
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Investigating Survivability of Configuration Management Tools in

Unreliable and Hostile Networks

Karvinen, T. and Li, Shuliang

This is a copy of the author’s accepted version of a paper subsequently to be published

in the proceedings of the 3rd International Conference on Information Management

(ICIM 2017), Chengdu, China, 21 to 23 Apr 2017, IEEE.

It is available online at:

https://doi.org/10.1109/INFOMAN.2017.7950402

© 2017 IEEE . Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161106331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/INFOMAN.2017.7950402
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Karvinen, Tero and Li, Shuliang. Investigating Survivability of Configuration Management Tools in Unreliable and Hostile
Networks. Proceedings of the 3rd International Conference on Information Management (ICIM 2017), Chengdu, China. 21st -
23rd April 2017. IEEE.

Investigating Survivability of Configuration Management Tools in Unreliable
and Hostile Networks

TERO KARVINEN
Digital Business

 Haaga-Helia University of Applied Sciences,
 Ratapihantie 13, FI-00500 Helsinki,

FINLAND
tero.karvinen@iki.fi

University of Westminster,
35 Marylebone Road, London NW1 5LS,

UNITED KINGDOM

SHULIANG LI
Westminster Business School,

University of Westminster,
35 Marylebone Road, London NW1 5LS,

UNITED KINGDOM
lish@westminster.ac.uk

School of Economics & Management,
Southwest Jiaotong University,

Chengdu, Sichuan 610031, CHINA

Abstract — A configuration management system (CMS) can
control large networks of computers. A modern CMS is
idempotent and describes infrastructure as code, so that it uses
a description of the desired state of a system to automatically
correct any deviations from a defined goal. As this requires
both complete control of the slave systems and unquestioned
ability to provide new instructions to slaves, the private key of
the master is highly valuable target for attackers. Criminal
malware networks already survive in hostile, heterogeneous
networks, and therefore, the concepts from those systems could
be applied to benign enterprise CMSs. We describe one such
concept, the hidden master architecture, and compare its
survivability to existing systems using attack trees.

Keywords - configuration management system; survivability;
attack tree; command and control; botnet

I. INTRODUCTION

Configuration management systems (CMSs) have
proliferated to meet the challenges of growing sizes of
computer networks with more hosts per administrator,
heterogeneous networks, cloud [1] and grid computing,
stricter requirements for verified security and faster
response time to markets using DevOps methods [2]. A
CMS is an essential part of large computer installations, as
they can extend life, reduce cost, reduce risk, and even
correct defects [3].

Modern configuration tools are versionable and
idempotent. In practice, the configuration manifests
describing the target state of the network must be plain text
to be stored in a version control system. This “Infrastructure
as Code” approach allows administrators to use software
engineering methodology to control their network [4].
Idempotence means that an operation can be applied
multiple times without changing the result beyond the initial
application.

CMSs are based on the master-slave architecture. The
master computer will issue configurations, and the slave
computers apply these configurations. Thus, a successful

attack on a master results in full compromise of every slave
it controls. This makes it a very tempting target for attack
and therefore, protecting CMSs gets a high priority.

II. SURVIVABILITY

Survivability is the capability of a system to fulfill its
mission in the face of challenges. These challenges or faults
include attacks by human adversaries, system failures,
accidents and failures of large parts of network infrastructure
[5, 6, 7]. These challenges or faults are often meant to cover
all potential damaging events to the system [6].

The purpose of the system is essential when evaluating
survivability. Even if individual components stay functional,
the system has failed if it fails to provide the intended service
it was designed for. Identification of essential services is the
key concept of survivability. Essential systems are those that
either are required for meeting the mission requirements or
those whose failures threaten the system. [8] A CMS meets
the criteria of an essential system, as a compromise of the
CMS results in full compromise of all controlled systems.
Also, without a CMS it becomes difficult or even impossible
to react to changing environments and threats in a timely
manner.

