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High Performance Robust Latches 
Martin Omaña, Daniele Rossi, Member, IEEE, and Cecilia Metra, Member, IEEE 

Abstract—First a new high performance robust latch (referred to as HiPeR latch) is presented, that is insensitive to transient 

faults affecting its internal and output nodes by design, independently of the size of its transistors. Then, a modified version of 

the HiPeR latch (referred as HiPeR-CG) is proposed, that is suitable to be used together with clock gating. Both proposed 

latches are faster than the latches most recently presented in the literature, while providing better or comparable robustness to 

transient faults, at comparable or lower costs in terms of area and power, respectively. Therefore, thanks to the good tradeoffs in 

terms of performance, robustness and cost, our proposed latches are particularly suitable to be adopted on critical paths. 

Index Terms— Transient Faults, Soft Errors, Static Latch, Hardened Latch, Robust Design.  

——————————      —————————— 

1 INTRODUCTION

HE continuous advances of microelectronic technology are 

leading to an aggressive reduction of device dimensions 

down to the nanometer region. Because of the consequent 

reduction of circuit node capacitances, together with the simul-

taneous decrease of power supply voltages, the amount of 

charge stored on a circuit node is becoming increasingly small-

er, making circuits more susceptible to spurious voltage glitch-

es, caused by cosmic ray neutron or alpha-particle hits [1-5]. 

Such spurious voltage glitches are generally referred to as tran-

sient faults (TFs). If in the past TFs had been a concern only for 

space applications, nowadays they are recognized as a problem 

even at the sea level [6]. In particular, for terrestrial applica-

tions, high-energy neutrons are the dominating source of TFs, 

and the susceptibility of modern ICs to TFs is expected to in-

crease with the scaling of technology node [7, 8, 9, 6]. 

When a TF affects a memory cell or a storage element (latch 

or flip-flop), it can cause a flip of the stored bit, thus giving rise 

to a soft error (SE), also referred to as single event upset (SEU). 

Soft errors have traditionally been recognized as a problem for 

high-density memories, because of their small cell size [10], 

[11]. Error correcting codes (ECCs), in particular single error 

correcting/double error detecting codes, have been successfully 

employed to guarantee a satisfactory level of memory reliabil-

ity. Recently, because of the increasing probability of having 

multiple bit upsets [12], memory designers are facing new and 

challenging problems. 

A SE may be also generated because of a TF affecting com-

binational logic, when the generated spurious voltage glitch 

propagates till the input of a sampling element. In this regard, 

however, it has been proven [13, 14] that SEUs affecting stor-

age elements (latches and flip-flops) within sequential logic are 

by far the largest contributor to soft error rate (SER) in logic. 

For this reason, extensive research efforts have been recently 

devoted to devising novel hardening schemes/approaches for 

latches and flips-flops. Some approaches rely on the modifica-

tion of the latch structure in order to make it robust inde-

pendently of the hitting particle energy. This is the case of the 

scheme proposed in [10], referred to as DICE cell, and the latch 

in [11, 15]. These latches make use of two independent feed-

back loops controlling the output. This way, a TF affecting one 

of the loops can not alter the output logic value. Also the latches 

in [13], [16] and [17] present this characteristic. As for the 

latches in [13, 16], their robustness relies on the deactivation of 

the feedback loop (during the latching phase), thus avoiding the 

generation of soft errors due to TFs affecting their nodes. The 

latch in [17], instead, re-uses the scan portion of a scan FF to 

duplicate the latch, thus producing two independent values, that 

are feeding an output stage first exploited in [18] for robust 

latches, then denoted as C-element in [17]. For all these latches, 

TFs affecting any of their internal or output nodes can not pro-

duce an output SE. 

Other approaches aim at improving the latches’ robustness 

against TFs by increasing node capacitances and/or the strength 

of some transistors. For instance, this approach is adopted by 

the latches in [19, 20, 21, 18, 22, 23]. In particular, the robust-

ness of [19, 20, 21, 18] derives from the idea of either splitting 

the internal nodes and adopting proper feedback structures, or 

using a Schmitt trigger-like scheme. Instead, solutions in [22, 

23] improve the latch robustness by inserting either explicit 

capacitances, or transistors acting as filters for voltage glitches. 

