. In this method, two layers are defined. In 
the lower layer, the surface layer, Monin-Obukhov theory is used [26,27]. In this theory, the 
logarithmic wind speed profile is used to express the increase in wind speed U in the lower  
layer [28]: 

*

0

 ln( )
s

z
z

uU =  (3) 

by using the local roughness length at the site  and the Von Kármán constant  = 0.4 [29,30].  
 is the friction velocity and is constant with height over homogeneous terrain, which makes it possible 

to calculate  at the meteorological stations. 
Geostrophic drag relations apply in the second higher layer, the planetary boundary layer (PBL).  

In the PBL, the wind speed increases further and in addition the wind direction veers (turns 
clockwise) such that a second wind speed component perpendicular to the surface wind speed (Vmacro) 
is formed [31]: 

 (4) 

Vmacro = B  (5) 

with the Coriolis parameter f = 1.129 × 10 4 at 51°N [32]. The stability parameters A and B are  
equal to 1.9 and 4.5 respectively, as is generally accepted in literature [17] when assuming neutral 
stability [33]. The vertical extrapolation methods rely on the neutral stability assumption; although 
neutral conditions characterised by log-profiles are common in general, stable and unstable 
conditions with non-log vertical profiles occur often as well [34].  

The wind at this PBL is called the macrowind, Smacro, and varies on a larger scale than the  
mesowind [12]. The macrowind Smacro consists of two components: Umacro is parallel to the surface 
wind and Vmacro is perpendicular to Umacro. Matching the two layers at the mesolevel according to  
Equations (3) and (4) leads to [17]: 

 (6) 

The PBL ranges from a few hundred meters to a few kilometres above the surface of the  
Earth [35], the height of the top of the PBL is given by [17]: 

 (7) 

Both components Umacro and Vmacro and the root of the squared sum (macrowind speed, Smacro) are 
interpolated by using Simple Kriging separately onto the 250 m resolution grid of the regional surface 
roughness map. Such obtained Smacro values are cross-checked with the values calculated from the 
interpolated Umacro and Vmacro, yielding differences that are negligibly small.  
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After spatial interpolation of the Smacro values at different location points, Smacro is used to calculate 
the surface wind speed at these locations, by using the inverse process. First the friction velocity  
needs to be calculated, by using Equations (5) and (6), in order to calculate the surface wind speed 
U10m with Equation (3)  (see Figure 4b). 

3.2. Spatial Interpolation Methods  

In order to obtain an accurate picture of the Flemish wind potential, in addition to the roughness 
map and meteorological observations, the wind speed was estimated at un-recorded sites via spatial 
interpolation of the measured data. 

Various interpolation techniques are available, of which seven are commonly used for generating 
lacking data in meteorological variables (rainfall, solar radiation, sunshine, temperature, etc.). In [36] 
an overview of climatological studies using different interpolation methods is presented. For wind 
speed, spatial interpolation is commonly used [11,37–42].  

In this study, seven interpolation methods are tested: Inverse Distance Weighting (IDW), Global 
Polynomial Interpolation (GPI), Local Polynomial Interpolation (LPI), Radial Basis Functions 
(RBF), Ordinary Kriging (OK), Universal Kriging (UK) and Simple Kriging (SK).  

Prior to the interpolation process, the wind data at the different meteorological stations are used 
to calculate the wind speed at the blending height in order to reduce the wind speed variations and to 
obtain a spatially homogeneous dataset suitable for interpolation. The two different blending  
height methods, mesoscale wind (see Section 3.1.1) and macroscale wind (see Section 3.1.2),  
are used and compared to accomplish this exposure correction. The maps are evaluated by using 
Leave-One-Out-Cross-Validation (LOOCV) where one data point is discarded from the sample and 
the remaining observations are used to estimate the missing value [43]. A comparison between the 
observed and predicted wind speeds then leads to statistical values on which the quality of the 
methods can be validated. All methods are applied to create wind speed maps that are further 
analysed in Section 3.3. Based on this analysis, the most appropriate spatial interpolation technique 
for wind resource mapping was selected.  

