
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

The economic value of adding capacity at airports – a data-driven 

model

Gurtner, G., Cook, A.J., Graham, A., Cristobal, S. and Huet, D.

 

This is an electronic version of a paper presented at The Sixth SESAR Innovation Days. 

Delft, Netherlands, 07 to 11 Nov 2016, Eurocontrol.

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161106885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


THE ECONOMIC VALUE OF ADDING CAPACITY AT
AIRPORTS – A DATA-DRIVEN MODEL
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Abstract—This article presents a model for the economic
value of adding capacity at airports. We start with an extensive
literature review, discussing the main findings covering costs and
revenues at airports, in particular related to their capacity. We
then proceed to an analysis based on a wide range of data
sources (financial, operational, quality of service) which have
been synthesised into one database. The analysis itself yields
interesting results, such as the presence of distinct types of airport
and their characteristics. Broadly based on the knowledge gained
from the data analysis, we describe a functional model describing
the costs and revenues associated with an increase of capacity at
an airport. We show how the model can be calibrated with data
and present some preliminary results based on the calibration of
Paris Charles de Gaulle airport.

I. INTRODUCTION AND OBJECTIVES

This study contributes to SESAR Operational Focus Area
05.01.01 (Airport Operations Management) in relation to the
development of the AirPort Operations Centre (APOC) con-
cept. The objective of the study is to extrapolate to airports,
the model currently used [1] for en-route capacity planning,
as represented in Figure 1. This methodology, exploring the
economic optimum (minimum total cost to the airspace users),
when considering the balance between the cost of capacity
provision and delay costs (due to lack of capacity), is now
used extensively to allocate EU-wide delay targets to indi-
vidual Functional Airspace Blocks and air navigation service
providers (ANSPs). The study presented in this paper sought to
similarly evaluate the optimum airport economic value based
on several cost functions and a quality of service measure.
We set out to explore whether it was possible to identify the
optimum amount of additional capacity to add to an airport,
beyond which diminished returns might be expected, driven
by increased delays and reduced quality of service.

The project thus assesses the value of additional passen-
gers, or additional capacity, at an airport. It aims to qualify
and quantify the main relationships and trade-offs between
variables such as capacity, profitability and quality of service.
A novel feature is the assessment of passenger satisfaction
data. The implementation follows a data-driven approach:
modelling decisions are primarily supported by traffic, passen-

Figure 1. Economic cost optimum in en-route delay/capacity trade-off.

ger, economic and performance data analysis, encompassing
data reduction techniques such as clustering and principal
components analysis. This paper reports on the first results
of this research. In Section 2, we review the state of the art
in relation to the literature and data availability. In Section 3
we describe the principles of the modelling process. Section
4 illustrates progress towards the development of the generic
model. Section 5 draws together early observations from the
modelling, conclusions from the work completed to date, and
discusses the next steps and key development opportunities
foreseen.

II. STATE OF THE ART

A. Literature review

This review provides a summary of the key relationships
between variables influencing the airport economic value, and
the mechanisms for dealing with airport capacity issues, as
reported in the research literature. Excess airport capacity will
create minimal delays but will be unprofitable for airports,
who will be incentivised to utilise their facilities as much
as they can, since a significant proportion of their operating
costs are fixed [2]. Excess demand will produce delay costs



for airlines and passengers [3]. The delays will mean that
passengers spend longer at the airport and make more use
of commercial facilities, which has been viewed as a positive
externality of congestion [4], even though the only empirical
study found directly in this area has found no significant
relationship between commercial revenues and delayed flights
[5]. Airport passenger satisfaction, likely to drop with delays,
has also been seen to be positively associated with commercial
spend [6]. The resulting relationship between satisfaction and
profitability has not always been confirmed [7], but research
here is very scarce because of the lack of appropriate and
publicly available satisfaction data.

In trying to match more closely demand and capacity, the
literature discusses two main options for airports. First, there
are so-called ‘soft’ management approaches, that tend to be
quick to implement, potentially low cost, but limited in scope
as they do not do not involve any major changes to the
physical infrastructure. ‘Hard’ options, by contrast, are slow
to implement and expensive. These can yield large increases
in capacity, because they are lumpy and are made infrequently
in relatively large indivisible units. These two approaches are
simultaneously considered by airports, and lead to a two stage
optimisation, as shown in [8], with different time frames.

The soft options can relate to both strategic planning and
tactical adjustments [9]. In the broadest sense, these can
include substituting short-distance air travel with high-speed
trains, diverting traffic to other airports or using multi-airport
systems [10]. For the airport itself, options may be infrastruc-
ture improvement planning [11] [12], changing the ATC rules,
reorganising traffic to make better off-peak use of facilities, or
by using aircraft with higher seat capacity, even though it is
argued this may lead to additional congestion in the terminals
[13] [14].

A major consideration is whether congestion or peak pricing
can be used to manage demand. The theoretical issues have
been discussed in depth [15] but rarely has this been imple-
mented in practice. Research has also shown that business
passengers, exhibiting a high value of time, would benefit from
increased charges to protect them from excessive congestion
caused by leisure passengers with a lower relative time value
[16] [17]. However, in the short-term, any changes in prices
may not be possible if the airport is subject to economic
regulation, especially price-cap regulation which is a common
situation [18]. An alternative demand management technique,
frequently researched and independent of the economic regula-
tion mechanism, is a reformed slot allocation process, probably
using slot auctions or trading systems, which would have
major financial consequences for airlines and passengers, but
less certain impacts on airport revenues [19] [20].