All latches in [19, 20, 21, 18, 22, 23] include nodes that, if af-

fected by a TFs, may produce an output SE.  

In this paper, first a new robust latch able to tolerate TFs in-

dependently of the hitting particle energy is presented. It is 

based on the latch structure introduced in [24], and will be here-

inafter referred to as High Performance Robust (HiPeR) latch. 

Then, a modified version of such a HiPeR latch, referred to as 

HiPeR-CG, is also proposed, that is suitable to be used together 

with clock gating (CG) [25]. In fact, as shown in Section 4, TFs 

affecting some internal nodes of the HiPeR latch may leave its 

output in a high impedance state. If this event happens when 

clock gating is activated to reduce power consumption, the high 

impedance node may be improperly charged/discharged to an 

incorrect logic value due to leakage current, and a SE may orig-

inate. This is not expected to be a problem if clock gating is not 

adopted. In fact, also in the perspective of increasing leakage 

currents with technology scaling [26], since the latch operation 
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frequency will also increase, the output of the latch will remain 

in a high impedance state for a time interval that will be too 

short to allow leakage currents to charge/discharge the output 

node. 

To cope with the problem possibly arising in case of clock 

gating, the HiPeR-CG latch is proposed. Differently from 

HiPeR, HiPeR-CG is such that its output can not remain in a 

high impedance state when a TF affects any of its internal 

nodes, thus being suitable to be used together with clock gating. 

The proposed latches are compared to each others, as well as 

to the standard latch [27], and to the most recently presented 

robust latches we are aware of [19, 13, 20, 15, 21, 16, 11]. The 

solution in [17] has not been considered for comparison pur-

poses, since it is oriented to scan FFs.   

It will be shown that the HiPeR and HiPeR-CG latches fea-

ture considerably better characteristics in terms of performance 

than all other considered robust latches, but for the latch in [20], 

which presents a comparable input-output delay. In addition, 

our proposed latches provide higher or comparable robustness 

to TFs compared to the considered alternative robust solutions, 

except for the latch in [15], which features the higher robust-

ness. This latter, however, is the one with the highest cost in 

terms of area and power among all compared latches.   

More in details, our latches feature higher area than the 

latches presenting lower robustness [19, 13, 20, 21, 16] while, 

as for power, the latch in [16] is the less consuming robust solu-

tion, but it is considerably slower and less robust than our pro-

posed latches.  Finally, compared to the latch in [11], the pro-

posed solutions present comparable area, power and robustness, 

but are considerably faster. Therefore, thanks to the good 

tradeoffs in terms of performance, robustness and cost, our pro-

posed latches are particularly suitable to be adopted on critical 

paths. 

The rest of the paper is organized as follows. In Section 2, 

the HiPeR latch structure and behavior are described. In Section 

3, some results of the electrical level simulations performed to 

verify the HiPeR latch behavior are reported. In Section 4, the 

effects of leakage currents on the HiPeR latch, when clock gat-

ing is applied, are analyzed. In Section 5, the HiPeR-CG latch is 

introduced. In Section 6, some results of the electrical level 

simulations performed to verify the HiPeR-CG latch behavior 

are reported. In Section 7, the proposed latches are compared to 

each others, and to alternative solutions (including the standard 

latch), considering cost and TF robustness as metrics for com-

parison. Finally, some conclusions are drawn in Section 8. 

2 PROPOSED HIPER LATCH 

The proposed HiPeR latch (Fig. 1) relies on two basic prin-

ciples: i) triplication of the latch internal node driving a special 

output stage (first exploited in [18] for robust latches, then de-

noted as C-element in [17]) allowing the output to change its 

logic value accordingly to the value of the majority of the inter-

nal nodes; ii) design of two proper independent feedback loops, 

that are activated during the latching phase (here assumed to 

occur when CK=1).  

