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ABSTRACT

In tissue with a distinct orientation of the oxygen supplying structures, the 
capillaries, a mathematical description of oxygen transport is feasible in terms of 
two-dimensional diffusion in a plane perpendicular to the capillaries. Musclc tissue 
is an example of a highly anisotropic tissue. With some additional simplifying 
assumptions, a solution can be constructed in terms of capillary sources for arbitrary 
capillary characteristics, in particular, capillary locations. The solution includes 
facilitated diffusion by myoglobin in the tissue. For homogeneous tissue, the solution 
becomes explicit allowing direct calculation of tissue oxygen pressure at any location 
in a field of simple geometry (circular, rectangular). Also, the size of the area into 
which each capillary distributes its oxygen, the oxygen supply area, is readily 
calculated.

1. INTRODUCTION

Calculation of oxygen pressures in tissue is a very complicated task in 
spite of the fact that the oxygen distribution process itself is quite 
simple [6, 20]. Oxygen-rich blood is supplied by the arterioles, branching 
into a capillary network draining into collecting venules. In this path
way, and particularly in the capillaries, oxygen is released and trans
ported by diffusion. In the erythrocyte, the oxygen source, 0 2 has to be 
released from its carrier the hemoglobin (Hb) to which it is reversibly 
bound. Many accompanying processes may be considered, e.g., C 0 2 
interaction with H b— 0 2 binding. Then, 0 2 diffusion has to be consid
ered through the erythrocyte, the blood plasma, the capillaiy wall and 
several tissue fractions. Reversible binding to myoglobin (Mb) occurs in 
red muscle tissue. Even when modeling simplified situations, a repre
sentative tissue system is much too complicated for purely numerical
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computation (grid spacing < 1 ¿¿m, tissue dimensions ~ 100 /¿m and 
mixed boundary values coupled to the capillary flow pattern). There
fore, theoretical and computational development has concentrated on a 
special but important tissue, muscle tissue, where capillaries can be 
considered to run substantially in parallel. Then a distinct orientation 
can be discerned and the system can be handled separated into a 
z-direction along and an plane perpendicular to the orientation of 
the capillaries.

Even so, computation is a formidable task only feasible for simplified 
cases. The readiest simplification is to neglect diffusional effects in the 
z-direction, reducing the problem to a two-dimensional one. This seems 
appropriate since characteristic distances in the x, sp ian e  are of order 
IO1 fim (capillary spacing) whereas in the z-direction this order is of 103 
¡xm (capillary length). Indeed, the first modeling approach [16] was a 
solution for circular areas perpendicular to a centrally located capillary 
(Krogh cylinder). Later [13], the extension was made toward the third 
dimension by coupling planes in the z-direction through their successive 
capillary p 0 : s.

The circular Krogh layout is much too simple to describe realistic 
muscle tissue [24, 25], but it can be generalized into a description for 
arbitrary capillary locations in a flat plane; first attempts were by [1, 11, 
12]. In the present paper, the mathematical formulations and postulates 
and possibilities are investigated. The Krogh circle with one capillary 
source is extended to arbitrary shapes with several sources located 
arbitrarily. Facilitated diffusion by myoglobin is incorporated. The 
boundary conditions are reformulated correspondingly.

2. THEORY

2.1. BASIC EQUATIONS

The starting point for the theoretical treatment is the description of 
the diffusional transport of a species X in a^nonmoving system of 
homogeneous diffusional properties by its flux Jx :

^ x ^ - ^ x V c x ,  (2.1)

where D is diffusion coefficient and c concentration. This is an approxi
mate description for low species concentrations and is considered to be 
valid for the species of interest, being oxygen and oxymyoglobin ( 0 2Mb).
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Both carry one oxygen molecule so that the total flux of oxygen J is the 
sum of the two:

/ = / 0 2 + 7 o 2Mb.

(The particular species 0 2, Mb, and 0 2Mb are not written as sub
scripts, but are added directly after the symbol, conforming to recent 
notational guidelines [17]), J can be expressed in terms of oxygen partial 
pressure p  and myoglobin saturation s using (2.1) and Henry’s law, 
c 0 2 — a O 2p  where a 0 2 is oxygen solubility:

(2 .2)

p* = /? + p F.y, (2.3)

where = 0 2) ( a 0 2) is the oxygen permeability constant of the 
tissue and p F = ( D 0 2Mb)(ctMb)/«9s is called facilitation pressure [6]; 
/?p is a constant when total myoglobin concentration ctMb is constant. 
Equations (2.2), (2.3) offer a most convenient way of incorporating 
Mb-facilitated 0 2 diffusion. Without Mb, p F = 0 so that p* = p and 
plain, nonfacilitated 0 2 diffusion is described. Incorporating Mb only 
involves replacing the oxygen pressure p  by an oxygen driving force p*. 
In addition, the local relationship between p  and s must be known. 
This problem is extensively handled in the literature [5, 7, 15, 21]. For 
most of the tissue, chemical equilibrium can be assumed between Mb 
and 0 2. Only near interfaces that the myoglobin cannot pass, such as 
cell boundaries, are deviations expected. This does not affect the 
validity of (2.2), (2.3), but now the relation between p  and s will deviate 
from equilibrium. For tissue modeled as homogeneous, these deviations 
will occur at the capillary-tissue interface.

