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Abstract

The optimal selection of chemical features (molecular descriptors) is an essen-

tial pre-processing step for the efficient application of computational intelligence

techniques in virtual screening for identification of bioactive molecules in drug

discovery. The selection of molecular descriptors has key influence in the accu-

racy of affinity prediction. In order to improve this prediction, we examined a

Random Forest (RF)-based approach to automatically select molecular descrip-

tors of training data for ligands of kinases, nuclear hormone receptors, and other

enzymes. The reduction of features to use during prediction dramatically re-

duces the computing time over existing approaches and consequently permits the

exploration of much larger sets of experimental data. To test the validity of the

method, we compared the results of our approach with the ones obtained using

manual feature selection in our previous study (Perez-Sanchez et al., 2014).The

main novelty of this work in the field of drug discovery is the use of RF in two

different ways: feature ranking and dimensionality reduction, and classification
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using the automatically selected feature subset. Our RF-based method out-

performs classification results provided by Support Vector Machine (SVM) and

Neural Networks (NN) approaches.

Keywords: Random Forest, Drug Discovery, Molecular Descriptors,

Computational Chemistry

1. Introduction

Virtual screening methods are widely used nowadays in the drug discov-

ery process (Zhao et al., 2013; Ma et al., 2011; Yan et al., 2014; London et al.,

2014), where they provide with predictions about which ligands from large com-

pound databases might bind to certain protein targets. Using this approach,5

it is possible to reduce the number of compounds that need to be tested ex-

perimentally in small labs or even when using High Throughput Screening

infrastructures (Bajorath, 2002; Gong et al., 2010; Polgar & M Keseru, 2011;

Tidten-Luksch et al., 2012; Mueller et al., 2012). Within virtual screening meth-

ods, one can find both Structure Based (SBVS) and Ligand Based (LBVS)10

methods. SBVS methods exploit information about the protein target and co-

crystallized ligands (when available), while LBVS methods only exploit informa-

tion about known ligands. Both SBVS and LBVS methods use different forms

of scoring functions for affinity prediction and can complement high-throughput

screening techniques; however, accurate prediction of binding affinity by any vir-15

tual screening method is a very challenging task. Use of modern computational

intelligence techniques that do not impose a pre-determined scoring function

has generated interest as a mean to improve prediction accuracy (Ain et al.,

2015; Ballester & Mitchell, 2010). Selection of chemical characteristics (molec-

ular descriptors) with greater discriminatory power has the potential to improve20

scoring predictions of which compounds will be good candidates, i.e., bioactive.

To improve the scoring of small molecules, it is necessary to carefully select

the predictor variables which must help to decide among the different chosen

input features (Guyon & Elisseeff, 2003). The set of features that describes
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small molecules can be arbitrarily large, so that in most cases a pre-selection25

stage is required. The input variables (predictors) for a dataset are a fixed

number of features, in our domain: the molecular descriptors. The values of

these predictors can be binary, categorical, or continuous and represent the set

of the system input data. The feature selection process consists of two main

stages: acquisition of data (filtering, suitability, scaling) and feature selection.30

First, we should ask an important question: What are the most relevant features

for our application domain? As we are working with standardized databases,

we avoid steps for filtering, scaling, or deciding the suitability of this data. We

will focus on the selection of features. There are different motivations for doing

so, but we will seek to obtain a number of benefits (Guyon et al., 2006). In35

particular, we hope to get some of the following benefits:

• Reduction of the data to be processed.

• Reduction of features, reducing the cost of continued storage.

• Improved performance, improved processing speed can lead to an improve-

ment in prediction accuracy.40

• Improved display, improved representation helps the understanding of the

problem.

• Reduced training time, smaller data subset decreases training time.

• Reduction of noise in the data, removing irrelevant or redundant features.