Information security is traditionally defined as the CIA
triad: confidentiality, integrity and availability.
Confidentiality means that confidential information is not
exposed to unauthorized parties. Integrity is the assurance
that data is not modified without permission. Availability
means that systems respond to users in timely manner [9].
Some writers consider information security a subcategory of
survivability [10].

Survivability analysis is the process of identifying
components susceptible to attacks, then quantifying the
capability to survive these attacks [5]. One method of
identifying suitable targets for attack is the attack tree
method. To compare attack trees, we’ll look at both
malware and CMS network architectures.

mailto:lish@westminster.ac.uk

Karvinen, Tero and Li, Shuliang. Investigating Survivability of Configuration Management Tools in Unreliable and Hostile
Networks. Proceedings of the 3rd International Conference on Information Management (ICIM 2017), Chengdu, China. 21st -
23rd April 2017. IEEE.

III. MALWARE COMMAND AND CONTROL NETWORK

ARCHITECTURES

Botnet is a network of compromised machines under
the control of an attacker [11]. Largest botnets have had
millions of slave computers in hostile, heterogeneous
environments. As these botnets are extensively documented,
they can provide insights into possibilities of novel network
architectures for CMSs. Even though the CMS tools could
be used for malware CC and vice versa, in this paper we
categorize tools by their intended or most common purpose.

Malicious botnets have both similarities and
differences to benign configuration management tools. Both
aim to provide a scalable, resilient and timely updates to
slave configuration. But only botnets require secrecy in each
point: slave, network and possible CC server. Botnets might
also require the ability to reduce their forensic footprint,
function in more heterogeneous environments and withstand
legally sanctioned attacks against their CC infrastructure
and unpredictably changing network conditions. Botnets are
sometimes used for extracting data from victim systems, and
this puts additional strain on secrecy requirements. Once the
CC analysis has been published, interested parties can create
new intrusion detection system (IDS) rules and antivirus
detection routines [11].

Command and control channels have seen
improvements over time. Some earlier botnets, such as
Agabot, SDBot and SpyBot, used Internet relay chat (IRC)
as a control channel. Network operators can attempt to
automatically detect botnet activity, making uncommon
protocols hard to hide. This has made HTTP a tempting
choice for bots such as BlackEnergy, Rustock and Clickbot.
[11]

Gu considers IRC a push architecture, because
commands are immediately sent to slaves as the botmaster
sends them [12]. It should be noted that in the client-server
architecture, the slaves (bots) are still clients when they
connect to the IRC server. In this way, they can access the
master trough NAT and firewall.

At its peak, Zeus botnets had infected 3.6 million
computers in just the US. As Zeus was a banking malware,
it caused significant damage. In Zeus botnet, slaves use
direct HTTP connection to pull catalogs from CC server.
Because Zeus is crime-ware, a tool to build these botnets,
multiple parties have created their own botnets and their CC
infrastructures. Thus, destroying a single set of CC servers
is not enough to disable Zeus. [11]

For a truly distributed operation, some bots have
adopted peer-to-peer (P2P) architecture. In P2P, slaves
connect to each other without a central server. In TCP/IP
sense, each node can act as either server or client, as
dictated by network conditions. Dittrich (2008) names
Peacomm and Nugache as examples of P2P botnets [13]. In
addition to the lack of server as a single point of failure, he
mentions small network footprint and unpredictable traffic
patterns as additional benefits.

Conficker.C was a highly advanced botnet in 2009.
Variants of Conficker infected millions of machines and
saw constant updates and move to more stealthy operation.
Conficker.C used a time based algorithm for locating peers,
and thus avoided the need for initial seed list of peers. [14]

Stuxnet was a botnet to attack Iranian nuclear facilities.
It is the first successful cyber attack with physical damage
of this scale [15]. The target factories enjoyed military
protection, the computers were air gapped and the virus
operated in a country that likely was highly suspecting of
the makers of the malware. The version of Stuxnet caught
for analysis used a direct HTTP connection to pre-
programmed servers [16].