Upon correction of the observed wind speed for the influence of the land cover and local obstacles,  
a spatial interpolation is required to construct a gridded wind speed map. In this section, the basic 
principles of the interpolation techniques used in the study are explained. All interpolations are 
performed by using the Geostatistical Analyst from the geographic information system ArcGIS 10.1.  

In general, interpolation methods are either denoted as deterministic or as geostatistical. 
Deterministic interpolation techniques use the configuration of sample points to create a surface 
defined by a mathematical function, while geostatistical techniques make use of the statistical 
properties of sample data to create a surface.  

3.2.1. Deterministic methods  

Inverse Distance Weighted (IDW) 

Inverse Distance Weighted (IDW) is one of the most simple interpolation methods. It is based on 
the assumption that the influence of each sample point is reduced with distance. Every predicted 
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value is calculated by a linear combination of the surrounding measured values within a search 
neighbourhood, multiplied by a weight that is proportional to the inverse of the distance. Therefore, 
the closest values will have a larger influence on the estimated values than sample points that are 
located farther away. IDW is a so-called exact method, meaning that the surface passes through all 
measured sample points. The estimated value at location s0, s0 can be determined from [44,45]:  

 (8) 

with Zi as the sample values, N as the total number of sample values, di as the distance between the 
sample point and the estimated point and p as the inverse distance weighting power (IDP). The IDP 
factor determines the rate at which the influence of the sample point decreases with distance [40,46]. 
In this study, IDP values ranging from 1 to 5 are tested and the minimum and maximum number of 
points are set to 10 and 15 respectively.  

Global Polynomial Interpolation (GPI) 

Global Polynomial Interpolation (GPI) fits a polynomial function on all sample points by using a 
least-squares regression fit in order to create a surface. The degree of the polynomial can be adjusted 
so the surface can describe a physical process. A first-order global polynomial fits a flat plane through 
the sample points, while going to higher order polynomials will allow for bends, such that  
valleys and peaks can be represented by the surface [46]. In this study, a first-order global polynomial 
is used. 

Local Polynomial Interpolation (LPI) 

Local Polynomial Interpolation (LPI) creates a surface by combining many different polynomials,  
all fit for smaller (overlapping) neighbourhoods, in contrast to GPI, which fits a polynomial function 
over the entire data set. Therefore, LPI is able to better account for more short-range variations.  
Again the order of the polynomial function can be chosen and similar. As for GPI, the coefficients 
of the polynomials are found using the least-squares method [46,47]. For GPI, first-order 
polynomials are selected for this interpolation method. 

Radial Basic Functions (RBF) 

Radial Basic Functions (RBF) or spline interpolation tries to minimise the curvature of a basis 
function in order to create a smooth surface that goes through all the measured points. Therefore, like 
IDW, RBF is an exact interpolator. However, in contrast to IDW, RBF is able to predict values above 
or below the measured maximum or minimum value, respectively. RBF can be seen as fitting a rubber 
membrane through the sample points while still keeping the surface as smooth as possible. RBF is 
appropriate for slowly varying surface values but is less suitable when the sample data are subject to 
measurement errors [46,48]. Here the choice was made to use the “completely regularised spline” as 
basis function. 
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3.2.2. Geostatistical Methods  

Geostatistical techniques are predominantly found within the Kriging family. Similar to IDW, 
Kriging uses linear interpolation of the neighbouring measured points to estimate the unsampled 
points. However, with Kriging, both the distance and the degree of variation between the measured 
data points are taken into account. For the latter, a variogram is required, which indicates the rate at 
which the values change with distance. This is obtained by calculating the semi-variance from the 
sample data. The expression to predict the unmeasured data is similar to IDW but the weights, i, are 
calculated differently:  

 (9) 

The weight i depends on the distance to the estimated value, a trend model fitted through the 
measured data and an auto-correlation as a function of distance. For Kriging methods, the variable 
of interest, Z, can be broken down into a deterministic trend, μ, and an error term, :  

 (10) 

with s denoting the location. The way μ(s) is modelled depends on the Kriging method that is used.  
The error term is estimated by using the variogram and by assuming spatial autocorrelation.  

