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1. Introduction 

Given the increasing amount of financial resources devoted to regional policies 

supporting private enterprises since the mid-1970s in Europe and abroad, a large and 

growing body of literature has investigated the policy contribution to growth and 

competitiveness of subsidized firms. However, the empirical evidence has provided mixed, 

if not contradictory, results. A recent review promoted by the European Commission to 

inform preparation of the 2014-20 programs (Mouqué, 2012) notes that while financial 

support to SMEs in lagging regions has been effective in increasing investment and creating 

jobs of good quality and longevity, productivity in subsidized firms has basically stayed the 

same. Ultimately, the main effect of the grant schemes examined is to make subsidized 

enterprises larger rather than more efficient.   

The result is not unexpected. In fact, policy makers use the financial incentive to 

change firm preferences and to push the firm to invest in projects that, without incentive, 

would normally be abandoned. The reason is that the social cost of the investment (and of 

the new employment) is lower than the cost for the firm because there are positive 

externalities in the less developed areas (Bernini and Pellegrini, 2011). The results might be 

different if the incentives were to overcome failure in the credit market. In this case, 

incentives could support projects with high productivity. This point is crucial for a regional 

policy: efficiency and competitiveness are the main factors for endogenous growth and 

long-term catch up by lagging regions. The risk is the policy of the lame duck that subsidizes 

firms that are unable to stay in the market (Mouqué, 2012).1 

                                                            
1 Indeed, capital subsidies may impede the Schumpeterian process of “creative destruction” that creates 

growth in the economy by shifting resources from low- to high-productivity plants (Moffat, 2014). 
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From an empirical point of view, the relationship between public subsidies and 

efficiency and productivity of subsidized firms is complex and not unique. However, only 

a few studies address the effect of capital subsidies on total factor productivity (TFP) (see 

Bergstrom, 2000; Harris and Trainor, 2005; Bernini and Pellegrini, 2011; Moffat, 2014; 

Criscuolo et al., 2016). Growth of TFP is a productivity measure that reflects the increase in 

total output that is not explained by the increase in capital and labor. Indeed, while labor 

productivity (output per worker) may grow simply because of the capital deepening 

induced by the subsidies, the efficiency with which all inputs are used (measured by TFP) 

may not increase at all. Then, TFP can be considered the most relevant productivity measure 

for analyzing the efficiency of a subsidized firm. However, one major drawback of this 

literature is that it does not provide results about the determinants of the changes in TFP 

caused by the subsidies. The analysis of the variation in the technical or allocative efficiency 

or in the dynamics of technological change among subsidized firms can explain the sources 

of the impact on TFP and sheds light on the mechanism that links subsidies to efficiency and 

competitiveness. For instance, we expect that public incentives increase the propensity to 

invest in new and more up-to-date capital, augmenting the rate of technological progress of 

the firm. On the other hand, firms can choose not to pursue the allocative efficiency if the 

increase in the use of one factor (for instance, labor) augments the probability of obtaining 

the subsidy. The overall effect of both behaviors on TFP is ambiguous and can be 

determined only by empirical analysis. 

The main contribution of this paper is to show that a suitable decomposition of TFP 

can be applied to a large sample of subsidized firms for a relevant period of time, allowing 

an evaluation of the impact of subsidies on either the roles of technological progress and 

technical efficiency change or scale and allocative efficiency change as determinants of 
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granted firms’ long-term growth. We measure and decompose TFP using a Stochastic 

Frontier Analysis (SFA). Besides SFA, which is a parametric method, two other non-

parametric methods are widely used in estimating TFP, Growth Accounting and Data 

Envelopment Analysis. The advantage of SFA is that it allows for the presence of 

idiosyncratic shocks, which are widely expected in our framework and can be used to 

investigate the determinants of technical inefficiency and thus those of TFP. SFA also has 

the great advantage of decomposing productivity change into parts that have a 

straightforward economic interpretation. Differently from Bernini and Pellegrini (2011), 

who used a simplified production function, the stochastic frontier model used in this study 

assumes that technical inefficiency evolves over time, which enables productivity changes 

to be decomposed into the change in technical efficiency (i.e., measuring the movement of 

an economy toward or away from the production frontier) and technological progress (i.e., 

measuring shifts in the frontier over time). Moreover, because a flexible technology is used, 

the SFA makes it possible to evaluate the presence of scale efficiency, as well as measure 

changes in allocative efficiency (i.e., the Bauer-Kumbhakar decomposition; see Kumbhakar, 

2000; Kumbhakar and Lovell, 2000; Brümmer et al., 2002).  

Note that, unlike Obeng and Sakano (2000) and Skuras et al. (2006), we are able to 

capture the impact of capital subsidies on the different components of TFP by a quasi-

experimental method. In fact, another important novelty of the paper is that we analyze the 

causal effect of capital subsidies on firm productivity by exploiting the conditions for a local 

random experiment created by Law 488/92 (L488), which has been an important policy 

instrument for reducing territorial disparities in Italy. In particular, L488 aims at boosting 

private investment in industrial structure development and job creation in the less-

developed areas of Italy, i.e. in the southern regions. Then, the analysis of the effects of 



5 
 

technological innovation and efficiency in these regions has a relevant importance for the 

local governance. As for the L488 mechanism, this policy has been characterized by a 

rigorous and transparent selection procedure. Each year, subsidies are allocated to a broad 

range of investment projects through regional “calls for tenders”, which mimic an auction 

mechanism. In each regional “call for tender”, the investment projects are ranked on the 

basis of a score that depends on a number of (known) characteristics of both the project and 

the firm. Projects receive subsidies according to their position in the ranking system until 

the financial resources granted to each region are exhausted. The presence of sharp 

discontinuities in the L488 rankings makes it possible to use a quasi-experimental method 

deriving from a regression discontinuity design (RDD) approach, enabling us to identify the 

causal effect of subsidies on components of firms’ TFP. 

Finally, a further novelty of the work is the timing used for the evaluation. We 

scrutinize the impact of the subsidy for each year, from the first to the fifth year, starting 

from the beginning of the investment. This way, we can capture effects that appear later, 

after the adjustment period of the subsidized firm, which could have a different sign from 

the first ones. Even this approach is quite unusual in the literature. 

The rest of the paper is organized as follows: the next section summarizes the 

literature, while Section 3 describes the TFP decomposition and presents the evaluation 

method. In Section 4, we describe the policy and the data in more detail. The results are 

discussed in Section 5, while Section 6 assesses their robustness. Section 7 concludes the 

paper. 
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2. Literature review 

In the literature, there is considerable variation in the estimated impact of investment 

subsidies, which, among others, reflects differences in circumstances between countries, 

regions, sectors and firms, differences in the design of policy and delivery (policy 

implementation details) and differences in the quality of the data and the analytical methods 

used in the empirical studies (Brandsma et al., 2013). 

A large part of this literature has focused on the incentives to R&D (see Bronzini and 

Piselli, 2016; Dimos and Pugh, 2016), the Enterprise Zones (EZs) program (see Neumark and 

Kolko, 2010; Reynolds and Rohlin, 2015), and the effectiveness of investment incentives for 

firms located in lagging areas. Among the latter studies, the empirical evidence, although 

sketchy, suggests a positive impact of capital subsidies on financed firms’ employment, 

investment and plant survival prospects but a negligible or negative effect on productivity 

(see, among others, Bernini and Pellegrini, 2011; Bondonio and Greenbaum, 2014; Cerqua 

and Pellegrini, 2014; Criscuolo et al., 2016). 

Among this stream of research, a few papers have considered the impact of capital 

subsidies on TFP. Having estimated a production function, Bergstrom (2000) investigates 

the role of subsidies as a determinant of TFP growth. The author finds that after the first 

year, the more money a firm has been granted, the worse TFP growth develops. The results 

suggest that subsidization can influence growth, but there seems to be little evidence that 

the subsidies have affected productivity and hence competitiveness (i.e., growth is achieved 

simply by using more inputs but not by improving their usage). Harris and Robinson (2004) 

find opposite results by using a policy off/policy on model in which capital grants are 

treated as an input of the production function (i.e., TFP is defined as any change in output 

not due to changes in factor inputs). The analysis shows that assistance does improve 
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productivity compared with average levels; however, when the comparison group is 

defined more restrictively to only include other plants within Assisted Areas, assistance 

does not appear to significantly improve plant productivity. The analysis also indicates that 

this is not a uniform finding across all regions and that for plants located in Scotland as well 

as those in a small number of industries, the assistance does improve TFP. 

In a subsequent paper, Harris and Robinson (2005) break down TFP into different 

components (entry, exit, within plant, between plant, and cross-plant effects), applying a 

decomposition approach. The analysis is carried out by comparing non-assisted firms with 

firms assisted by different types of grants. They find that financed plants experienced 

negative TFP growth, mostly due to plants with low TFP that increase their market share 

during the period, suggesting that capital is being substituted for labor.  

A different decomposition procedure is used in Skuras et al. (2006). After having 

estimated a production frontier in which the subsidy is treated as a new input, the authors 

decompose the TFP into three components, which are technological change, technical 

efficiency change, and scale efficiency change. They find that capital subsidies to the food 

manufacturing sector are not fully additional and affect TFP growth mostly through 

technological change. Combining the above decomposition with a cost function approach, 

Obeng and Sakano (2000) find negative contributions of subsidies to TFP growth through 

subsidy-induced factor augmentation. 

Only a few papers have investigated the role of subsidies in TFP in a policy 

evaluation framework. Bernini and Pellegrini (2011), by means of a matching diff-in-diffs 

approach, show that growth in output, employment and fixed assets is higher in the 

subsidized firms. Conversely, TFP of subsidized firms shows a smaller increase than that in 

non-subsidized firms. The positive temporary effects of regional policy contrast with the 
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expected negative impact on long-term productivity and growth. However, in this paper 

the TFP is identified by the use of a simplified production function, and therefore cannot 

explain if changes in TFP can derive from adjustments in the use of factors or technology 

embodied in the subsided capital. Criscuolo et al. (2016) investigate the effects of the 

Regional Selective Assistance (RSA) by using a combination of IV and plant- or firm-level 

fixed effects. They find a positive program treatment effect on employment, investment and 

net entry but not on TFP. The treatment effect is confined to smaller firms with no effect for 

larger firms; moreover, the policy raises area-level manufacturing employment mainly 

through significantly reducing unemployment. Moffat (2014) examines whether receipt of 

a RSA grant has a causal impact on plant TFP. To tackle the problem of self-selection into 

the treatment group, propensity score matching is employed. Similar to Criscuolo et al. 

