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Calbindin-D28K facilitates cytosolic calcium 
diffusion without interfering with calcium signaling
H.P.G. KOSTER, A. HARTOG, C.H. VAN OS and R.J.M. BINDELS 

Department of Cell Physiology, University of Nijmegen, Nijmegen, The Netherlands

Abstract — The role of calbindin-D28K, in transcellular Ca2+ transport and Ca2+ signaling in 
rabbit cortical collecting system was investigated. Rabbit kidney connecting tubules and 
cortical collecting ducts, hereafter referred to as cortical collecting system, were isolated by 
immunodissection and cultured to confluence on permeable filters and glass coverslips. 
Calbindin-D28K was present in the cytosol of principal cells, but was absent from the inter
calated cells. 1,25(OH)2Ü3 (48 h, 10~7 M) significantly increased cellular calbindin-D28K le
vels (194 ± 15%) and stimulated transcellular Ca2+ transport (41 ± 3%). This stimulatory 
effect could be fully mimicked by the endogenous Ca2+ chelator, BAPTA (30 |iM 
B APT A/AM), which suggests that the presence of Ca2+ chelators alone is sufficient to en
hance transcellular Ca transport. Stimulation of Ca2+ transport was not accompanied by 
a rise in [Ca2+]i. Isosmotic replacement of extracellular Na+ ([Na+]o) for N-methylglucamine 
(NMG) generated oscillations in tCa2+]i in individual ceils of the monolayer. The functional 
parameters of these oscillations such as frequency of spiking, resting [Ca2+]i, increase in 
[Ca2+]i and percentage of responding cells, were not affected by the level of calbindin-D 28K- 
In contrast, loading the cells with BAPTA abruptly stopped these [Ca2+]i oscillations. This 
suggests that the kinetics of Ca2+ binding by calbindln-D28K are slow relative to the initia
tion of the [Ca2+]i rise, so that calbindin-D28K, unlike BAPTA, is unable to reduce [Ca2+]i 
rapidly enough to prevent the initiation of Ca2+-induced Ca2* release.

High affinity Ca2+-binding proteins play a role in a 
large variety of cellular processes which are control-

_  rk

led by Ca , including muscle contraction, neuro
transmitter release, ion transport, and secretion [1,2]. 
This particular class of proteins shares a highly con
served Ca2+-binding motif, the so-called EF-hand. 
One member of this family, i.e. calmodulin, is a u- 
biquitous protein, but the majority, like troponin-C, 
parvalbumin and calbindin, display a tissue-specific 
expression [1]. The physiological functions of some 
o f these Ca2+-binding proteins are firmly estab

lished, but for a few the expression ‘more sites than 
insights’ is appropriate [1]. For instance, calbindin- 
D28K is present in high concentrations in distal ne
phron, placenta and brain [1-4]. In the epithelial 
tissues, caIbindin-D28K acts as a cytosolic Ca2* buff
er and presumably facilitates the diffusional flux of 
Ca2+ through the cytosol [5-7]. It is known that the 
rate of active Ca2+ absorption in the intestine corre
lates well with the cytosolic concentration of calbin- 
din-D9K and both phenomena are regulated by 1,25- 
dihydroxy vitamin D3 (l,25(OH)2D3) [8,9]. In brain,
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however, calbindin-D28K is present in a subpopula
tion of neurons scattered in most but not all areas of 
the central nervous system, where its presence is not 
influenced by the vitamin D 3 status and where its 
function is unknown [ 1],

Free cytosolic Ca2+ ([Ca2+]i) is generally main
tained at low resting values and, for example, in
creasing [Ca2+]j in the intestine results in decreased 
NaCI absorption in villi and increased secretion in 
crypts [10]. Also, in renal cells, [Ca2+]i is impli
cated in the regulation of transport processes. For 
example, Na+ reabsorption and K+ secretion in the 
distal nephron are partly regulated by activation of 
Ca2+-dependent Na+ and K+ channels [11,12]. The 
cellular Ca homeostasis in duodenum and distal 
nephrons is continuously challenged by large and 
variable rates of transcellular Ca transport, which 
is tuned to the need of the body. In addition, calbin- 
din-D28K could, in theory, interfere with cellular 
Ca“ signaling in view o f its Ca chelating proper
ties.