Naz was the first bot using social networks as a CC
channel. It uses steganography to hide control messages on
Twitter, pretending to be a human user. Other social
networks and third party services could be used as a CC
channel by new botnets. [17]

Cryptolocker and similar software encrypt user files
and extort for money. The ransom must be paid in Bitcoin to
receive the key to decrypt the files. Modern encryption
extortion can even work without a traditional CC network,
as the password is passed for human to type after criminals
have received payment.

This look on the CC networks of successful malware
indicates some trends in protocols and architectures.
Considering protocols, many networks use standard
protocols, especially HTTP/HTTPS. It could be speculated
that this is driven by existing tooling and skill in these
common protocols, ability bypass even the most restrictive
firewalls and the possibility to hide in the noise of existing
traffic using the same protocols. The architectures seem to
remove single points of failure and distance the actual
master (with signing keys to control slaves) from direct
connection to slaves, while still securing the catalogs against
hostile modification.

To recognize malware CC concepts not yet applied to
CMSs, we look into the state of CMS network architectures.

IV. IMPLIED DIRECT MASTER-SLAVE CONNECTION

To send the instructions over a network such as
Internet, typical systems use client-server architecture
between a master and slaves. The server can reside on the
slave (push) or on the master (pull). Many articles on CMS
assume that slaves must at some point directly contact the
master. This assumption can be either explicit or, more
often, implicit. As we have seen in the examination of
successful malware CC architectures, such direct contact is
not an absolute requirement.

In their comparison of open source CMSs, Delaet
considers only two possible network architectures: push and
pull. He explicitly states on page 6: “In all approaches, each
managed device contains a deployment agent that can be
push or pull based” [18].

Karvinen, Tero and Li, Shuliang. Investigating Survivability of Configuration Management Tools in Unreliable and Hostile
Networks. Proceedings of the 3rd International Conference on Information Management (ICIM 2017), Chengdu, China. 21st -
23rd April 2017. IEEE.

Vanbrabant [19] categorizes “deployment
architectures” of CMSs to pull or push, implying direct
network connection between a master and slaves. This is
further emphasized by his examples. Poat et al. [20] have
selected popular CMSs (Chef, Puppet, CFEngine) for
comparison, all of which require direct connection between
a master and slaves to configure multiple computers. In their
paper on orchestration (“model-driven Cloud management”)
Wettinger et al. [1] imply direct connection between a
master and a server in their choice of tools and in the
options they use for the orchestration system to deploy the
catalogs. Even though there are multiple peer-reviewed
works on applying the configuration, less interest is paid on
the secure transport of these configuration instructions. For
example, Swięcicki[21] describes a novel tool “Overlord”,
but bypasses the transfer by stating that the “program then
could be transported to the target machine”.

Practical CMSs in the industry are using direct push
and pull architectures, too. We briefly compared modern,
free software CMSs. For the purposes of this work, tools
using idempotent configuration with infrastructure as code
were considered modern. Tools whose licensing met both
the criteria of the Open Source Initiative (OSI) and Free
Software Foundation (FSF) were considered free software.

We collected a list of candidates from literature survey
[22], articles referenced in this paper (e.g. [20]) and non-
academic sources. The list was then filtered to exclude dead
projects, those failing to meet the criteria of free, idempotent
and infrastructure-as-code. To identify key tools, the interest
to those tools was evaluated by estimating both fresh (since
2015) academic references using Google Scholar and non-
academic search traffic based upon Google Trends data.
Both approaches gave similar results. The key CMSs were
Puppet, Chef, Ansible and Salt. If we would have
considered older academic references for tools that still have
large production installations, CFEngine would have been
included in this list, too.

The key CMS Puppet, Chef, Ansible, Salt (and
CFengine) all use either direct push or direct pull approach.
They allow for local application of configuration, if the
source code for configuration is securely transported to
slaves. All key CMS can be configured to use any of pull,
push or locally applied architectures, but they usually prefer
and recommend one architecture over others. Puppet, Chef,
Salt and CFengine recommend pull, Ansible recommends
push.