Finally, there is a mass balance between transport and chemical 
reaction of 0 2. For 0 2 transport we apply (2.2) and the net chemical 
reaction is expressed in terms of the consumption rate Q of the tissue 
(amount per unit time):

^ V 2p* = g ,  (2.4)

where V2 = V*V is the Laplace operator, here two-dimensional.

2.2. BASIC SOLUTIONS

The solution of (2.4) presented here is a generalization of the first 
literature solution, the Krogh equation [16]. The latter was for a radially
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symmetric case, without Mb, solved for radial distance r between 
capillary radius rc and outer radius R. This implies boundary conditions 
p p^ (a /■ — /'̂  and dp /  dr — 0 @ r ~ R- Expressed in the current nota
tion this so-called Krogh-Erlang equation reads

P
, Q _

Pc + a  gt> ri -  R 2 Ini -
.2

(2.5)

The equation is valid only for rc < r < R, but when extending the range 
to lower values of r it shows a singularity for  ̂r -» 0 [18]. This implies 
that there is a point-like oxygen source at 17*1 = 0 (also see [1]). The 
oxygen supply area A Q of the source can be derived from integrating 
the radial flux J, = -  &>ap*/dr (see (2.2)) at an infinitesimal distance 
around the source:

(V rv Q ( R
QAe = lim I rd<j)Jr = lim I rd<j>-x-{ — r) —'ïïQR1 (2.6)

Note that the infinitesimal integral yields zero for all functions not 
having a singularity at |rl = 0, such as the other terms in (2.5), so that 
always R2 = A c/ i r  and the generalization of (2.5) for N  sources also in 
other geometries becomes straightforward:

P

*

Q £  A-
<D (r)- Z  “ I"

r - r . 2 \

i — I 7T t .2
ci

(2.7)

where <M r ) is a generalization of the nonsource terms in (2.5) and now
facilitation by myoglobin is included. This “background function” <£(?*)
is a solution of (2.4) without sources. A i is the supply area of the /th
source, rt its location, and rci is a characteristic distance (to make the
logarithm term dimensionless; e.g., capillary radius). The supply areas
no longer need to be circular like in the Krogh model (see [11, fig. 4]).
The sources are point-like and will deliver 0 2 into their surroundings
including the capillary itself; mostly, this will be a negligible fraction of
A r Also, it is allowed that A t- be negative, implying that the “source”
draws 0 2 from its vicinity. That could occur, e.g., for very low oxygen 
pressure in such a capillary.

2.3. BACKGROUND FUNCTION

The background function $ ( r )  is solved from the nonhomogeneous 
equation (2.4) and consequently can be split into a specific part 4>S(F)
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and a homogeneous, harmonic part 4>h( j* )•

i> ( /- )= 4 )s( r )  + cl)H( r )
V2<PS = 4 

V20>h = 0
( 2 .8)

A solution for the specific part can be constructed as

(2.9)

as can be easily verified from Green’s theorem [22]. In this equation, A  
is the area where the oxygen is consumed and rs is a generalized 
normalization factor to make the term in the logarithm dimensionless. 
This leaves the problem of the boundary conditions to the solution of 
the homogenous part Depending on external circumstances, any
harmonic function could be a potential solution for <&H(F). We will 
argue in Section 2A  that the particular solution where is a
constant is compatible with a most feasible set of boundary conditions, 
representative for a tissue portion embedded in a bulk of surrounding 
tissue.

There are some cases of particular interest for the specific solution 
<î>s(r)  that will be explicitly solved here.