A proper selection of the set of molecular descriptors (predictors) is essential45

to optimize the prediction and automatic selection of these descriptors. This is

a clear objective of automatic versus manual selection (ad hoc) methods. What

are the most important variables in the classification models? This problem is

common in many research domains. Usually, it is solved using the variable that

best explains our model and adapts to the domain in which we work. For some50

domains, the segmentation criteria are simple or are constructed around artificial

variables (dummy). These are the mechanisms that are adopted by a domain
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expert and sometimes it is a multidisciplinary task. The use of computational

intelligence techniques allows us to select these variables in an automatic way

by quantifying their relative importance.55

Once the idea of the relevance of the selected features is introduced, those

not selected, or which have been left out, should be irrelevant or redundant.

Therefore, the order of relevance allows us to extract a minimal subset of features

that are enough to make an optimal prediction. In RF, the classification method

is based on the use of decision trees on multiple samples of a dataset. RF has60

the ability to select a reduced set of candidates among a large number of input

variables in our model (predictors) by finding linear relationships between them,

this is what makes this method very interesting for this purpose.

In this paper we applied Random Forest as a feature selector but also as

a classifier. We used public datasets to test the classification performance of65

the method. The main contribution of the paper is the automatic selection

of a ranked and reduced subset of features to feed the classifier, enabling the

system to obtain a good accuracy while dramatically reducing the computational

cost thus allowing the system to explore large datasets. Our RF-based method

outperforms manual selection of descriptors and improves classification results70

over SVM or NN approaches.

The rest of the paper is organized as follows: Section 2 describes the method-

ology, including the description of the public datasets employed to test the selec-

tion of variables. In addition, a computational intelligence method is introduced

(RF). In Section 3, a set of experiments with RF to fit and model the automatic75

feature selection are presented. At last, in Section 4, a discussion of the results

is presented and, finally, conclusions are drawn and some future works are listed.

2. Methodology

This section describes the pipeline, datasets, and methods we used to im-

prove the selection of molecular descriptors. To apply the computational intel-80

ligence technique Random Forest to the selection of molecular descriptors, the
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model was trained with different datasets that have been widely used by differ-

ent virtual screening techniques. Automatic selection of variables was compared

with data obtained by the manual selection (ad hoc) of combinations of these

descriptors as tested in our previous study (Perez-Sanchez et al., 2014).85

2.1. Method Pipeline

We propose a two stages method based on RF: in a first stage we trained

the RF with databases of known active (drugs) and inactive compounds, to help

to define the best descriptors for scoring/classification by providing the most

relevant information in the classification step (Figure 1, 1-3) and improving90

the results of our previous work (Perez-Sanchez et al., 2014). This selection

drastically reduces the computational complexity and time allowing to focus the

computational effort on the proposed candidates which will permit to accelerate

biomedical research. In a second stage, after the automatic selection of these

molecular descriptors, we applied again a RF-based approach. This time RF95

is used as a classifier to determine the goodness of the selection to provide a

prediction of a molecules activity (Figure 1, 4-6). Figure 1 shows the data flow

from feature selection of the dataset to the classification step where the best

results are measured in terms of AUC (Area Under the Curve) for each dataset.

Accurate feature selection has the potential to improve system performance,100

processing speed, and can lead to an improvement in prediction accuracy.

2.2. Ligand Databases and Molecular Properties

In order to test our method, we compared results with our previous work us-

ing manual feature selection (Perez-Sanchez et al., 2014) employing standard VS

benchmark tests, such as the Directory of Useful Decoys (DUD) (Huang et al.,105

2006), where VS methods’s efficiency to discriminate ligands that are known to

bind to a given target, from non-binders or decoys, is checked. Input data for

each molecule of each set contains information about its molecular structure and

whether it is active or not. We focused on three diverse DUD datasets (details

are shown in Table 1)that cover kinases, nuclear hormone receptors and, other110
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Figure 1: Data flow for automatic feature selection. In the feature selection step we feed

the RF with a large set of different features from three public datasets (Table 1). The RF

provided as a result a ranking of the features with the highest discriminative power for each

dataset. In the classification step we train the RF using different sets of data represented by

features obtained in previous selection step. The idea is to find the minimum set of features

that achieves a good classification rate. We use the AUC for this purpose.

proteins such as TK, which corresponds to thymidine kinase (from PDB 1KIM

(Champness et al., 1998)), MR, which corresponds to mineralocorticoid recep-

tor (from PDB 2AA2 (Bledsoe et al., 2005)), and GPB, which corresponds to

the enzyme glycogen phosphorylase (from PDB 1A8I (Gregoriou et al., 1998)).