In Ca2+ absorbing epithelial cells, the tuning of
^  .  f t

transcellular Ca transport to cellular Ca homeos
tasis is still poorly understood [13]. We have ad
dressed this question by using a primary culture of 
renal connecting tubule and cortical collecting duct 
cells. These renal cells in culture retain the ability 
to transport Ca2+ transcellularly under control of 
PTH and I,25(OH)2D3 [14]. In addition, [Ca2+]i os
cillations can be provoked in these cells [15]. In the 
present study, the intracellular Ca2+ buffering capac
ity was manipulated by exposure to 1,25(OH)2D3 to 
increase calbindin~D28K content or by loading the 
cells with the Ca2+ ligand, BÀPTA. Evidence is 
now provided that calbindin-D28K enhances diffu- 
sional flux of Ca2+ but does not interfere with Ca2+ 
signaling. In contrast, BÀPTA is shown to enhance 
transcellular Ca2+ transport, but quenches [Ca2+]j os
cillations completely,

Materials and methods

Isolation o f rabbit kidney cortical collecting system
cells

Rabbit kidney cortical collecting system cells were

isolated from New Zealand white rabbits by immu- 
nodissection using monoclonal antibody R2G9 [14]. 
The cells were subsequently cultured in culture me
dium (equilibrated with 5% C02-95% air at 37*0) 
on circular glass coverslips (diameter = 22 mm) or 
on 0.3 cm2 permeable filters (Costar, Badhoevedorp, 
The Netherlands) coated with rat tail collagen as de
scribed previously [14]. All experiments were per
formed on monolayers grown to confluency (4-7 
days after seeding).

Furci-2 and BAPTA loading

Fura-2 was loaded into the cells during a 30 min 
incubation at 37°C in culture medium supplemented 
with 5 |xM Fura-2 acetoxymethyl ester (Fura- 
2/AM), 0.4% (w/v) DMSO, 0.02% (w/v) Pluronic 
F127 and 4% (v/v) decomplemented fetal calf 
serum. Cells were loaded with the Ca2+ chelator 
BAPTA by exposure to incubation medium (at 
37°C) containing 30 \iM  BAPTA/AM; 0,4% (w/v) 
DMSO; 0.02% (w/v) Pluronic F12 during the ex
periment.

Measurement o f [Ca2+]\ in single cells

After loading the cells with Fura-2, the coverslips 
were transferred to a thermostated ‘Leiden-Cham- 
ber1 [15] and mounted on an inverted Diaphot 
microscope (Nikon, Amsterdam, The Netherlands). 
The cells were washed by superfusion with incuba
tion medium for 3 min (2 ml/min, 37°C) after 
which, under continued superfusion, the experiment 
was started. The MagiCal imaging system was used 
to measure [Ca2+]i (loyce Loeble, UK). The Fura-2 
loaded cells were alternatingly excited at 340 and 
380 nm (bandwidth 10 nm) and images of the F ura-
2 fluorescence of 30-40 cells emitted at 492 nm 
(bandwidth 30 nm) were captured (capture time 0.32 
s; average of 8 frames) by a CCD camera at inter
vals of 7 s, using TARDIS software for digital ana
lysis as described in detail by Neylon et al. [16], In 
some experiments, the Newcastle Photometric Sys
tem (NPS system) was used, in which Fura—2 fluo
rescence from single cells is measured by a photo
multiplier as described previously [15]. [Ca2+]i was 
calculated according to the formula derived by 
Grynkiewicz et al. [17].
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Determination o f transepithelial Ca2+ fluxes

Filter cups were washed and bathed at 37°C in incu
bation medium. Previously, we determined that 
iranscellular Ca2+ absorption from a medium con
taining 1 mM Ca2+ was linear up to 3 h [18]. In the 
present study, Ca2+ absorption was established by 
removing duplicates of 25 JJ.1 apical fluid following 
an incubation of 90 min. The total Ca concentra
tion of the samples was assayed using a colorimetric 
test kit (Boehringer, Mannheim, Germany) and Ca2+ 
absorption was expressed in nmol.h-I.cnT2.