2.3.1. Circular Consumption Field
A circle around the origin with radius R is a circular consumption 

field. In this case, we have, expressed in two-dimensional circular 
coordinates (r , 4>):

for which the solution is, choosing r j  = R 2/ e  (see Appendix 1):

r < R 
r > R ‘ (2.11)

2.3.2. Rectangular Consumption Field
Then, in terms of cartesian coordinates (jt,y):

® s(x > y)= ( lW d*' f ' h dy 'J -{w J -{h



«
where w, h are width and height of the rectangle, respectively, and the 
origin is at the center. Again choosing r, appropriately, this can be
written as (see Appendix 2):
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1 A
tüs(jc,y) = — L

n i — 1

i ,  , , ( A x 2, + A y 2 (2.13)

+ A x 2m arctan k y m
Ax + Ay2 arctan

m

( A x
'Ey

m

where the arctangent is defined yielding values in the interval 
( -  ‘/ iTT^/iTt) and k x x = Ax2 = l/ 2^  -  x, A*3 = A*4 = 1/ 2w' + x, Ay { = 
AyA= '/2h -  ƒ, Ay 2 = Ay3 = X/ 2h + y are the distances to the four cor
ner points. By adding the limit values for L x m -»0 and Aym -> 0 the 
solution is defined and valid over the entire x, y plane both inside and 
outside the rectangle.

2.3.3. Combined Solutions
Because of linearity, combinations of the above particular solutions 

(2.11), (2.13) can be used for an area consisting of zones with constant 
but different consumption. As an example, when a circular area has two 
zones, a circular inner zone up to r — R x with consumption f xQ and a 
ring-shaped outer zone R { <r < R with consumption f 0 Q, the solution 
becomes

r < Rf i r 2

for2 + ( A ~f0)R}\in{r2/R\)  + 1} R f < r < R

f0R2{la(r2/ R 2) + l}

+ ( / i - /o )Æ ? { ln ( r2//??) + l} r > R

Also, extending the range of possibilities for calculating realistic 
tissue situations, the following possibilities should be mentioned:

2.3.4. Field with Inhomogeneous Consumption
In fact, this implies that consumption is not overall constant but can 

vary with location r. This means that in (2.4) Q has to be replaced by 
Qgs(r), where the average value of the weight function gXT) over the



whole area is 1. Modifying (2.9) the corresponding solution for <I>S(F) 
now reads
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i f  dr* / 1/* — r ' 2
®s(r ) = f  ƒ  —  S sO ')1" — ~2—  • ( 2-14)

r — r
a \ rs

23.5. Field with Distinct Consuming Sources
The main reason that tissue consumption can depend on location is 

because the consuming entities, the mitochondria, are inhomogeneously 
distributed. Equation (2.14) can be discretized to account for these 
individual oxygen sinks:

* s ( r )
N' A- '
E  — In

1 77

i2 \
J

2
rfj

(2.15)
/

where there are AT sinks and A}, rj and r ■ are demand area, location, 
and normalization factor of the jth  sink, respectively. Again, (2.4) 
should be modified accordingly. Note, that in fact the mitochondria are 
treated here as infinitesimal sinks, analogous to the infinitesimal sources 
in (2.7).

2.4. BOUNDARY CONDITIONS

It is straightforward to choose a set of boundary conditions on the 
following assumptions:

(1) tissue p 0 2 near the &th capillary is imposed by the capillary

(2) the tissue slab under consideration is representative, without bulk 
external 0 2 fluxes going in or out.

For an extensive discussion about boundary conditions see [20].
Elaborating (1) we will assume a certain value for the capillary, or, 

better, the erythrocyte 0 2 pressure p ck which has to be related to the 
local tissue value. Average tissue p  0 2 around the capillary must be 
obtained from (2.7) integrated along the capillary outline, denoted by 
rim k:

n*
P x k

(£ drp*(?)
^ rim  k

<£ dr
^ r im  k

(2.16)
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For all the terms in (2.7), this integral can easily be _calculated if the 
capillary outline is treated as a circle with its center at rk and radius rck. 
For the harmonic terms in (2.7), e.g., the source terms of the other 
capillaries (i ^  the circular integral equals 27Trck times the value at 
-/r= [22]. ci>s( r ) can be written as a harmonic function plus the specific 
solution \r - 'r k\2 (analogous to the partition in (2.8)) and the kth  source 
itself vanishes because |F -  Tk\ = rck:

Q
N

L
/=1
i k

A,
/

Mn7r
rk ~ h

r2.1 ct

2 \
(2.17)

/

Using (2.3), an equilibrium oxygen pressure pTk can be calculated 
from pr* . However, this “rim value” p xk in general will not be equal to 
the capillary, or, better, the erythrocyte, value pck. The main reason is 
that there is a pressure drop due to transport within the blood up to the 
capillary rim [6, 9, 20]. But also, there is disequilibrium between oxygen 
and oxymyoglobin—the gradient in c 0 2Mb and consequently in s is 
zero while the gradient in p* is not [4, 5]. As a first approximation we 
will assume that the difference between p Tk and pck is linearly propor
tional to the average 0 2 flux across the capillary rim. The same was 
done by [3] who termed this proportionality constant the “mass transfer 
coefficient.” The average 0 2 flux is linearly proportional to the 0 2 
supply area A k (see first part of (2.6)) and consequently the difference 
between plk and p k is also [9,11]:

Pr k P i k  +  P ? s ( P r k )

(2 -18)
P r k  P c k  J k ^ k ^

where yk is the proportionality constant (the averaged pressure differ
ence HkykA k / N  sometimes is referred to as extraction pressure or 
capillary barrier [6, 25]) and s is written as a function of p:

s(p) P

Ps0 + P ’

where p5ti is the myoglobin half-saturation pressure.
Assumption (2) should impose constraints on the background func

tion <{>(?) and in particular on the homogeneous part <&H( r ). Most 
authors impose boundary conditions either on p at the border of the
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region under consideration or on its gradient across this border. When 
there is no gradient of p  across the border, the region is not influenced 
by what is outside, and vice versa. But this is not realistic for a part of a 
tissue embedded in a larger entity; there will be fluxes in and out, in 
particular for irregular capillary (sources) distribution. That should 
occur in such a way that the tissue parts do not influence each other 
globally. This is explained and elaborated in Appendix 3; the outcome is 
that the constraint of no flux across the border should be imposed on 
the homogeneous part of the background function 3>H(D . This homo
geneous part is what remains when both sources, the ln( )-terms in (2.7) 
and tissue consumption terms <E>S0 0 , are removed and it should not be 
influenced by the outside world. The solution of (2.8) for zero gradient 
of 3>HQ0 around the whole border is a constant, denoted by 4>0 [22]. 
Also as a consequence, total 0 2 supply area must balance total con
sumption area:

A - Z A „  (2.19)
i= 1

where A  is the total area of the consuming slab (averaged over 
consumption if there are zones with different consumption).

3. CALCULATION ALGORITHMS

For solving $ 0, A i in an actual situation, an iterative procedure can 
be set up; this can be done in terms of a linearized set of equations. Let 
us assume that there are estimates of these values, denoted by A {/ \  
When inserted into (2.17), these estimates will lead to a value for p*k 
that will be different from the value obtained from (2.18). To distinguish 
between these, we will add a subscript 1 for the result of (2.17) and a 
subscript 2 for the result of (2.18):

n*o'+1) =  n*ij) + Q . i (?>(/+1) _  <t)(y)
P rk A  P r k J  ^  A ¿M \  ^ 0  ^ 0 7T In I

ptHz " -  pri!i -  7 . ( 1 + p f %  W i O j K ' * ” -  4 " ) .

where the second formula is a first-order Taylor expansion around 
p (r{\ The next step should be taken such that the expected values 
of p ^ i l) and are This leads to N  linear equations



Il)
Ot = where there are N  + l unknowns
l in ea r  equation (/fc = 0) is obtained from (2.19):
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<E>0, A k. The additional

N

o -  E AV
/ = 1

i+1) A V (3.1)

so that we have a complete set which can be expressed in terms of a 
(jV + l)x(iV + l) matrix equation:

N

w here

MIX) 0

M()j - 1 l ^ i < N

I < k < N

M* = - ln
A*:

\ r 2f  Cf

M*t =
47r5a7(: /

Ö
1 +

„(*{/+» -$</>) 

>iy+11 - Ì

o
V, = *i£L { „ • ( » - a *Q \Prk,2 Pri.lJ

i = 0

1< i< N  

k = 0

1 <  k «  W.

Note that the matrix depends on the former estimates <J> ,̂ A \^  only if 
at least one yk is nonzero. If the assumption is allowed that all yk’s are 
zero, the above treatment yields final values of <l>0 and A t directly, in 
one step, whereas for nonzero yk the calculation procedure has to be 
iterated. For the initial guesses, in order to obey (3.1) we have to choose 
the supply areas such that (2.19) is fulfilled, e.g.,

AW =
A
N

whereas <t>(n0) in principle can be chosen arbitrarily, e.g., calculated 
equating (2.17) to (2.18) for one selected capillary.
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A strict proof of the convergence of the iteration procedure is not 
given here, but in the practical cases considered so far, three iterations 
were sufficient.

4. EXAMPLE

As a calculation example, the capillary arrangement of Figure 1 was 
chosen. Throughout the example, both distances and pressures will be 
expressed as fractions of the maximum (0-1), A rectangular field is 
divided into four zones of equal size with different conditions of 
capillary spacing/capillary p 0 2, as indicated by the letter combinations 
in Figure 1. The first letter E or H indicates equally or heterogeneously 
spaced capillaries and the second letter I or R identical or randomly 
distributed capillary p O z, respectively (the identical pressure value 
being the mean of the random values). The equally spaced capillaries 
were placed in a filled hexagonal grid whereas the heterogeneous 
distances were as for realistic rat heart with a capillary radius of 0.0158 
for each capillary. Mean capillary p 0 2 was 0.61 and standard deviation