Most key CMSs use common protocols for transfer.
Puppet and Chef use HTTPS, specifically hypertext transfer
protocol (HTTP) protected by transport layer security (TLS)
with self-signed certificates. Ansible uses secure shell
(SSH), namely OpenSSH. Salt uses more unique approach
of ZeroMQ based protocol to allow very fast (non-
idempotent) parallel command execution in addition to
idempotent catalogs.

This overview of the academic articles and key CMSs
has indicated that both literature and the key CMS tools

assume direct pull or push connection between slaves and a
trusted master server.

V. HIDDEN MASTER ARCHITECTURE

As we have noted, combining catalog signing keys
(root access to slaves) with catalog distribution causes
security risks and other problems. Hidden master
architecture avoids this problem by keeping the signing keys
in a computer that only connects to the Internet to upload
catalogs to an intermediate server.

These intermediate catalog distribution servers do not
need to be secure. In fact, they can be commodity web
servers in networks not controlled by an organization using
a CMS. As distributing static files from a web server is very
efficient, working as an intermediate distribution server for
catalogs could be a side job for any computer with a web
server.

Physical control of computers is a prerequisite for
security: “boot access is root access”. For example, an
infrastructure or platform as a service (IaaS or PaaS) hosting
provider usually has full access to guest systems. In
traditional push or pull based systems, this precludes storing
catalogs in inexpensive cloud providers such as Amazon,
DigitalOcean or Linode.

In the hidden master architecture, having multiple low
value, untrusted servers to distribute catalogs can remove
catalog distribution as a single point of failure. Using
inexpensive third party cloud providers improves
survivability against problems that affect whole networks or
geographical locations.

A. The Operation of the Hidden Master Architecture

Asymmetric encryption is used for securing the
communication between the hidden master and the slaves.
Each slave has a secret key to open the catalogs encrypted
by the slave public key on the hidden master. These keys
can be generated either on master or the slave as dictated by
practical requirements when provisioning the systems.

The most valuable key is the hidden master private
key, which is generated and always stays in the master
computer. This key used for signing the instructions for
each slave. All slaves have a copy of the related, trusted
public key. The slaves blindly trust any instructions signed
by the key of the hidden master. This key is protected by the
hidden master architecture, as none of the slaves know how
to reach the hidden master. The hidden master can stay
offline during normal operation.

To command the slaves, operator uses the hidden
master to compile catalogs of instructions to slaves, which
are then encrypted using each slave’s public key and signed
with the hidden master’s private key. These encrypted
catalogs are transferred to untrusted intermediate hosts
known to slaves. Each slave downloads these instructions
when it’s periodically checking the intermediate distribution
hosts. If the slave can decrypt the catalog using its secret
key and verify the signature using the hidden master’s

Karvinen, Tero and Li, Shuliang. Investigating Survivability of Configuration Management Tools in Unreliable and Hostile
Networks. Proceedings of the 3rd International Conference on Information Management (ICIM 2017), Chengdu, China. 21st -
23rd April 2017. IEEE.

public key, the instructions are then applied. Otherwise, the
encrypted catalog is discarded.

We have performed initial experiments of
implementing hidden master architecture with an existing
key CMS. This reduces the amount of novel code, making it
possible to improve survivability without developing a
whole configuration management system with a resource
abstraction layer and domain specific language.

B. Comparing Hidden Master Architecture to
Push/Pull Attack Tree

Attack tree is a method of systematically categorizing
all methods by which the system can be attacked [23, 24].

Attack tree takes the view of an attacker, and starts
with the goal of compromising the target system. This is the
root node of the tree. This node is then divided into
subnodes by splitting the problem area. Each subnode is
further split until all attacks have been enumerated. Each
branch can consist of parts of attack that must all be
achieved (AND) or alternative avenues of attacks (OR). [25,
pp. 4–6]

Compromising the master server is the ultimate goal of
the attack. Once the signing keys are obtained, the attacker
fully controls all slaves. No further attacks would be needed,

and the attacker can move on to fulfill his mission, such as
exfiltration of data, launching further attacks on other
networks, encrypting essential data for extortion or
installing advanced persistent threats. Disabling a CMS will
also make it difficult to react to threats and faults in a timely
matter.