In discussing the provision of hard infrastructure, it has been
argued that the uncertainty of future demand [8] and the unpre-
dictability of capacity degradation should be considered [21].
Increasing capacity locally can have major unforeseen wider
impacts, for example, because of the network effects of delays
[3]. Trade-offs between different types of providing capacity
at departure and capacity at arrival have been identified [22]

and the relationship between runway and terminal capacity
examined [23] [24]. It is contended that runway capacity
should be prioritised since this is what causes bottlenecks for
most airports [13] [14]. There is also the trade-off between
focusing on operational and commercial capacity, the extent
of complementarity between these two different areas, and
the associated cost allocation approaches [25] [4]. This links
to another important issue, explored in some depth in the
literature, related to airport incentives to invest, particularly
if they are subject to economic regulation [26].

Previous research has identified some of the cost and
revenue implications for airports if they opt for hard infrastruc-
ture, grow in size and maybe evolve into a new type of airport
with different operations and/or traffic mix. Larger airports
are generally able to provide a greater range of commercial
facilities, thus increasing the commercial spend, whilst leisure
passengers have been shown to spend more than business
passengers [5] [27], and low cost carrier (LCC) passengers
less [28]. Traffic mix changes will also bring associated costs,
related to the service expectations of the airlines, such as en-
suring a fast transfer time for hub airports, or swift turnarounds
for LCCs. As regards airport size, evidence is mixed but
generally it shows that airports experience economies of scale,
albeit with different findings related to if, and when, these are
exhausted and if diseconomies then occur [29] [30].

The costs of any additional capacity will be reflected in
increased airport charges, but aeronautical revenues have also
been found to be strongly influenced by market-oriented
factors, such as price sensitivity and competition [31] [32].
The potential impact of price changes appears quite limited,
as they represent quite a small share of airline costs, but it has
been argued that the actual effects will depend on whether the
increases are passed on fully to passengers, and the supply side
responses by airlines, and consequently may actually result in
a much wider impact [33], although this is difficult to support
with empirical research.

This brief literature review has identified many of the key
potential trade-offs relevant to this research. It has also enabled
an assessment to be made of the main variables used, for
example related to aircraft movements, passengers, airport
characteristics and capacities, which has informed our own
choice of parameters. This now leads on to the consideration
of data availability.

B. Data availability

The reference year for the analyses is 2014, this being
the most recent year for which the data required were most
generally available. From multiple sources, a consolidated
database was compiled. A major component of this was airport
financial and operational data sourced (through subscription)
from FlightGlobal (London, UK). ATRS (Air Transport Re-
search Society; USA and Canada) benchmarking study data
were purchased, in addition, particularly for the provision of
complementary data on airports’ costs and incomes. At the
time of analyses, only ATRS data for 2013 were available, and
these selected data were used as a proxy for 2014. Financial



and operational data were compared with in-house, proprietary
databases, with adjustments made as necessary. Data on airport
ownership, and additional data on passenger numbers, were
provided by Airports Council International (ACI) EUROPE
(Brussels). European traffic data were sourced from EURO-
CONTROL’s Demand Data Repository (DDR) with delay
data primarily from the Central Office for Delays Analysis
(EUROCONTROL, Brussels). Note that, importantly, local
turnaround delay is used throughout this paper, as this reflects
airport in situ effects, whereas air traffic flow management
departure delay is generated due to en-route delay, or delay at
the destination airport - i.e. it is attributable to remote effects.
We did not have access to clean, local (airport generated) air
navigation service (ANS) delay data. Other in-house sources
of data were used in addition to those listed, also drawing on
the literature review, above.

In the absence of access to a single, comprehensive source
of passenger quality of service data, airports were assigned
an overall passenger satisfaction ranking for 2014, initially
based on Skytrax “The World’s Top 100 Airports in 2014”
ranking data1, and then adjusted according to independent
reviews by two experts, in addition to some limited inputs
from ACI (Montreal, Canada) drawing on its Airport Service
Quality [6] programme data. On this basis, the airports were
allocated to a ‘top’, ‘middle’ or ‘lower’ ranking. (Notwith-
standing fairly extensive industrial action in 20142, clearly
impacting a number of passengers at specific airports, it is
difficult to assess the collateral (confounding) impact of such
events on corresponding passenger satisfaction scores for such
airports.) The final rankings derived cannot be shown due to
confidentiality restrictions. This new parameter derived by the
team is one of many important inputs informing the cluster
analysis of III-B. To our knowledge, this is the first time that
such a very wide range of data has been synthesised in one
database and used to characterise airport performance.

III. DATA ANALYSIS

In this section we explore the data collected, in order to draw
some high-level conclusions. These analyses were undertaken
in order to drive the modelling process, but they are severally
valuable in their own right, we suggest, bearing in mind the
unique consolidation of data sources achieved.

A. High-level results and PCA

1) Correlation structure: We begin by selecting the type of
data that should, at least in theory, be included in the model
or could influence the modelling process. Table I shows the
variables we selected, with a simple description for each of
them. We define the net basic utility as the financial operating
result of the airport minus the cost of the (local, turnaround)
delay.

1http://www.worldairportawards.com/Awards/world airport rating 2014.
html

2Air traffic control - Belgium: June, December; France: January, March,
May, June; Greece: November; Italy: December. Airlines - Air France:
September; Germanwings: April, August, October; Lufthansa: April, Septem-
ber, October, December; TAP Air Portugal: December.