1.0

0.9 -

0.8

0.7 - 

0.6 :

0.5 -

0.4 -

0.3 -

0.2  -

0.1

0.0

1.0

- 0.9

-  0.8

- 0.7

0.6

- 0.5

- 0 .4

0.3

-  0.2

-  0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 , 0 \

F ig . 1. Capillary locations of an exemplary case. A square field composed of four 
square zones with different capillary properties as indicated by the two-letter coding. 
The first letter indicates equal (E) or heterogeneous (H) capillary spacing, the 
second identical (I) or randomly distributed (R) capillary p 0 2. Distances are given as 
fractions of the maximum distance. The arrow indicates the viewpoint direction of 
Figure 2.



(SD) of the random distribution was 0.21 (note that all values are 
expressed as fractions of the maximum value of 1). In these units, Q / &  
was 72.2 (pressure/length2). The actual data are from [11] combined 
with rectangle size of 152 /zm (rc = 0.0158x152 f im -  2.4 ^m ) and a 
mean capillary p 0 2 of 8 kPa. Both p p and all y k were chosen zero. 
The example is to elucidate the effects of capillary heterogeneities.

First <t>0 and A i were calculated as described in Section 3. The initial 
<&(i was chosen zero; no iterations were needed since y k = 0 here. Some 
characteristics of the resulting A-% are given in Table 1, expressed in 
fractions of the overall average area size A / N =  1/56. Clearly, in the 
doubly homogeneous zone E / I  supply areas are the most uniform. One 
very small area is present in the E / R  zone; note that a negative supply 
area is not excluded by the theoretical treatment. A negative supply 
area implies inflow of oxygen into the capillary and this should be 
allowed for a very low capillary p 0 2, lower than that of the surrounding 
tissue. Note that the respective zone is one of random capillary p 0 2.

This is further illustrated in Figure 2, calculated through (2,7) for the 
rectangular field, (2.13). In a three-dimensional plot, p 0 2 is shown on 
the vertical axis against location in the rectangular field (ground plane). 
The viewpoint is from the direction of the E / I  zone ( -4 5 °  as indicated 
by the thick arrow in Figure 1) and 45° above the ground plane. 
Capillary p 0 2’s are shown as black dots; because y k = 0 these values 
must match tissue capillary rim p 0 2 which is nicely obeyed as seen 
from the figure. Each dot is on top of an “oxygen hill,” where the 0 2 
flows into the supply area. The capillaries in the front E / I  zone, with 
both homogeneous distance and p 0 2, have almost equal “hills.” Either 
heterogeneity in spacing or in capillary pressure leads to different 
shapes and sizes of the “hills”; the resulting variation in supply area is 
also clearly visible. The lowest A { value of 0.11 occurs in the right E / R  
zone just besides the front E / I  zone, where a capillary happens to have 
a very low p 0 2 of 0.26 amidst adjacent high values.

2 LOUIS HOOFD

TABLE 1

Summary ot Calculated 0 2 Supply Areas for the Example of Figure 1*

NAi/A

Minimum 
Maximum 
Mean 
SD

E /I E /R H /R

0.76 0.11 0.31
1.23 1.86 1.50
1.01 1.02 0.96
0.10 0.49 0.44

H/I

0.53
1.48
1.01
0.33

‘ Zones indicated as in that figure. Minimum, maximum, mean, and
standard deviation (SD) for each zone were expressed as fractions of the 
overall average ara size ( \ / N  where N  = 56).
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Fig, 2. Tissue p 0 2 (vertical axis; relative units) field calculated for the capillary 
*rangement of Figure 1; ground plane shown with the same axes as in this figure 
S /I  zone in front as indicated by the arrow there). Solid dots indicate capillary 
ressure.

. DISCUSSION

The above treatment yields an analytical solution for two-dimen- 
ional 0 2 diffusional transport under the conditions as set out here, 
"his two-dimensional transport does not exclude 0 2 gradients in the 
-direction perpendicular to the plane; merely, in the Laplace operator 
12 the term d 2/ dz 2 must be negligible. This constraint is not exam- 
ned here, but in the comparable Krogh model— two-dimensional diffu- 
ion in a single-capillary tissue cylinder—it turns out to be a valuable 
.pproximation [14].