Identification o f principal and intercalated cells by 
i nun uno cy tochemistry

The primary cultures contain principal and interca
lated cells [15], In order to distinguish intercalated 
cells [19], monolayers loaded with Fura-2, were ex
posed to FITC-conjugated peanut lectin (5 |Xg/ml for 
5 min) and, before starting [Ca2+]i measurements, 
the FITC-Iabelled monolayers were examined. Prin
cipal cells could be visualized after Fura-2 imaging 
by immunohistology using a polyclonal antiserum 
against chicken calbindin-D28K as described pre
viously [20]. As secondary antibody, an FITC-con- 
jugated antirabbit Ig was used. One image of the 
resulting staining pattern was captured (excitation 
490 nm, emission above 510 nm, MagiCal system) 
to match the presence of calbindin-D28K or peanut 
lectin with [Ca2+]j oscillations. Loading of principal 
cells with Fura-2 appeared to be far better than of 
intercalated cells and when the CCD camera was 
used [Ca2+]t measurement in intercalated cells were 
unreliable. Therefore, in some experiments, a more 
sensitive photomultiplier (NPS system) was used to 
record fluorescence from Fura-2 loaded intercalated 
cells.

Catbindin-D2&K assay*

An ELISA for calbindin-D28K was performed as de
scribed previously [14]. Briefly a 96-well poly
styrene plate was: (i) coated with 100 ng purified
rabbit calbindin-D28fc; (ii) blocked with 0.1% w/v
BSA: (iii) 50 \i\ samples containing either cytosolic 
fractions of cultured collecting system cells or 
samples of purified rabbit calbindin-D28K for a cali

bration curve were added, both followed by 50 Jiil 
rabbit polyclonal antiserum against chick calbindin- 
D28K (diluted 1:750); (iv) peroxidase-conjugated 
goat anti-rabbit IgG (H and L) (diluted 1:500) was 
added and finally 0.5 mg/ml 0-phenylenediamine 
and 0.1 % w/v H2O2 were used to develop the color. 
After each step, the ELISA plate was washed 4 
times.

Experimental procedures

Culture medium: DME/F12 (1:1) (Gibco, Breda, 
The Netherlands) supplemented with 5%  (v/v) de
complemented fetal calf serum; 50 jxg/ml gen- 
tamicin; 10 \xJml non-essential amino acids (Gibco); 
5 |ig/ml insulin; 5 |ig/ml transferrin; 50 nM hydro
cortisone; 70 ng/ml PGEi; 50 nM Na2Se03; 5 pM 
triiodothyronine. Incubation medium (in mM): 140
NaCl; 2 KC1; 1 K2HPO4; 1 KH2PO4 ; 1 MgCl2; 1
CaCh; 5 glucose; 5 L-alanine; 10 HEPES/Tris, pH 
7.40. Fura-2/AM, BAPTA/AM and Pluronic F I27 
were obtained from Molecular Probes Inc. (Eugene, 
OR, USA). l,25(OH)2D3 was kindly provided by 
Solvay-Duphar (Weesp, The Netherlands). All 
other chemicals were obtained from Sigma (St 
Louis, MO, USA).

Time (min)

Fig. 1 Effect of removal of medium Na+ (Na+0) on [Ca2+]¡ in 
cultured cells from rabbit cortical collecting system. Na+0 (NaCl) 
was iso-osmotically replaced with N-methylglucamine (NMGC1). 
[Ca2+]¡ was calculated from the Fura-2 340/380 nm excitation 
fluorescence emission ratio which was recorded with the fluores
cence imaging MagiCal system. Representative trace from 6 ex
periments is shown, in which a total of 36 cells were analyzed.
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Statistical analysis

In all experiments» data were assessed from at least
3 isolations. Analysis of variance was used to deter
mine statistical differences between two independent 
groups [21],

Results

In a previous study, we described that in cells of 
cortical collecting system in primary culture, remo
val of extracellular Na+ induced oscillations of 
[Ca2+]i, which arise from phospholipase C activation 
in concert with Ca2+-induced Ca2+ release [15]. The 
present study extends our previous observations by 
employing a fluorescence imaging system equipped

with a CCD camera which permits simultaneous 
analysis of the [Ca2+]i responses of several cells at 
the single cell level and estimation of cytosolic cal- 
bindin-D28K content. Isosmotic replacement of me
dium Na+ (Na+0) for N-methylglucamine (NMG) re
sults in [Ca2+]i oscillations in primary cultures of 
rabbit cortical collecting system cell. The type of 
oscillations most frequently observed (-80% of the 
occurrences) was an increase in [Ca ]i in an oscilla
tory fashion with Ca2+ returning to resting levels in 
between two spikes, as shown in Figure 1.