TABLE I
METRICS USED TO CHARACTERISE THE AIRPORTS.

Abbreviation Short description
AO tot Number of airlines

CUI Capacity utilization index
NBU Net basic utility
cap Runway hourly capacity
cht Share of low-cost companies
fsc Share of traditional carriers

delay per flight Delay per flight
delay tot Cumulative turnaround delay
exp tot Total yearly expenses

flight EU Share of European flights
flight per rnwy Flights per runway
flight per term Flights per terminal

flight tot Total number of flights
gate tot Number of gates
term tot Number of terminals

pax per flight Passengers per flight
pax tot Number of passengers
rev areo Aeronautical revenues

rev non area Non-aeronautical revenues
rnwy tot Number of runways
route tot Number of routes

sat Passenger satisfaction

The data in Table II shows statistical associations recently
reported by Airports Council International in a report [6]
exploring, inter alia, whether passenger satisfaction increases
airport non-aeronautical revenues. The value corresponding to
the global passenger satisfaction mean relates to ACI’s Airport
Service Quality (ASQ) programme - the associated 1.5 per
cent growth in non-aeronautical revenue being an average
increase.

TABLE II
ACI REPORTED ASSOCIATIONS

1% growth in % growth in
factor indicated non-aeronautical revenue

passenger numbers 0.7 – 1.0
size of commercial area 0.2

global passenger satisfaction mean 1.5

One of the challenges of constructing a comprehensive
model for an airport is to try to build causal relationships
between a small number of core variables. The choice of
these variables should be done by considering how much the
different variables are dependent on each other in the data. The
first step to do this is to compute the correlation coefficients
between each variable, which give the magnitude of the linear
statistical correlation between them. For simplicity, we do not
display all the coefficients but we describe hereafter the main
conclusions.

The operating revenues are very well correlated with several
metrics, including the number of passengers and the num-
ber of flights, which is expected, but also with the aircraft
occupation (number of passengers per flight) and the num-
ber of passengers per route, with correlation coefficients as
high as 0.97. This is especially striking because the latter
metrics are not trivially linked to the number of passengers
and the number of flights, so it is not a simple scaling
effect. In fact, it shows how ‘extensive’ variables, i.e. scaling
(in first approximation) with the number of passengers or



flights, can interact with ‘intensive’ variables. These effects are
very important to capture, because intensive variables usually
capture the fundamental organisation of the system, related
to the interaction between different agents (e.g. some kind
of management rule). Regarding the precise meaning of this
correlation, it is not clear at this stage why the operating results
should be so closely related to these metrics, except if they are
linked to some kind of capacity, as we show in the following.

More interestingly, we see that some of the intensive
variables, like aircraft occupancy (number of passenger per
flight), are correlated with the size of the airport (0.61). This is
also expected since small airports usually have more versatile
functionality, which requires smaller aircraft for flexibility.
Other features are worth exploring. For instance, the fraction
of flights operated within Europe seems to be highly (anti-
)correlated with different variables, including the total number
of flights, number of gates, etc., (-0.77 and -0.65, respectively).
This was expected since intercontinental airports are also
the biggest ones. More importantly, total delays seem to be
positively correlated with the number of runways, the number
of gates and the number of terminals (0.41, 0.58, and 0.45,
respectively), i.e. with the size of the infrastructure. This is be-
cause bigger delays are expected at the bigger airports, which
have the largest infrastructure. On the other hand, the delay
per flight is less correlated with the infrastructure (0.38, 0.34,
and 0.2). This is a good sign, because it could mean that the
airports increase their infrastructure to counterbalance delays.
We may also note that runway and terminal usages have non-
trivial behaviour with respect to the number of runways and
terminals, since, they are weakly or negatively correlated with
them (-0.25 and 0.02), which could loosely mean that average
airports are ‘over-building’, i.e. the number of runways and the
number of terminals increase more quickly than the number of
passengers. Note that, strangely, the terminal usage increases
(weakly) with the number of runways (0.25), whereas the
runway usage is quite independent of the terminal usage. This
is the product of a subtle coevolution of different capacities,
namely the terminal capacities and the runway capacities.

Indeed, this is typically where simple correlation scores
begin to show their limit. It is not clear at this point what are
the drivers of the different metrics and whether a few causes
only can explain most of the correlations. In order to explore
this, we turn to principal components analysis.

2) Principal components analysis: Principal components
analysis (PCA) determines whether it is possible to describe
observed variables using a smaller number of unobserved
variables. PCA removes correlations from a set of observed
variables and produces a set of uncorrelated variables called
‘principal components’, linearly related to the initial variables.
These components are mathematical functions of the observed
variables whereby we need not assume the existence of
underlying, hypothetical factors. The objective is to explain
as much variance as possible in the data, and this is generally
a key indication of the quality of the solution. However, it
is not acceptable to obtain a purely ‘mathematical’ solution
in the analysis, i.e. whereby the analyst is not able to assign

real meaning to the factors, which may be a challenge when
there are too many of them. There is thus usually a trade-
off between the number of components and the amount of
variance explained. The analyst often ‘rotates’ the factors,
to increase loadings on some of the original variables, and
decrease them on others, in order to ease the interpretation
of the solution and improve its simplicity. In order to allow a
better interpretation of the results, we use varimax rotation.
This is an orthogonal rotation method that minimises the
number of variables with high loadings on each factor [34].