The solution is exact under the conditions mentioned, which can be 
ummarized as follows:

(1) Local conditions
(i) the capillary can be represented by a single point source;
(ii) the capillary p 0 2 boundary condition can be treated as 

described in Section 2.4, i.e., tissue p 0 2 is equal to a linear 
combination of capillary p 0 2 (averaged over circular out-



line) and capillary 0 2 supply (expressed in supply area Ak)\ 
this capillary boundary condition includes correction for 
disequilibrium between p 0 2 and myoglobin saturation;

(2) Global conditions
(i) tissue can be considered homogeneous with respect to O2

diffusion, i.e., &>,pP must be constants over the region 
considered;

(ii) global oxygen consumption equals oxygen supply resulting in
(2.19);

(iil) the “background function” 4>(F) must be solved from addi
tional boundary conditions. Here, <t>(f) is split into a specific 
and a homogeneous part according to (2.8) and
(a) <t>s(f)  can be calculated from the assembled 0 2 sinks,

(2.9) (homogeneous consumption) or (2.14) or (2.15);
(b) <I>H(r*) has zero gradient across the boundary of the area 

considered. This leads to the solution that <J>H0 0  equals 
a constant <I>0.

(3) Steady state.

Note that the basic solution (2.7) does not rely on an overall constant » ■ ^
Q but that variable Q can be accounted for by taking a representative 
(e.g., average) constant Q in (2.7) and accounting for varying consump
tion in solving for 0(F) and A-v How to do that for $ 0 0  is set out in 
(2.8), (2.9) and (2.14), (2.15); the A i follow from solving for the bound
ary conditions. Also note, that (2.15) allows for consumption to be 
modeled as a set of N ‘ discrete sinks, for which read: mitochondria. 
The further examples, circular (2.11) or rectangular (2.13) field, are 
elaborations for homogeneous consumption. The picture changes some
what if consumption Q is not determined by local conditions but 
depends on oxygen pressure p .  Then, if p is known for any location

Q can be represented as locally dependent and in turn p 
calculated; this should yield the same p  field. For such a scheme an 
iterative procedure could be developed.

Considering the local conditions (l)(i) and (l)(ii), there is little to say 
about these without solving for the 0 2 transport situation in the 
capillary itself. Apart from this being a difficult time-dependent three- 
dimtnsional problem, it is not an objective of the present investigation. 
It is a known fact, however, that “far away” from a source this source 
always "resembles” a point source; in terms of the treatment here, the 
point source term >4̂  ln(|r — ri|2/ r L?.) can be generalized as

LOUIS HOOFD
14
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re the integration is over the capillary area and gci(r)  is a dimen- 
iless weight function. For large values of \T-~r(\, a Taylor expansion 
jnd leads to:

t term between brackets is A iy the second term can be made zero by 
appropriate choice of r\ and the other terms are of order |F -7 ^ r~  
less. As a consequence, the approximation is expected to be less good 
en close to a capillary.
Note that (2.4) is valid only outside the capillaries. In fact, (2.7) is a 
ution of an extended equation with Dirac-delta functions on the 
irces, as pointed out by [18]. On the other hand, i>(70 is valid in the 
ole plane— it is independent of the sources.
The global conditions (2)(ii) and (2)(iii) are ready conditions for a 
tistically representative portion of tissue not subject to external 
luences. With these, the solution should be inherently independent of 
e and location of the area considered, as long as it is large enough to 
representative [11], The above treatment, however, is open to exten

ds. For example, when a tissue is near to an external 0 2 source (like
2 heart wall) there can be global in/outflow of oxygen. This can be 
<en into account in the boundary conditions for the harmonic func- 
>n 3>h(70 of (2.8) and in the boundary condition equalling global 
pply and consumption, (2.19). The first must be solved differently 
3m the constant 4>0 of the above treatment, while the second must be 
odified to account for an effective area size A E into which the 
ternal source transfers oxygen.
Global condition (2)(i) is a more awkward one. The above treatment 

ems no longer appropriate for varying or discontinuous p f  since 
e differential equation (2.4) will have to be extended at least with 
rms like (V ^M V p) and a solution of type (2.7) is of questionable 
due. Undoubtedly, tissue has heterogeneous 0 2 diffusion properties 
it it is unclear how important this is. From an external global view, 
/erall parameters can be derived representing tissue and even blood as 
jmogeneous [23]; locally, however, there may remain differences, 
ocal discontinuities in £Pyp F can be modeled in simplified tissue 
tyouts, e.g., concentric tissue cylinders [10], showing only minor influ-



lo
ence on p. Also given the fact that experimental data are virtually 
lacking, treating the tissue using these overall global parameters might
be a good method.

The assumption (3), of steady state, in fact should be read as
"quasisteady state.” It is for a situation that should be maintained as 
local average over a certain time. Rapid oscillations (e.g., due to 
erythrocytes passing by in the capillaries) might be superimposed on the 
steady-state solution; long-time effects like gradual shifts in capillary 0 2 
supply (e.g., due to changing capillary flow) might be modeled as 
gradual shifts from one almost-steady state to another. In both in
stances, the above solution can serve as a basis for further extension.