(2016), for high-tech and medium high-tech manufacturing, the effect is not statistically 

significant. However, for medium low-tech and low-tech manufacturing, receiving an RSA 

reduces TFP. Results suggest that RSA grants lead plants in low-tech manufacturing, the 

sector that received the highest number of grants, to employ an inefficiently high level of 

inputs. Without such grants to compensate them for employing a sub-optimally high level 

of inputs, they would employ fewer inputs but have higher levels of TFP. 

In sum, several studies have focused on the role of subsidies on firms’ TFP, mainly 

considering grants as an additional input in the production process or a determinant of TFP. 

Conversely, there are a few attempts to estimate the causal impact of capital subsidies on 

both TFP growth and their components by means of accurate counterfactual analysis. To 

our knowledge, no studies have yet investigated the role of capital subsidies on productivity 

and efficiency by means of a causal model. 
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3. Method 

3.1 SFA and TFP decomposition 

In the literature, studies on productivity growth have measured productivity as a 

residual after controlling for input growth, interpreting the improvements in productivity 

as determined by technological progress. This interpretation is correct only if firms are 

technically efficient (i.e., firms are operating on their production frontiers and realizing the 

full potential of the technology). Because firms do not usually operate on their frontiers, TFP 

measured in this way can reflect both technological innovation and changes in efficiency. 

Therefore, technological progress may not be the only source of total productivity growth, 

and it will be possible to increase factor productivity by improving technical efficiency (Jin 

et al., 2010). 

Stochastic Frontier Analysis (SFA) is a widely used approach to study production 

efficiency. SFA makes it possible to estimate technical efficiency in addition to technological 

change, which is captured by a time trend and interactions of the inputs with time (Aigner 

et al., 1977; Meeusen and van Den Broeck, 1977; Battese and Coelli, 1992). 

The general stochastic production frontier model is described as 

)();,,( itit
uv

ititit eKLtfy                                                                                         (1) 

where ity
 is the output of the ith firm (i: 1,...,N) in period t (t:1,...,T), ( )f   is the production 

technology, itL  and itK are the inputs (i.e., labor and capital, respectively), t is the time trend 

variable, and   is the vector for the parameters defining the production technology. The 
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variables itv  refer to the random part of the error, while itu  are downward deviations from 

the production frontier. Thus, ( )( , , ; ) itv
it itf t L K e  represents the stochastic frontier of 

production, and itv  capture the random effects of measuring errors and exogenous shocks 

that cause the position of the deterministic nucleus of the frontier, ( , , ; )it itf t L K  , to vary 

from firm to firm. The level of technical efficiency (TEit), that is, the ratio of observed output 

to potential output (given by the frontier), is captured by the component 
( )itue 

 and, 

therefore, 0 ≤ TEit ≤ 1. 

Following Bauer (1990), Brümmer et al. (2002), Kumbhakar (2000), and Kumbhakar 

and Lovell (2000), after a production frontier function has been estimated, it is possible to 

compose the rate of TFP change from the results. In particular, the authors suggested a 

productivity decomposition that goes beyond the division of productivity changes to a 

catch-up effect and a technical innovation effect, also accounting for scale effects and 

efficient allocation of productive factors. 

The components of productivity change can be derived from the deterministic part 

of the production frontier depicted in (1) combined with the usual expression for the 

productivity change Divisia index2:  

TFP K Lg y s K s L                                                                                                     (2) 

where dots over variables indicate the rate of change for those variables, TFPg  denotes the 

rate of TFP growth, Ks  and Ls  are the shares of capital and labor in aggregate income, 

                                                            
2 Subscripts i and t are omitted to avoid notational clutter. 
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K
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p K
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p K p L



  and  L

L
K L

p L
s

p K p L



, where Lp  and Kp  denote the price of labor 

and capital, respectively. 

Totally differentiating the logarithm of y  in (1) with respect to time, we have  

ln )
( )K L

f(t,L,K; β u
y K L

t t
  

   
 

         (3) 

where K  and L  are the output elasticities with respect to the factors of production. The 

overall productivity change (equation 3) is affected by either technological progress and 

changes in input use or change in technical efficiency. 

By substituting equation (3) into equation (2), we have 

ln )
1 [ ] [ ]TFP K L K K L L

f(t,L,K; β u
g (RTS ) λ K λ L (λ s )K (λ s )L

t t

 
        

 
      (4) 

where RTS denotes returns to scale with K LRTS    , and Kλ  and Lλ  are defined as 

normalized shares of capital and labor in income, i.e. /K Kλ RTS  and /L Lλ RTS .  

Then, equation (4) decomposes the growth in TFP into four additive components: 

trends in productivity change, change in the degree of the input-specific return to scale, 

change in cost and technical efficiencies. The decomposition suggests the intuitive result 

that advances in both technological progress and technical efficiency increases TFP growth; 

while the scale component measures TFP changes due to variation in scale of operations. 

The K K L L(λ s )K (λ s )L   
 
component in equation (4) accounts for inefficiency in resource 

allocation resulting from deviation of input prices from the value of their marginal product. 

In details, these four components are defined as: 
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(i) technological change (TC), measured by ln ) /f(t,L,K; β t  ; 

(ii) change in technical efficiency (TE), denoted by / tu  ; 

(iii) change in the scale of production (SC), given by  ( 1)[ ]K LRTS K L    ; 

(iv) change in allocative efficiency (AE), measured by [( ) ( ) ]K K L Ls K s L     . 

Technological change (TC) is the increase in the maximum output that can be 

produced from a given level of inputs, thus capturing the upward shift in the production 

function. Technical efficiency (TE) change is the change in a firm’s ability to achieve 

maximum output given its set of inputs; then, it measures the changes in TFP because of a 

movement toward the production function. The scale component (SC) accounts for TFP 

changes due to variations in the scale of operations, its contribution depending both on 

technology and factor accumulation. The presence of constant returns to scale (RTS=1) 

cancels out the SC. In the case of increasing returns to scale (RTS > 1) and an increase in the 

amount of productive factors, the firm shows a higher rate of productivity growth. If the 

amounts of production factors diminish, the firm would have a reduction in the rate of 

productivity change. An inverse analogous reasoning can be made for decreasing returns 

and a reduction (increase) in the amount of productive factors. Allocative efficiency (AE) 

change is the change in a firm’s ability to select a level of inputs to ensure that the input 

price ratios equal the ratios of the corresponding marginal products. Because 1K L   , the 

distances ( )K Ks   and ( )L Ls   are symmetric and have opposite signs. Therefore, a factor 

reallocation that, say, increases the intensity of labor and reduces that of capital will 

necessarily bring a change in allocative efficiency.  

The three components SC, TC and TE are called the connected to technology part of the 

TFP change, which can be calculated using the estimated production technology (i.e., the 
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parameters in the output distance function and the technical efficiency estimates of equation 

1). The allocative component AE is caused by the violations of the first-order conditions for 

profit maximization. These violations might occur if market imperfections exist (i.e., 

transaction costs, risk, quantitative restrictions, incomplete information, or mark-ups) or if 

the implied assumption of profit maximization behavior is not adequate. Because these 

effects are caused by market or behavioral conditions (i.e., they represent the part of the TFP 

change that is not determined technologically), the allocative component AE is referred to 

as the connected to market part of the TFP change. Obviously, it accounts for the differences 

between the Divisia index and the three technology-connected components, i.e., 

)( TETCSCgAE TFP   (Brümmer et al., 2002; Zhu et al., 2006). 

 

3.2 The multiple RDD 

Support programs usually select firms in a non-random manner, and L488 is no 

exception. However, we can build a reliable counterfactual using data for the firms that 

applied for the incentives but were not financed because they scored too low in the L488 

ranking.3 Unlike in randomized experiments, this control group is not random, but we can 

use a “sharp” RDD approach to address selection bias issues. We have a “sharp” RDD since 

the treatment variable is a deterministic function of the forcing variable as it solely depends 

on whether the forcing variable is above or below the assignment threshold. In the sharp 

RDD framework, subsidy assignment can be considered locally random around the 

                                                            
3 These non-treated firms are willing to invest and have a valid investment project as checked by a preliminary 

screening. As a consequence, within each ranking, we can consider these firms as the best control group 

available; in fact, as suggested by Brown et al. (1995), they show a propensity for investment very similar to 

that of subsidized firms. 
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threshold of the forcing variable (Lee and Lemieux, 2010), here the sum of the five indicators 

normalized presented in Section 4. Then, any differences in outcomes between firms who 

are just below and just above the threshold can be attributed to the causal effect of the 

subsidies. 

To estimate the effect of subsidies on TFP components, we use an approach which 

takes into account the presence of many regional “calls for tender”. Therefore, we first re-

center each forcing variable threshold at zero, and then pool in the same ranking firms 

belonging to the same technological group. Indeed, the analysis is conducted separately for 

four industry sub-groups defined according to firms’ technology. Following Harris and 

Moffat (2013), industries were classified based mostly on Eurostat definitions, as high-tech 

(HT), medium high-tech (MHT), medium low-tech (MLT), and low-tech manufacturing 

firms (LT). Such a disaggregation is necessary because different sectors will operate with 

different production technologies, and the impact of capital subsidies on TFP is therefore 

likely to differ across sectors (Moffat, 2014). As L488 was directed also at a subset of non-

manufacturing firms (NM), we include them in a separate analysis.4 We then run the 

following equation: 

   0 1        SRDD
irt rt ir rt ir ir ir irty a b x D b x D       

     (5) 

where irty  is the TFP component (TC, SC, AE, TE, or TFP) of the ith firm at time t (t:1,…,5) 

in technological group r (HT, MHT, MLT, LT, and NM), irx  is the forcing variable (in our 

                                                            
4 The non-manufacturing category is made up by wholesale trade and commission trade, real estate activities, 

computer and related activities, sewage and refuse disposal activities and recreational, cultural and sporting 

activities. 
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case, irx  is the sum of the indicators normalized for firm i in technological group r), irD  is 

the binary indicator variable for treatment which is unity in case of treatment of firm i in 

technological group r and zero else, and irt  is the error term. The evaluation problem 

consists of estimating the local average treatment effect (LATE)5 SRDD
rt  of the treatment 

(subsidy assignment) on the TFP components at time t in technological group r. The key 

identification assumption that underlies the RDD strategy is that 0(.)b  and 1(.)b  are smooth 

functions of irx . Under this assumption, the treatment effect SRDD
rt  is obtained by estimating 

the discontinuity in the empirical regression function at the point where the treatment 

variable switches from 0 to 1. 