Figure 1 shows attack tree against regular pull
architecture. Attack surface reduced by the proposed hidden
master architecture is crossed out. The main challenge to
survivability in regular pull architecture is the high value of
the master server. On one hand, it needs heavy protection
against attacks, thus limiting it to secure premises and
computers without other software limiting attack surface.
After all, a successful attack on the master server would
mean compromising all slaves, making it the most valuable
computer in the network it controls. On the other hand, in
order to withstand disruptions in the network, master servers
should be duplicated in multiple networks and geographical
locations.

Even if some of these problems could be mitigated by
creating completely separate configurations and master
servers, this would soon mean losing single source of truth,
making administration more expensive and error prone.

Fig 1: An attack tree with reduced attack surface crossed out

Karvinen, Tero and Li, Shuliang. Investigating Survivability of Configuration Management Tools in Unreliable and Hostile
Networks. Proceedings of the 3rd International Conference on Information Management (ICIM 2017), Chengdu, China. 21st -
23rd April 2017. IEEE.

In the hidden master architecture, the servers contacted
by slaves are not trusted. There can be large number of these
servers, and the encrypted catalogs can be served as a side
function of any low value web servers. Because the
encrypted catalogs are simple files, distributing them around
the globe and in different networks is very cheap. In fact, all
slaves do not need to know all the places where new
instructions can be provided, leaving some locations to
work as backup for the most valuable slaves.

Receiving log data from slaves is left for future
research. To use a similar methodology as in this paper, it
could be looked what techniques malware uses for data
exfiltration.

VI. CONCLUSIONS

Malware command and control networks survive in
hostile and unreliable environment. Many CC networks use
encryption over HTTP protocol and distance the actual
master, that is, the owner of the trusted signing keys, from
catalog distribution, so that slaves do not have access to
master.

Current industry practice in CMSs is for slaves to
directly contact single or few master servers directly. As the
trusted signing keys reside on the master, they are clearly
the most valuable computers in the network they control.
The value of the masters requires very high level of both
physical and software security, which poses challenge to
survivability, as attempts to improve availability by
duplicating the servers in different networks reduce the
owner’s control of these systems.

In this paper, we have proposed hidden master
architecture to alleviate this problem. In hidden master
architecture, the master with the trusted signing keys only
contacts the network when uploading encrypted, signed
catalogs to untrusted distribution servers. These untrusted
distribution servers can be any commodity web servers. The
slaves download the catalogs from any of these servers. If
some intermediate servers are down or compromised, the
slaves simply contact the next servers. Initial experiments
have been conducted and the findings are encouraging. It is
possible for us to enhance survivability without the need for
developing a whole configuration management system.

REFERENCES

[1] J. Wettinger, M. Behrendt, T. Binz, U. Breitenbücher, G. Breiter, F.
Leymann, S. Moser, I. Schwertle, T. Spatzier, and others,
“Integrating Configuration Management with Model-driven Cloud
Management based on TOSCA,” In: CLOSER, 2013, pp. 437–446.

[2] M. Rajkumar, A. K. Pole, V. S. Adige, and P. Mahanta, “DevOps
culture and its impact on cloud delivery and software development,”
in 2016 International Conference on Advances in Computing,
Communication, Automation (ICACCA) (Spring), 2016, pp. 1–6.

[3] N. Perera, “Automatic Configuration Management - Autodiscovery of
Configuration Items and Automatic Configuration Verification,”
SpaceOps Conferences, 16-20 May 2016, pp.1-13.

[4] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” 2016, pp. 189–200.