Next, using the ChemoPy package (Dong-Sheng Cao, 2013) we calculated,115

for all ligands of the TK, MR and GPB sets, a set of diverse molecular properties

derived from the set of constitutional, CPSA (charged partial surface area) and
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Protein PDB Code Resolution (Å) Ligands Decoys

GPB 1A8I 1.8 52 1851

MR 2AA2 1.9 15 535

TK 1KIM 2.1 22 785

Table 1: Number of active (ligands) and inactive compounds (decoys) for each of the ligand

datasets used in this study and obtained from DUD.

fragment/fingerprint-based descriptors, as described in (Perez-Sanchez et al.,

2014).

2.3. Computational Intelligence Methods120

The use of computational intelligence methods will allow us to provide a

sufficient subset of features. Since the early 50s, computational intelligence

research has focused on finding relationships between data and analyse these

relationships (James, 2013). These problems are found in a wide variety of

application domains: engineering, robotics or pattern recognition (Fukunaga,125

1990), systems that recognize writing (Lee, 1999), voice (Huang et al., 2001),

pictures (Young, 1994), sequencing genes (Liew et al., 2005), illness diagnostic

(Berner & Lande, 2007) or spam rejection (Blanzieri & Bryl, 2008) are good

examples.

Given a number of training data samples together with an expected output,130

the computational intelligence processes allow us to find the relationship be-

tween the pattern and the expected result, using that training data. The goal

is to predict the unknown output for new data, e.g., test data. Training data is

used for the optimal selection of these parameters, and different algorithms are

used from a broad range of computational intelligence techniques. A classifier135

is a function that assigns to an unlabeled sample a label or class. A sample of

several predefined categories or classes is classified. Classification models can

be constructed using a variety of algorithms (Michie et al., 1994).
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2.3.1. Random Forest

Random Forest (Breiman, 2001) (Figure 2) is a supervised learning method140

that can be applied to solve classification or regression problems. It is com-

posed by a combination of tree predictors such that each tree depends on the

values of a random vector independently and with the same layout for each of

the generated vectors. Many disciplines use Random Forest: Accident anal-

ysis (Harb R, 2009), mechanical engineering (Longjun et al., 2011), financial145

engineering (Lariviere & Van den Poel, 2005; Xie et al., 2009), language mod-

els (Xu & Jelinek, 2007) or biology (Ding & Zhang, 2008). during the expansion

of forest.

In Random Forest (Hastie, 2009), each individual tree is explored in a par-

ticular way:150

1. Given a set of training data N , n random samples with repetition (Boot-

strap) are taken as training set.

2. For each node of the tree, M input variables are determined, and m <<

M , variables are selected for each node. The most important variable

randomly chosen is used as a node. The value of m remains constant155

3. Each tree is developed to its maximum expansion.

The error of the set of trees depends on two factors:

• Correlation between any two trees in the forest, avoiding the use of a

subset of variables randomly chosen data resampling (Bootstrap).

• A strong classifier, the importance of each tree in the forest, shows that160

with a low value of this error, the increase of these classifiers decreases the

forest error.

2.3.2. Error Estimation

The OOB (out-of-bag) error is defined to estimate the classification or regres-

sion error in RF (James, 2013). It estimates a selection of the input observations165

based on Bagging (Breiman, 1996), (resampling of a random subset of predictors
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Figure 2: Random Forest is ”a collection of classifiers that are structured as trees tn where

Fn(v) are independent and identically distributed random vectors and each tree produces a

vote of the most popular class for an input x (predictor)”. The random vectors Pn(c) represent

a set of random numbers that determine the construction of each tree (Tae-Kyun, 2006).

to be replaced in each tree). On average, each tree Bagging uses two-thirds of the

observations, the remaining third will not be used in the comments off-exchange

(OOB). So, you can predict the response to the i-th observation using each tree

that will produce B/3 predictions for the observation i. In order to obtain a170

single prediction for the i-th element, we forecast based on the average of these

responses (for regression) or by majority vote (for classification). This leads to

a single OOB prediction for the i-th observation, which can be obtained in this

way for each of the n observations. The sum of the OOB error and the average

importance of all OOB trees determine the total and the relative importance of175

selected variables.