Because of its local nature, RDD average treatment-effects estimators are usually 

constructed using local regression techniques. We follow standard practice and use local 

polynomial non-parametric regression to estimate the equation (5). This kernel-based 

estimator requires a bandwidth for implementation, with observations outside the 

bandwidth receiving zero weight in the estimation. We select an optimal bandwidth that 

minimizes mean-squared-error using the robust confidence intervals developed by 

Calonico, Cattaneo, and Titiunik (2014b) and a triangular kernel.6 To check the robustness 

of the results, we also use a parametric estimator with a 3rd order polynomial in the forcing 

variable, which is allowed to differ on the left and the right of the cut-off point to account 

for non-linearity in the outcome variable. 

                                                            
5 While the ATT gives the average treatment effect for the treated firms, in the sharp RDD framework the 

LATE gives the average treatment effect for those firms ranked around the assignment threshold. 

6 See Calonico, Cattaneo, and Titiunik (2014a) for more details on the implementation of the RDD estimates 

and the Stata module rdrobust.ado. 
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After estimating the causal effect of L488 with respect to each TFP component via the 

RDD for each of the technological groups of firms, we aggregate the treatment effects to 

obtain the global treatment effect of the policy under analysis.7 The aggregation of different 

estimates is not a trivial problem because it is not easy to find an objective criterion to choose 

the weights of the estimates. For non-parametric estimates, we use the number of treated 

firms in each ranking with a forcing variable value within the optimal bandwidth selector 

(see Calonico, Cattaneo and Titiunik, 2014b);8 however, in Section 6, we check the robustness 

of this aggregation procedure. 

As a result, the global LATE of L488 ( )t
MRDD  and the standard errors ( )t  at time t 

are computed as follows: 

* /MRDD
t r rt

r TechGro

SR

up

DDN N 


  ;         (6) 

2 2 2* /t r rt
r TechGroup

N N 


  ;          (7) 

where, SRDD
rt  represents treatment in technological group r at time t, rt  is the standard error 

of the LATE estimate in technological group r at time t, rN  is the number of treated firms 

inside the bandwidth interval in technological group r, and N  is the total number of treated 

firms inside the bandwidth interval. 

4. Data 

                                                            
7 In order to reduce the influence of extreme values, we recoded the extreme values of each dependent variable 

to lowest or highest reasonable values (the value of the 2nd centile and the value of the 98th centile, respectively). 

The truncation procedure was used for all tables reporting MRDD estimates. 

8 For parametric estimates, we still use the number of treated firms in each ranking, but they are not limited to 

the observations within the optimal bandwidth selector. 
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L488 has been the main policy instrument for reducing territorial disparities in Italy 

during the period 1996-2007. L488 operates in the less-developed areas of Italy, i.e., the areas 

designated as Obj. 1, 2 or 5b for the purpose of EU Structural Funds. L488 has financed firms 

in both the Center-North (Objective 2 or 5b) and South regions (Objective 1) of the country;9 

however, Objective 1 regions receive transfers that are substantially higher in magnitude 

than transfers under all other lines of the EU’s Structural Funds program (Becker et al., 

2013).10 This is why our focus is on the southern regions; nevertheless, Section 5.4 reports a 

separate analysis for the firms localized in the Center-North regions.  

L488 makes available grants on capital account for projects designed to build new 

productive units in less-developed areas or to increase production capacity and 

employment, increase productivity or improve ecological conditions associated with 

productive processes, technological updates, restructuring, relocation and reactivation. 

After receiving an application form that includes a technical report and a business plan, the 

relevant authority performs a preliminary screening, evaluating the funding eligibility of 

the project. The amounts awarded are paid out in three equal instalments. L488 allocates 

subsidies through a rationing system based on regional competitive auctions. In each 

auction, the investment projects are ranked with respect to five objectives and 

predetermined criteria: 1) the share of owners’ funds in total investment; 2) the new job 

                                                            
9 In the southern regions, L488 has been financed not only with national funds but also with the EU Structural 

Funds (the southern regions were the only eight Objective 1 Italian regions in the 1994-1999 cycle of EU 

regional policies). 

10 In particular, for the L488, the medium-large subsidized firms located in Objective 2 or 5b areas received 

capital grants that support up to 10-20% of the total investment expenditures, but the medium-large 

subsidized firms located in Objective 1 areas received capital grants that support up to 40-50% of the total 

investment expenditures (plus an additional 15% for small firms). 
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creation by unit of investment; 3) the ratio between the subsidy requested by the firm and 

the highest subsidy applicable; 4) a score related to the priorities of the region in relation to 

location, project type and sector; 5) a score related to the environmental impact of the 

project. The criteria carry equal weight: the values related to each criterion are normalized, 

standardized and added up to produce a single score that determines the place of the project 

in the regional ranking (this normalized score is the forcing variable). The rankings are 

drawn up in decreasing order of the score awarded to each project, and the subsidies are 

allocated to projects until funding granted to each region is exhausted.	Several checks are 

made to establish whether subsidized firms have respected their targets. If a treated firm 

does not reach its goals, the subsidy is entirely or partially revoked. 

L488 auctions have been conducted on a yearly basis. Our analysis refers to the period 

1995-2003 and focuses on three of the four L488 auctions that were taken up by 1998.11 This 

time-span makes it possible to analyze the TFP disaggregation dynamics for the 5 years 

following the subsidy assignment. The data for the auctions derive from two datasets: the 

administrative L488 dataset of the Ministry of Economic Development, a financial statement 

dataset that collects data from AIDA,12 and other sources of financial information.13 After 

                                                            
11 Firms subsidized in auction 2 received the first installment in July 1997, while firms subsidized in auctions 

3 and 4 received the first installment in October 1998 and May 1999, respectively. Then each subsidized firm 

received the remaining installments in the following two years. However, in many cases, administrative 

complications and technical and economic problems have increased the time span of the project (estimated at 

3.6 years by Bernini and Pellegrini, 2011). 

12 AIDA is a large dataset that contains the budgets delivered by a subset (mostly corporate enterprises) of 

over 500,000 Italian firms to the Chambers of Commerce. 

13 The estimation results we present below rely on the assumption that there are no other governmental 

programs correlated with the allocation of L488 funding. Actually, a feature of L488 minimizes the extent of 

this bias by requiring that firms that apply for the incentives renounce any other public subsidies even without 

any guarantee of receiving the L488 funds. Besides, a recent study (Cerqua and Pellegrini, 2015) shows some 
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cleaning and merging the data, we have 1074 firms localized in the South (377 in the 

treatment group and 697 in the control group) and 800 firms localized in the Center-North 

(264 in the treatment group and 536 in the control group), which applied for the L488 funds 

in at least one of the auctions considered (auction 2, auction 3, and auction 4).14 Exploiting 

the MRDD features, we have tested whether the pre-treatment characteristics of the 

financed firms are similar to those of the control group. As shown in Table 1, we find no 

evidence of statistically significant pre-treatment differences at 5% level around the cut-off 

point between subsidized and non-subsidized firms in terms of each TFP component and 

other firm-related covariates. This holds for each technological group and for the aggregated 

sample.  

 

Insert Table 1 

 

 

 

 

 

                                                            
modest evidence of negative spillover effects reporting how the employment growth in subsidized firms is in 

part determined to the detriment of the untreated firms. However, there is no evidence of substantial spillovers 

concerning turnover, investment, and TFP. The latter finding mitigates the risk of a substantial violation of the 

Stable Unit Treatment Value Assumption (SUTVA) assumption (Rubin, 1986), which would cast doubts on 

the validity of our results. 

14 We considered only firms which had been operating since at least 2 years before the subsidy assignment, 

whereas we excluded projects that presented anomalies and irregularities. Concerning duplicate projects, i.e., 

applications for more than one auction, we decided to exclude the non-financed projects if the referring firm 

had already received L488 funds in a previous auction. 



20 
 

 

5. Results 

5.1 Production frontiers estimates 

The components of the TFP change were estimated within an SFA framework. The 

frontier models are specified for panel data, with both a stochastic frontier production 

function and a technical inefficiency model (Battese and Coelli, 1995). In particular, a flexible 

functional form as the translog production function is used:15  
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where ln ity  is the natural logarithm of the value added of firm i in year t and ln kitx  is the 

logarithm of input k, where k = L, K represent the two inputs, cost of labor and fixed assets, 

respectively.16 The production frontier may shift over time according to the values of the 

parameters t  and 2t . The itv s  are random variables that are assumed to be independent 

and identically distributed 2(0; )VN  , while the technical inefficiency variables ( it
u ) are 

assumed to be independently distributed, such that it
u  is the truncation (at zero) of the 

                                                            
15 For a detailed discussion of the model selection, parameter estimates and specification tests, see Appendix 

A. 

16 AIDA does not contain information about human capital, preventing us to control the production frontier 

for this potential input. Assuming that human capital may be proxied by the average wage (i.e., defined as the 

ratio between the cost of labor and the number of employees), we verify that there are not significant 

differences among firms classified with respect to the technological level. This finding suggests that human 

capital might not capture significant differences in the production process of firms. We thank an anonymous 

Reviewer for underlying this issue. 
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2( ; )itN    distribution. It is also assumed that the itv s  and itu s  are independent among each 

other.  

Following Battese and Coelli (1992), it  may be assumed as a function of observable 

explanatory variables. To account for time-varying technical inefficiency, we suggest 

modeling itu  by means of yearly dummy variables _ tD year  as 

0  _  it t t it
t

D year w               (9) 

where i  are the unknown parameters and itw  is a random error term.  

To account for the different technological sets within the industries, several frontiers 

were estimated separately. First, we considered firms applying to the different Auctions as 

separate groups; within each Auction, we also distinguished firms operating in the Center 

and North of Italy from those located in the South. The choice was motivated by either the 

specific characteristics of each auction or distinctive features of L488 in the Center-North 

regions. Furthermore, the industry sub-groups defined in Section 3.2 were considered.17 A 

detailed definition of all variables used in the estimated frontier models is reported in Table 

A1 of Appendix A. 

The maximum likelihood estimates of the parameters in the stochastic frontier model 

for the different auction groups confirm heterogeneity in the production function due to the 

auction as well as firms’ technology (see Table A2 and Table A3 of Appendix A; all other 

model estimates are available upon request from the authors). Likelihood ratio (LR) tests 

confirm the identification of 18 firm groups, corresponding to different production frontiers. 

                                                            
17 High-tech (HT) and medium high-tech (MHT) firms were pooled because of small sample size issues. 
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5.2 Estimates of TFP decomposition  

The TFP and its components were calculated by using the estimated frontiers and the 

Divisia decomposition illustrated in Section 3.1, for every firm and period. In particular, 

having estimated the translog frontier function in equation (8) the technical efficiency level 

of firm i at time t ( itTE ) is calculated as the ratio of the actual output to the potential output 

as 

itu
itTE e

                                                                                        (10) 

The elasticity of output with respect to the kth input is obtained by 
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and RTS is calculated as RTS = K L  . 