,

Characterization o f [Ca ]\ oscillations in principal 
and intercalated cells

Since the primary culture of rabbit cortical collect
ing system is composed of two cell types, individual

350

300 -

250 "

50 0 1 3 4
Time (rain)

3 4
Time (min)

Fig. 2 NaVfree induced [Ca2+]i oscillations in a principal (A,C) and an intercalated (B,D) cell of rabbit cortical collecting system in 
primary culture. [Ca24]i was calculated from the Fura-2 340/380 mn excitation fluorescence emission ratio which was recorded with 
the NPS system. Monolayers were double stained to distinguish principal from intercalated cells. Principal cells were recognized by 
immunohistological staining with a polyclonal antibody against chicken calbindin~D28K (A) and intercalated cells were identified by 
exposure to FITC-conjugated peanut lectin (B), Bars represent 10 |xm. Representative data from 6 experiments are shown, in which a 
total of 36 cells were analyzed.
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Table 1 Characterisation of Na+0-free induced [Ca2+]i oscillations in principal and intercalated cells recorded with the 
NPS system. Resting and peak [Ca2+],\ oscillations frequency and percentage of cells showing oscillations when exposed 
to Na+ free medium. Values represent mean ± SE with n > 19.

Cell type Resting [G r+/i Peak [Ca2*Ji Frequency Oscillating cells
(nM) (nM) (min ) (%)

Intercalated cells 116 ± 11 261 ± 3 0 0.59 + 0.05 73 ± 8
Principal cells 123 ± 14 326 ± 28 0.64 ± 0.06 65 ± 13

cells were identified by immunocytochemistry, 
using peanut lectin to recognize intercalated cells
and an antiserum against chicken calbindin-D28K to 
recognize principal cells (Fig. 2A,B) [19]. The ma
jority of cells (79 ± 4%, n = 400) were calbindin- 
D28K positive and peanut lectin negative and, there
fore, identified as principal cells, whereas a minority 
(18 ± 5%) were calbindin-D28K negative and peanut 
lectin positive and classified as intercalated cells. In 
principal cells, calbindin-D28K was evenly dis
tributed throughout the cytosol.

N a V fr e e  medium induced in both cell types os-
•“) i

dilatory increases in [Ca ]i as depicted in Figure 2.
The characteristics of these oscillations, i.e. oscilla
tory frequency, resting and peak values of [Ca2+]i, 
together with the percentage of cells that exhibit 
[Ca2+]i oscillations, are shown in Table 1. There 
were no significant differences between these par
ameters among principal and intercalated cells (P <
0.05, > 19).

n  ,

Effect o f 1,25(OH)zDs on Ca transport, calbindin- 
£>28K content and Ca signaling

The monolayers were incubated for 48 h with 10”7 
M l,25(OH)2D3 and subsequently transcellular Ca2+ 
transport, cellular calbindin-D28K content and 
[Ca2+]i oscillations were examined. 1,25{0H]2D3

+ 2+ 7Table 2 Characterisation of Na 0-free induced [Ca ]\ oscillations in principal cells exposed to 10” M 1.25(OH)2D3 for
2+48 h (or to vehicle) measured with the fluorescence imaging MagiCal system. Resting and peak [Ca ]i> oscillations 

frequency and percentage of cells showing oscillations when exposed to Na+ free medium. Values represent mean ± SE 
with n > 100.

Condition Resting [Ca2+]\ Peak [Ca2+h Frequency Oscillating cells
(nM) (nM) (min~{) m

Control 98 ± 6 201 ± 4 0.71 ±0.02 79 ± 8
U25(OH)2D3 108 ± 6 214 ± 4 0.73 ± 0.02 66 + 6

140- 

B 130 ~
U«

5 120 *

s
I  1 1 0 -

I  100-
‘<3

E*
g 9 0 -jOcd
a so -

control BAPTA l f25fOH]2D3

Fig. 3 Effect of the Ca2+ chelator BAPTA and l,25(OH)2Ü3 on 
active transcellular Ca2+ transport across rabbit cortical collecting 
system in primary culture. Monolayers were exposed to 
BAPTA/AM (3 x 10“5 M for 2 h), l,25(OH)2D3 (10-7 M for 48 
h) or vehicle (control) as indicated. Values are means ± SE of 4 
experiments; * signifie anti y different from control (P < 0,05).