Running the PCA on the variables presented above, we
extracted four components, which explain approximately 78%
of the variance (46%, 9%, 14% and 9%, respectively, in
the different panels of figure 2). These figures show the
contribution of each initial variable to the ‘hidden’ variables.

The first component (labelled 0) is homogeneously com-
posed by all initial variables, in particular the ‘extensive’
variables such as the total number of flights or the number
of delays. Hence, this first variable can be seen as the ‘size’
of the airport, which appears to be the main driver of most of
the initial variables, because this first component accounts for
almost half of the variance.

The result for the second component (labelled 1) is dis-
played on the second panel of figure 2. This one is clearly
linked to the type of airlines which are operating at the
airport. Specifically, it seems that 9% of the variance is
closely linked to the fact that airports serve more traditional
companies or more low-cost companies. It is also clear that
the infrastructure is closely linked to this, since the number
of runways and terminals play a large role in this component
too. Also interesting, the component is linked to the number
of passengers per aircraft, which is low when the component
is low, i.e. when the airport is more ‘low-cost-oriented’ – in
spite of pressures on these airlines to be punctual and have
minimal turnaround times. This is not unexpected, since low-
cost companies often operate smaller aircraft as they have very
little long-haul traffic. It is also worth noting that the delay per
flight increases when the airport is more ‘low-cost-oriented’.

The third component (labelled 2) is presented in the third
panel, and is clearly related to the financial state of the airport,
with net basic utility and non-aeronautical revenues playing a
major role. Interestingly, the total number of runways impacts
positively on this component, whereas the number of terminals
has a negative effect. Since the capacity we are measuring is
linked to the air traffic movements, it is clear also that it affects
the component accordingly with the number of runways.

Finally, the last component (labelled 3), presented in the last
panel of figure 2, is linked to the physical infrastructure of the
airport, which impacts also its usage (number of flights per
runway and per terminal), but also the passenger satisfaction.

A full review of the implications of the results of the PCA
is beyond the scope of this article, although they do fit with
some of the preconceptions found in the literature and are
roughly aligned with the ‘expert’ point of view. However,
it is interesting to note that non-trivial insights can be also
extracted from the analysis. For instance, the type of traffic



Figure 2. The four components of the PCA.

mix is closely related to the number of passengers per flight,
the delay per flight, and the Capacity Utilisation index (see
second component, labelled ‘1’). Since size has already been
taken into account by the first component, this result is not
trivially linked to the size of the airport but rather to the
business models of the airlines. The same is true for the third
component (labelled ‘2’), where we see that the net basic
utility of the airport (broadly its net income) is negatively
linked to the number of flights per terminal. Why would a
purely financial component be linked to this variable, when the
size has already been accounted for? This is clearly linked to
the management of the airport and may be due to diseconomies
of scale (because of the negative weight in the NBU).

B. Airport cluster analysis

1) Methodology: One key aspect of any model is to reduce
the complexity of a number of mechanisms directly coming
from reality into a small set of representative features. In order
to build a comprehensive model, we used a clustering analysis
to collect the airports into different groups. The idea is to guide
the modelling process and also to be able to ‘switch’ between
different kinds of behaviours when using the model.

There are many different ways of clustering data, each cor-
responding to the definition of ‘clustering’. Several methods
are routinely used in the literature but the specific choice of
method is always quite subjective. In this article, we decided
to use a technique coming from network theory, based on
modularity. If we consider a network with an adjacency matrix
A and a partition P of its nodes, the modularity is defined as:

Q =
1

2m

∑
C∈P

∑
i,j∈C

(Aij − Pij), (1)

where Pij is the expected value of the adjacency matrix for
the link i, j, and m is the total weights of the links. The
modularity is typically a measure of how much the nodes are
tightly linked to each other within the communities (clusters),
with respect to how much they are linked with the rest of
the network. The null model for the matrix is usually the
one proposed by Newman and Girvan [35]: Pij = kikj/2m,
which corresponds to a randomization of the links, conserving
the local strengths. One then needs to find the partition P of
nodes which maximizes the modularity, and for this several
algorithms exist. In this article we use the Louvain method,
which is very efficient and widely used [36].

It is well known that the modularity suffers from a resolution
issue, but there is an easy and elegant way to circumvent
this, by adding a scaling term to the null model’s matrix, i.e.
Pij = γkikj/2m. If γ is high enough, one obtains typically
very small communities (down to the size of one node each).
A small value means on the other hand that the partition
maximizing the modularity is the one where all nodes are in
the same partition. In between, one spans different levels of
granularity of the system. If there is again a certain degree
a subjectivity in the choice of the right scale, one is strongly
guided by the appearance of plateaus in the number of clusters
when sweeping the scale – as shown hereafter.



Figure 3. Number of communities in the network of airport as a function
of the scaling parameter. The presence of plateaus indicates the existence of
natural cluster structure at these scales.

In order to use this method, the data must be organized in
some kind of network. A typical approach is to define a degree
of similarity – or distance – between airports. Several choices
are possible, but a common choice is to use the Euclidean
distance on standardised data, i.e. computing:

dij =

√∑
k

(cki − ckj )2, (2)

where cki is the standardised value of the component k for
airport i. The components are indeed standardised as follows:

cki =
c̃ki −minj c̃

k
j

maxj c̃kj −minj c̃kj
, (3)

which means that all components span the interval [0, 1].
Note that one can also put different weights on different
components, to better reflect either their importance or some
prior knowledge on the data.

