-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by WestminsterResearch

UNIVERSITY OF
FORVVARD
THINKING
WESTMINSTERF

WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

PaaSword: A Holistic Data Privacy and Security by Design
Framework for Cloud Services

Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G., Hibsch, G.
and Paraskakis, I.

This is the published version of Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G.,
Hibsch, G. and Paraskakis, I. (2017) PaaSword: A Holistic Data Privacy and Security by
Design Framework for Cloud Services, Journal of Grid Computing, doi: 10.1007/s10723-
017-9394-2

It is available online from the publisher at:
10.1007/s10723-017-9394-2

© The Author(s) 2016. This article is published with open access at Springerlink.com

The WestminsterResearch online digital archive at the University of Westminster aims to make the
research output of the University available to a wider audience. Copyright and Moral Rights remain
with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely
distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

https://core.ac.uk/display/161106304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

J Grid Computing
DOI 10.1007/s10723-017-9394-2

@ CrossMark

PaaSword: A Holistic Data Privacy and Security by Design

Framework for Cloud Services

Yiannis Verginadis - Antonis Michalas -
Panagiotis Gouvas - Gunther Schiefer -
Gerald Hiibsch - Iraklis Paraskakis

Received: 27 October 2015 / Accepted: 22 February 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Enterprises increasingly recognize the
compelling economic and operational benefits from
virtualizing and pooling IT resources in the cloud.

The research leading to these results has received fund-
ing from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644814,
the PaaSword project (www.paasword.eu) within the ICT
Programme ICT-07-2014: Advanced Cloud Infrastructures
and Services.

Y. Verginadis (b))

Institute of Communications and Computer Systems,
National Technical University of Athens, Athens, Greece
e-mail: jverg@mail.ntua.gr

A. Michalas
Cyber Security Group, University of Westminster, London, UK
e-mail: a.michalas @westminster.ac.uk

P. Gouvas
Ubitech Ltd., Athens, Greece
e-mail: pgouvas @ubitech.eu

G. Schiefer
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: gunther.schiefer @kit.edu

G. Hiibsch
CAS Software AG, Karlsruhe, Germany
e-mail: gerald.huebsch@cas.de

1. Paraskakis

South East European Research Centre (SEERC),
The University of Sheffield, International Faculty,
CITY College, Thessaloniki, Greece

e-mail: iparaskakis @seerc.org

Published online: 22 March 2017

Nevertheless, the significant and valuable transfor-
mation of organizations that adopt cloud computing
is accompanied by a number of security threats that
should be considered. In this paper, we outline signif-
icant security challenges presented when migrating to
a cloud environment and propose PaaSword — a novel
holistic framework that aspires to alleviate these chal-
lenges. Specifically, the proposed framework involves
a context-aware security model, the necessary poli-
cies enforcement mechanism along with a physical
distribution, encryption and query middleware.

Keywords Data privacy - Security by design -
Context-aware access control - Symmetric searchable
encryption - Cloud computing

1 Introduction

Until recently, large-scale computing was available
exclusively to large organizations with an abundance
of in-house expertise. Cloud computing has changed
that to the point where any user with even basic
technical skills can obtain access to vast computing
resources at low cost. In the technology adoption life-
cycle, cloud computing has now moved from an early
adopters stage to an early majority, where we typ-
ically see exponential number of deployments [37].
Throughout the past few years, many users have
started relying on cloud services without realizing it.
Major web mail providers utilize cloud technology;

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-017-9394-2&domain=pdf
www.paasword.eu
mailto:jverg@mail.ntua.gr
mailto:a.michalas@westminster.ac.uk
mailto:pgouvas@ubitech.eu
mailto:gunther.schiefer@kit.edu
mailto:gerald.huebsch@cas.de
mailto:iparaskakis@seerc.org

Y. Verginadis et al.

tablets and smartphones often default to automati-
cally uploading user photos to cloud storage and social
networks; finally, several prominent CRM vendors
offer their services using the cloud. In other words,
the adoption of cloud computing has moved from
focused interest to widely spread intensive experimen-
tation and is now rapidly approaching a phase of near
ubiquitous use.

Enterprises increasingly recognize the compelling
economic and operational benefits of cloud com-
puting [31]. Virtualizing and pooling IT resources
in the cloud enables organisations to realize sig-
nificant cost savings and accelerates deployment of
new applications, simultaneously transforming busi-
ness and government at an unprecedented pace (CSA,
2013). However, those valuable business benefits can-
not be unlocked without addressing new data security
challenges posed by cloud computing.

Despite the benefits of cloud computing, many
companies have remained cautious due to security
concerns. Applications and storage volumes often
reside next to potentially hostile virtual environments,
leaving sensitive information at risk to theft, unau-
thorized exposure or malicious manipulation. Govern-
mental regulation regarding data privacy and location
presents an additional concern of significant legal
and financial consequences if data confidentiality is
breached, or if cloud providers move regulated data
across national borders [33].

1.1 Our Contribution

The contribution of this paper is two-fold. First, we
present a list of core security requirements and chal-
lenges that must be considered when migrating to
a cloud environment. These security requirements
were derived based on our experience with migrating
existing applications to a private Infrastructure-as-a-
Service (IaaS) cloud [30]. We extend this guide by
discussing important attack vector characteristics for
cloud environments that will pave the way for pro-
viding tighter security when building cloud services.
Second, in order to tackle the critical cloud secu-
rity challenges we present PaaSword, an envisaged
framework that will maximize and fortify the trust of
individual, professional and corporate users to cloud
services and applications. PaaSword achieves that
by providing storage protection mechanisms, which
improves confidentiality and integrity protection of

@ Springer

users’ data in the cloud while it does not affect the data
access functionality.

1.2 Organization

The rest of this paper is organized as follows. In
Section 2, we further elaborate on the main data secu-
rity challenges in cloud-enabled services and appli-
cations. In Section 3, we introduce a holistic, data
privacy and security by design, framework enhanced
by sophisticated context-aware access models and
robust policy enforcement and governance mecha-
nisms, aimed at facilitating the implementation of
secure and transparent cloud-based applications. In
Section 4, we briefly discuss relevant work while in
Section 5, we conclude the paper by presenting the
next steps for the implementation and evaluation of the
proposed framework.

2 Data Security Challenges in the Cloud

According to the Cloud Security Alliance [1], sev-
eral top security identified threats refer to information
disclosure and repudiation, rendering data security as
realized through data protection, privacy, confiden-
tiality, and integrity as top priorities. More precisely,
the top four threats identified are: data leakage, data
loss, account hijacking and insecure APIs. The exter-
nalized aspect of outsourcing can make it harder to
maintain data integrity and privacy [19] and organiza-
tions should include mechanisms to mitigate security
risks introduced by virtualization. Especially when
they deal with sensitive data, such as health records,
the protection of stored information comes as a top
priority. Therefore, data security can be seen as the
foundation upon which the entire transition to a cloud
architecture should be based. Multiple risks must be
addressed in order for an organization to guarantee
the safety of users’ records. One of the most impor-
tant aspects is security of sensitive information. To this
end, the deployment must ensure that all sensitive data
is stored in encrypted form. Complementary to this,
proper key management must ensure that encryption
keys are not revealed to malicious users.

Based on this, it becomes evident that the most crit-
ical part of a modern cloud application is the data per-
sistency layer and the database itself. As all sensitive
information (including user credentials, credit card

PaaSword: Security by Design Framework for the Cloud

info, personal data, corporate data, etc.) are stored in
these architectural parts, the database-takeover is the
ultimate goal for every adversary.