* n  -

significantly increased transcellular Ca transport 
by 41 ± 3% (Fig. 3) and calbindin-D28K content 
from 0.69 ± 0.09 to 2.03 ± 0.31 |lg.mg protein"*1 
(P > 0.2, n = 4). However, the characteristics of 
[Ca ]i oscillations were not significantly altered in 
principal cells cultured for 2 days in the presence of 
1,25(0H)2D3 when compared with control cells
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Effect o f BAPTA on Ca2+ transport and Ca 
signaling

2+

Time (min) Time (min)

Fig. 4 EFfect of calbindin-D28K concentration on NaV-free in
duced [Ca3+)i oscillations in principal cells of rabbit cortical col
lecting system in primary culture. Principal cells were recognized 
by immunohistological staining with a polyclonal antibody 
against chicken calbindin-D28K (A), [Ca2+]t oscillations were 
analyzed in a cell with a relatively low {cell À, B) and a rela
tively high (cell *, C) level of calbindm-D2Sfc, respectively* 
[Ca^i was calculated from the Fura-2 340/380 nm excitation 
fluorescence emission ratio which was recorded with the fluores
cence imaging MagiCal system. Bar represents 20 \im. Repre
sentative data from 4 experiments are shown, in which a total of 
32 cells were analyzed.

(Table 2).
To corroborate further the interaction between 

calbindin-D28K and Ca2+ signaling, we compared 
within one single monolayer characteristics of 
[Ca2+]i oscillations in principal cells expressing dif
ferent levels o f calbindin-D28K. In line with the 
above mentioned results, principal cells containing 
different concentrations o f  calbindin-D28K exhibit 
identical [Ca2+]i oscillations (Fig. 4, n = 32).

Loading cells of the cortical collecting system with 
the Ca2+ chelator BAPTA (30 \M  BAPTA/AM) sig
nificantly (P < 0.05, n = 4) enhanced transcellular 
Ca2+ transport by 28 ± 5% (Fig. 3). Resting [Ca2+]i,

___  ^  I

however, was not influenced by BAPTA. [Ca ]i 
was 108 ± 3 and 98 ± 3, (P > 0.2, n = 24) for con
trol and BAPTA-loaded cells, respectively 
(Fig, 5A). On the contrary, when proximal tubule 
cells in primary culture, which lack calbindin-D28K, 
are loaded with BAPTA, [Ca2+]i is lowered from

150

125 -

100 -

A
Ô 75 -

50

A

0
T

4 8
T ”

12 16 20 
Time (min)

150
BAPTA

125 -

sR
100 -

u 75 -

50

Fig. 5 Effect of the Ca2+ chelator BAPTA on resting [Ca2+]i in 
principal cells of rabbit cortical collecting system in primary cul
ture (A) and in cells of rabbit proximal tubules in primary culture 
(B). Monolayers were incubated in BAPTA/AM (3 x 10“5 M). 
[Ca2+Jj was calculated from the Fura-2 340/380 nm excitation 
fluorescence emission ratio which was recorded with the fluores
cence imaging MagiCal system. Representative traces from 4 ex
periments are shown, in which a total of 24 cells were analyzed.
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Feher et ai. developed a mathematical model
which explains the role o f  calbindin-D9K in
l,25(OH)2D3-stimulated intestinal Ca2+ absorption
[6,8]. In this model, calbindin enhances transcellu-
lar Ca2+ transport by: (i) stimulating apical entry of
Ca2+ through releasing the negative feedback on the
entrance step; (ii) increasing the rate of cytosolic
transport by acting as a diffusional carrier; (iii) in-

i r t  *

creasing Ca efflux rate by feeding Ca to the 
starved basolateral Ca2+-ATPase and Na+/Ca2+ ex
changer. The present study provides experimental

Ox
evidence for a stimulatory effect of Ca ligands on 
transcelluiar Ca2+* transport in the cortical collecting 
system. W e localized calbindin-D28K in the cytosol

2+ chelator BAPTA on NaVfree induced of principal cells, where concentrations reach 100
(iM [14]. An increase in calbindin-D28K content

Time (min)