In this study we use the components of the PCA to enter into
the distances between airports, instead of the initial variables,
which reflect a the natural organisation of the data. Moreover,
we use the relative variance weights of each component in the
Euclidean distance, i.e. dij =

√∑3
k=0 wk(c

k
i − ckj )2, where

wk is the ratio of variance explained with component k.
In summary, we define a certain number of components (the

same that we used for the PCA), we build a network where
each node is an airport and each pair of airports has links of
strength 1−dij , we sweep the parameter γ and for each value
we compute the best partition with the Louvain algorithm. In
the following subsection we show the result of the procedure.

2) Clusters of airports: The first step is to check if there
are some scales for which the system has a non-trivial number
of clusters. Figure 3 shows indeed the existence of plateaus
when one sweeps the scaling parameter, more specifically a
plateau with 3 communities and another one with 4 of them.

We then check that these plateaus actually correspond to
stable partitions and not, for example, to sequences of different
partitions with the same number of clusters. The procedure we
use is to compute the Normalised Mutual Information (NMI) –
a measure of similarity between partitions – and check that it is
close to 1 throughout the plateau. We also checked that, when
perturbing slightly the data, the partitions were not changing
too much (results not shown here).

We then inspect the partitions themselves. In table III we
display the composition of the 3-cluster partition. We firstly
compare this partition with the 4-cluster partition (not shown),
which is, in fact, very similar. The only difference is the pres-
ence of a new cluster containing two airports (Copenhagen and
Vienna) otherwise in cluster number 2. Since the operational
meaning of this small cluster is not obvious, we focus in this
paper on the 3-cluster partition. Intuitively, the partition seems
to make sense. Cluster 1 includes mostly major hubs, whereas
clusters 0 and 2 include airports with less traffic. Indeed,
cluster 2 contains a number of secondary hub airports.

In order to inspect the clusters more closely, we show in
table IV the average value of each of the airports’ character-
istics, according to three categories: low, medium and high.
Upon inspection of the table, the difference between clusters
0 and 2 appear more clearly. Indeed, the first one includes
airports which have proportionally lower delays per flight,
fewer routes, lower passenger satisfaction, fewer flights, and
less congestion (CUI) with respect to cluster 2. The table
also confirms the status of ‘hubs’ of the airports of cluster
1, with high numbers of passengers, high numbers of flights,
high revenues and expenses. It confirms a tendency of hubs
to attract non-low-cost carriers, to produce higher delays per
flight, and to have a more international profile. Interestingly,
the passenger satisfaction is also different in this cluster,
even if we cannot disclose even its average level, due to an
agreement with ACI. The net basic utility is not so high,
however, probably driven by higher delays per flight, whereas
the load factor is also high for hubs, as expected.

This clustering analysis will be included in the model at
a later stage by having different functional relationships for
airports belonging in different clusters.

IV. BUILDING THE GENERIC MODEL

A. Principles of the modelling process

The model we present in this article is a simple functional
model based on representative agents. To build the model, we
considered the following relevant mechanisms:
• Airline revenue is primarily a function of ticket price

and passenger volumes (excluding cargo). These will be
influenced by the airport location, degree of competition,
airline networks, airline costs and other factors. Airport
congestion can cause delay costs and airport capacity
increases can cause rises in airport charges. These addi-
tional costs will have a direct impact on airline revenues.

• The revenues of the airport depend on the number of
flights departing and arriving (primary driver for aero-



TABLE III
COMPOSITION OF THE PARTITION FROM THE CLUSTERING ANALYSIS.

Cluster Id ICAO Code Airport Name

2 EBBR Brussels
EDDL Dusseldorf
EGCC Manchester
EIDW Dublin
EKCH Copenhagen Kastrup
ENGM Oslo Gardermoen
ESSA Stockholm Arlanda

LOWW Vienna
LPPT Lisbon

1 EDDF Frankfurt
EDDM Munich
EGKK London Gatwick
EGLL London Heathrow
EHAM Amsterdam Schiphol
LEBL Barcelona-El Prat
LEMD Adolfo Suarez Madrid
LFPG Paris Charles de Gaulle
LIRF Rome Fiumicino
LSZH Zurich
LTBA Istanbul Ataturk

0 EDDH Hamburg
EDDK Cologne Bonn
EFHK Helsinki
EGBB Birmingham
EGSS London Stansted
ELLX Luxembourg
EPWA Warsaw Chopin
LFMN Nice Cote d’Azur
LGAV Athens
LHBP Budapest
LKPR Prague
LPPR Porto

TABLE IV
AVERAGE VALUE OF EACH CHARACTERISTIC WITHIN EACH CLUSTER

(L=LOW, M=MEDIUM, H=HIGH). THE AVERAGE LEVEL OF
SATISFACTION CANNOT BE DISCLOSED DUE TO AN AGREEMENT WITH

ACI, BUT ARE DIFFERENT IN EACH CLUSTER.

0 1 2

AO tot L M M
CUI L M M
NBU H M H
cap L H M
cht M L M

delay per flight L M M
delay tot L M L
exp tot L M L

flight EU H M M
flight per rnwy L M M
flight per term L M L

flight tot L H M
fsc M H M

gate tot L M L
pax per flight M H M

pax tot L M L
rev aero L L L

rev non aero L M L
rnwy tot L M L
route tot L M M

sat * * *
term tot L L L

nautical revenues3) and the total number of passengers (a
primary driver for non-aeronautical revenues). Their costs
are mainly driven by the upkeep and the development
of new capacity facilities and not by major operational
changes, e.g. related to more stringent security controls.