2.3.3. Importance of Variables

In Random Forest, a ranking of the contribution of each variable is de-

termined to predict the output variable (Hastie, 2009), establishing a relative
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importance between them. This value is calculated using two different measures.180

The first measure is the MDA (Mean Decrease Accuracy), which is based on the

contribution of each variable to the prediction error (MSE for regression) and

the percentage of misclassifications (for classification). The second measure of

importance, the MDG (Mean Decrease Gini) from the Gini index, is the crite-

rion used to select each partition in the construction of the trees. If a decrease185

of the error attributed to a variable occurs, its contribution will be lower for all

trees.

For each tree t, we consider the error associated with a sample as OOBt,

errOOBt denoted as the error of a single tree t OOBt sample. Randomly

permuting the values of Xj in OOBt to get a permuted sample and calculate190

their errOOBtj , OOBtj as predictor error on the permuted sample t. Thus

express the importance of variables (VI) as:

V I(Xj) =
1

ntree

∑

t

(errOOBtj − errOOBt) .

A large value of VI indicates the importance of the predictor. By similarity,

in the context of classification Bagging, we add the contribution of the Gini

index and the decrease in each partition on a given as average for all predictor195

trees.

The Gini index measures the classification error committed in node t yet be-

ing this leaf, the class assigned randomly an instance, following the distribution

of elements in each class in t. The Gini index for a node t can be calculated as:

i(t) =

c∑

i6=j

PiPj = 1−

c∑

j

P 2
j ,

where c is the number of classes and Pi is the estimated probability of class200

i for instances that reach the node. Therefore, the Gini index and information

gain are measures based on the impurity of each node.
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3. Random Forest: Model Estimation

In any model of computational intelligence it is important to establish and

determine the parameters that will enable us to adjust this model. In RF, the205

adequate number of trees must be determined, as well as how many predic-

tors are used in the construction of each tree node. A reasonable strategy for

accomplishing this is to set different values and evaluate the prediction error

condition.

The model behavior is influenced by two parameters: the number of trees210

and the number of partitions to be made (splits). In this section, the influence

and the optimal values for these parameters are analyzed. Experiments were

developed using the RF implementation in the R package (R Core Team, 2013).

3.1. Number of Trees

Among the main parameters that can be set in RF, we can find the ntree,215

which sets the number of trees used in the model. We note that as the size of

the tree grows in terms of number of nodes, their training accuracy improves

until it stabilizes. For the three datasets, it can be estimated that the resulting

error OOB is quite low for all cases. With a value of 300 trees ntree, the error

remains stable. However, for a small number of trees it can be observed that220

this leads to an overfitting model on the training data in all the tested datasets

(Figure 3).

3.2. Number of Splits

The other main parameter is mtry, which represents the number of input

variables to be used in each node.225

To construct each forest tree in RF, whenever a tree is divided it is consid-

ered a random sample of m predictors chosen from the complete set of p input

predictors (molecular descriptors). These splits can choose only m predictors,

usually the square root of the number of input predictors for classification and

a third part of these predictors are used for regression.230
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Figure 3: OOB error (black line), active misclassify (red line) and inactive misclassify (green

line) vs. number of trees for the dataset GBP, MR and TK.

As we can see in the graph that estimates the minimum OOB error, the

lowest error occurs when mtry takes values between 17 and 34 for GPB and

MR data sets. A minimum value close to 0.013 is reached in the case of MR.

We can set the value of mtry as the square root of the number of predictors, by

default (Figure 4). We may also use a previous resampling featuring RF packet235

(TuneRF), estimating an optimal value for minimizing the OOB mtry error for

each dataset.
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Figure 4: Relationship between OOB error and mtry.