Kriging is most appropriate when there is a spatially correlated distance or directional bias in the  
data [40,46,48]. Three types of Kriging methods are used in this study—Ordinary Kriging, Universal 
Kriging and Simple Kriging:  

Ordinary Kriging (OK) is the most widespread Kriging method. In OK, the trend in Equation (10) 
is assumed to be an unknown constant μ(s) = μ over a local subset [46,49].  

Universal Kriging (UK) models the trend μ(s) as a deterministic function. The function is 
subtracted from the measured data to obtain random errors, (s). The autocorrelation is then 
calculated from these errors. Later, the deterministic function is added back to the model that was 
fitted on the random errors to get the predicted data [36,46]. In this study, a first-order trend  
model is used.  

Simple Kriging (SK) uses the trend as a known constant and therefore the errors are also known 
exactly. Hence, the expected mean of the residuals equals 0 and all variation is statistical [46,50].  

3.3. Validation  

In order to evaluate and compare the different interpolation methods, LOOCV is used [43].  
As detailed above (see Section 3.2), one observation is temporarily removed from the measured data 
set, upon which the wind speed at that site is estimated with the remaining measurements. This 
procedure is done one at a time for all observations in Flanders. Next, the estimated wind speeds are 
compared with the observed wind speed initially discarded from the data set. The following test 
statistics are used in this study:  

1. Mean Error (ME) indicates the degree of bias. A negative value signifies an underestimation 
while a positive ME means that the predictions are an overestimation of the real values:  
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) (11) 

2. Mean Absolute Percentage Error (MAPE) is a simple measure of accuracy:  

 (12) 

3. Root mean square error (RMSE) represents the standard deviation and is sensitive to outliers:  

 (13) 

4. R2 indicates how well the predicted data match the observations: 

 (14) 

with N representing the number of observations in Flanders, z(si) as the observed values, (si) as the 
predicted values and (si) as the mean observed value.  

4. Results and Discussion  

4.1. Exposure Correction  

The measured surface wind speeds are used to calculate either mesowinds, Umeso, or macrowinds, 
Smacro, in order to correct for the influence of the terrain or local obstacles. These regional wind speeds 
are both interpolated by using SK before calculating the surface wind speeds at 10 m by using the 
roughness map. All available data summarised in Table 1 are used to create both maps. In Figure 4,  
the two surface wind maps resulting from the two methods are shown. Table 2 gives the statistics of 
the prediction errors.  

From Table 2 it is clear that the methods produce very different results. The statistical values in  
Table 2 are all largely in favour of the Umeso method. For the Smacro method, the values indicate a 
larger error in the prediction map in comparison with the Umeso method. The poor results obtained 
here by using Smacro are in direct contrast to good results presented in [11], where the same method 
was applied. Two possible reasons for this difference are given. The first is that for this method the 
roughness has a very large influence. In this study the roughness length at the stations is obtained by 
using satellite images of the sites and updated pictures of the surrounding areas, identifying the 
relative land use. In a second step, the land uses derived were assigned their relative roughness 
through the use of roughness tables available in literature [25]. However, in [11] the roughness 
lengths at the masts are determined by analysing the wind gust ratio. This method is more accurate 
and less dependent on the exact mast location. Another reason is that the relationship between the 
mesoscale wind and the macrowind is based on the PBL similarity theory, which assumes a 
homogeneous PBL with neutral stability. However, in coastal areas horizontal temperature gradients 
are present and the method is unlikely to be applicable [12]. This may explain the failure of this 
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method since the wind climate in Flanders is heavily determined by the presence of the sea. On the 
other hand, the Umeso exposure correction model gives much better results. It is expected that the 
results will even ameliorate when only recent observations recorded in Table 1 are used. Therefore, 
it was decided to use the recent data, together with the Umeso method, for the evaluation of the 
interpolation methods.  

 

Figure 4. Yearly mean surface wind speed generated using the mesowind method and 
the macrowind method (a) Mesoscale wind interpolation. (b) Macroscale wind 
interpolation.  

Table 2. Statistical details of the measurement errors for the Umeso and Smacro exposure 
correction methods. 