The Open Web Application Security Project! foun-
dation has categorized the database-related attacks
(SQL injection) as the most critical ones. The impor-
tance of this attack vector is also reflected by respec-
tive incident reports. According to the Web Hack-
ing Incidents Database,” SQL injections represents
17% of all security breaches examined. These injec-
tions were responsible for 83% of the total records
stolen, in successful hacking-related data breaches
from 2005 to 2011. The criticality of the persis-
tency layer is therefore evident. Most of the security
fences that are configured in a corporate environ-
ment target the fortification of the so-called network
perimeter (e.g. routers, hosts and virtual machines).
Although existing intrusion detection systems (IDS)
and intrusion prevention systems (IPS), try to cope
with database-takeover security aspects (like Snort),
the fact that, on the one side, automated exploita-
tion tools (e.g. SQLMap) are widely spread, and, on
the other side, IPS and IDS evasion techniques have
become extremely sophisticated, denote that the risk
of database compromise is greatest than ever. More-
over, by using mechanisms that rely on Web Appli-
cation Firewalls (WAF) an organization can prevent
various types of attacks but it is inadequate to pro-
tect against today’s sophisticated SQL Injection and
DoS attacks [29]. Additionally, internal adversaries in
terms of cloud vendors or even unknown vulnerabil-
ities of software platforms and security components
widely adopted in cloud-based development may pro-
vide malicious access to personal and sensitive data.
A recent example was the Heartbleed flaw® that con-
stituted a serious fault in the OpenSSL cryptography
library, which remained unnoticed for more than two
years and affected over 60% of Web servers world-
wide. Additionally, regarding the post-exploitation
phase, things are even worse in the case where a
symmetric encryption algorithm has been employed
to protect the application data. The already available
cracking toolkits that utilize GPU processing power

Thttps://www.owasp.org/

http://projects.webappsec.org/w/page/ 13246995/
Web-Hacking-Incident-Database

3http://www.infosecurity-magazine.com/news/heartbleed- 101/

(e.g. oclHashcat) are able to crack ciphers using brute-
force techniques with an attack rate of 162 billion
attempts per second.

While most of the attack vectors are exposed in
any Software-as-a-Service application by the sys-
tem administrator’s misconfigurations, the database
takeover and the post-exploitation of acquired data is
under the sole responsibility of the application devel-
oper. The application developer is the one responsible
both for sanitizing all HTTP-input parameters that
could be used as attack vectors, and for reassuring that
compromised data will be useless under the existing
brute-forcing and reversing techniques. Nevertheless,
even if the application developer follows strict guide-
lines, the mere utilization of an IaaS provider in
order to host a Virtual Machine, or for a Platform-
as-a-Service (PaaS) provider in order to develop a
cloud application, may by itself spawn a multitude
of inherent vulnerabilities. These vulnerabilities can-
not be tackled effectively as they typically exceed the
responsibilities of an application developer.

3 PaaSword Framework

In this section, we present PaaSword, a framework that
allows cloud services to maintain a fully distributed
and encrypted data persistence layer. The main aim
of PaaSword is to help cloud service providers to
foster data protection, integrity and confidentiality in
the presence of malicious adversaries. To this end,
we describe the need for a context-aware security
model which serves as the basis of a fine-grained
access control scheme, one which allows the per-user
management of access rights. In addition to that, we
describe a physical distribution, encryption and query
middleware that is based on a searchable encryption
(SE) scheme [11] which allows legitimate users to
directly search over encrypted data, thus ensuring the
confidentiality and integrity of the stored data.

3.1 Context-Aware Access Model
PaaSword builds upon a XACML-based* context-aware

access model, which is needed by the developers to
annotate the Data Access Objects of their applications.

40ASIS eXtensible Access Control Markup Language
(XACML). https://www.oasis-open.org/

@ Springer

https://www.owasp.org/
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://www.infosecurity-magazine.com/news/heartbleed-101/
https://www.oasis-open.org/

Y. Verginadis et al.

This context model conceptualizes the aspects, which
must be considered during the selection of a data-
access policy. These aspects may be any kind of
information which is machine-parsable [9]; indica-
tively they may include the user’s IP address and
location, the type of device that she is using in order to
interact with the application as well as her position in
the company. These aspects can be interpreted in dif-
ferent ways during the security policy enforcement. In
particular, the context aware access model determines
which data is accessible under which circumstances
by an already-authenticated user.

Access control models are responsible for deciding
if a user has the right to execute a certain operation on
a specific object. Objects can be a server, an applica-
tion, an entire database or even a single field in a table
row. The user is considered as the active element and
is called subject. A permission associates an object
with an operation (e.g. read, write etc.). Access control
models provide a list of permissions that each subject
has on certain objects.

Commonly used access control models are the
Mandatory Access Control (MAC), the Discretionary
Access Control (DAC) and the Role-Based Access
Control (RBAC) [12]. Related work discussion, in
Section 4, reveals that there are also different
approaches, known as Context- Aware Access Con-
trol models (CAAC) that are mainly RBAC-based
approaches and either do not cover all relevant contex-
tual elements with a reusable security related context
model, or are proven hard to maintain in dynamic
environments where users often switch roles [3, 41].
In our approach, the process of granting/denying
access will be based on dynamically changing param-
eters, thus our proposed model will rely on a more
recent paradigm called Attribute-Based Access Con-
trol (ABAC). The context parameters are unique for
every single user, so for granting access it is nec-
essary to consider all information associated with a
single user. Our approach goes a step further by con-
sidering “associated” attributes, thus making access
control decisions based on contextual information.
ABAC considers a number of attributes that may
drive an access decision, which is much needed in
the dynamic environment of cloud domain. Never-
theless, ABAC rules that may involve such attributes
and the acquired attribute values when evaluating an
access request must be exactly matched. For example,

@ Springer

deploying the following ABAC rule: ‘If the requestor
is located inside the Company A, then permit access
to Sensitive Data A’, implies that during run-time the
access control mechanism will be able to detect that
the requestor’s location is Company A. But, if this
location attribute value is ‘Room A’ (situated inside
the same building) after all, it will not lead to an
access permission. For this purpose, we introduce the
Context-Aware Access Model that is able to capture
semantic knowledge, thus coping with such issues
by inferring new knowledge when it is needed (e.g.
class/sub-class inferencing).

To implement the dynamic change of context
parameters in a static access control model, we will
use the, so-called, context switches. Depending on the
current context, a permission can be granted or denied
(switched). This could switch dynamically with every
change of the context. Context switches are responsi-
ble for managing operational permissions and object
permissions. An operational permission gives the right
to a subject to perform a specific operation while
an object permission gives the right to perform an
operation on a specific object.

3.2 Policies Access and Enforcement

Another important aspect of our proposed frame-
work is a middleware that encapsulates capabilities for
maintaining the access policies model, annotating and
managing data access object annotations, controlling
their validity, dynamically interpreting them into pol-
icy enforcement rules and for enforcing them. More
precisely this middleware provides the following:

a. A transparent key usage for efficient authentica-
tion purposes, related to authenticating the origin
of the incoming access requests;

b. Annotation capabilities in the form of a tool (can
also involve an IDE plug-in) for allowing devel-
opers to declaratively create the minimum amount
of rule-set that is needed for security enforcement
purposes;

c. The dynamic interpretation of the data access
object annotations into policy enforcement rules;

d. The governance and quality control of the annota-
tions and their respective policy rules;

e. The formulation and implementation of the over-
all policy enforcement business logic;

PaaSword: Security by Design Framework for the Cloud

In terms of this middleware, we also consider
the reuse and proper extension of technologies for
developing an appropriate key management mecha-
nism. This mechanism is necessary for the authen-
tication of different parties that will be involved in
the encryption and decryption of data. We aim at
constituting the key-usage, transparent to the applica-
tion usage. This involves the key propagation upon
authentication of the user, directly to the security
enforcement middleware. For efficiency, we employ
a hybrid encryption capitalizing upon the utilization
of two different encryption functions. The inner layer
will be encrypted with an algorithm that uses a sym-
metric encryption key K, while the outer layer will
use an asymmetric encryption in order to encrypt
the symmetric key K. Symmetric encryption allows
more efficient schemes compared to the asymmetric
encryption. However, combining both techniques help
to optimize the efficiency of the underlying proto-
cols without sacrificing security. To this end, PaaS-
word will rely on both symmetric and asymmetric
encryption in order to securely distribute K between
legitimate users.

Additionally, we also employ methods and mech-
anisms for governance and validity control of the
data object annotations. More specifically, we focus
on the application of an ontology-driven governance
approach for: (i) the basic management of data object
annotations (i.e. storage, retrieval, deletion, etc.), (ii)
validity checking of the data object annotations (e.g.
rejecting any contradicting annotations made by the
developer) and (iii) dependency tracking among data
objects annotations.