Then, the scale of production (SC) and allocative efficiency (AE) are estimated 

respectively as 
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Finally, the rate of TC is defined by  

KtKtLtLttt xxtTC lnln2                                                    (14) 
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In the estimation of equations (11-14), output elasticities and TC are functions of input 

levels and are estimated at the sample means of input levels. 

Because each auction operates on a different time span, we identified some typical 

dates, using as the first period the year when the firm starts to receive the grant (i.e., the fifth 

period corresponds to four years after the first-year installment). This strategy makes it 

possible to correctly aggregate and compare TFP components across auctions, irrespective 

of the calendar years.  

Table 2 shows the average values of the TFP growth rate components for both treated 

and non-treated firms located in the South of Italy and separately for each technology 

level.18,19 On the whole, the analysis reveals a slight decay of TFP in non-treated firms across 

all the periods. Treated firms reduce TFP until the third year after the subsidy is granted; 

while TFP improves by 2% in the fourth year, the increase is positive but negligible in the 

last period. The growth in treated firms, when decomposed, is mainly due to TC and AE. 

More specifically, the TC index grows by 1.15% during the first year after the subsidy is 

granted and rises to 5.81% in the fifth period. This indicates that firms adopt technologies 

that allow them to be more productive. In addition, non-treated firms grow over the period, 

but with lower intensity (0.8 – 4.0%). The allocative inefficiency results when factor prices 

are not equal to their marginal product. The estimates of AE for treated firms show the 

                                                            
18 All results, related to auctions, size, geographical area and technological sets, are available upon request 

from the authors. 

19 The complexity of the analysis limits the analytic derivation of the standard errors of estimates reported in 

Table 2. Indeed, these estimates are obtained by combining frontier parameter estimates with input mean 

values. Being the frontier parameters all statistically significant at the 1% level, we are confident that all the 

estimates presented in Table 2 are statistically different from 0. We thank an anonymous Reviewer for 

underlying this point. 
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existence of allocative inefficiency in the years immediately after the grants, while in the last 

part of the observed period, AE turns out to be positive, indicating the presence of 

adjustment lags and connected to market effects for the subsidized firms. Conversely, 

untreated firms show a continuous decline in their AE for all periods. The contribution of 

TE is relevant but negative for all the firms and over (almost) all the periods; the intensity is 

slightly higher in the sample of treated firms. This decrease may be caused either by internal 

cost of adjustment (organizational changes) or by transaction costs arising from the 

adoption of the new quantity of inputs. Conversely, the SC effect is negligible, for both 

treated and untreated firms. The expected boost of capital subsidies on scale efficiency, due 

to the new capital and consequent additional employees, has not been realized.  

Insert Table 2 

This evidence suggests that subsidized capital does not really increase the scale of 

operation, but it substitutes the capital to be invested by the firm under conditions of no 

subsidization. Being that the SC is similar between granted and not financed firms, it may 

be attributed to a simple extrapolation of past trends and not to the effect of subsidization.  

These effects are quite similar between the different technological groups but with 

different intensities. TC is higher for firms operating in the low-technology industries, 

suggesting that in the observed period, all these firms (i.e., treated and untreated firms) have 

improved their technology. Conversely, non-manufacturing firms show the lowest TC 

effect, which becomes null for the untreated firms of these industries. Medium-high and 

high-technological firms show a continuous decline in TFP, mainly due to a negative effect 

of AE for all the periods. 
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5.3 Multiple RDD estimates 

In this section we compute point estimates and standard errors of the effects of 

subsidies on each TFP component for the South of Italy.20 Columns from (1) to (5) of Table 

3 report the MRDD non-parametric estimates for the effect of the subsidies on each TFP 

component for each of the five years following the subsidy assignment; while columns from 

(6) to (10) report the MRDD parametric estimates. Formula (5) is used to derive all RDD 

estimates, while Formulae (6) and (7) are used to aggregate them and obtain the global LATE 

of L488 with the corresponding standard errors. For all coefficients, a positive sign means 

that the subsidy assignment has a positive effect on the TFP component, while a negative 

sign means the opposite. Coefficients significantly different from zero at the 90% statistical 

confidence level are marked with one asterisk; those significant at the 95% level with two 

asterisks; those significant at the 99% level with three asterisks. The estimates should be 

interpreted as the percent change in TFP component between treated and untreated firms, 

e.g. a coefficient of 0.01 corresponds to a 1% increase of the TFP component in the treated 

relative to the control firms. 

                                                            
20 Before adopting the MRDD, we used the coarsened exact matching technique (see Iacus et al., 2011), which 

is a formal preliminary matching procedure to produce better balanced treatment and comparison groups. In 

particular, we matched exactly on three pre-treatment variables (tangible capital, labor cost per employee, and 

ROE) using their tertiles as cut-points. This data-preprocessing technique led to the loss of a limited number 

of observations (about 2%). Besides, as suggested by Lee and Lemieux (2010), we subtract from each dependent 

variable its pre-treatment value. This is done because differenced outcomes should have a sufficiently lower 

variance than the level of the outcome to lower the variance in the RDD estimator. 
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The most interesting result relates to the difference in TFP growth between 

subsidized and non-subsidized firms: considering the non-parametric approach, in the first 

three years the difference is negative, indicating that TFP grows more in non-subsidized 

firms; on the contrary, over the last two years, TFP growth is greater in subsidized firms, 

with a differential equal, on average, to approximately 9%. This differential is significant 

from a statistical point of view in the first two years (at 5%, with negative coefficients), less 

so in the remaining years.21 Therefore, there are signals that dynamics of TFP growth rate 

in subsidized firms could be linked to the process of learning and concluding the 

implementation of the investment. The sign reversal also could explain the mixed results 

achieved in the literature. The decomposition analysis allows us to identify the components 

that are responsible for this sign reversal. 

In the first place, the TC component gives a positive contribution to the TFP growth 

gap: in subsidized firms, the growth rate of TC is always higher than in non-subsidized 

firms, and the differential is statistically significant for two out of five years. On the other 

hand, the contribution of TE is always negative and statistically significant for two out of 

five years. The contribution of SC is mixed and always not statistically significant. Finally, 

the contribution of AE switches sign during the period: it is negative in the first two years 

and positive in the last three years (it is strongly statistically significant in year 4). The results 

using the parametric approach are basically the same, even if slightly less statistically 

significant.22 

                                                            
21 Note that a similar coefficient pattern emerges when considering different subgroups of firms and following 

various robustness tests reported in Section 6. 

22 Estimation of the parametric model using the 1st or the 2nd order polynomials in the forcing variable leads 

to quantitatively similar estimates. 
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The results suggest that public subsidies could help firms to improve their 

technological assets, mostly by increasing the technological content embedded in the (new) 

capital. The new capital bought with incentives augments the rate of technological progress 

of the firm. It is plausible that the TC component incorporates some element of technical 

efficiency, which could be underestimated in subsidized firms. Moreover, during the 5-year 

period, the firm adjusts the production factors to be more efficient: actually, if in the first 

years the subsidized firm chooses not to pursue allocative efficiency because a higher 

intensity in the use of one factor (for instance, labor) could increase the chance to obtain the 

subsidy, in the following years, the firm has the opportunity to move toward a more efficient 

configuration. However, these technological improvements are slow in offsetting the 

negative impact, due to complexity in the management of the new resources. The overall 

effects of subsidies on TFP in the medium term are slightly negative: after a sizable drop 

during the first three years, there is a clear trend reversal in TFP in years 4 and 5.  

The results are similar also for the subsample of small firms (Table 4). The differences 

in TFP growth rate in the last two years are slightly larger (10%), whereas the differences in 

the technological progress growth rate are smaller and statistically not significant. The scale 

component is interesting; in this case, it is negative and statistically significant. A plausible 

interpretation is that using the subsidies, the firms move toward market niches, which are 

more profitable but where the scale economies are unfeasible or not essential. 

Insert Table 3 

Insert Table 4 

Looking at the productivity differential by technological sector, we find that the 

differential in TFP for the low-tech manufacturing firms is higher than the average in the 
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last two years (more than the 14%), even if not statistically significant. The differential in AE 

is very high in the last two years, where the TC growth rate differential is also positive only 

in the same period. Both explain the higher TFP growth differential. For the medium-low, 

medium-high and high-tech firms the picture is different. The TFP growth of subsidized 

firms is higher with respect to non-subsidized firms only in the fourth year (third and fourth 

years for the medium-low tech firms). Even if the contribution of the TC component is 

always positive, the contribution of AE is lower and sometimes negative. In the non-

manufacturing firms, the TFP growth differential is positive in the last two years but lower 

than the average (5%). In addition, the positive contribution of TC is lower than the 

average.23 

The conclusion of the analysis is that the TFP differential is basically dominated by 

two factors: TC and AE. In sectors where the TC growth induced by the subsidies through 

new capital overcomes the negative effect on TE (related to the new enterprise organization 

and management, entry in new market and so on), the TFP tends to be positive. However, 

this is realized when the impact of the AE differential induced by the subsidies becomes 

positive. The subsidized firms, usually after three years, are able to make a more efficient 

use of the productive factors finally exploiting the new capital. On the other hand, in sectors 

where the TC gain is lower or the AE catch-up is modest the impact of the subsidies on TFP 

is nil or negative.   

 

5.4 What effects on TFP had the subsidies to firms located in the Center-North regions? 

                                                            
23 The estimates by technological sector are available upon request from the authors. 
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We also estimated the effect of the L488 on TFP for the firms located in the Center-

North regions, which are much wealthier that the regions in the South, after testing for 

statistically significant pre-treatment differences (see Table B1 of Appendix B). The areas 

where the firms could apply for the L488 subsidies were small (limited to few provinces) 

and the intensity of the subsidies was much lower than in the South. Therefore, we expect 

that the impact of L488 in these areas was less important. Actually, the differences in TFP 

growth between subsidized and not subsidized firms are statistically not significant (Table 

B2 of Appendix B). The impact on TFP growth differential is positive in four years out of 

five. The same is also true for technical efficiency. Technical growth and allocative efficiency 

are always positive. Estimates of TFP by technology for the firms located in the Center-

North regions are affected by the smaller sample dimension. However, TFP growth 

differentials are always positive and often statistically significant in medium-low tech 

manufacturing firms, where the main contribution comes from improvement in the 

allocative efficiency, and mostly in non-manufacturing sectors, where it is important the 

contribution of scale economies. In the other sectors the picture is more complex, however 

the effects are negligible. 