3.3. Automatic Selection and Ranking of Features

The relative importance of the variables within each dataset determines the

automatic selection of molecular descriptors used. In our experiments we can240

observe the input and differentiate these descriptors from the dataset.

For different molecular datasets and for each descriptor, we can observe

the importance of the contribution to predict the model and determine the

sensitivity with respect to the prediction of the final activity (Figure 5 and

Table 2).245

4. Results and Discussion

Random Forest selects automatically the molecular descriptors which allow

to improve the goodness of the fitting process, considering that this selection

of features depends on the dataset. We developed a set of experiments to test

the validity of our method with an automatic selection of molecular descriptors.250

Furthermore, we compared it with the manual method (ad hoc) used in our

previous work ((Perez-Sanchez et al., 2014)).

The selection of descriptors was performed according to the dataset, using

Random Forest for the selection of variables, and then using RF, SVM and a

MultiLayer Perceptron (NNET) for the classification of the previous selection.255

The AUC determines the goodness of the fitting for the prediction of the activity.
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Figure 5: Relative importance of the predictors for the dataset MR.

14



Order TK MR GPB

1 FCFP 2.12 MDLPublicKeys.14 Estate Keys.13

2 ALogP Count.48 Estate Counts.18 ALogP Count.56

3 MDLPublicKeys.12 MDLPublicKeys.1 ALogP Count.8

4 Estate Keys.34 Estate Counts.16 Estate Keys.34.

5 ECFP 4.5 MDLPublicKeys.7 Estate Counts.34

6 ALogP Count.56 ALogP Count.3 Estate Counts.13

7 Estate Keys.9 Num Rings MDLPublicKeys.1

8 FCFP 4.12 MDLPublicKeys.15 ECFP 4.12

9 ALogP Count.72 MDLPublicKeys.5 MDLPublicKeys.15

10 ECFP 6.1 FCFP 2.9 Num H Donors

Table 2: Top 10 molecular descriptors for dataset (ordered by relative importance.

In general terms, we observe that the number of significant variables (relative

importance) predicting the final activity varies with the dataset. But in all cases

with less than 10 features we obtain results over 0.9. In the worst case, the use

of more than 80 features for TK does not improve the AUC. Furthermore,260

employing an accurate number of features saves time in the training stage and

accelerates the whole process.

On the one hand, we show the results of the different classifiers depending on

the feature subset size. From the experiments we observed that RF outperforms

SVM and NNET in the three tested datasets. Another important conclusion265

that can be extracted from Figure 6 is that RF presents a decent results with

only 4 features that is the minimum number that we have tested. On the

contrary, SVM needs more than 10 features to obtain results over 0.9 AUC. RF

shows a good stability and offers better results with a higher number of features

but results with a few number of features are really good and demonstrate270

the good performance of RF to find the features with higher influence in the

classification results. Unstable behaviour in SVM and NNET results could come

from their inability to deal with datasets with high-dimensional data with a low
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number of observations.

On the other hand. we presented the same data but comparing the perfor-275

mance of each classifier with the different datasets (Figure 7). All methods work

fine with GPB with a low number of features. Datasets MR and TK present a

more erratic behavior with SVM and NNET while RF works fine for all cases

offering best results with GPB. While classifiers work fine with a large number

of features, achieving results close to 1.0 AUC with MR and GPB, results with280

TK are slightly worse. The only dataset where SVM and NNET outperform

RF using a large number of features, which means almost no feature selection,

is MR.

The main conclusion of this study is that RF outperforms SVM and NNET

using a minimum subset of relevant features (obtained with RF) producing285

considerably good results and saving time and resources compared with the

other classifiers.

From the results obtained using this technique for variable selection, we

can retrain the model with databases of known active or inactive compounds

(Table 3). This information can be used to improve predictions and contribute290

to improved performance and acceleration in the discovery of new drugs using

virtual screening techniques.