• The passengers’ choices are primarily determined by
external factors (e.g. airport location, airline fare/service)
and thus are not modelled here. However passengers have
different experiences at different airports, based on the
delay at the airport, the quality of service at the airport,
etc., that we collectively collect under the term ‘utility’.

• The delay is a direct consequence of the congestion at
airport.

Based on these considerations, we choose the following core
mechanisms for the model. The first variable we consider is
the capacity C of the airport, which, compared to the level of
traffic T , produces a certain level of delay δt at the airport.
Based on this delay, a cost of delay cd for the airline is derived.
Together with the airport fees P , this produces the net income
of the airline in our model. In order to have a market response
coming from the delay, and ultimately the capacity, we assume
that the airline then has a probability Pa of actually operating
the flight, increasing with its income. The airport itself has
a net income based on its aeronautical revenues rA,aero,
proportional to the number of flights actually operated, its non-
aeronautical revenues rA,non−aero, proportional to the number
of passengers, and its operational cost cinf , which is a linear
function of the capacity. The non-aeronautical revenues are
based on the average passengers’ spending w at the airport,
which increase with the mean delay δt. Finally, in order to see
the impact of the delay on passengers, we introduce a utility
up for the passengers, which is also a function of the delay.

In the following, we describe the specific equations that we
used in the model, following the mechanisms described above.

The first functional relationship that we use aims at linking
the delay at an airport with respect to the capacity and the
traffic. We choose the following form:

δt =

{
0 if T < C

d0
e
T−C
C −1
e1−1 otherwise,

(4)

where C is the capacity of the airport, T is the traffic (see next
section for their exact meaning, like the time frame), and d0
is a parameter, which represents the delay at the airport when
it operates at double capacity.

For the revenue impact of the airline, we simply take into
account the losses due to delays and airport charges, and
consider the prices as being fixed as external parameters.
Hence, the revenue impact of the airlines is given by:

ra = −cd(δt)− P, (5)

3Strictly speaking, the primary drivers of aeronautical revenues for most
airports are the passenger charge and weight of the aircraft. However, the
model considers a constant load factor per airport, and an average weight
of aircraft, and so the aeronautical revenues are directly proportional to the
number of flights.



where cd is a cost of delay function, dependent on the delay
δt, and P is the average airport charge (per flight). The cost
of delay to the airline comprises passenger, fuel, maintenance
and crew costs. The passenger costs include compensation and
duty of care, etc., as required by Regulation 261 [37], and also
market share costs arising from reduced punctuality (they do
not include (internalised) passenger value of time costs). The
delay costs are sourced from [3].

In order to model the loss of potential revenues for the
airport when the congestion or the airport charges are high,
we introduce a probability that the flight is actually operated
at the airport, based on the expected revenues (or loss) from
equation 5. Given the revenues ra, the airline has a probability
Pa of operating a flight at the airport given by:

Pa = cf (ra), (6)

where cf is a choice function. For this function, we use
a simple hyperbolic tangent function. Shifted, this varies
between 0 and 1: cf (ra) = 1/(1 + exp(−(ra − r0)/s)). This
choice is motivated by the fact that this probability is linked
to some form of utility function for the airline, taking into
account other (strategic) parameters (as described above). It
allows us to have a smooth function which varies continuously
between 0 and 1, and to have a risk aversion of the agent which
can directly be linked to the parameter s – henceforth referred
to as the ‘smoothness’ of the decision. Indeed, when s is
sufficiently small, the airline takes harsh decisions, switching
from operating to non-operating the route once revenues are
driven low enough. Note that, in fact, we would strictly be
referring to net revenue contribution to the network, since
airlines will tolerate loss-making legs that have a net benefit
to the system.

Moreover, we are able to introduce with this function an
element of prospect theory, in the sense that the utility of the
airline does not depend only on its revenues, but also on a pre-
determined level r0 (some kind of ‘anchoring’). This parame-
ter includes the direct revenues from the passengers (prices of
the tickets, etc.) and other costs linked to the operation. In our
model, this parameter is an external one, which needs to be
calibrated on data (through post-calibration, see section IV-B).
Finally, this function mimics standard functions from prospect
theory, since it is convex in the positive region (revenues
greater than the value anchor) and concave otherwise.

Regarding the airport, we assume that its revenues come
from aeronautical revenues and non-aeronautical revenues.
The former depends on the airport charges P and the potential
number of flights operated N , with rA,aero = PNPA, where
PA is the probability that they actually operate. The latter is
directly linked to the number of passengers, rA,non−aero =
lfwNPA, where lf is the average load factor and w is the
average revenue coming from each individual passenger. The
first one is a constant in our model, that we calibrate directly
on data, whereas w is a function of the delay at the airport,

which we choose to be linear within a certain range:

w =

{
smax

δt
t1

if δt < t1,

smax if δt ≥ t1.
(7)

In other words, the passenger spends smax if his/her flight has
a large delay, but otherwise spends an amount which grows
linearly with time.

Finally, we consider the expenses of the airport. Since we
are interested in capacity-related costs, we choose a very
simple form for the capacity, essentially accounting for the
fact that extra capacity usually needs investment in the form
of physical infrastructures. The cost function reads:

cinf = αlf (C − Cinit), (8)

where C −Cinit represents the increase in capacity wanted by
the airport, and α is the marginal operational cost of capacity
per passenger.