Another critical aspect of this middleware is the
annotations interpretation mechanism. PaaSword uses
such a mechanism for dynamically generating access
control policies, during application runtime, based on
the interpretation of data object annotations. By doing
this, we manage to implement the essential decou-
pling between the access decisions and the points
of use (i.e. Policy Enforcement Points (PEP) of the
XACML specification). This interpretation is based on
an XACML compliant context model and it can aug-
ment the offered functionality of any PaaS provider,
with a security-as-a-service layer. To do so, we will
use the OASIS XACML as it supports and encourages
the separation of the access decision from the point of
use.

3.3 Threat Model, Secure Storage & Query
Middleware

In this sub-section, we describe the threat model that
we consider as well as a brief description of the design
of the secure storage that is provided by PaaSword.
Furthermore, we also describe the query middleware
— a component that is responsible for processing
requests regarding the stored encrypted data.

Threat Model Similar to existing works in the area
[34, 37], we assume a semi-honest cloud provider.
In the semi-honest adversarial model, a malicious
cloud provider correctly follows the protocol specifi-
cation. However, she can intercept all messages and
may attempt to use them in order to learn informa-
tion that otherwise should remain private. Semi-honest
adversaries are also called honest-but-curious.

Furthermore, for the rest of the participants in the
protocol we share the threat model with [37], which
is based on the Dolev-Yao adversarial model [10] and
further assumes that privileged access rights can be
used by a remote adversary ADYV to leak confidential
information. The adversary, e.g. a corrupted system
administrator, can obtain remote access to any host
maintained by the provider. However, the adversary
cannot access the volatile memory of any guest vir-
tual machine (VM) residing on the compute hosts of
the provider. This property is based on the closed-box
execution environment for guest VMs, as outlined in
Terra [14] and further developed in [42].

Secure Storage A basic tenet of PaaSword is that sen-
sitive data stored on untrusted servers must be always
encrypted. This effectively reduces the privacy and
security risks since it relies on the semantic security
of the underlying cryptosystem, rendering the sys-
tem relatively immune to internal and external attacks.
Having this in mind, we propose a forward-looking
design for a cryptographic cloud storage that is based
on a symmetric searchable encryption (SSE) scheme
similar to the one proposed in [20] and the one used in
[27]. In addition to that, we plan to extend the previous
work Cumulus4j [18] and MimoSecco [13] in such a
way that will fit the needs of the aforementioned SSE
scheme. Cumulus4j and MimoSecco presented a SSE
scheme that was based on the IND-ICP security notion

@ Springer

Y. Verginadis et al.

[2] that hides relations between different data values
of a data row and creates the base for secure database
outsourcing.

An SSE scheme allows a user to search over
encrypted data without learning any information about
the plaintext data. Let DB = {my,...,m,} be a
set of n messages (w.l.o.g DB can be considered
as a database). For each m; € DB we extract a
set of keywords which can later be used for exe-
cuting queries. This set of keywords is denoted as
W = {wi,...,w,}. For each w; € W we calcu-
late H(w;), where H(-) is a cryptographically secure
hash function under a secret key K'. Then, we encrypt
the elements of DB with a secret key K’ # K'. By
doing this, we create a searchable encrypted index [
where each index entry, points to an encrypted list of
rows that have a certain keyword. The client can use
a trapdoor function to search the index and determine
whether a specific keyword is contained in the index.

While the above-mentioned scheme is imple-
mented in previous works [13, 18] it has a limitation
that we cover in our proposed framework. More pre-
cisely, the current scheme follows a single write/single
read (S/S) architecture, which makes it unrealistic for
our cloud scenario. To overcome this limitation, PaaS-
word is using a proxy re-encrpytion component that
supports multi write/multi read (M/M) meaning that a
group of users based on access rights can both read
and write on the encrypted data. To this end, PaaSword
involves a key distribution algorithm that extends S/S
architecture to M/M. Additionally, a user revocation
function is supported by the framework in order to
exclude a user, which either acts maliciously or has
no longer access rights. This is a crucial and challeng-
ing procedure, if we consider that many of the existing
SSE schemes [2] do not support user revocation and
thus are susceptible to many attacks (Fig. 1).

Fig. 1 High level view of
XACML components

Query Middleware In order to successfully support
the SSE scheme described above, PaaSword is using
a persistency layer, called Virtual Database (VB)
(Fig. 2). VB acts as the intermediary that secures
client data before it gets uploaded to the cloud. Addi-
tionally, this layer is responsible for processing user
queries. In our framework, the VB plays the role of a
“trusted third party”. Consider, for example, the sce-
nario where a user wants to search for a certain data in
PaaSword secured databases. To do so, she will gen-
erate a query (g) containing a set of keywords that she
is interested in and will send the request to the VB.
Upon reception, the VB extracts the keywords from g
calculates their hash values and queries the databases
where the keywords w; are stored. If the queries are
successful and the keywords exist in one of the tables,
VB will obtain the row from the main table that con-
tains the encrypted original data. Upon reception, VB
will reply to the user’s request by sending the acquired
data.

3.4 Overview of the PaaSword Architecture
3.4.1 Conceptual Architecture

The PaaSword compliant cloud applications inherits
a fully physical distributed and totally encrypted data
persistence layer, which is able to determine on an
ad-hoc basis whether an incoming data querying and
processing request should be granted access to the
target data during application runtime. The transfor-
mation process of a traditional application utilizing
the PaaSword framework and the way the transformed
application secures and protects the users’ sensitive
data is presented in Fig. 2, which at the same time
reveals high level architectural details of the frame-
work.

1. Accessl Request

PEP
Policy Enforcement Point

M» Obligation Service

2. ReqLest

PDP
Policy Decision Point

7. Response

4. Attribute Query

iEa UL L LR L1 SEN

PIP
Policy Information Point

6. Attribute

5a. Subject Attributes 5c. Environment Attributes
Sb. Resource

Attributes

PAP
Policy Access Point

’ Subject |

’ Resource | ’Environment

@ Springer

PaaSword: Security by Design Framework for the Cloud

ﬂ

software engineer / a

Cloud services/
pplications end-user

e o o : o
application developer |) data querying and e} J&?{? X.509 Cemﬁc’atlon in
A processing requests 2-way SSL| = 7|, Hardware Security Module
p
Third-party Integrated Development Environment (IDE) define data

(e.g. Eclipse, NetBeans)

append Paa>wort

access policies’ encryption keys

| PaaSword IDE Plugin ¥

7 Policy Enforcement Mechanisms +

Y

| [Data Access Obj.ects] (Gov.e|:nance and] | PaaSword (Access Policies Management Mechanism Key Management
| (DAO) Annotation Validity Control | Secure * =T Mechanism
- Application < (PaaSword
| (_ Context-aware Policy Access Model (XACML) | Controller | |DAO Annotations | query Rolces encryption keys are
Enforcement i
N e — (enhanced) Interpreter - Togle exported & verified)
7
1 ﬁ. porting 4 %4 DAO 6. incoming reques b,
existing or PaaSword K] annotations access check keys
creating new i /! capionre 7 e = B
MVC-bgased 2. creating& enhancement with ./ 5-application’s[physical Distribution, Encryption ";‘t’i‘;
application V validating DAO DAO annotations 4’ b“':j:srrg" and Query Middleware Mechanisms \
in IDI PaaSword Controller >

Controller

annotations (enhanced)

Query Handling, Synthesis and Aposynthesis Mechanisms

" 11. authorized

3. conm;zr decrypted data A physical 7. submitting 10. retrieving
o transformation ,*’ distribution of queries to distributed,
............ (encrypted data V/ database proxy encrypted data
View Model View | Model (B!
[H J [%&\ J Virtual Database — Database Proxy
Model-View-Controller Paasword Secure Application g § | (.SQL & no-SQL databases augmentation middleware)
(MVC) Pattern based § g |'MPOSINE g_gistributed 9. encrypted data
Applications SECEIRIoXy) que federation
2 g schema
database ~PN | ccccccccccccaa |8
binding 4.sQL / NosQL QFo
database (schema & g g
Typical MVC data) transformation Z 2
Application (physical diSt"iF’UﬁO" & Physical Distributed Physical Distributed
Database and encryption) \ J and Encrypted Part and Encrypted Part