 

6. Robustness  

We assess the validity and the robustness of our results on the South adopting 

various specification tests. First, we use a falsification test of the RDD named McCrary test 

(McCrary, 2008). One often violated criterion for a valid RDD is that the density of the 

forcing variable be smooth on either side of the discontinuity. The violation of this condition 

suggests that the score may be manipulated in ways that bias estimates of impact. In our 

context, the RDD analysis requires that the normalized score density be smooth on either 
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side of the subsidy assignment threshold. The McCrary test is implemented as a Wald test 

of the null hypothesis that the discontinuity is zero and it fails to reject for each ranking. In 

Figure C1 of Appendix C we graphically present the negative results of this test in the 

rankings split by auction and by technological group. 

Additionally, we assess the robustness of our parametric results by estimating the 

models on a “narrow-band” sample around the cut-off, equal to the optimal bandwidth 

above and below the cut-off. These parametric estimates are very close to those reported in 

the paper. Moreover, as valid estimates based on the Multiple RDD rely on the assumption 

that the discontinuity in the outcome can be attributed to the discontinuity in treatment, we 

tested if there were jumps in the value of other exogenous covariates at the cut-off point. No 

variables showed a significant jump at the discontinuity. 

We also need to check if the adoption of another weighting procedure will deliver 

different estimates. To do so, we adopt the weighting by inverse variance, which gives more 

weight to the LATE estimates with smaller variances. Formulae (15) and (16) reported 

below, show how MRDD
t  and t  are computed: 

2 2( *1/ ) / ( 1/ )MRDD SRDD
t rt rt rt

r TechGroup r TechGroup

   
 

   ;       (15) 

21/ ( 1/ )t rt
r TechGroup

 


  .          (16) 

Table C1 of Appendix C shows that this weighting scheme produces estimates very 

close to the ones reported in Table 3. 

Finally, to investigate the role of the technical inefficiency modeling, we also 

considered the time-variant specification of itu  proposed by Battese and Coelli (1992), which 
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is reported in equation (A4) of Appendix A. Table C2 reports the Multiple RDD estimates 

using the dynamic specification of itu ; the results show no relevant differences with respect 

to the baseline estimates, except for the absence of statistically significant effects for TE using 

the non-parametric estimator. 

7. Conclusions 

Understanding the effects of the subsidy policies for private firms is crucial to 

assessing the effectiveness of public actions to stimulate regional growth. In fact, regional 

policies that do not lead to an increase in productivity and thus competitiveness are destined 

to fail in the long run. The purposes of this article were to analyze the impact of a regional 

policy on TFP growth and decompose the effect among technological change, scale 

component, technical or allocative efficiency.  

The main new element of our analysis is the evaluation design, based on a quasi-

experimental approach (Multiple RRD) that allows capturing the causal effect of the 

subsidies on TFP and its components. Therefore, investigating the estimated effects for five 

years after the assignment of the subsidies, we can identify the way subsidies can positively 

affect TFP and determine the processes by which the incentives act on the productivity and 

efficiency of subsidized firms. 

The main findings from the case study are twofold. First, results show that capital 

subsidies negatively affect TFP growth in the short term, and signals of positive effects 

appear only after 3-4 years. The negative short term and the positive medium-long term 

impact can be explained by several reasons: time to learn, time to stay in a larger market, 

time to adjust factor proportion, the sluggishness in the effects of technological progress. 

The analysis can explain the differences from the previous literature on L488; actually, the 

effects on productivity are negative or negligible in several papers on this policy instrument 
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(Bronzini and De Blasio, 2006; Bernini and Pellegrini, 2011; Bondonio and Martini, 2012; 

Cerqua and Pellegrini, 2014). However, none of these studies perform such a long year-by-

year analysis. Indeed, the effects become positive only after the third year (in the South). In 

Bernini and Pellegrini (2011), it was noted that firms subsidized by L488 could overshoot 

the optimal amount of employment to gain a subsidy. It is plausible that after the third year, 

firms start to reduce the inflated employment and increase allocative efficiency. 

Second, the positive impact comes especially through technological change and not 

through scale impact change, as may have been expected. Following the framework 

presented by Beason and Weinstein (1996) and Skuras et al. (2006), where industrial policies 

are classified as Schumpeterian when subsidies aim to support technological progress or 

Marshallian when subsidies assist economies of scale and/or infant industries, our results 

support the conclusion that capital subsidies present Schumpeterian and not Marshallian 

effects on regional growth. This is also the conclusion of Skuras et al. (2006). Therefore, the 

main channel of the impact of capital subsidies on TFP is through increasing the 

technological content of the new capital, which sustains the technological upgrade of the 

subsidized firm. 

In conclusion, the result suggested in the previous literature, that the increase in 

capital stock does not necessarily entail efficient and productive subsidized firms, is only 

partially confirmed by our empirical evidence, and just in the first years of investment. Even 

if in the short term firms are induced to overshoot the optimal amount of employment to 

gain the subsidy, in the long run they can adjust the factor proportion and, sustained by the 

new technology embedded in the new capital, can achieve long-run efficiency and growth. 

The analysis of the relationship between subsidy intensities and TFP growth showed that 

this is especially true for micro and small firms. However, the topic of how the increase in 
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TFP can influence the competitiveness of subsidized firms in the global economy is left for 

future research. 
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Appendix 

 

Appendix A. Production frontier estimates and specification tests 

The stochastic frontier model in (8) is appealing for TFP decomposition as it is quite 

flexible and it allows for non-neutral technological change. TC is said to be k-input using 

(saving) if kt  is positive (negative); and TC is neutral if all kt s  (k = L, K) are equal to zero. 

If all s  are equal to zero ( 0LL KK LK tt Lt Kt           ), the production function 

reduces to the Cobb-Douglas function with neutral TC.  Details on variables definition, 

measurement and expected effects in the production function are presented in Table A1. 

Insert Table A1 

Another interesting feature regards the capability to model the technical 

inefficiencies it
u  which are assumed to be distributed as the truncation (at zero) of the 

2( ; )itN    distribution, where it  is a function of observable explanatory variables and 

unknown parameters. There are several specifications to account for time-varying technical 

inefficiencies it
u  (Kumbhakar, 2000) which can be used in the TFP decomposition. Battese 

and Coelli (1995) proposed a specification for the technical inefficiency effect in the 

stochastic frontier production function 

it 0 it itz  w                          (A1) 

where itz  are observable variables assumed to influence the inefficiency of firm i at time t, 

s  are parameters to be estimated and the random variable itw  is defined by the truncation 

of the normal distribution with zero mean and variance 2 . 
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 Replacing itz  by t (time trend), the technical inefficiency function itu  can be defined 

as 

it

2

210it
 t  wt                       (A2) 

 where the time trend variable controls for time varying, systematic unobserved factors. 

Alternately, yearly dummy variables _ tD year  can be used; then, the model for the 

inefficiency term becomes  

itt t0it  _ wyearD t  
               

(A3) 

Following Battese and Coelli (1992), the technical inefficiency component can also be 

considered time-variant assuming that 

 ( ( ))t T
it iu e u  , 0itu  , i: 1, .., N,  t ∈ τ(i)                 (A4) 

where τ(i) represents the Ti periods of time for which we have available observations for the 

ith firm among the available T periods in the panel (i.e., τ(i) may contain all periods in the 

panel or only a subset of periods). η represents the rate of change of technical inefficiency 

over time; the sign of η dictates the behavior of technical inefficiency over time.  

To note that the parameters η in equation (A4) and s  in equation (A2 and A3) are assumed 

to be the same for all firms in the sample, which means that the pattern of inefficiency rise 

or reduction is the same for all firms. Some generalizations have been provided in literature, 

as  

itwtu  2

2i1i0iit t            (A5) 
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where 2i1i0i  ,  ,   are producer-specific parameters (Cornwell et al., 1990). Since time 

appears in a linear fashion as a regressor in the production function, as well as in itu , all the 

parameters associated with the time variable in the production function and in itu  cannot, 

in general, be identified. Then, this specification prevents to separate the effects of 

technological change and productivity change, limiting its applicability in the 

decomposition of TFP.  

In the analysis, we suggest using yearly dummy variables _ tD year  to model the 

inefficiency term itt t0it  _ wyearD t    . The use of this approach in modeling the 

time-varying inefficiency is appealing and well adapts to TFP decomposition. First, this 

specification allows a greater flexibility compared with the use of deterministic time trends 

or a time invariant specification. Second, our interest is in modeling the inefficiency term 

over time and disentangling time-varying inefficiency from dynamics in the production 

frontier. Models (8) and (A3) allow to specify different dynamics for the frontier and the 

inefficiency; while the true fixed/random estimators proposed by Greene (2005a,b), which 

are the main competing approaches used in empirical analyses, do not. Moreover, the 

Greene estimators suffer of the incidental parameters problem (i.e., the estimator is 

appropriate only when the length of the panel is large enough, that is T≥10), preventing its 

use in our analysis (Greene, 2002). Differently from Battese and Coelli (1995), the Greene 

estimators allow disentangling unit specific time invariant unobserved heterogeneity from 

inefficiency.  

For a robustness check, we also present results of the Multiple RDD when model (A4) 

is used for the inefficiency term (see Table C2 of Appendix C). Results are similar to those 

obtained when the model (A3) is implemented. 
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The parameters of the frontier production function are simultaneously estimated 

with those of the inefficiency model ( 2 2, , , V    ), in which the technical inefficiency effects 

are specified as a function of yearly dummies (equations 8 and A3). Maximum likelihood 

estimates of the model parameters are obtained using the program, FRONTIER 4.1, written 

by Coelli (1996). The variance parameters are defined by 2 2 2
S V     and 22 /

S
   

originally recommended by Battese and Corra (1977). The log-likelihood function of this 

model is presented in the appendix of Battese and Coelli (1993). When the variance 

associated with the technical inefficiency effects converges toward zero (i.e. 2 0  ) then 

the ratio parameter,  , approaches zero. When the variance of the random error ( 2
v ) 

decreases in size, relative to the variance associated with the technical inefficiency effects, 

the value of   approaches one.  