Many aspects of the present solution are already found in earlier 
modeling of tissue oxygenation. Ultimately, it can be considered as an 
extension of the Krogh model [6, 16]. Extending to multiple point-like 
sources was proposed by Popel [18]. This author also pointed out that 
such a solution is incompatible with capillary boundary conditions and 
that instead an average capillary rim value must be used— his Equation 
(.14) is equivalent to (2.16) of the present treatment. Heterogeneity of 
capillary locations was solved numerically [2]. Clark et al. [1] also added 
superposition of sources in an analytical model but did not link the 
oxygen supply areas to capillary p 0 2’s. Instead, chosen distributions of 
their “capillary production rate” yck (equivalent to our A k) were used 
for the calculations. Here, the A k are calculated from the actual 
conditions. This involves a “loss in /?02” due to transport from the 
erythrocyte towards but only up to the tissue. The same concept is 
found in [3]; their “mass transfer coefficient” k is related to our y ( by 
the approximate equation l i r k y ^  ~ Q.

Most models use exact boundary conditions, often in terms of zero 
p 0 2 or zero flux at the outline of the region considered. Zero flux with 
a rectangular region applies when the region can be repeated periodi
cally (see [20]). Zero flux with a circular region can be handled analyti
cally [1, 22]. Here, oxygen is allowed to flow out of and into the region, 
just as will happen in reality. A capillary near the border will supply 
some 0 2 to tissue just outside the field under consideration, whereas a 
capillary close to but outside this region will send some 0 2 in. The net 
amount of 0 2 crossing the border should be zero, (2.19).

 ̂The present solution can be used either as a basis for a three-
dimensional solution by superposition of layers (see [6, 13, 20]), or
directly, for a layer with known capillary p 0 2’s. For example, when from
a photomicrograph of a tissue cross-section capillary locations and
capi lary erythrocyte saturations can be determined, the model might be
applied directly. If the tissue slice is representative, a representative 
p O; histogram should result.

LOUIS HOOFD
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The example of the Section 4 was chosen as an illustration of the 
impact of the solution. In particular, the influence of heterogeneities in 
position and p 0 2 of the capillary was stressed. Tissue situations can be 
very different, leading to very different results for p 0 2 distribution [8, 
25]. Another important heterogeneity considered in the literature is that 
of capillary flow [2, 8, 19, 20]; for this, however, a three-dimensional 
model is needed.

The power of the present treatment is that it yields a direct analytical 
solution in cases where an otherwise complex numerical approach 
would be needed. In order for the tissue portion to be representative, it 
should encompass at least several tens of capillaries [11]. Because of 
local high gradients (see Figure 2) the calculation grid should be small 
or complex, resulting in a large number of computations. Capillary p 0 2 
is not easily translated into grid boundary conditions. 0 2 supply areas 
are not readily calculated in a numerical scheme and consequently 
condition (2.19) cannot be used; replacing it with a condition like zero 
flux at the boundaries results in mixed boundary conditions. Last but 
not least, numerical schemes are not so open to extensions towards 
other situations, e.g., three-dimensional diffusion or external 0 2 supply. 
The present treatment is capable of serving as a basis for that.

APPENDIX 1

First, we define the function:

7T
F ( s ) = (  s d a  ln { l— 2scos( a)  + s 2}.

— 77*

In the domain 0 < s < 1 this is a circular integral with radius s over a 
harmonic function, so equal to 2tt times this radius times the function 
limit value for zero radius [22]:

F ( s ) = 2 v s  ln ( l)  = 0;

Then, the function is also easily found for s > 1:

F(s)  = f  s d a  In(s2) + s2F ( l / s )  = 2 tts In(s2) ;
— 7T

s > 1

in terms of this function, (2.10) now can be written as

(r,(f>) = ( Rdr’r' r  d ( f ) ' - I n  r
-  7T 7T

i  1 rR
~ f  d r ' r F ( r ' / r ) .+
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The first integral is solved easily as R 2 H r 2/ r f ) ,  whereas the second 
integral will be different for r < R  and for r > R.  In the latter case, 
y* i y < | everywhere so that the result is zero. Otherwise, there is a 
region r<r '  <R  where the integration is nonzero:

r<R:  (Rdr'rF(r' / r) = f^ d r 'lw r '
J0 Jr

In
I r '2 \

= TrR2lln
R2 \

with these results and choosing r2 = e lR 2, (2.11) is easily derived, 

APPENDIX 2

For the solution of (2.12), the rectangular field, we will use the 
following two integrals:

ƒ  ds\n(s2 + 12) =* s ln(s2 + 12) - 2 s  +2t  a rc tan |y  j 

2 ƒ dss arctan '

(A.l)