The idea in i) above allows to tolerate TFs affecting internal 

nodes, while the design principle in ii) allows to tolerate also 

TFs affecting the output node. As for TFs affecting the input 

node, as discussed in details in Section 7, the HiPeR latch pro-

vides high robustness, similarly to the previous solutions in [13, 

15, 16, 17, 11]. 

The electrical scheme of the proposed HiPeR latch is shown 

in Fig. 1. Transistors MN3 and MP4 (driven by the output Q) 

should be dominant over transistors MP3 and MN4 (driven by 

the internal node INT2), respectively. The behavior of the latch 

will be now described in details.  

When CK=0, the latch is transparent, and the logic value d 

at the input node D propagates to the output Q and to the inter-

nal node INT2 through transfer gates TG1 and TG2, respective-

ly. Then, the complemented logic value d’ propagates to the 

internal nodes driving the output C-element, that is INT3 

(through inverter I2), INT1a (through the series MP3-MN3), 

and INT1b (through the series MP4-MN4). Thus, the C-element 

confirms the logic value d at the output node Q. It is worth no-

ticing that, when CK=0, transistors MP7 and MN7 are OFF to 

avoid possible contention on node INT2. Furthermore, TFs af-

fecting the latch during the clock low phase are not of concern, 

since the output of the latch is not valid during such a clock 

phase.  

Instead, when CK=1, the transfer gates TG1 and TG2 are 

OFF and the input node D is disconnected from the output node 

Q. The value previously charged on node Q is maintained by 

the C-element, which is driven by two independent feedback 

loops (Fig. 1): i) the feedback loop denoted by FL1, including 

the output node Q and the internal nodes INT1a and INT1b; ii) 

the feedback loop denoted by FL2, composed by the back-to-

back inverters I1 and I2 and including internal nodes INT2 and 

INT3. This way, if a TF affects a latch internal node, it may 

change the state of only one of the two feedback loops, so that 

the logic value at the output Q is preserved. Furthermore, 

thanks to the previously mentioned dominance of transistors 

MN3 and MP4 (driven by the output Q) over transistors MP3 

and MN4 (driven by internal node INT2), TFs affecting nodes 

INT2 or INT3 cannot change the logic values of nodes INT1a 

and INT1b, so that they cannot alter the output value Q. 

Let us now describe in details the behavior of the latch in 
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Fig. 1. Electrical structure of the presented HiPeR latch.  
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case of TFs affecting its internal and output nodes when CK=1 

(latching phase). In case of TFs affecting the internal node 

INT1a, the following two conditions can be distinguished: i) 

Q=1, thus INT1a=INT3=0 (the series MP5-MP6 is on); ii) Q=0, 

thus INT1a=INT3=1 (the series MP5-MP6 is OFF). In case i), 

the TF makes INT1a flip to 1, thus temporarily turning OFF 

MP5, and leaving the output Q in a high impedance state. How-

ever, the correct logic value of the output is not altered, and the 

conductive transistor MN3 restores the correct value 0 on 

INT1a, thus making MP5 turn on again. In case ii), the TF 

makes INT1a flip to 0, thus temporarily turning on MP5. How-

ever, since INT3=1, MP6 is kept OFF and the logic value of Q 

is not altered. 

Similarly, in case of TFs affecting INT1b, the following two 

conditions might be in order: i) Q=1, thus INT1b=INT3=0 (the 

series MN5-MN6 is OFF); ii) Q=0, thus INT1b=INT3=1 (the 

series MN5-MN6 is on). In case i), the TF makes INT1b flip to 

1, thus temporarily turning MN6 on. However, since INT3=0 (it 

is not altered by the TF) MN5 remains OFF, and the logic value 

of Q is not altered. In case ii), the TF makes INT1b flip to 0, 

thus temporarily turning OFF MN6 and leaving the output Q in 

a high impedance state, thus not altering its correct logic value.  

As for TFs affecting INT2 and INT3, they may produce in-

correct logic values on both nodes INT2 and INT3, since the 

positive feedback loop constituted by inverters I1 and I2 could 

confirm the wrong voltage value till the following CK cycle. 