The problem of endogeneity in stochastic frontier analysis has been largely discussed 

in the literature (Amsler et al., 2016). Dealing with endogeneity in our context is not a simple 

issue because the usual Maximum Likelihood Estimator (MLE) for the standard stochastic 

frontier model is harder to generalize and the non-linearity of the translog frontier function 

largely complicates the procedure. Then, we leave the treatment of endogeneity to future 

research.24 

The maximum likelihood estimates of the parameters in the panel translog stochastic 

frontier production function for the different auction groups are given in Table A2. To verify 

for firms’ heterogeneity in the production frontier in each auction, initially the specification 

                                                            
24 However, we investigate for the possible presence of endogeneity in our production frontier. In particular, 
we explore the presence of Granger-causality between production factors (capital and labor) and value added 
within the framework of a VAR model for panel data. The test strongly rejects the null hypothesis of Granger-
causality of value added in both labor and capital equations. 
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of model (8) has been enlarged and a set of controlling variables (in the form of dummy 

variables) have been introduced. In particular, we investigate if firm dimension (D_micro, 

D_small, and D_medium_and_large), technological level (D_HT_and_MHT, D_MLT, D_LT, 

and D_NM), and region where firm resides (D_regioi, i: 1,..,17) have a significant influence 

on production. Coefficients have signs that conform to our expectations: we expected a 

positive sign if dimension and technological level increases (see Table A1). 

Insert Table A2 

In Table A3, the results of the various null hypothesis tests associated with the 

frontier specification and inefficiency effects are reported for the estimated frontiers. 

Hypotheses can be tested using the generalized likelihood ratio statistic,  , given by 

 ))(ln())(ln(2 10 HLHL  , where )( 0HL  and )( 1HL  denote the value of the likelihood 

function under the null and alternative hypotheses, respectively. If the given null hypothesis 

is true, then   has approximately a Chi-square (or a mixed Chi-square) distribution. If the 

null hypothesis involves 0  , then the asymptotic distribution involves a mixed Chi-

square distribution (Coelli, 1995). 

The first null hypothesis, 0 :  0  ,jkH j k   , that the Cobb-Douglas frontier is an 

adequate representation for firms, is strongly rejected by the data for the whole sample as 

well as for firms in the second auction. The second null hypothesis, 2 0  kt t kt      , 

that there is no TC, is always rejected.  

Insert Table A3 

We also check, separately, for the presence of neutral TC and other biased TC. The 

neutral TC leaves the ratio of inputs constant and shifts the production frontier in parallel 
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and outwards. The biased TC is the technological change embedded in at least one of the 

inputs; it changes the slope of the production frontier and shifts it outwards. The rejection 

of tests of the null hypotheses 2 0t t    and 0  kkt    indicate the presence of both two-

dimensional technological changes. On average, over the sample period, investment in fixed 

assets negatively affects the frontier, shifting it downwards; while, on the contrary, labor 

force positively contributes to an upward movement of the frontier. This means that, on 

average, firms make lower productive use of fixed assets in their production and a higher 

productive use of their labor force. 

As regards the model efficiency, the LR test of the one sided error for the null 

hypothesis i
i

  0  of no technical inefficiency is strongly rejected for all the models. 

The LR tests are in fact equal to 420.564, 449.620, and 388.747 for the 2nd, 3rd, and 4th action 

respectively, which exceeds the corresponding upper five per cent point for the mixed Chi-

square distribution (Kodde and Palm, 1986). The value of the estimates of the   parameters 

are higher than 0.93 for all the models which implies that a significant proportion of the total 

variability is associated with technical inefficiency of production.  

Finally, we plot the distribution of the technical efficiencies for the three auctions 

(Figure A1). The plots are quite similar, with a thin tail to the left of the distribution, 

gradually rising to a maximum in the 0.8 to 0.9 interval and then dropping sharply in the 

0.9 to 1.0 interval. The fact that the mode of the distribution is not in this final interval 

supports the use of the truncated normal distributions for the inefficiency effects (Battese 

and Coelli, 1996), representing a generalization of other distributional forms (Meesters, 

2014). 

Insert Figure A1 
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Based on these results, we account for the different technological sets within the 

industries by estimating several frontiers separately. First, we considered firms applying to 

the different auctions as separate groups; within each auction, we also separated firms 

operating in the Center-North of Italy from those located in the South. Furthermore, four 

industry sub-groups defined according to firms’ technology were considered (Harris and 

Moffat, 2013). Then, 18 firm groups were identified and 18 production frontier models 

estimated (8 for auction 3; 5 for both auctions 2 and 4). LR tests support our identification 

strategy, strongly rejecting the null hypothesis of homogenous production functions among 

the above groups (LR tests are 539.89 (p-value=0.00), 920.47 (p-value=0.00), and 480.89 (p-

value=0.00) for the auction groups 2, 3 and 4, respectively). 

 

 

Appendix B. Policy effects in the Center-North regions 

Insert Table B1 

Insert Table B2 

 

 

Appendix C. Robustness tests 

Insert Table C1 

Insert Table C2 

Insert Figure C1 
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Table 1. Multiple RDD estimates of the pre-treatment differences in TFP components 
and other covariates between subsidized and non-subsidized firms (SOUTH) 

 SOUTH REGIONS 

Dependent variable 
Low tech 

Medium-low 
tech 

Medium-high 
and high tech 

Non-
manufacturing 

Whole sample 

(1) (2) (3) (4) (5) 
Technological Change -0.00301 0.00052 -0.02425 -0.03124 -0.00756 

(0.00948) (0.00736) (0.03174) (0.02270) (0.00684) 

Scale Component -0.00567 -0.01583 0.01283 0.01308 -0.00528 
(0.00987) (0.00852)* (0.01304) (0.02339) (0.00580) 

Allocative Efficiency 0.03011 -0.03065 0.11052 -0.02342 0.01170 
(0.06324) (0.07835) (0.14312) (0.05784) (0.04513) 

Technical Efficiency 0.03965 0.04929 -0.00014 0.08031 0.04149 
(0.02863) (0.04406) (0.07618) (0.05862) (0.02640) 

Total Factor 
Productivity 

0.06863 0.04470 0.12050 -0.00403 0.05825 
(0.09140) (0.09956) (0.15467) (0.07949) (0.05579) 

      

Tangible Capital -346.34 -1144.92 137.50 -441.81 -661.32 
(467.51) (733.04) (579.09) (405.99) (359.15)* 

Value Added 200.47 -1110.81 195.31 57.59 -357.31 
(337.93) (647.75)* (464.03) (481.22) (275.66) 

Labor Cost per 
Employee 

2941.45 1570.89 -834.03 -3396.91 848.15 
(1611.03)* (1646.25) (2880.67) (2735.46) (1019.65) 

# Employees -1.67 -22.70 5.83 4.65 -10.50 
(11.12) (14.38) (14.70) (11.84) (7.22) 

ROE -4.10 2.11 -2.38 16.06 0.66 
(9.85) (13.72) (14.83) (10.88) (7.05) 

Net liabilities -958.01 -1820.73 707.36 -140.52 -916.55 
(501.23)* (1085.59)* (559.55) (343.31) (481.35)* 

Cash Flow -70.78 -323.52 142.15 -157.65 -149.64 
 (120.43) (239.25) (250.27) (198.15) (110.58) 
Note: For the aggregated estimates (5) we used the weighting scheme based on the number of treated firms 

within the optimal bandwidth. Results are from local linear regression with triangular kernel using the 

robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 

developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package 

rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is estimated with a quadratic polynomial. 95% robust 

confidence intervals are in brackets. Monetary values are expressed in constant euros, year 2000. Significant 

at *10%, **5%, and ***1%. 
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Table 2. TFP components growth rates (SOUTH) 
 All firms 
 Treated  Not treated 
 TC SC AE TE TFP  TC SC AE TE TFP 
Year 1 0.0115 0.0006 -0.0615 -0.0358 -0.0831  0.0081 -0.0024 -0.0142 -0.0138 -0.0162 

Year 2 0.0217 -0.0014 -0.1064 -0.0252 -0.1086  0.0160 0.0026 -0.0259 -0.0056 -0.0137 

Year 3 0.0333 0.0050 -0.0331 -0.0379 -0.0349  0.0244 0.0059 -0.0400 -0.0294 -0.0393 

Year 4 0.0456 0.0045 0.0166 -0.0434 0.0238  0.0321 0.0053 -0.0303 -0.0233 -0.0156 

Year 5 0.0581 0.0084 0.0241 -0.0954 0.0035  0.0396 0.0143 -0.0376 -0.0884 -0.0787 

 Low-tech firms 
 Treated  Not treated 
 TC SC AE TE TFP  TC SC AE TE TFP 
Year 1 0.0176 -0.0016 -0.0398 -0.0462 -0.0551  0.0172 0.0001 -0.0161 -0.0480 -0.0274 

Year 2 0.0343 -0.0006 -0.1119 -0.0027 -0.0853  0.0351 0.0052 -0.0118 -0.0155 0.0058 

Year 3 0.0532 0.0064 -0.0095 -0.0524 -0.0084  0.0531 0.0113 -0.0360 -0.0393 -0.0181 

Year 4 0.0725 0.0053 0.0132 -0.0413 0.0517  0.0691 0.0095 -0.0463 -0.0303 0.0054 

Year 5 0.0924 0.0096 0.0244 -0.1557 -0.0283  0.0863 0.0123 -0.0182 -0.1450 -0.0702 

 Medium-low tech firms 
 Treated  Not treated 
 TC SC AE TE TFP  TC SC AE TE TFP 
Year 1 0.0086 -0.0029 -0.0460 -0.0215 -0.0690  0.0048 -0.0023 -0.0220 0.0174 0.0035 

Year 2 0.0170 -0.0064 -0.0457 -0.0257 -0.0471  0.0094 0.0000 -0.0234 0.0379 0.0277 

Year 3 0.0247 0.0005 -0.0301 -0.0447 -0.0522  0.0141 0.0023 -0.0627 -0.0256 -0.0675 

Year 4 0.0323 0.0023 0.0260 -0.0294 0.0277  0.0187 0.0045 -0.0311 0.0084 0.0023 

Year 5 0.0399 0.0080 0.0543 -0.0572 0.0558  0.0236 0.0092 -0.0534 -0.0596 -0.0815 

 Medium-high and high-tech firms 
 Treated  Not treated 
 TC SC AE TE TFP  TC SC AE TE TFP 
Year 1 0.0099 0.0059 -0.1344 -0.0519 -0.1734  0.0051 -0.0046 0.0194 -0.0542 -0.0469 

Year 2 0.0172 -0.0058 -0.1952 -0.0614 -0.2492  0.0091 -0.0015 -0.0471 -0.0779 -0.1149 

Year 3 0.0250 -0.0040 -0.1004 -0.0426 -0.1162  0.0137 -0.0026 -0.0162 -0.0633 -0.0760 