Fig. 2 PaaSword framework conceptual architecture

In this framework, we consider applications that
adopt and respect the Model-View-Controller (MVC)
development pattern [24]. As seen in Fig. 2 (step 1) the
application developer imports an existing or creates a
new MVC-based application in her favorite integrated
development environment (IDE) for which an IDE-
specific plug-in will be provided. During the second
step of this process the application developer creates
annotations at the DAO of the Controller referring to
sensitive data that should be protected, according to
the XACML-based model and defines the physical
distribution, encryption and access rights scheme for
each data object. In the third step, the DAO annota-
tions will be checked for their validity and compiled
with the overall application code. This will allow the
transformation of the application’s controller that has
been enhanced with XACML-based DAO annotations,
leading to the implementation of a PaaSword secure
application. In the fourth step, the persistence layer
of the application will be physically distributed and

(query handling for SQL and no-SQL databases)

)

encrypted at the schema and instance level accord-
ing to the incorporated DAO annotations, imposing
the schema and driving query handling capabilities
of the VB that augments the actual data persistence
layer of the application. At application runtime (step
5), each query and processing request of the end-
user is forwarded by the enhanced controller to the
query handling mechanism that is responsible for the
database proxy queries synthesis and aposynthesis.
In step 6 and before the submission of the enhanced
query to the VB, the query handling mechanism con-
sults the policy enforcement mechanism to determine
whether the incoming request should be granted or
not. Upon policies enforcement and access permis-
sion, the query handling mechanism submits (step 7)
the enhanced query to the augmented persistence layer
(virtual database). The database proxy that is aware of
the physical distribution scheme of the actual appli-
cation database realizes the distributed query to the
physically distributed and encrypted parts of the actual

@ Springer

Y. Verginadis et al.

application database (step 8). Next, the federation of
the respective encrypted data from the distributed parts
of the database takes place (step 9). The federated
data synthesis and ad-hoc decryption utilizing the key
of the end-user that is transparent to the application
and is propagated to the query handling mechanism
(step 10). Last, the query handling mechanism deliv-
ers the decrypted data to the application controller
that forwards them to the end-user through the “view”
component of the application.

According to the conceptual view (Fig. 2), each
end-user is equipped with a Hardware Security Mod-
ule, such as USB stick or a smart-phone with digital
rights management module, which contains a dig-
ital certificate (e.g. X.509). Part of the certificate
includes keys that can be exported by the PaaS/laaS
provider. These keys upon exportation and verification
are transparently handed over to the query middleware
which is responsible for interacting with the VB to
encrypt and decrypt the corresponding data.

3.4.2 Conceptual Walkthrough of the Framework

A brief analysis of the basic background concepts
that relate to the envisaged security and privacy-by-
design framework are discussed in this section. This
analysis is a conceptual walkthrough of the frame-
work’s usage and complements the bird’s eye view of
the PaaSword’s conceptual architecture described in
the previous section. The walkthrough is depicted on
Fig. 3.

In order to better describe the conceptual walk-
through of the PaaSword framework, we first identify
the main stakeholders:

— PaaSword Administrator is authorized to man-
age the centralized architectural artifacts (e.g. the
Context Model);

— PaaSword Developer has the option to extend the
PaaSword libraries;

— Product Manager is able to provide tangible
technical requirements to its development team
regarding security and privacy issues;

— Cloud Application Developer uses the PaaSword
libraries during the development process in order
to enforce specific type of encryption policies or
access policies directly in her code according to
the requirements given by the product manager;

@ Springer

PaaSword
Semantic Models

interpreted in interpreted in
4
Context TypeSafe
Evaluation Development
Libraries L Libraries
used by Developers
. to create Cloud
deployediin Applications
A
N\
PaaSword
Application
J
deployed in
f—"—\
& PaaSword
enabled Container
. J/
4
uses
A
(Outsourced)
Database in a
_ non-trusted laaS)

Fig. 3 Conceptual walkthrough of the PaaSword framework

— DevOp is responsible for performing the deploy-
ment and the management of a PaaSword-enabled
application in a PaaSword-enabled container;

— Cloud Application Owner is monetizing the PaaS-
word enabled application;

— Paa$ Provider operates the execution container of
the PaaSword-enabled application;

— laa$S Provider is used in order to host the opera-
tional environment of a database;

— Cloud Application User interacts with a
PaaSword-enabled application;

As depicted in Fig. 3, the root element refers to the
PaaSword Semantic Models. The PaaSword Semantic
Models refer to a set of ontological models that aim to
conceptualize two artifacts:

a. Transparent encryption/decryption policies that
can be used during run-time by an application in
order to protect specific columns in a database.
These policies refer to the various database-
security mechanisms. They are configured once
during the development process by the Product

PaaSword: Security by Design Framework for the Cloud

Manager and the Cloud Application Developer of
a PaaSword-enabled application;

b. Context-driven security policies that can be
applied in the web-endpoints of a PaaSword-
enabled application. These policies can be man-
aged even during the run-time in order to permit or
refuse access to a user for specific web-endpoints;

Both these modes become usable when they
are transformed to Typesafe Development Libraries.
Based on their usage, there are two types of libraries:

a. Development-oriented libraries that are used
by cloud application developers of PaaSword-
enabled applications;

b. Run-time libraries that perform mainly two tasks;
context evaluation of a user’s request and trans-
parent encryption/decryption;

At this point it should be clarified that the PaaS-
word architecture is not bound to a specific pro-
gramming language or framework. However, the
envisioned architecture raises some implementation
requirements such as:

— The ability of a programming language to sup-
port annotations (or any other metadata frame-
work) which is an essential prerequisite of the
PaaSword architecture since transparent encryp-
tion/decryption policies and web-endpoints that
are controlled by PaaSword policies are defined
using annotations;

— The ability of an execution container to support
dynamic class-loading which is also an essential
prerequisite of the PaaSword architecture since
various context evaluation libraries can be dynam-
ically provided to an execution container;

There are many programming languages that sup-
port these features; yet the entire set of the use cases
that will be supported are JAVA oriented. Therefore,
the reference implementation will be JAVA oriented.
As a result, from now on the term programming lan-
guage annotation will refer to a JSR-175° JAVA anno-
tation, the term library will refer to a JAVA library and
the term execution container will refer to a Java EE
execution container. After this clarification, it should
be noted that the aforementioned run-time libraries are

Shttps://jcp.org/en/jsr/detail2id=175

deployed in a normal execution container in order to
be used during run-time. On the other hand, the Type-
safe development libraries are used by developers. An
example of the typesafe library usage is provided in
the following code-listing (Algorithm 1).

Algorithm 1 Indicative usage of the Typesafe devel-
opment libraries

@Entity
public class User {
@1d
@Generated Value
private Long id ;
@Column(nullable=false)
(@PaaSwordProtected (Algorithm=Symmetric
.AES _CBC_NoPadding,
TDEPolicy=Policy. Monolithic)
private String creditcard ;

According to the example listed in Algorithm 1,
a developer annotated one column of its database (a
relational database has been used in this case) using
one JAVA annotation named PaaSwordProtected. This
annotation can be used and validated only if a specific
library that contains the metadata definition exists in
the development environment. This annotation shall
be interpreted by the execution container in order to
treat the annotated column in a specific way. More
precisely, the developer expects that all entries in
the specific column will be symmetrically encrypted
using a specified algorithm and a specific transparent
encryption policy.

However, the expected behavior of the developer
is realized by respective run-time libraries that imple-
ment the actual container-logic. Therefore, for each
annotation there will be specific handlers that imple-
ment the actual logic. The common denominator
between the annotations and the run-time handlers is
the PaaSword context model. Beyond exposing the
functional capabilities of PaaSword to the developers,
development libraries serve the purpose of type vali-
dation, i.e. they guarantee that a specific annotation is
used in a proper element (e.g. @Column in our case),
the annotation is configured correctly (e.g. Algorithm
and TDE Policy are provided in our case) and finally
proper arguments are provided per parameter (e.g.
AES_CBC_NoPadding in our case).