Fig. 6 Effect of the Ca 
[Ca2+]i oscillations in principal cells of rabbit cortical collecting 
system in primary culture. Na+0 (NaCl) was isoosmoticaJly re
placed with N-methylglucamine (NMGC1) and monolayers were

i-5

was accompanied by an increase in the rate of trans- 
cellular Ca2+ transport. This stimulatory effect of

subsequently incubated in BAPTA/AM (3 x 10"5 M). [Ca2+]i calbindin-D28K could be fully mimicked by the Ca2+
was calculated from the Fura-2 340/380 nm excitation fluores
cence emission ratio which was recorded with the fluorescence 
imaging MagiCal system. A representative trace from 4 experi
ments is shown, in which a total of 24 cells were analyzed.

169 ± 2 to 86 ± 3, OP < 0.05, n = 24) (Fig. 5B). In 
striking contrast to calbindin-D28K, addition of 
BAPTA/AM (30 (J.M) to the incubation medium in
terrupted [Ca2+]i oscillations within 1.9 ± 0.2 min 
(Fig. 6, n = 24).

Discussion

The present study demonstrates that increased levels
of cytosolic Ca2+ ligands, as calbindin-D28K and
BAPTA, stimulate active transcelluiar Ca transport
in the rabbit cortical collecting system. In addition,

r t  ,

calbindin-D28K does not interfere with [Ca ]i sig
naling, while BAPTA completely inhibits [Ca2+]i os
cillations.

chelator, BAPTA, which strongly suggests that the 
presence of diffusible Ca2+ chelators alone is suffi
cient to enhance transcelluiar Ca2+ transport. This 
implies that Ca2+ chelators influence Ca2+ fluxes at 
the entrance and exit step [6]* An increased Ca2* 
buffer capacity in close vicinity to the apical mem
brane could accelerate the entry o f Ca2+, due to re
moving a negative-feedback of [Ca2+]i on the influx 
mechanism. Ca2+ efflux could be enhanced by 
Ca2+ ligands by accelerated delivery of Ca2+ to the 
basolateral extrusion pumps [6].

In the present study, stimulated rates o f transcel- 
lular Ca2+ transport were not accompanied by an in
crease in [Ca2+]i. Furthermore, addition of BAPTA

9-l
did not reduce resting [Ca ]i in principal cells of  
the cortical collecting system, whereas in cells 
which lack calbindin-D28K, BAPTA substantially re
duced [Ca2+]i. These findings support the notion 
that calbindin-D28K greatly enhances the intrinsic 
Ca2+ buffering capacity o f  principal cells.

The role o f  calbindin-D28K as a strong Ca2+

Table 3 Chelator forward and reverse rate constants for the Ca2+ cheîator/Ca2+ binding (k 0n and k0ff), and dissociation 
constants are given for BAPTA and ca)bindin-D28K-

Chelator on ¿off

(S~l)
Ka

(nM)
Reference

BAPTA
Calbindin-D28K

6.02 x 10* 
2 x 107

96.7
8.6

100-500 
430

[23]
[6]
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2+

buffer seems in conflict with the fact that [Ca2+]i 
fluctuations are an essential step in regulatory path- 
ways, since an increased Ca buffering capacity 
most likely dampens the transient rise in [Ca2+]i 
evoked by receptor activation. The present study, 
however, clearly demonstrates that calbindin-D28K

n  j-

does not interfere with Ca signaling processes, 
since oscillations in [Ca2*]i could be provoked irre
spective of the absence or presence of calbindin- 
D 28K in the cell. In contrast, loading the cells with 
BAPTA abruptly stopped the [Ca2+]i oscillations. 
This remarkable difference between both calcium 
chelators must reside in the Ca2+ binding kinetics. 
The difference is not explained on the basis o f  Ca 
affinities, since the Kds of both Ca2+ ligands for 
Ca2+ are similar (see Table 3). It is theoretically 
possible that BAPTA reaches significantly higher 
cytosolic concentrations than calbindin-D28K. When 
hypocampal neurons were incubated for 30 min at 
37°C with 30 [iM BAPTA/AM the intracellular 
BAPTA concentration reached -300 |wM [22]. We 
observed that within 2 min after addition o f  30 juM 
BAPTA/AM, the [Ca2+]i oscillations stopped, which 
implies that the cytosolic concentration of BAPTA  
does not differ widely from the cytosolic calbindin- 
D28K concentration, which was estimated to be -100  
|iM  [14]. The most plausible explanation for the 
observed differences is that the kon rate of Ca2+ 
binding to calbindin-D28K is too slow, so that cal- 
bindin-D28K, unlike BAPTA, is unable to reduce the