Because the cost of delay is non-linear with respect to the
delay (see next section), we take into account the heterogeneity
of the traffic, and thus the heterogeneity of the delays along
the day. This allows for a better assessment of the total
cost of delay for the airlines, since high delays at peak-
time are counting proportionally much more than the small
delays during off-peak time. Hence, equations 4 to 7 are
in fact evaluated with a distribution of their arguments. For
instance, based on a distribution of traffic {T}, we generate a
distribution of delays {δt} with equation 4, which turns into
a distribution of revenues with equation 5, and so on.

In order to compare the consequences of the model for the
different actors, we also compute a utility for the passengers:

up = −vδt+ σ, (9)

where v is the average value of time of the passengers and
sigma is the level of satisfaction of the passengers at the
airport. This is a very crude approximation, and the computed
utility has no intrinsic meaning, but is nevertheless useful to
compare different situations where delays are different and
passengers are likely to be satisfied at different levels. Note
that in this paper we do not compare the results of the model
for different airports and the parameter σ does not need to be
evaluated.

B. Calibration
In this section we describe how we calibrate the model.

The calibration itself is done in different steps. Indeed, some
parameters can be calibrated directly from the data, but some
need to be swept, matching the output of the model to some
values extracted from the data. Moreover, we need different
functional relationships coming directly from data.

1) Functional relationships: Using the costs of delay intro-
duced earlier, we carried out a regression fit for primary delay
(to avoid double-counting across the network by including
reactionary impacts) costs using the weights of the aircraft
and the delay durations (as per the method established in [3]).
The final function is:

cd = −7.0 δt−0.18 δt2+(6.0 δt+0.092 δt2)
√
MTOW, (10)



For the model, we set
√
MTOW to the average across all

aircraft departing the airport.
Another functional relationship is the equation presented in

4, which should be directly calibrated on data. In the present
paper, we only estimate roughly the parameter d0 to 120
minutes.

2) Direct calibration of parameters: Some parameters can
be directly estimated from the data. Among them, the average
load factor lf , the average

√
MTOW , and Cinit – which is

the current capacity of the airport – are directly taken from
data. The traffic distribution, in terms of traffic per hour, is
also extracted directly from traffic data (DDR data).

The value of time of passengers, not useful per se for the
model but impacting the passengers’ satisfaction, can be found
in the literature too. To have a more realistic description,
we decided to use two values of time, which are usually
associated with business – vb – and leisure passengers – vp,
taken from [38]. We then consider that most passengers on
low-cost aircraft have a lower value of time – associated
more often with leisure-purpose trips – whereas passengers
(on average) travelling with traditional airlines have a higher
value of time overall – including more business-purpose trips.
As a consequence, the average value of time in our model is:

v = vlrlcc + vb(1− rlcc),

where rlcc is simply the share of low-cost companies at the
airport. This value is also directly taken from data (from DDR
data).

Finally, an important parameter is the operational marginal
cost of extra capacity per passenger α. This value is difficult
to estimate without further data on the airports. As a conse-
quence, we consider it to be a free parameter. Note that in order
to make comparisons within the model, it can also be roughly
estimated from the total operational cost versus the capacity
at the airport, since the main task of the airport is to deliver
capacity. However, such a value is clearly overestimated and
would only provide a broad idea of the magnitude of α, or
as an upper bound. In the following, we do not show this
evaluation, but it can be found – together with an updated
version of the model – in the final deliverable of the project
[39].

3) Post-calibration of parameters: We call post-calibration
the operation of running the model with different values of
parameters, and comparing some results of the model with
values extracted from the data.

We begin with the capacity of the airport. Since the ratio
between capacity and traffic sets the delay in our model and
that we already have the distribution of traffic, we set the
capacity so that the distribution of delay produced by equation
4 matches the one extracted from data.

The second step is to set the ratio between non-aeronautical
and total revenues. In our model, this depends only on the
ratio P/lfw, i.e. on the two parameters P and smax (from
the function w). We keep P as a free parameter, which could
also be calibrated directly on data, but we do not have this
information. From financial data however, we know the ratio

between non-aeronautical and total revenues, so we can sweep
smax in the model for matches with this number.

The third step is to sweep the parameter r0 in order to match
the total revenues of the airport with those in the data.

Finally, we still have two extra parameters. The first is s
from equation 6 and the second is P , which could be easily
calibrated given the proper data. Table V shows a summary
of the calibration procedure by displaying all the relevant
parameters and how they are calibrated.

TABLE V
LIST OF PARAMETERS OF THE MODEL, WITH THEIR TYPES RELATED TO
CALIBRATION. DC: DIRECT CALIBRATION (OR ESTIMATED), FP: FREE

PARAMETER, PC: POST-CALIBRATED. THE LAST COLUMN PRESENTS THE
VALUE OBTAINED FOR THE CALIBRATION WITH CHARLES DE GAULLE

AIRPORT.

Parameter of function Type of parameter Value for CDG√
MTOW DC 120
d0 DC 120
lf DC 271
cd DC function
r0 PC -10058
P FP 10000
s FP 100

smax FP 201
t1 FP/DC 90
α FP –
Cinit DC 15.9
v DC 43.9
T DC Distribution

C. Preliminary results

In this section, we show the results of the calibration of the
model on a specific airport, Charles de Gaulle airport (CDG).
Table V shows the values of the parameters for this airport
after calibration. Note that in order to compute the traffic and
the capacity, we only took into account the departing flights.