@ Springer

https://jcp.org/en/jsr/detail?id=175

Y. Verginadis et al.

On the other hand, the PaaSword enabled Container
is responsible to load and orchestrate correctly the
libraries that interpret the annotations that are used by
the developers. This interpretation may refer to per-
forming transparent data encryption/decryption in an
outsourced database (see Fig. 3), and/or to performing
context-based policy enforcement.

3.4.3 PaaSword’s High Level Components

In this section, we provide a coarse grained view of
the core architectural components that comprise the
PaaSword reference architecture, which relies on the
concepts that have been discussed above.

A security and privacy-by-design framework
involves many stakeholders as described above. Each
of these stakeholders relies on different components
that complement each other in order to implement
the conceptual walkthrough present on Fig. 3. The
following figure (Fig. 4), presents a coarse grained
view of the PaaSword components. As depicted, these

components are grouped in various zones according
to the role that they possess regarding the PaaSword
conceptual workflow.

Starting from the zone of the PaaSword Central
Administration (PCA), it consists of the following
components:

— Semantic Model Management (SMM): 1t is the
component that manages the PaaSword Context
Model. This model, is a multi-faceted and multi-
purpose model. On the one hand, the model aims
to define the functional aspects of the PaaSword
framework that can be directly used by the devel-
opers and on the other hand it conceptualizes
parametric contextual information (e.g. Location,
Time of Interaction etc.) of a request that can be
used in order to perform policy enforcement. The
SMM offers an interface for the creation and edit-
ing of the model as well as a structural and busi-
ness validation of the model entities. Moreover,
some facets of the model are created centrally and

~ ~ e o
Oebps AooBcaueh enguser PaxSward T‘n\uuc« Product Marager
(> 1 1
Q Y . 4
v : s PUA \ [SMM
= SPM J i PHRI g PaaSword User Security Model
- Security Polcies PaaSword HTTP — |2 Administration Management
g, Request Interceptor ‘ E
i -
&l | POM \ SPEE g RLM \ [oM
v
S > PaaSword Deployment Security Policies b Run-Time Library Design-Time Library
g Management Evaluation & Enforcement g Management Management
&
2 .
b
3 | TEOM KMM
3 Transparert Encryption Key Management [« i
& Decryption Mechanism Mechanism 4 A
= . h 4 ~
S ™G §
- P
— x c Trusted Key = CI. 7\
e Generator g Customized a4
é N Typesafe o
- ‘é Vdg&ﬁoﬂ d
Libraries Agphcanon
v g REP § o-m:‘«
T _ﬁ . » Re-Encryption T
§ g oy & 06
= Database | [Database] Database °
£ v < g Trusted
De ment
: | g iow Bl |
5 ¥ 1dentity g
; g Management
3 = =

Fig. 4 PaaSword Framework’s components

@ Springer

PaaSword: Security by Design Framework for the Cloud

maintained while some other parts are adapted to
the customer’s need. That is the reason why on
Fig. 4 the Product Manager interacts directly with
the SMM.

Design-Time Library Management (DLM): 1t is
the component that generates a metadata anno-
tation library which is bound to the PaaSword
Context Model. As discussed earlier, this library
is used by developers to annotate specific part of
their code based on the security-related function-
ality that they require. In the frame of the project
these libraries rely on JSR-175 standard since
the annotations will be used on JAVA projects.
Although the Context Model contains both cen-
trally managed concepts (e.g. supported encryp-
tion/decryption algorithms) and product-specific
concepts (e.g. available roles of a product) the
library that is generated by the DLM is a uni-
fied one that covers both categories of concepts.
Finally, it should be highlighted that the scope of
the DLM generated library is to make the pro-
cedure of PaaSword adoption error-free since the
library usage guarantees that a specific annotation
is used in a proper element and it is configured
and initialized correctly (see Algorithm 1).
Run-Time Library Management (RLM): 1t is the
component that manages the run-time libraries
that are bound to the PaaSword context model.
These libraries are used during the run-time, upon
their deployment in an execution container in
order to provide the functionality that is driven
by the source code annotations. It should be
clarified that while the DLM provides an auto-
matic interpretation of the PaaSword Context
Model to a development library, the run-time
libraries are manually registered and tested by
PaaSword-certified engineers through an appro-
priate editor. These libraries provide the guaran-
tees that the PaaSword-specific annotations that
accompany the code are properly handled by a
PaaSword container. They also contain a strict
exception handling and test-assertion layer since
these libraries can be deployed, upgraded or un-
deployed dynamically from an execution con-
tainer.

PaaSword User Administration (PUA): It is the
component that manages the registration and
the lifecycle of the PaaSword users. According
to the PaaSword framework’s walkthrough each

Independent Software Vendor (ISV) that wishes
to adopt PaaSword should register in order to be
able to (a) manage the user-defined aspects of the
PaaSword Context Model and (b) gain access to
the development libraries that are automatically
generated.

Following the conceptual walkthrough that was
introduced in Fig. 3, the next zone is the Applica-
tion Development Zone (ADZ). Each ISV that wishes
to adopt the PaaSword framework should register
to PCA in order to gain access to the PaaSword
exported libraries. PaaSword libraries can be used by
the developers of ISVs to create PaaSword enabled
applications. The following components belong to this
zone:

— Customized Typesafe Validation Libraries
(CTVL): During the developer’s guidance for
defining effective, meaningful and mutually-
consistent security controls through annotations,
their compliance against a set of security-related
business rules should be checked. These rules,
hereafter referred to as the annotation-formation
(AF) rules, are essentially policies which specify
the allowable ingredients of these web-endpoint
annotations and hence facilitate their creation.
The CTVL essentially implements these AF rules.

— Trusted Deployment Generator (TDG): 1t is the
component that configures a PaaSword enabled
application in order to be deployed to an exe-
cution container. We refer to the final ready-to-
be deployed application as deployment archive.
The deployment archive entails a specific format
which will be validated during the deployment
process (a.k.a. bootstrapping). TDG component is
used to: (a) inject the deployment archive with the
proper digital certificates that may be needed (it
depends on the encryption/decryption policy); (b)
inject proper configuration files that will be used
during the run-time (e.g. the official URI of the
PaaSword run-time libraries) and (c) digitally sign
the final deployment archive since during boot-
strapping a certificate-based verification process
will be performed.

The next zone is the PaaSword Execution Con-
tainer which practically encapsulates all the run-
time components of the PaaSword framework. Any
execution container can be upgraded to a PaaSword

@ Springer

Y. Verginadis et al.

enabled container as if it is equipped with the PaaS-
word run-time libraries. Although PaaSword frame-
work can be applied to several types of execution
containers; yet for the sake of the reference implemen-
tation only JAVA EE containers will be elaborated.
The PaaSword Execution Container is able to interpret
the annotations of the PaaSword applications during
run-time. Its main components include:

— PaaSword Deployment Management (PDM): 1t is
the component that (a) is responsible to validate
the deployment archive that is submitted by a
DevOp; (b) validates the annotations of the appli-
cation by introspecting the deployment assembly
(c) validates the existing operational environment
by checking that each annotation can be inter-
preted by a specific run-time library and (d) per-
forms all the appropriate steps that are required
in order for the application to become operational
(e.g. initializes the database).

— Transparent Encryption & Decryption Mecha-
nism (TEDM): 1t is one of the most crucial com-
ponents of the PaaSword reference architecture.
This component is responsible to perform the
transparent encryption/decryption tasks so as to
protect the data that reside on the (fully untrusted)
database. The transparent encryption mechanism
is bound to specific policies that will be sup-
ported. A policy defines whether the structure
of the database schema will be altered or not,
the type of the encryption algorithm and the key
management methodology.

— Key Management Mechanism (KMM): 1t is the
component that performs key management oper-
ations that may be required by the TEDM com-
ponent. More specifically, one of the supported
encryption/decryption policies imposes the usage
of a key which is created based on the key gen-
eration algorithm and is delivered to the end-user.
The key generation algorithm is performed by a
respective component (TKG, see below) which
belongs to a fully trusted zone (operated under the
full supervision of the tenant).