Method ME [m/s] MAPE [%] RMSE [m/s] R2 
Umeso  0.069  13.82  0.596  0.68 
Smacro 0.035 19.42 0.945 0.56 

4.2. Spatial Interpolation Methods Comparison 

The comparison of different interpolation methods is here presented, showing differences in the 
yearly mean surface wind speed, with a direct consequence on turbine sitting. The annual mean wind 
speed maps generated with the different interpolation methods are all shown in Figure 5. The 
evaluation of the results is again done by comparing the LOOCV validation statistics and is summarised 
in Table 3.  
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Figure 5. Yearly mean surface wind speed generated using different spatial interpolation 
methods. (a) Inverse Distance Weighted IDP = 1. (b) Inverse Distance Weighted  
IDP = 2. (c) Inverse Distance Weighted IDP = 3. (d) Inverse Distance Weighted  
IDP = 4. (e) Global Polynomial Interpolation. (f) Local Polynomial Interpolation.  
(g) Radial Basic Function. (h) Ordinary Kriging. (i) Universal Kriging. (j) Simple Kriging. 

When comparing the statistics from SK where only recent data are used (Table 3) with the SK 
results where all data are used (Table 2), it is clear that the use of recent, overlapping data is  
most effective.  

The results from IDW are largely dependent on the IDP value. The IDP = 3 is the power factor 
with the best overall performance. The GPI produces the most inaccurate results, with the highest 
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RMSE and MAPE values and a large over-prediction. The LPI method also has a large negative ME 
value but the other statistical values are somewhat better. This is due to the fact that the mesoscale is 
smaller than the area of Flanders and hence GPI is not applicable here.  

It can be seen that the Kriging methods and the RBF method yield very good results: they all have 
an RMSE value of about 0.48 m/s. OK and UK give similar results, with UK being slightly better 
than OK. This is caused by the fact that in Flanders a linear trend of the wind speed can be assumed, 
with higher values near the sea and decreasing values farther inland; this is a trend that can be 
incorporated in the UK method. Still, the RBF and SK methods rendered an even smaller MAPE 
value of 0.5%.  

Table 3. LOOCV statistical values for the different spatial interpolation methods. 

Method ME [m/s] MAPE [%] RMSE [m/s] R2 
IDW 1 0.143 14.58 0.577 0.56 
IDW 2 0.127 13.06 0.520 0.64 
IDW 3 0.121 12.10 0.509 0.67 
IDW 4 0.125 11.93 0.521 0.68 
IDW 5 0.132 12.29 0.540 0.68 

GPI 0.258 17.43 0.688 0.43 
LPI 0.257 13.15 0.504 0.77 
RBF 0.125 10.88 0.479 0.74 
SK 0.030 10.82 0.484 0.67 
OK 0.133 11.37 0.487 0.72 
UK 0.144 11.38 0.477 0.72 

It is difficult to prefer one of the latter two methods over the other without additional verification 
measurements since the RBF method has a better R2-value but with SK, the ME value is closer to 0. 
Nevertheless, the under-prediction of the wind speed when using the RBF method is undesirable 
since it leads to an underestimation of the power production by a potential wind turbine. When 
comparing the maps (g) and (j) from Figure 5, the largest difference between the two interpolation 
methods is situated around Antwerp, where RBF predicts higher wind speeds than SK. This is due 
to the high wind speed recorded in Deurne (Antwerp city district) which has a higher influence on 
the RBF interpolation as it is an exact method. Hence, the predicted surface is forced through the 
measured points and thus the SK method is considered more robust and more suited to deal with 
wind speed measurement uncertainties.  

As the station of Brasschaat (Table 1) in the Antwerp region only has recorded data up to 2006, it 
is not used for the construction of the wind speed maps but can be applied for evaluation of both 
maps. For Brasschaat, the RBF and SK methods predicted a mean wind speed of 3.40 m/s and 3.21 m/s, 
respectively. Knowing that the average measured wind speed from 1973 to 2006 in Brasschaat is 
3.26 m/s, the prediction error equals to 4.20% for RBF and 1.36% for SK. Hence, it is demonstrated 
that SK has the best performance for this observation point, with RBF acting as a valuable alternative 
method since a small margin of error is equally observed.  
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The above reasoning leads to the conclusion that the SK spatial interpolation method is slightly 
more realistic than RBF for the interpolation of the annual mean wind speed in Flanders. With the 
method described above, it is possible to create wind resource maps on different heights (see Figure 6). 