Figures 4 and 5 present some output from the model. The
first shows the evolution of the revenues of the airports as
a function of the capacity (per hour) and the marginal cost
of extra capacity per passenger α (in euros). It is clear from
the graph that usually there is an optimum of revenues for a
value of the capacity which is higher than the current one for
CDG. Note however that this is true only for small values of
α, because otherwise the capacity is too costly with respect to
the benefits and there is no optimum (other than the current
capacity). As pointed out previously, we are unable to estimate
the real α, but the model can directly give the level of α for
which a given increase in capacity would start to be profitable
for the airport. This analysis is carried out in [39] with an
updated, more precise version of the model.

It is also interesting to see the benefits for the other
stakeholders, i.e. the airlines and the passengers. In figure
5, we show four panels, with the revenues of the airport
(top left), the revenues of the airlines (top right), the average
delay (bottom left) and average spending of a passenger at
the airport. These plots have been obtained for α = 1. It
is interesting to note that if the airport decides to reach its
optimal capacity in this case, the average delay will drop by
80% approximately. Note also that the average spending drops



Figure 4. Daily revenues of the airport as a function of capacity (starting at
current capacity) and the marginal capacity cost (Alpha).

a lot in this scenario (around 40%), which is compensated by
the increase in the number of airlines operating at the airport
and the number of extra passengers.

Figure 5. Revenues of the airport (top left), revenue impact for the airlines
(top right), average delay (bottom left), and average spending of passengers
(bottom right) as functions of the capacity. The revenues are given per day.

D. Engine implementation and user interface

The model developed in this paper is aimed at experts in the
field that do not necessarily have the technical or programming
skills to execute or modify a software platform. In order
to make the model more accessible, a visualisation layer or
graphical user interface has been developed on top of the data-
driven model. The model is then delivered as an autonomous
piece of software usable by a user with no programming skills.

This visualisation helps the user to understand the under-
lying model behaviour and evolution when varying certain
input parameters and airport types, for example determining

the combination of parameters that lead to desirable outputs
or, in some cases, optimum values.

The visualisation tool also helps to determine the stability
and sensitivity of the optimal points, local behaviour in small
neighbourhoods, visually. The engine has been developed
in MATLAB and can be deployed on any java-compatible
platform. It is compatible with modules (airport and airline
models) written either in MATLAB or Python programming
languages and exports output data into common formats: .png
for figures, plus .XML and Excel-compatible CSVs for tables.

Figure 6. Screenshot of the visualization layer.

V. CONCLUSIONS AND FUTURE WORK

This study has been conducted within the context of the
SESAR 1 programme. It aimed at supporting the development
of the AirPort Operations Concept (APOC) by introducing
an economic view of the value of an airport. By modelling
and monetising a single airport economic value (using the
cost of providing and utilising airport capacity, the additional
revenues due to additional traffic, plus the quality of service
for both passengers and flights), this study allows us to better
understand the interdependencies of various KPIs and to assess
the existence and behaviour of an airport economic optimum,
in a similar way to the early 2000s when estimating the
economic en-route capacity optimum.

Specifically, we have presented a simple but highly data-
driven functional model. We have presented a concise litera-
ture review and part of the data analyses performed, both of
which guided the modelling process. Indeed, one of the main
challenges of this kind of model is to find a good balance
between the important mechanisms at play, and the ones
which can be calibrated. As a result, the literature review and
the data analysis were very important, and we made several
iterations, shifting our attention from one to the other in order
to find the right level of description. The analysis yielded some
interesting result per se, like the clustering analysis, which will
be included in the model at a later stage.



We also showed the specific equations and relationships
present in the model and how the main parameters of the
model are calibrated. The mechanisms we have considered
are simple enough to be calibrated, but are the core mecha-
nisms, in our opinion, for the relevant costs and benefits of
extra capacity. The calibration procedure has been built very
thoroughly and will be slightly refined to include the last free
parameters.

Finally, we presented some preliminary results obtained
with the model calibrated on CDG. The main result for now
is the presence of an optimum in capacity, at a value which
is sometimes greater than the current capacity, depending on
the value of the marginal cost of capacity α. It is interesting
to see that not only the existence of the optimum but also
its position is dependant on this value. Moreover, this value
might not correspond to an achievable capacity increase, since
typically the capacity has to be increased by a large amount
with a large investment (new runway, new terminal, etc.), and
does not vary continuously.

Overall, we believe that this model represents a valuable
tool that integrates different types of data. We are confident
that the final model – presented in [39] – will be useful for a
cross-section of stakeholders, including regulators.

The work on APOC will continue under SESAR 2020 as
part of its Project 04. In this context, it is expected that
the conclusions of this study will be further refined through
the introduction of additional variables and through closer
interaction with interested airports. Further liaisons with ACI
and with a specific airport are planned in the coming months
regarding the possibility of joint modelling initiatives.

Indeed, the model clearly lacks data concerning the opera-
tional costs, and is also insufficient in terms of heterogeneity
and time series. For instance, the aeronautical revenues do not
take into account the different load factors, which can have a
large impact on the revenues of the airports – since for some
of them aeronautical revenues depend more on the number
of passengers than flights. Increased effective capacity is also
reached by airlines through raising load factors, as shown in
the literature review. It is also important to take into account
the heterogeneity among airline businesses, since expanding
capacity usually does not simply increase the number of
flights, but also the traffic mix. This requires more advanced
modelling procedures, where economic equilibria are derived
based on demand and supply functions, thus requiring more
data from airlines for calibration.
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