Year 4 0.0354 -0.0053 -0.0096 -0.0747 -0.0519  0.0189 0.0036 -0.0115 -0.0873 -0.0862 

Year 5 0.0452 0.0000 -0.0627 -0.0991 -0.0956  0.0223 0.0013 -0.0364 -0.1061 -0.1396 

 Non-manufacturing firms 
 Treated  Not treated 
 TC SC AE TE TFP  TC SC AE TE TFP 
Year 1 0.0027 0.0116 -0.0841 -0.0251 -0.0980  -0.0003 -0.0059 -0.0164 0.0086 -0.0191 

Year 2 0.0012 0.0176 -0.1612 -0.0488 -0.1905  -0.0014 0.0073 -0.0451 -0.0402 -0.0815 

Year 3 0.0062 0.0269 -0.0296 0.0373 0.0421  -0.0004 0.0101 -0.0088 0.0079 0.0166 

Year 4 0.0134 0.0220 0.0335 -0.0525 0.0215  -0.0004 0.0001 -0.0097 -0.0403 -0.0502 

Year 5 0.0213 0.0175 0.0435 -0.0139 0.0749  -0.0027 0.0417 -0.0386 -0.0311 -0.0423 

Note: Statistics computed only using the 536 observations (255 treated firms and 281 control firms) closest to 

the forcing variable threshold (scores within -1.5 and +1.5). Abbreviations: TC, technological change; SC, scale 

component; AE, allocative efficiency; TE, technical efficiency; TFP, total factor productivity. 
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Table 3. Non-parametric and parametric Multiple RDD estimates (SOUTH) 
 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 
Technological 
Change 

0.0040 0.0047 0.0053 0.0137 0.0212  0.0027 0.0024 0.0039 0.0103 0.0167 
(0.0024) (0.0043) (0.0063) (0.0080)* (0.0093)**  (0.0024) (0.0042) (0.0061) (0.0077) (0.0096)* 

Scale 
Component 

0.0049 -0.0086 -0.0057 0.0046 -0.0032  0.0089 0.0066 0.0041 0.0070 0.0038 
(0.0076) (0.0079) (0.0077) (0.0081) (0.0091)  (0.0083) (0.0094) (0.0079) (0.0083) (0.0090) 

Allocative 
Efficiency 

-0.0813 -0.1387 0.0256 0.1369 0.0833  -0.1069 -0.1331 0.0203 0.1080 0.0610 
(0.0545) (0.0653)** (0.0584) (0.0608)** (0.0555)  (0.0533)** (0.0618)** (0.0566) (0.0547)** (0.0539) 

Technical 
Efficiency 

-0.0501 -0.0120 -0.0550 -0.0022 -0.0663  -0.0488 -0.0300 -0.0474 -0.0075 0.0165 
(0.0372) (0.0407) (0.0326)* (0.0390) (0.0391)*  (0.0356) (0.0346) (0.0329) (0.0399) (0.0466) 

Total Factor 
Productivity 

-0.1549 -0.1736 -0.0237 0.1349 0.0465  -0.1380 -0.1546 -0.0090 0.1165 0.1170 
(0.0771)** (0.0853)** (0.0791) (0.0727)* (0.0855)  (0.0765)* (0.0775)** (0.0801) (0.0731)* (0.0855) 

Note: There are 1074 observations (377 treated firms and 697 control firms); however, for non-parametric estimates, the actual number of 

observations within the bandwidth ranges between 415 (205 T and 210 NT) and 544 (260 T and 284 NT) (it depends on the dependent variable and 

the year analyzed). Results are from local linear regression with triangular kernel using the robust confidence intervals and CCT implementation 

of mean-squared-error optimal bandwidth selector developed by Calonico, Cattaneo and Titiunik (2014b). Estimation is implemented in the Stata 

package rdrobust by Calonico, Cattaneo and Titiunik (2014a). Bias is estimated with a quadratic polynomial. 95% robust confidence intervals are 

in brackets. Parametric regressions include a third-order polynomial in the forcing variable. These functions are estimated on both sides of the 

threshold separately. Significant at *10%, **5%, and ***1%. 
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Table 4. Non-parametric and parametric Multiple RDD estimates (SOUTH) - Small firms 
 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 
Technological 
Change 

0.0026 0.0048 0.0093 0.0121 0.0183  -0.0029 -0.0091 -0.0073 -0.0115 -0.0150 
(0.0057) (0.0106) (0.0158) (0.0210) (0.0229)  (0.0043) (0.0088) (0.0123) (0.0169) (0.0207) 

Scale 
Component 

-0.0079 -0.0070 -0.0064 -0.0227 -0.0167  -0.0055 -0.0051 0.0004 -0.0135 -0.0059 
(0.0101) (0.0083) (0.0067) (0.0128)* (0.0079)**  (0.0088) (0.0079) (0.0065) (0.0094) (0.0067) 

Allocative 
Efficiency 

-0.0612 -0.0789 0.0324 0.1428 0.0913  -0.0475 -0.0478 0.0255 0.1404 0.0624 
(0.0526) (0.0623) (0.0689) (0.0537)*** (0.0550)*  (0.0490) (0.0587) (0.0563) (0.0507)*** (0.0519) 

Technical 
Efficiency 

-0.0885 -0.0568 -0.0616 -0.0135 -0.0968  -0.0467 -0.0094 -0.0031 0.0149 0.0170 
(0.0317)*** (0.0336)* (0.0368)* (0.0433) (0.0531)*  (0.0280)* (0.0316) (0.0318) (0.0424) (0.0486) 

Total Factor 
Productivity 

-0.1776 -0.1277 -0.0108 0.1303 0.0692  -0.1285 -0.0916 0.0411 0.1460 0.0827 
(0.0763)** (0.0690)* (0.0755) (0.0624)** (0.0836)  (0.0629)** (0.0660) (0.0679) (0.0665)** (0.0890) 

Note: There are 504 observations (169 treated firms and 335 control firms); however, for non-parametric estimates, the actual number of observations 

within the bandwidth ranges between 166 (86 T and 80 NT) and 265 (127 T and 138 NT) (it depends on the dependent variable and the year 

analyzed). Results are from local linear regression with a triangular kernel using the robust confidence intervals and CCT implementation of the 

mean-squared-error optimal bandwidth selector developed by Calonico, Cattaneo and Titiunik (2014b). Estimation is implemented in the Stata 

package rdrobust by Calonico, Cattaneo and Titiunik (2014a). Bias estimated with quadratic polynomial. 95% robust confidence intervals are in 

brackets. Parametric regressions include a third order polynomial in the forcing variable. These functions are estimated on both sides of the 

threshold separately. Significant at *10%, **5%, and ***1%. 
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Appendix 

Appendix A. Production frontier estimates and specification tests 

 

Table A1. Variables information and measurement 

Variable Type Measurement Expected effects 

y Output Value added (€)  

x1 Labor input Cost of labor (€) + 

x2 Capital input Fixed Assets (€) + 

t Trend Time +/- 

D_yeart Trend Yearly dummies, t: 1,...,9 +/ - 

D_regior Covariate Regional dummies, r: 1,...,17 +/- 

D_micro 

D_small 

D_medium_and_large 

Covariate Firm size dummies + 

D_MHT_and_HT 

D_MLT 

D_LT 

Covariate 
Manufacturing technological 
level dummies 

+ 

D_NM Covariate 
Non-manufacturing firms 
dummy 

+/- 
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Table A2. Maximum Likelihood estimates for parameters of the stochastic frontier with 
inefficiency effects model  

Coefficient Auction 2 Auction 3 Auction 4 

Stochastic Frontier       

  ଴ߚ
 

1.994*** 2.528*** 2.467*** 

 ***௅  0.573*** 0.169*** 0.359ߚ

 ***௄  0.110*** 0.387*** 0.174ߚ

 ***௅௅  0.041*** 0.050*** 0.049ߚ

 ***௄௄  0.033*** 0.023*** 0.013ߚ

 ***௅௄   -0.054***  -0.048***  -0.031ߚ

 ***௧   -0.129***  -0.0936***  -0.048ߚ

 ***௧మ  0.010*** 0.006*** 0.004ߚ

 ௅௧  0.014*** 0.009*** 0.001ߚ

 ௄௧   -0.009**  -0.005*** -0.003ߚ

D_regio2  -0.193***  -0.145*** -0.052 

D_regio3  -0.162***  -0.076***  -0.117*** 

D_regio4  -0.082***  -0.060*** 0.029 

D_regio5 0.037 0.022  - 

D_regio6  - -0.028 0.117*** 

D_regio7  - 0.058**  - 

D_regio8  - 0.086*** 0.016 

D_regio9 -0.04 0.036 0.013 

D_regio10  0.144*** 0.235*** -0.013 

D_regio11  - 0.082***  - 

D_regio12  -0.158***  -0.096***  -0.133*** 

D_regio13  -0.140***  -0.257***  -0.182*** 

D_regio14  -  -0.049** -0.025 

D_regio15  - 0.087*** 0.120*** 

D_regio16 -0.036 0.043* -0.011 

D_regio17  - 0.013  - 

D_MLT -0.020 0.033** 0.125*** 

D_MHT_and_HT 0.079*** 0.049*** -0.004 

D_NM  0.054*** 0.070*** 0.038 

D_small  0.085*** -0.007 0.019 

D_medium_and_large -0.018 0.018 0.032 

Inefficiency Model       

0  
 

 -8.931***  -5.563***  -4.564*** 

D_year2  -3.474*  -1.109***  -0.854*** 

D_ year3  -1.495*  -2.130***  -2.281*** 

D_ year4  -3.248*  -3.399***  -3.819*** 

D_ year5  -1.253**  -3.752***  -3.113*** 

D_ year6 -0.399  -2.777***  -5.188*** 

D_ year7 2.344**  -1.540***  -2.083*** 

D_ year8  -  -0.148**  -2.785*** 

D_ year9  -  - 0.089 

Variance Parameters       
2
S  2.576*** 1.382*** 1.498*** 



7 
 

   0.946*** 0.929*** 0.939*** 

Loglikelihood Function       

LL -2327.870 -3336.724 -1397.143 

LR test of the one sided error 420.564 449.620 388.747 

Number of restrictions 8 9 10 

Number of iterations 100 62 54 

Number of cross-sections 527 1024 366 

Number of time periods 7 8 9 

Total number of observations 3689 8192 3294 

Note: Significant at *10%, **5%, and ***1%. The reference category for size 

is D_micro (firms with less than 10 employees), while the reference 

category for technology is D_LT (low-tech manufacturing firms). 
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Table A3. Hypotheses testing for the functional form of the stochastic production 
function  
  Auction 2 Auction 3 Auction 4 