The incorrect logic value on INT2 may turn on transistors MP3 

or MN4, thus generating a contention between transistor MP3 

and MN3 (that are driving node INT1a), or between transistors 

MP4 and MN4 (that are driving node INT1b). Despite the pos-

sible contention, INT1a and INT1b do not change their logic 

value, since MN3 and MP4 (driven by the output node Q) are 

dominant over MP3 and MN4. However, the electrical conflict 

gives rise to an increase in static power consumption till the 

following clock cycle. Moreover, both the series MP5-MP6 and 

MN5-MN6 are turned OFF, thus leaving node Q in a high im-

pedance state, so that the correct output value is maintained and 

the latch keeps on working correctly. 

As for TFs affecting the output node Q when CK=1, simi-

larly to the case of the previous solutions in [11, 13], they gen-

erate only a voltage glitch, whose width and amplitude depend 

directly on the amount of charge injected by the hitting particle, 

and inversely on the strength of the transistor driving the node 

(that is, the series MP5-MP6 or MN5-MN6) and on the fan-out 

load. Afterwards, since  the series of transistors driving the out-

put node keeps on conducting also after the TF exhaustion, the 

correct output value is restored.  

Finally, let us consider the case of a TF affecting node INT2 

or INT3 when the clock is gated. If a following TF affects node 

Q, an incorrect logic value may be feedbacked, thus giving rise 

to a SE. However, the likelihood of this event (that is the com-

bination of a TF affecting INT2 or INT3, followed by a second 

TF affecting node Q) can be considered negligible, especially 

for latches adopted for terrestrial applications. 

3 HIPER LATCH IMPLEMENTATION AND 

VERIFICATION 

The proposed HiPeR latch has been implemented consider-

ing a standard 90nm CMOS technology with Vdd = 1V and a 

clock frequency of 500MHz. The transistors have the following 

aspect ratios (Fig. 1): (i) (W/L) = 1 for the transistors MN2, 

MN3, MN4, MN5, MN6, MN7, MP3, and the nMOS of inverters 

I1 and I2; (ii) (W/L) = 2 for the transistors MN1, MP2, MP5, 

MP6, MP7 and the pMOS of inverters I1 and I2; (iii) (W/L) = 4 

for the transistors MP1 and MP4. As for the clock signal, it has 

been generated by a buffer with a conductance equal to 10x that 

of a minimum sized symmetric inverter.  

The behavior of the HiPeR latch qualitatively described in 

the previous section has been verified by means of conventional 

and Monte Carlo electrical level simulations, performed consid-

ering statistical variations (with uniform distribution) up to the 

20% of power supply, oxide thickness, transistor threshold volt-

age, and electron/hole mobility.  

Transient faults producing both negative glitches (on nodes 

with a high logic value) and positive glitches (on nodes with a 

low logic value) have been emulated by connecting to the af-

fected node an ideal current generator, denoted by Iinj(t). As 

proposed in [1], and reported in Eq. (1), it presents a double 

exponential pulse shape current, allowing to emulate the current 

produced by an alpha-particle hit 

 

                    (1) 

 

The parameter I0 depends on the amount of injected charge, 

while  represents the collection time-constant of the junction, 

and   accounts for the ion-track establishment time constant 

[28]. 

As an example, Figures 2-4 report the results of some simula-

tions performed during the latching phase (i.e., when CK=1), 

under nominal values of electrical parameters. Particularly, 
Figs. 2(a) and (b) show the effects of TFs affecting the internal 

nodes INT1a and INT1b, respectively. As can be seen, the parti-

cle hits produce a voltage glitch that changes temporarily the 

logical state of the affected node. However, as described before, 

the correct logic value of INT1a and INT1b are restored by the 

respective driving transistors, so that the logic value of the out-

put Q is not altered by these TFs. 

Similarly, Figs. 3(a) and (b) report the effects of TFs affecting 

the internal nodes INT2 and INT3, respectively. The particle hits 

make the logic values of both nodes INT2 and INT3 flip. Alt-

hough these incorrect logic values are maintained till the fol-

lowing falling edge of CK, the correct logic value of the output 

Q is not altered, and the latch keeps on working correctly. 