Descriptor TK MR GPB

Ad Hoc NNET EE246 0.94 NNET EstCt 0.87 NNET EAE246 0.96

Ad Hoc SVM AE246 0.95 SVM EstKy 0.98 SVM AlCnt 0.98

BINDUSRF 0.70 BINDSURF 0.70 BINDSURF 0.68

Auto C RF SVM 0.94 C RF SVM 0.99 C RF SVM 0.99

Auto C RF NNET 0.94 C RF NNET 0.99 C RF NNET 0.98

Auto C RF RF 0.95 C RF RF 0.98 C RF RF 0.99

Table 3: Top values obtained for the AUC of the ROC curves for the DUD data sets TK,

MK, GPB and BINDSURF processed by NNET, SVM using a manual selection of descriptor

(Perez-Snchez et al., 2014) against automatic selection processed by RF.
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Figure 6: AUC vs Number of features (ordered by relative importance with RF) using SVM,

NNET and RF as classifiers and applied to datasets TK, MR and GPB. Classifiers perspective.
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Figure 7: AUC vs Number of features (ordered by relative importance with RF) using SVM,

NNET and RF as classifiers and applied to datasets TK, MR and GPB. Datasets perspective.
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4.1. Discussion

We have presented aspects of the problem of automatic feature selection.

This paper covers the challenges of feature selection through computational in-295

telligence methods. In addition, we proposed a solution and an alternative to

traditional manual selection of features (ad hoc), which requires a very pre-

cise knowledge of the scope of the domain, and sometimes the involvement of

multiple disciplines or experts in the problem to predict.

The use of Random Forest eases the selection of molecular descriptors of the300

dataset, ensuring the best possible prediction of activity in an automated way.

The use of this method for classification (the final prediction for the activity)

improves the goodness of the fit.

Support Vector Machine is an effective classification method, but it does

not directly obtain the feature importance. There have been some attempts to305

combine it with feature selection strategies but none of them improved Random

Forest results for this task. Compared with SVM or neural networks, RF is

able to estimate feature importance during training for little additional time.

It is faster to train and has fewer parameters. The use of cross validation is

unnecessary. Data does not need to be rescaled, transformed, or modified. It310

is resistant to outliers and is able to automatically handle missing values. And

more importantly, it works better with large databases and a large number of

features. Furthermore, RF is applicable to high-dimensional data with a low

number of observations.

On the other hand, it can be extremely sensitive to small perturbations in315

the data: a slight change can result in a drastically different tree. Overfitting

can be observed for some datasets with noisy classification/regression tasks.

Finally, feature selection performed with Random Forest is sometimes difficult

for humans to interpret.
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5. Conclusions320

In this work, we have proven the power of automatic selection of character-

istics (molecular descriptors) using Random Forest, thus avoiding the manual

selection of descriptors (ad hoc). The improvement on the prediction of the

activity is explained by improving the goodness of the fitting and its value is

expressed by the AUC of the Receiver Operating Charasteristic (ROC) curves.325

We used RF for two purposes: feature ranking and dimensionality reduction,

and classification using the automatically selected feature subset.

We have demonstrated empirically the abilitys of RF to determine the most

relevant features by comparing the results with our previous work (Perez-Sanchez et al.,

2014) that used ad-hoc feature selection and comparing RF with other relevant330

classifiers like SVM and Multilayer Perceptron. The use of Random Forest not

only improves the accuracy of the classification methods selecting the most rele-

vant features but also reduces the computational cost. This reduction combined

with the use of parallel architectures allows the exploration of larger datasets

in less time. Our RF-based method outperforms classification results provided335

by SVM and NN approaches.

However, it should be mentioned that the computational intelligence ap-

proaches could be used only when there are datasets available with active and

inactive compounds. Given the good results obtained in terms of accuracy and

computational resources reduction, it is concluded that this methodology can be340

used to improve the drug design and discovery, therefore helping considerably

in biomedical research.

Future works include the automation of the choice of a learning algorithm

depending of the characteristics of a given prediction problem, data source, and

prediction performance. We also work on the creation of metaclassifiers that345

combine predictions of different classifiers. Despite the fact that our virtual

screening method has already been parallelized, we are working on the GPU

implementation of the whole pipeline. Finally, we are considering the applica-

tion of this study to solve Quantitative Structure-Activity Relationship (QSAR)
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