= s2 arctan '£
kS

- 12 arctan I y I + st ( A .2 )

for each combination of s,t; both equations can be easily verified by 
differentiation to s. The arctangent is defined yielding values in the 
interval -  l/ 2ir -> x/ 2nt and we will, at first, consider only positive values 
of s in the integration to avoid switching of the arctan from -  1/ 2tt to 
+ V27t when 5 crosses zero. This means, that we can solve (2.12) for the 
quadrant x < -  l/ 2w, y < ~ l/ 2h, using (A.l) substituting s — ( y f -  y ) / r s, 
/ ~ (x '~  x ) / r $:

{ y ' - y )  In 2 ( y ' - y )
\

+ 2( X ' - X  ) arctan i
4/i

y' =-i/.

which can be worked out as, defining A_y, = l/ 2h - y ,  Ay 
and using arctan( - s ) ~ -  arctan(s):

l/ 2h + y

~ 2 h y m +2(x'  -  x ) arctan
A y m

X X
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Next, we apply (A.1) and (A.2) now substituting s = ( x f — x ) / r s, t = 
Ayn / r s and proceed similarly to above, additionally defining AjCj = Ax2

Since the sum over A x m Aym is equal to wh, a constant, an appropriate 
choice of r2 leads to (2.13). However, this solution was derived for only 
one quadrant outside the rectangle. For other values of x,y,  the 
solution can proceed along the same lines but some more scrutiny is 
needed since a rc tanO /s) takes a step of ±7r when s goes across the 
value zero. The latter will be the case at the border lines of the 
rectangle: A x m = 0 or Aym = 0, for each m. By adding the limit value, 
however, the solution (2.13) can be made continuously differentiable 
since the undetermined value of the arctangent, + l/ 27r or ~ l/ 2 1Ti is 
multiplied by zero even in the first derivative. Consequently, (2.13) is 
valid for the whole x ,y  plane, as can be verified by elaborating the 
above procedure also for these other values of x  and y.

APPENDIX 3

The logarithm terms as they are in (2.7) and (2.9) (and also (2.14) and 
(2.15)) can be expanded for large values of [f |, \ r \ »  \rN\, as

in particular, for (2.9):

/■¡w -  X, Ax3 = A x a = l/ 2w + x, Ay4 = A y,, Ay3 =  Ay2:

where the second term in the expansion is of order |F| 1 and the
remaining terms are of order \r\~ or smaller. Accordingly, (2.7) can be 
worked out as



which means that the summed contribution of consumption and sources 
vanishes if the amount of oxygen consumed is equal to the amount 
released by the sources ((2.19)) and even faster when the sources are 
statistically neatly distributed - I , A iri = JJdr'T'. The remaining part is 
made up by the harmonic part of the background function ^ ( F )  so 
what the bulk of the tissue “sees” from this mathematical description is 
this $ » 0 0 , the “global view” referred to in Section 2.4. Consequently, 
the corresponding boundary conditions should be imposed on <5H(7'). 
Boundary conditions are common for the tissue part considered and for 
the surrounding bulk of tissue. If, as imposed in Section 2.4, it is like 
there is no flux in or out of the piece of tissue under consideration, the 
noflux boundary condition applies to 4>H(r") and the only remaining 
solution is that it is a constant <1>a.

20 LOUIS HOOFD

APPENDIX 4: NOMENCLATURE

A field area
A c A / A k capillary supply area

A) sink area
/

c concentration
ctMb total myoglobin concentration
D diffusion coefficient
fi consumption ratio of inner circular region
fo consumption ratio of outer ring
g j r ) relative source strength

relative sink strength
h height of rectangular field
Hb hemoglobin
J flux vector
J, radial flux component
M matrix in the iteration procedure
Mb myoglobin
N number of capillaries
N' number of sinks
0,M b oxymyoglobin

oxygen permeability constant
P oxygen partial pressure, p 0 2
P%n myoglobin half-saturation pressure
Pc Pck capillary oxygen pressure
Pf facilitation pressure
Pxk capillary rim pressure
P*

4» oxygen driving pressure
pfk capillary rim driving pressure
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Q oxygen consumption rate
R cylinder/circle radius

radius of inner circle
r radial coordinate
r two-dimensional coordinate vector
rc ru rtk capillary radius or characteristic distance
r, rk capillary location

>

ri sink location
generalized normalization distance

rsj sink normalization distance
J

rim k capillary rim
s s ip) myoglobin saturation
U V vectors in the iteration procedure
w width of rectangular field
X arbitrary species
x y i

Greek Symbols

cartesian coordinates

a 0 2
Jk
A x  A y
<s>
® (r)

®s(r>
Superscripts

(0) (j ) (j + 1) iteration index 
' " dummy variable
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