— Security Policy Evaluation and Enforcement
(SPEE) & Security Policy Management (SPM):
These are two complementary components that
are responsible to handle the policies that are
defined by the code-annotations and can be edited
by the DevOp during run-time. On the one hand,

@ Springer

the SPEE component is responsible to perform the
context evaluation of a Cloud Application User
(making use of libraries that are generated by
the RLM component that was discussed above)
and the policy enforcement. Policy enforcement
will follow the XACML metamodel. On the other
hand, the SPM is responsible to alter the instances
of the context model that is used for policy
enforcement. For example, if a web end-point
is controlled by the end user’s location, then a
DevOp can provide (or remove) instances of loca-
tions that will affect the policy enforcement.

— PaaSword Request Interceptor (PHRI): Tt is the
component that is responsible to forward the
HTTP traffic of an end-user to a specific proxy,
which is addressed as the Re-Encryption Proxy,
and operates under the supervision of the ten-
ant. This component is used only in the case of
searchable encryption policy is applied.

Finally, the architecture is complemented by some
components that belong to the Tenant Trusted Oper-
ational Zone (TTOZ). This zone operates under the
supervision of the PaaSword applications’ tenant and
therefore it is considered trusted. The main compo-
nents in this zone include:

— Trusted Key Generator (TKG): As already dis-
cussed, it is the component that is responsible
for the generation and management of encryp-
tion/decryption keys which is used only in the
case of the shared key policies.

— Re-Encryption Proxy (REP): It is the compo-
nent that processes an end user’s interaction with
the application in order to perform the encryp-
tion/decryption process outside of the PEC con-
tainer. This component is only usable in the case
of the searchable encryption policy.

— Identity Management (IDM): It is the compo-
nent that manages the authentication of all the
interacting stakeholders.

4 Related Work

Among the most significant security related concerns
in dynamic and heterogeneous environments espe-
cially in cloud-enabled systems is the access control
that should be able to consider most of the dynamic
aspects of such environments. The emerging and

PaaSword: Security by Design Framework for the Cloud

ubiquitous computing environments need security
control that is easily adaptable to the changing user
or environmental contexts. Context information used
in an access control decision can be defined as any
relevant information about the state of a relevant con-
textual entity or the state of any relevant relationship
between different relevant entities at a particular time
that should be taken into account before granting or
rejecting a specific access request. From this per-
spective, context-awareness relates to the use of this
context information for access control decision mak-
ing. In the literature, there are three basic access
control models [8], namely Discretionary Access Con-
trol (DAC), Mandatory Access Control (MAC), and
Role-Based Access Control (RBAC). All these mod-
els are known as identity based access control models
where user (subjects) and resources (objects) are iden-
tified by unique names [22]. Most of the traditional
security models are context insensitive. Nevertheless,
a fourth type has been recently identified, the Attribute
Based Access Control (ABAC), as an attempt to cope
more efficiently with the context. Several variations of
the most current type are discussed below.

In an attempt to reinforce the security of remote ser-
vice accesses, researchers introduced the concept of
location-aware access control (LAAC), which allows
a system to grant, or deny, access to users based
on their physical location. LAAC models typically
extend the three basic access control models DAC,
MAC and RBAC [8]. Even though LAAC protocols
have been studied extensively [5], there is a clear
lack of schemes that determine user access not only
on the basis of the users’ physical location and cre-
dentials, but also on the additional pertinent contex-
tual information. In addition, other approaches like
[4] incorporate only specific types of contexts such
as location and time. Kulkarni et al. [25] proposed
a Context-aware RBAC (CA-RBAC) model for per-
vasive applications that considers user and resource
attributes as context constraints. He et al. [38], consid-
ered access control for Web services based on the roles
and introduced a CAAC policy model considering the
user, resource and environment concepts. Toninelli
et al.[39], proposed a CAAC approach which provides
resource access permission on the basis of resource
availability, user roles, location and time. It involves
an ontology-based framework that includes both con-
text and policy models. The disadvantage of the
above mentioned approaches is that they only consider

specific types of contexts which are not sufficient and
generic enough to be used in dynamic cloud environments.
Lodderstedt et al. [26], proposed SecureML, an
RBAC-based modelling language for integrating
access control information into application models
expressed in UML. To address the inefficiencies of tradi-
tional RBAC models, they also introduced the con-
cept of authorization constraints. These are defined in
the Object Constraint Language (OCL) and express
preconditions for granting access to one or more
operation on particular resources. Although these pre-
conditions take into account the dynamic state of the
target resource, the current call, or the environment,
they are not based on an extensible and reusable con-
text model, rendering this approach overly static for
the requirements of cloud-based systems.

The work reported in [7] was the first to introduce
the notion of context-aware access control (CAAC),
motivated by applications for intelligent homes. More
precisely, the authors introduced a set of services
which are enabled based on the location of objects or
subjects. The main drawback of the proposed model
is the fact that it does not support dynamically gen-
erated context, whilst it fails to address important
requirements such as multi-granularity of position.
Other existing CAAC models are predominantly based
on RBAC [21] and typically target a specific domain
[6].These models, however, have not been designed to
provide fine-grained data access control, e.g. by pro-
viding the ability to specify different access rules for
different rows of a database. Nevertheless, the nec-
essary separation of concerns, requires a declarative
representation of policies, one which is orthogonal
to the code of the enforcement mechanisms. Sev-
eral syntactic descriptions exist (RuleML.,° XACML,’
WS-Trust®) but they fail to capture the knowledge
lurking behind policies: they are merely data models
that lack any form of semantic agreement beyond the
boundaries of the organisations that developed them.
Any interoperability relies on the use of vocabularies
that are shared among all parties involved in an inter-
action. This has a number of limitations: (i) it leads to

Shttp://wiki.ruleml.org/index.php/Specification_of _
Deliberation_RuleML_1.01

TeXtensible Access Control Markup Language (XACML)
Version 3.0 — http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html

8WS-Trust 1.3 — http://docs.oasis-open.org/ws-sx/ws-trust/
200512/ws-trust-1.3-0s.doc

@ Springer

http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.01
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.01
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc

Y. Verginadis et al.

ad-hoc reasoning about policy compliance, one which
is tied to the specific vocabularies that express the
rules according to which the reasoning takes place; (ii)
it limits the reusability and portability of policies; (iii)
it precludes the identification of inter-policy relations;
(iv) it limits the ability to perform policy governance.
In order to overcome such limitations, semantically-
rich approaches to the specification of policies have
been brought to the attention of the research commu-
nity [17, 32, 40]. These generally embrace Seman-
tic Web representations for capturing what we term
action-oriented policies, i.e. policies which control if
a particular actor can perform a specified action on,
or through the use of, a certain resource. More specif-
ically, these approaches employ ontologies in order
to assign meaning to actors, actions and resources.
Being “a formal, explicit specification of a shared
conceptualization” [16], an ontology provides a flex-
ible, formal, and unambiguous means of agreement
upon the semantics of concepts, and their interrela-
tions, in a given domain of discourse. Whilst achieving
a proper separation of concerns between policy spec-
ification and policy enforcement, the aforementioned
semantically-enhanced approaches rely on bespoke,
non-standards-based, ontologies for the representation
of policies. Although such ontologies may be suit-
able for characterizing certain action-oriented poli-
cies, they generally lack the expressivity for address-
ing the business details that such policies should sup-
port. In addition, their reliance on OWL, despite the
obvious benefits stemming from the rich set of proper-
ties that OWL offers, raises concerns about the degree
to which these approaches are lightweight, hence their
performance is questionable.

Regarding the policy management, as shown by a
recent survey of methods in contemporary open source
registry and repository systems [23], a major weak-
ness is the lack of proper separation of concerns. The
policy definition and policy enforcement are entan-
gled in the implementation of a single software com-
ponent — the policy checker. The rules that a policy
comprises are typically encoded in an imperative man-
ner, as part of the same code that checks for potential
policy violations. This has a number of negative reper-
cussions among which is the lack of portability and the
lack of explicit representation of policy relationships.