 

Figure 6. Annual mean wind speed, (a) 15 m, (b) 20 m, (c) 30 m, (d) 40 m. 
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5. Energy Resource Mapping 

Mean wind speed is not a representative value for energy production assessment by itself. 
Accordingly, in this section we use a Rayleigh distribution as an indicator to estimate energy yield, 
which is a Weibull distribution with a shape factor of 2 [51–54]. 

The International Standard IEC 61400-12-1 [55] describes methods for determining the power 
performance of electricity producing horizontal axis wind turbines. The annual energy production 
(AEP) curve, described in this standard, allows the estimation of the annual production at different 
reference wind speed frequency distributions, assuming 100 % availability. A Rayleigh distribution, 
which is identical to a Weibull distribution with a shape factor of 2, is used as the reference wind 
speed frequency distribution. Starting from the wind speed map of Flanders, energy resource maps 
could be developed for different wind turbines, based on their AEP curve (see Figure 7). In order to 
demonstrate how the AEP can be calculated, in this article an AEP map is created for a 10 kW  
3-blade, upwind, horizontal axis wind turbine. 

 

Figure 7. Estimated Annual Energy Production for a 10 kW 3-blade, upwind, horizontal 
axis wind turbine (reference air density: 1.225 kg/m3). 

The horizontal axis wind turbine in this example has a swept area of 40.7 m2. The above-described 
small wind turbine (SWT) is certified by the Small Wind Certification Council to be in conformance 
with the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety 
Standard (AWEA Standard 9.1–2009) [56]. 

The equation of the best-fit curve needs to be calculated. With this, it becomes possible to calculate 
the estimation of the AEP in Flanders for this wind turbine (See Figure 8). This is the equation for 
the best fit curve: 

AEP = 1 × 10 5 x6 – 0.0011x5 + 0.0696x4  1.3928x3 + 12.477x2 – 42.413x + 51.124 (15) 

with x representing the annual average wind speed (m/s), and taking into account the cut-in wind 
speed of 2.2 m/s. 
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In Figure 9 the estimated simple payback period is visualised for the above-described SWT. Hence 
it is possible to predict an area with reasonable payback times for the wind turbine. In Figure 9 only 
red to orange areas yield payback times that are commercially acceptable; the blue area is ruled out 
for the concerned SWT at a height of 15 m. 

 

Figure 8. Estimated annual energy production (kWh) for a 10 kW 3-blade, upwind, 
horizontal axis wind turbine at 15 m height. 

 

Figure 9. Estimated simple payback period (years). 

6. Conclusions 

The present study has produced a reliable wind speed map of Flanders based on measurement data 
and roughness maps, and likewise has provided insight on spatial interpolation methods. The study 
demonstrated how local wind conditions, and thus the local wind energy generation potential, can be 
calculated by modelling available wind measurements.  

The method used is based on a traditional wind mapping methodology but adds an integrated 
spatial interpolation and transformation model to create reliable location-specific wind resource maps. 
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By applying the model to Flanders, it was observed that transformation of the surface wind to the 
mesoscale level yielded better results for wind resource mapping than the macroscale level. Likewise, 
the comparison of seven different spatial interpolation methods led to the observation that 
geostatistical and RBF methods outperformed IDW and Polynomial interpolation methods.  

In contrast to the findings of [11,37,38,47], the robust Simple Kriging interpolation method was 
found to produce the best results for developing regional wind resource maps since it has the lowest 
MAPE, a very low RMSE of 0.48 m/s and a negligible bias (see Table 3).  

As an overall conclusion, based on statistical analysis, it was found that the transformation of 
surface wind measurements into mesoscale wind data in combination with Simple Kriging 
interpolation is the most adequate method to create reliable wind resource maps that enable the 
selection of optimal production sites for SMWTs in Flanders.  

A limitation of the study is that an average wind speed map alone is not sufficient for wind energy 
applications. Accordingly, further steps for research might include additional information, such as 
seasonal maps and statistics on diurnal variability, to improve the energy map applications.  

Another open issue is the transferability of our results, and to what extent this application for 
Flanders can be used as a reference for other implementations. Further steps for research should 
analyse whether phenomena described in the study are general characteristics under the  
practical applications. 
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