T  r

upstroke of a Ca spike rapidly enough to prevent 
the initiation of Ca2+-induced Ca2+ release. The k0n 
rate is in fact more than one order of magnitude
slower for calbindin-D28K than for BAPTA (Table

J

Apical Baso-
lateral

Ca24

Ca2+

r

Fig. 7 Model of transcellular Ca2+ transport and Ca2+ signaling 
processes co-operating in principal cells of the cortical collecting 
system. For an explanation see text. B, a calcium ligand such as 
calbindin-D28K or BAPTA; DAG, diacylglycerol; IP3, inositol 
1.4,5-trisphosphate; PIP2, phosphatidylinositol 4,5-bisphosphate; 
G, G-protein; PLC, phospholipase C; R, receptor.

sol during intense neural activity and thus protects
T 1 O - i -

neurons from Ca overload. After these Ca 
pulses, calbindin-D28K will facilitate redistribution 
of Ca2+ within the cell which could mediate stimula- 

3). Indeed, calbindin has been reported to buffer tion-evoked changes in neuronal cell shape or medi- 
Ca2+ sluggishly when compared to troponin and cal- ate memory effects in brain [4,24,25]. Roberts 
modulin [4]. A similar explanation accounted for 
differences between EGTA and BAPTA in attenua-
ting Ca2+-activated IC currents in chromaffin cells 
and in reducing evoked neurotransmitter release at 
the squid giant synapse [23].

Until now, little is known about the role of cal- 
bindin-D28K in non-epithelial cells, such as Purkinje calizes changes in [Ca2+]i by shuttling Caz+ away

made a theoretical analysis of a mechanism by 
which millimolar concentrations of calbindin-D28K 
found in certain sensory receptors and neurons can 
influence [Ca2+]i signaling [26]. He demonstrated 
that high levels of calbindin-D28K are necessary to 
serve as a mobile Ca2+ buffer that reduces and lo-

2+

from the Ca2+ channel arrays. Indeed, in rat sensory 
neurons, it has been shown that injection o f  high 
concentrations of calbindin-D28K into the cell has no 
effect on basal [Ca2+]i, but affects the kinetics o f  

example, calbindin-D28K will bind Caz+ in the cyto- [Ca2+]j increase [27]. Our findings in epithelial cells

cells in the cerebellum, specific neurons in the brain 
and several endocrine cells [1-4]. The charac
teristics of calbindin-D28K outlined in the present
study should also hold in these tissues. For

2+
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show that with lower, i.e. submillimolar, levels of 
calhindin-D28K, there is no interference with Ca2+ 
signaling. Also, in a previous study by Muir et al. 
[28], a similar conclusion was reached. These in
vestigators stably expressed calbindin-D28K in 
NIH3T3 cells and the presence of calbindin-D28K 
did not affect resting [Ca ]i nor did it change the 
increase in [Ca2+]j which occurred in response to 
serum stimulation.

The findings of the present study can be sum
marized in a model shown in Figure 7, Transcellular 
Ca2+ movement involves the sequential transport of 
Ca2+ across the apical membrane, cytosol and baso- 
lateral membrane. The apical entry mechanism is 
still unidentified, but is postulated to be inhibited by 
high [Ca~ ]i adjacent to the apical membrane, 
referred to as a negative-feedback inhibition of Ca2* 
entry [6]. Calbindin-D28K binds Ca2+ ions which
enter the cytosol and facilitates cytosolic diffusion. 
Finally, calbindin-D28K increases the supply of Ca 
to the Ca2+ pumps in the basolateral membrane [6], 
During transcellular Ca2+ movement, [Ca2+]i re
mains constant. Due to the slow binding kinetics of 
calbindin-D28K, Ca2+ signaling can occur inde
pendently of transcellular Ca2+ movement mediated 
by calbindin-D28K- The summarized properties of 
calbindins are compatible with substantial cytosolic
Ca2+ diffusion and protection of the cell from being

' i  i

flooded with Ca and guarantees an unaltered 
[Ca~+]j signaling in epithelial cells involved in trans
cellular Ca2+ transport.
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