The data distribution and encryption algorithms are
also important aspects towards trusted cloud services
[35] and applications. In [15], C. Gentry presented

@ Springer

the first fully homomorphic encryption scheme that
enables semantically secure outsourcing to the cloud.
The cloud provider operates blindly on the encrypted
data and yields the correct, encrypted result. Neverthe-
less, its practicality is in question as the latest imple-
mentations are still orders of magnitude slower than
just downloading all encrypted data, decrypting, pro-
cessing and encrypting it locally and finally uploading
it again. In another interesting approach [36], the
concept of onions is used. Onions are managed mono-
lithically by a proxy, acting as an adapter between the
user and the storage back-end. Each attribute in a rela-
tional table is initially asymmetrically encrypted. If
certain queries for an attribute are issued, layers of the
onion are peeled off, resulting in another, less secure
onion. CryptDB uses a novel scheme for order pre-
serving encryption that leaks no information about the
data besides order and thus allows sorting encrypted
data securely. The main drawback of CryptDB is the
lack of security guarantees to the client. More pre-
cisely, the only guarantee is that an untrusted server
will learn only the information that is necessary to pro-
cess the query. This may cause every attribute to be
reduced to the plain text in the worst case. Also, peel-
ing off layers cannot be reversed, so a single query is
sufficient to lower the security forever.

5 Conclusions

In this paper, we proposed the PaaSword framework
that can be exposed as a service at the level of PaaS.
This framework can tackle the identified cloud secu-
rity requirements and challenges that should be con-
sidered in order to enhance data protection, integrity
and confidentiality in the presence of malicious adver-
saries. The envisaged PaaSword goes beyond the
state-of-the-art and allows cloud services to main-
tain a fully distributed and encrypted data persistence
layer. Our framework involves a context-aware secu-
rity model, the necessary policies enforcement mech-
anism along with a physical distribution, encryption
and query middleware.

Future work involves the implementation of the
proposed framework into a fully functional solution
which will be validated through the following five
pilots in various industrial contexts: (i) Encrypted
persistency as a service in a PaaS provider, (ii) Inter-
governmental secure document and personal data

PaaSword: Security by Design Framework for the Cloud

exchange, (iii) Secure sensors data fusion and analyt-
ics, (iv) Protection of personal data in a multi-tenant
CRM, (v) Protection of sensible enterprise informa-
tion in multi-tenant ERP. These pilots will allow us to
test PaaSword and validate its added value in a variety
of heterogeneous cases.

Finally, an area that will benefit from PaaSword
framework is the so called participatory sensing [28].
The evolution of this field is driven by the introduction
of sensors into mobile devices. The openness of such
systems and the richness of user data they entail (users
can collect valuable data from everywhere) raise sig-
nificant concerns for their storage and processing.
Protocol designers by having PaaSword framework in
hands will be able to incorporate secure cloud com-
puting techniques in order to facilitate the storage and
processing of the vast amount of collected data.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

References

1. Alliance, C.S.: The notorious nine — cloud computing top
threats in 2013 (2013)

2. Bosch, C., Hartel, P., Jonker, W., Peter, A.: A survey
of provably secure searchable encryption. ACM Comput.
Surv. 47(2), 18:1-18:51 (2014). doi:10.1145/2636328

3. Boustia, N., Mokhtari, A.: Representation and reasoning
on orbac: Description logic with defaults and exceptions
approach. In: Third International Conference on Avail-
ability, Reliability and Security. ARES 08, pp. 1008-1012.
doi:10.1109/ARES.2008.144 (2008)

4. Chandran, S.M., Joshi, J.B.D.: Lot-rbac: a location and
time-based rbac model. In: Proceedings of the 6th
International Conference on Web Information Systems
Engineering, pp. 361-375. Springer, Berlin, WISE’05.
doi:10.1007/11581062_27 (2005)

5. Cleeff, A.V., Pieters, W., Wieringa, R.: Benefits of location-
based access control: A literature study. In: Proceedings of
the 2010 IEEE/ACM Int’L Conference on Green Comput-
ing and Communications & Int’L Conference on Cyber,
Physical and Social Computing, pp 739-746. IEEE Com-
puter Society, Washington, DC, GREENCOM-CPSCOM
’10. doi:10.1109/GreenCom-CPSCom.2010.148 (2010)

6. Costabello, L., Villata, S., Gandon, F.: Context-aware
access control for rdf graph stores. In: Raedt, L.D.,
Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F.,, Lucas, PJ.F. (eds.) ECAI, IOS Press, Frontiers in Arti-
ficial Intelligence and Applications, vol 242, pp 282-287.
http://dblp.uni- trier.de/db/conf/ecai/ecai2012.html (2012)

. Covington M.J., Long W., Srinivasan S., Dev A.K,

Ahamad M., Abowd G.D.: Securing context-aware applica-
tions using environment roles. In: Proceedings of the Sixth
ACM Symposium on Access Control Models and Tech-
nologies, ACM, New York, NY, USA, SACMAT ’01, pp
10-20. doi:10.1145/373256.373258 (2001)

. Decker, M.: Modelling of location-aware access control

rules. In: Handbook of Research on Mobility and Com-
puting: Evolving Technologies and Ubiquitous Impacts,
pp- 912-929. IGI Global. doi:10.4018/978-1-60960-
042-6.ch057 (2011)

. Dey, A.K.: Understanding and using context. Pers. Ubiquit.

Comput. 5(1), 4-7 (2001). doi:10.1007/s007790170019

. Dolev, D., Yao, A.C.: On the security of public key

protocols. IEEE Trans. Inf. Theory 29(2),
(1983)

Dowsley, R., Michalas, A., Nagel, M.: A report on design
and implementation of protected searchable data in iaas.
Tech. rep. Swedish Institute of Computer Science (SICS)
(2016)

Ferrari, E.: Access Control in Data Management Systems.
Morgan and Claypool Publishers (2010)

Gabel, M., Hiibsch, G.: Secure database outsourcing to the
cloud using the mimosecco middleware. In: Krcmar, H.,
Reussner, R., Rumpe, B. (eds.) Trusted Cloud Comput-
ing, pp. 187-202. Springer International Publishing, Berlin
(2014). doi:10.1007/978-3-319-12718-7_12

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh,
D.: Terra: a virtual machine-based platform for trusted com-
puting. In: ACM SIGOPS Operating Systems Review, vol.
37, pp. 193-206 (2003)

Gentry C.: A fully homomorphic encryption scheme. PhD
thesis, Stanford, CA, USA, aAI3382729 (2009)

Gruber, T.R.: Toward principles for the design of ontologies
used for knowledge sharing. Int. J. Hum.-Comput. Stud.
43(5-6), 907-928 (1995). doi:10.1006/ijhc.1995.1081

Hu, H., Ahn, G.J., Kulkarni, K.: Ontology-based policy
anomaly management for autonomic computing. In: 2011
7th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (Collaborate-
Com), pp. 487-494 (2011)

Huber, M., Gabel, M., Schulze, M., Bieber, A.: Cumulus4;j:
a provably secure database abstraction layer. In: Cuzzocrea,
A, Kittl, C., Simos, D.E., Weippl, E., Xu, L., Cuzzocrea,
A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-
ARES Workshops, Springer, Lecture Notes in Computer
Science, vol. 8128, pp. 180-193. http://dblp.uni-trier.de/db/
conf/ares/cd-ares2013w.html (2013)

IBM: Security and high availability in cloud computing
environments. Tech. rep. IBM SmartCloud Enterprise,
East Lansing. http://www-935.ibm.com/services/za/gts/
cloud/Security_and_high_availability_in_cloud_computing_
environments.pdf (2011)

Kamara, S., Lauter, K.: Cryptographic cloud storage. In:
Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.,
Sako, K., Sebé, F. (eds.) Financial Cryptography and Data
Security, Lecture Notes in Computer Science, vol 6054,