[5] C. Fung, Y.-L. Chen, X. Wang, J. Lee, R. Tarquini, M. Anderson, and
R. Linger, “Survivability analysis of distributed systems using attack
tree methodology,” in MILCOM 2005 - 2005 IEEE Military
Communications Conference, 2005, Vol. 1, pp. 583–589.

[6] N. R. Mead, R. J. Ellison, R. C. Linger, T. Longstaff, and J. McHugh,
“Survivable network analysis method,” DTIC Document, 2000.

[7] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in
communication networks: Strategies, principles, and survey of
disciplines,” Computer Networks, vol. 54, no. 8, pp. 1245–1265, Jun.
2010.

[8] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. A. Longstaff,
and N. R. Mead, “Survivability: protecting your critical systems,”
IEEE Internet Computing, vol. 3, no. 6, pp. 55–63, Nov. 1999.

[9] M. Atighetchi and J. Loyall, “CrossTalk - Meaningful and Flexible
Survivability Assessments: Approach and Practice,” The Journal of
Defense Software Engineering, pp.12-18. March/April, 2010.

[10] P. G. Neumann, “Practical Architectures for Survivable Systems and
Networks,(Phase-Two Final Report),” Computer Science
Laboratory, SRI International, 2000.

[11] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M.
Debbabi, and L. Wang, “On the analysis of the Zeus botnet
crimeware toolkit,” in 2010 Eighth Annual International Conference
on Privacy Security and Trust (PST), 2010, pp. 31–38.

[12] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet
command and control channels in network traffic,” Proceedings of
the 15th Annual Network and Distributed System Security
Symposium, 2008.

[13] D. Dittrich and S. Dietrich, “P2P as botnet command and control: a
deeper insight,” in Malicious and Unwanted Software, 2008.
MALWARE 2008. 3rd International Conference on, 2008, p. 41–48.

[14] N. Fitzgibbon and M. Wood, “Conficker.C : A Techical Analysis,”
Sophos Labs, Sophos Inc, Apr. 2009.

[15] R. Langner, “To Kill a Centrifuge - A Technical Analysis of What
Stuxnet’s Creators Tried to Achieve,” The Langner Group, 2013.

[16] N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet dossier,”
White paper, Symantec Corp., Security Response, vol. 5, 2011.

[17] E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu, “Social
network-based botnet command-and-control: emerging threats and
countermeasures,” in Applied Cryptography and Network Security,
2010, pp. 511–528.

[18] T. Delaet, W. Joosen, and B. Van Brabant, “A Survey of System
Configuration Tools,” In: LISA, 2010, vol. 10, pp. 1–8.

[19] B. Vanbrabant, “A Framework for Integrated Configuration
Management of Distributed Systems (Een raamwerk voor
geïntegreerd configuratiebeheer van gedistribueerde systemen),”
 2013 IFIP/IEEE International Symposium on Integrated Network
Management, 2013.

[20] M. D. Poat, J. Lauret, and W. Betts, “Configuration Management and
Infrastructure Monitoring Using CFEngine and Icinga for Real-time
Heterogeneous Data Taking Environment,” Journal of Physics:
Conference Series 664 (2015) 052020, 2015, vol. 664, pp. 1-6.

[21] B. Święcicki, “A Novel Approach to Automating Operating System
Configuration Management,” in Information Systems Architecture
and Technology: Proceedings of 36th International Conference on
Information Systems Architecture and Technology – ISAT 2015 –
Part II, A. Grzech, L. Borzemski, J. Świątek, and Z. Wilimowska,
Eds. Springer International Publishing, 2016, pp. 131–142.

[22] J. Hintsch, C. Görling, and K. Turowski, “A Review of the Literature
on Configuration Management Tools,” CONF-IRM 2016
Proceedings, 2016.

[23] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp.
21–29, 1999.

[24] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in
International Conference on Information Security and Cryptology,
2005, pp. 186–198.

[25] A. P. Moore, R. J. Ellison, and R. C. Linger, “Attack modeling for
information security and survivability,” DTIC Document, 2001.