H0 

λ 

Decision 
whit 

respect to 
H0 λ 

Decision 
whit 

respect 
to H0 λ 

Decision whit 
respect to H0 

௝௞ߚ ൌ 0		∀݆, ݇  
 

128.456*** Rejected 390.68*** Rejected 133.36*** Rejected 

௧ߚ ൌ ௧మߚ ൌ ௞௧ߚ ൌ 0		∀݇  46.080*** Rejected 39.69*** Rejected 18.20*** Rejected 

௧ߚ ൌ ௧మߚ ൌ 0  20.522*** Rejected 5.91** Rejected 2.64 Not Rejected 

௞௧ߚ ൌ 0		∀݇  12.851*** Rejected  21.40*** Rejected  1.70 Not Rejected  

ߛ ൌ ଴ߜ ൌ ଵߜ ൌ ଶߜ ൌ 0  415.629*** Rejected 449.62*** Rejected 388.747*** Rejected 

Note: Significant at *10%, **5%, and ***1%. 
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Appendix B. Policy effects in the Center-North regions 
 

Table B1. Multiple RDD estimates of the pre-treatment differences in TFP components 
and other covariates between subsidized and non-subsidized firms (CENTER-NORTH) 

 CENTER-NORTH REGIONS 

Dependent variable 
Low tech 

Medium-low 
tech 

Medium-high 
and high tech 

Non-
manufacturing 

Whole sample 

(1) (2) (3) (4) (5) 
Technological Change -0.00394 -0.00565 0.00660 0.00423 -0.00059 

(0.01303) (0.00889) (0.01549) (0.03533) (0.00737) 

Scale Component 0.00303 -0.01016 0.01684 -0.02820 -0.00048 
(0.00709) (0.00433) (0.01782) (0.03861) (0.00627) 

Allocative Efficiency 0.03990 -0.10558 0.13599 -0.30894 -0.01613 
(0.07715) (0.09138) (0.08997) (0.20669) (0.05047) 

Technical Efficiency -0.01503 -0.00864 0.00638 -0.05216 -0.00893 
(0.01942) (0.01492) (0.01919) (0.02713)* (0.00972) 

Total Factor 
Productivity 

0.04231 -0.14109 0.18477 -0.26439 0.00358 
(0.06633) (0.09630) (0.10657)* (0.14449)* (0.04745) 

      

Tangible Capital 505.22 -578.47 -4794.22 -1561.93 -1255.93 
(2326.67) (1272.41) (5237.28) (1961.78) (1645.52) 

Value Added -3952.10 -289.84 -8021.70 -2120.12 -3722.82 
(4596.86) (439.29) (7330.42) (988.45)** (2532.68) 

Labor Cost per 
Employee 

-3209.93 -2231.42 -2918.15 622.11 -2569.87 
(1755.34)* (1158.49)* (4073.33) (3291.76) (1329.67)* 

# Employees -97.33 2.64 -25.12 -16.67 -47.52 
(106.75) (10.87) (51.67) (20.84) (46.73) 

ROE -6.93 -14.58 9.75 7.33 -3.59 
(8.64) (12.29) (9.10) (16.78) (6.42) 

Net liabilities 963.83 176.71 -12985.57 -1825.00 -2351.60 
(1937.09) (442.34) (9456.18) (1147.75) (2065.25) 

Cash Flow -148.65 -103.29 -4494.63 -798.79 -1121.80 
 (884.50) (161.14) (3429.07) (326.24) (829.59) 
Note: See notes of Table 1. 
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Table B2. Non-parametric and parametric Multiple RDD estimates (CENTER-NORTH) 
 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 
Technological 
Change 

0.0006 0.0010 0.0023 0.0035 0.0054  -0.0013 -0.0024 -0.0026 -0.0025 -0.0017 
(0.0014) (0.0027) (0.0039) (0.0050) (0.0059)  (0.0014) (0.0026) (0.0036) (0.0045) (0.0052) 

Scale 
Component 

-0.0036 0.0053 -0.0049 -0.0042 -0.0300  -0.0104 0.0024 -0.0175 -0.0012 -0.0171 
(0.0089) (0.0075) (0.0073) (0.0083) (0.0186)  (0.0122) (0.0104) (0.0110) (0.0101) (0.0185) 

Allocative 
Efficiency 

-0.0016 0.0640 0.0644 0.0138 0.0180  0.0198 -0.0030 0.0473 -0.0003 0.0121 
(0.0561) (0.0633) (0.0652) (0.0651) (0.0615)  (0.0617) (0.0590) (0.0575) (0.0611) (0.0556) 

Technical 
Efficiency 

0.0120 0.0171 0.0319 0.0098 -0.0104  0.0195 0.0196 0.0282 0.0004 0.0142 
(0.0160) (0.0201) (0.0166)* (0.0403) (0.0423)  (0.0176) (0.0193) (0.0157)* (0.0373) (0.0402) 

Total Factor 
Productivity 

0.0179 0.0360 0.0449 0.0004 -0.0444  0.0373 0.0266 0.0638 0.0121 0.0198 
(0.0563) (0.0627) (0.0538) (0.0881) (0.0675)  (0.0617) (0.0631) (0.0555) (0.0784) (0.0685) 

Note: There are 800 observations (264 treated firms and 536 control firms); however, for non-parametric estimates the actual number of observations 

within the bandwidth ranges between 259 (142 T and 117 NT) and 341 (172 T and 169 NT) (it depends on the dependent variable and the year 

analyzed). Results are from local linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-

squared-error optimal bandwidth selector developed by Calonico, Cattaneo and Titiunik (2014b). Estimation is implemented in the Stata package 

rdrobust by Calonico, Cattaneo and Titiunik (2014a). Bias is estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. 

Parametric regressions include a third-order polynomial in the forcing variable. These functions are estimated on both sides of the threshold 

separately. Significant at *10%, **5%, and ***1%. The estimates by technological sector are available upon request from the Authors. 
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Appendix C. Robustness tests 
 
Table C1. Non-parametric and parametric Multiple RDD estimates (SOUTH) using an alternative weighting scheme 

 Weighting scheme: Inverse-variance weighting 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 
Technological 
Change 

0.0042 0.0064 0.0081 0.0164 0.0249  0.0023 0.0021 0.0036 0.0097 0.0172 
(0.0026) (0.0047) (0.0068) (0.0090)* (0.0102)**  (0.0019) (0.0033) (0.0049) (0.0063) (0.0076)** 

Scale 
Component 

0.0053 -0.0071 -0.0046 0.0047 0.0105  0.0116 0.0048 0.0038 0.0108 0.0122 
(0.0084) (0.0082) (0.0082) (0.0091) (0.0105)  (0.0078) (0.0085) (0.0069) (0.0075) (0.0086) 

Allocative 
Efficiency 

-0.0825 -0.1312 -0.0088 0.1389 0.0912  -0.1207 -0.1366 0.0289 0.1170 0.0511 
(0.0619) (0.0662)** (0.0657) (0.0646)** (0.0635)  (0.0525)** (0.0604)** (0.0513) (0.0498)** (0.0530) 

Technical 
Efficiency 

-0.0463 -0.0580 -0.0587 -0.0106 -0.0925  -0.0367 -0.0331 -0.0390 -0.0285 -0.0193 
(0.0283) (0.0435) (0.0373) (0.0412) (0.0442)**  (0.0326) (0.0323) (0.0290) (0.0372) (0.0387) 

Total Factor 
Productivity 

-0.1362 -0.1681 -0.0691 0.1394 0.0479  -0.1494 -0.1561 -0.0116 0.1118 0.0750 
(0.0800)* (0.0864)* (0.0987) (0.0732)* (0.0989)  (0.0689)** (0.0729)** (0.0659) (0.0635)* (0.0747) 

Note: See notes of Table 3. 
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Table C2. Non-parametric and parametric Multiple RDD estimates (SOUTH) using a time-variant specification of itu   

 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 
Technological 
Change 

0.0009 -0.0003 -0.0005 0.0029 0.0067  0.0005 -0.0008 -0.0010 0.0016 0.0048 
(0.0014) (0.0019) (0.0028) (0.0034) (0.0040)*  (0.0014) (0.0019) (0.0026) (0.0033) (0.0040) 

Scale 
Component 

0.0077 0.0083 0.0020 0.0116 0.0022  0.0172 0.0190 0.0114 0.0164 0.0107 
(0.0112) (0.0116) (0.0113) (0.0139) (0.0130)  (0.0113) (0.0124) (0.0113) (0.0123) (0.0129) 

Allocative 
Efficiency 

-0.0627 -0.1446 0.0345 0.1723 0.0768  -0.1299 -0.1576 0.0344 0.1236 0.0359 
(0.0692) (0.0725)** (0.0714) (0.0737)** (0.0743)  (0.0647)** (0.0722)** (0.0679) (0.0643)* (0.0669) 

Technical 
Efficiency 

-0.0003 -0.0006 -0.0008 -0.0009 -0.0009  -0.0002 -0.0002 -0.0003 -0.0003 -0.0002 
(0.0004) (0.0008) (0.0012) (0.0015) (0.0019)  (0.0005) (0.0009) (0.0013) (0.0016) (0.0019) 

Total Factor 
Productivity 

-0.0531 -0.1478 0.0140 0.1816 0.0833  -0.1032 -0.1474 0.0396 0.1379 0.0561 
(0.0646) (0.0703)** (0.0661) (0.0687)*** (0.0691)  (0.0623)* (0.0693)** (0.0644) (0.0607)** (0.0635) 

Note: There are 1074 observations (377 treated firms and 697 control firms); however, for non-parametric estimates, the actual number of 

observations within the bandwidth ranges between 463 (228 T and 235 NT) and 541 (255 T and 286 NT) (it depends on the dependent variable and 

the year analyzed). Results are from local linear regression with triangular kernel using the robust confidence intervals and CCT implementation 

of mean-squared-error optimal bandwidth selector developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata 

package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is estimated with a quadratic polynomial. 95% robust confidence intervals are in 

brackets. Parametric regressions include a third-order polynomial in the forcing variable. These functions are estimated on both sides of the 

threshold separately. Significant at *10%, **5%, and ***1%. 
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Appendix 

 
Appendix A. Production frontier estimates and specification tests 

 
Figure A1. Technical efficiency distributions 
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Appendix C. Robustness tests 
 
Figure C1. McCrary test for the analyzed rankings 

 

Note: This test is based on an estimator for the discontinuity at the cut-off in the density function of the forcing variable. 

The test is implemented as a Wald test of the null hypothesis that the discontinuity is zero. 