198-208

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.acm.org/10.1145/2636328
http://dx.doi.org/10.1109/ARES.2008.144
http://dx.doi.org/10.1007/11581062_27
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.148
http://dblp.uni-trier.de/db/conf/ecai/ecai2012.html
http://doi.acm.org/10.1145/373256.373258
http://dx.doi.org/10.4018/978-1-60960-042-6.ch057
http://dx.doi.org/10.4018/978-1-60960-042-6.ch057
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/978-3-319-12718-7_12
http://dx.doi.org/10.1006/ijhc.1995.1081
http://dblp.uni-trier.de/db/conf/ares/cd-ares2013w.html
http://dblp.uni-trier.de/db/conf/ares/cd-ares2013w.html
http://www-935.ibm.com/services/za/gts/cloud/Security_and_high_availability_in_cloud_computing_environments.pdf
http://www-935.ibm.com/services/za/gts/cloud/Security_and_high_availability_in_cloud_computing_environments.pdf
http://www-935.ibm.com/services/za/gts/cloud/Security_and_high_availability_in_cloud_computing_environments.pdf

Y. Verginadis et al.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

pp. 136-149. Springer, Berlin (2010). doi:10.1007/978-3-
642-14992-4_13

Kayes, A.S.M., Han, J., Colman, A.: An ontology-based
approach to context-aware access control for software ser-
vices. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang,
G. (eds.) WISE (1), Springer, Lecture Notes in Computer
Science, vol. 8180, pp. 410-420. http://dblp.uni-trier.de/db/
conf/wise/wise2013-1.html (2013)

Khan, A.R.: Access control in cloud computing environ-
ment. ARPN J. Eng. Appl. Sci. 7(5), 613-615 (2012)
Kourtesis D., Paraskakis I.: A registry and repository sys-
tem supporting cloud application platform governance.
In: Proceedings of the 2011 International Conference
on Service-Oriented Computing, pp. 255-256. Springer,
Berlin, ICSOC’11. doi:10.1007/978-3-642-31875-7_36
(2012)

Krasner, G.E., Pope, S.T.: A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J
Object Oriented Program 1(3), 26-49 (1988). http://dl.acm.
org/citation.cfm?id=50757.50759

Kulkarni, D., Tripathi, A.: Context-aware role-based access
control in pervasive computing systems. In: Proceedings of
the 13th ACM Symposium on Access Control Models and
Technologies, ACM, New York, NY, USA, SACMAT "08,
pp 113-122. doi:10.1145/1377836.1377854 (2008)
Lodderstedt T., Basin D.A., Doser J.: Secureuml: a
uml-based modeling language for model-driven secu-
rity. In: Proceedings of the Sth International Confer-
ence on The Unified Modeling Language, UML °02, pp
426-441. Springer, London. http://dl.acm.org/citation.cfm?
1d=647246.719477 (2002)

Michalas, A., Dowsley, R.: Towards trusted ehealth ser-
vices in the cloud. In: 1st International Workshop on Cloud
Security and Data Privacy by Design (CloudSPD’15), co-
located with the 8th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC), IEEE/ACM (2015)
Michalas, A., Komninos, N.: The lord of the sense: A pri-
vacy preserving reputation system for participatory sensing
applications. In: Computers and Communication (ISCC),
2014 IEEE Symposium, pp 1-6. IEEE (2014)

Michalas, A., Komninos, N., Prasad, N.R., Oleshchuk,
V.A.: New client puzzle approach for dos resistance in
ad hoc networks. In: 2010 IEEE International Conference
Information Theory and Information Security (ICITIS), pp.
568-573. IEEE (2010)

Michalas, A., Paladi, N., Gehrmann, C.: Security aspects
of e-health systems migration to the cloud. In: 2014 IEEE
16th International Conference on e-Health Networking,
Applications and Services (Healthcom), pp 212-218. IEEE
(2014)

Micro, T.: The need for cloud computing security. In: A
Trend Micro White Paper (2010)

Nejdl, W., Olmedilla, D., Winslett, M., Zhang, C.C.:
Ontology-based policy specification and management. In:
Proceedings of the Second European Conference on the
Semantic Web: Research and Applications, ESWC’05,

@ Springer

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

pp 290-302. Springer, Berlin. doi:10.1007/11431053_20
(2005)

Paladi, N., Michalas, A.: One of our hosts in another
country: challenges of data geolocation in cloud stor-
age. In: 2014 4th International Conference on Wireless
Communications, Vehicular Technology, Information The-
ory and Aerospace Electronic Systems (VITAE), pp. 1-6.
doi:10.1109/VITAE.2014.6934507 (2014)

Paladi, N., Michalas, A., Gehrmann, C.: Domain based stor-
age protection with secure access control for the cloud. In:
Proceedings of the 2014 International Workshop on Secu-
rity in Cloud Computing, ASIACCS ’14. ACM, New York.
doi:10.1145/2600075.2600082 (2014)

Paladi, N., Gehrmann, C., Michalas, A.: Providing
user security guarantees in public infrastructure clouds.
IEEE Trans. on Cloud Comput. PP(99), 1-1 (2016).
doi:10.1109/TCC.2016.2525991

Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakr-
ishnan, H.: Cryptdb: Protecting confidentiality with
encrypted query processing. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pp 85-100. ACM, New York.
doi:10.1145/2043556.2043566 (2011)

Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted
cloud computing. In: Proceedings of the 2009 Confer-
ence on Hot Topics in Cloud Computing, USENIX,
Berkeley, CA, HotCloud’09. http://dl.acm.org/citation.
cfm?id=1855533.1855536 (2009)

Shen, H., Cheng, Y.: A context-aware semantic-based
access control model for mobile web services. In: Shen,
G., Huang, X. (eds.) Advanced Research on Computer
Science and Information Engineering, Communications in
Computer and Information Science, vol 153, pp. 132-
139. Springer, Berlin (2011). doi:10.1007/978-3-642-
21411-021

Toninelli, A., Montanari, R., Kagal, L., Lassila, O.:
A semantic context-aware access control framework for
secure collaborations in pervasive computing environ-
ments. In: Proceedings of the 5th International Conference
on The Semantic Web, ISWC’06, pp 473-486. Springer,
Berlin. doi:10.1007/11926078_34 (2006)

Uszok, A., Bradshaw, J.M., Johnson, M., Jeffers, R., Tate,
A., Dalton, J., Aitken, S.: Kaos policy management for
semantic web services. IEEE Intell. Syst. 19(4), 3241
(2004). doi:10.1109/M1S.2004.31

Verginadis, Y., Mentzas, G., Veloudis, S., Paraskakis, I.:
A survey on context security policies. In: 1st Interna-
tional Workshop on Cloud Security and Data Privacy by
Design (CloudSPD’ 15), co-located with the 8th IEEE/ACM
International Conference on Utility and Cloud Computing
(UCC), IEEE/ACM (2015)

Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pp 203-216. ACM (2011)

http://dx.doi.org/10.1007/978-3-642-14992-4_13
http://dx.doi.org/10.1007/978-3-642-14992-4_13
http://dblp.uni-trier.de/db/conf/wise/wise2013-1.html
http://dblp.uni-trier.de/db/conf/wise/wise2013-1.html
http://dx.doi.org/10.1007/978-3-642-31875-7_36
http://dl.acm.org/citation.cfm?id=50757.50759
http://dl.acm.org/citation.cfm?id=50757.50759
http://doi.acm.org/10.1145/1377836.1377854
http://dl.acm.org/citation.cfm?id=647246.719477
http://dl.acm.org/citation.cfm?id=647246.719477
http://dx.doi.org/10.1007/11431053_20
http://dx.doi.org/10.1109/VITAE.2014.6934507
http://dx.doi.org/10.1145/2600075.2600082
http://dx.doi.org/10.1109/TCC.2016.2525991
http://doi.acm.org/10.1145/2043556.2043566
http://dl.acm.org/citation.cfm?id=1855533.1855536
http://dl.acm.org/citation.cfm?id=1855533.1855536
http://dx.doi.org/10.1007/978-3-642-21411-0_21
http://dx.doi.org/10.1007/978-3-642-21411-0_21
http://dx.doi.org/10.1007/11926078_34
http://dx.doi.org/10.1109/MIS.2004.31