4 IEEE TRANSACTIONS ON JOURNAL NAME,  TC-2009-08-0440 

 

Finally, Fig. 4 shows the effects of TFs affecting the latch out-

put node Q. The particle hits produce a voltage glitch on the 

output node, that changes temporarily its logical state. The cor-

rect output logic value is recovered within a time interval that 

depends directly on the amount of charge injected by the hitting 

particle, and inversely on the conductance of the transistors 

driving the output node (i.e., the series MP5-MP6 and MN5-

MN6). It is worth noticing that, even though the correct value of 

Q is restored, the glitch generated at the output Q may propa-

gate through the downstream logic and be captured by a 

memory element, or it may alter the value stored in a high im-

pedance node within a dynamic circuit, thus possibly resulting 

in a SE. However, this may be the case also for all robust latch-

es. This will be taken into account in the evaluation of the ro-

bustness of the compared latches in Section 7. 

Results analogous to those shown in Figs. 2-4 have been ob-

tained also by means of Monte Carlo simulations accounting for 

electrical parameter variations, as clarified at the beginning of 

this section.  
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Fig. 2. Simulation results obtained for nominal values of electrical parameters and TFs affecting the internal feedback nodes INT1a (a) and 
INT1b (b).  
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Fig. 3. Simulation results obtained for nominal values of electrical parameters and TFs affecting the internal feedback nodes INT2 (a) and 
INT3 (b).  
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4 EFFECTS OF LEAKAGE CURRENTS ON THE 

HIPER LATCH 

 

In this section, we analyze the effects that leakage currents 

can produce on the HiPeR latch, when clock gating is employed 

to reduce power consumption.  

As described in Section 2, TFs affecting nodes INT2 or INT3 

when CK=1 may produce incorrect logic values on both nodes 

INT2 and INT3. These incorrect logic values are maintained till 

the next clock phase making the latch transparent (CK=0). As a 

consequence, a contention between transistors MP3 and MN3 

(driving node INT1a), or between transistors MP4 and MN4 

(driving node INT1b) is generated. This contention does not 

change the logic values on INT1a and INT1b, thanks to the 

dominance of transistors MN3 and MP4 over transistors MP3 

and MN4, respectively. However, it gives rise to static power 

consumption. Moreover, the flip of INT2 and INT3 moves one 

of the internal nodes INT1a (if Q=0), or INT1b (if Q=1) to a 

high impedance state. In addition, the output C-element is 

turned OFF, thus making the output node Q be also in a high 

impedance state till the next clock low phase, thus retaining its 

correct logic value. 

As introduced earlier, even in the perspective of significantly 

increased leakage currents with scaled technologies, since the 

latch operation frequency will also increase with scaling, the 

output Q and nodes INT1a or INT1b will remain in a high im-

pedance state for a time interval lower or equal to half clock 

cycle, which will not be long enough to allow also high leakage 

currents to  change the logic value of these nodes. 

Instead, if clock gating is implemented to reduce power con-

sumption, the clock may be fixed to a constant value for long 

time intervals, which can be much longer than a single clock 

period. In this case, if a TF affects either INT2 or INT3, nodes Q 

and INT1a, or INT1b may remain in a high impedance state for 

a time interval long enough to be possibly charged/discharged 

to incorrect logic values by leakage currents. 

In order to analyze in details the effects of TFs affecting 

INT2 or INT3 when clock gating is activated, electrical level 

simulations have been performed, considering the same tech-

nology, power supply and implementation of the HiPeR latch 

reported in the previous section. The obtained results are shown 

in Figs. 5(a), (b), (c) and (d). 

Particularly, Fig. 5(a) shows the case of a TF occurring at 

time t1 and affecting node INT2 when it presents a low logic 

value, while Fig. 5(b) reports the case of a TF affecting INT2 

when it is at a high logic value. Similarly, the cases of TFs af-

fecting node INT3 when it presents a low and a high logic value 

are shown in Figs. 5(c) and (d), respectively. 

It can be observed that, in all cases, after the particle hit, 

nodes INT2 and INT3 flip to an incorrect logic value, thus turn-

ing off the output C-element and leaving the output Q in a high 

impedance state. Particularly, after the particle hit (at time t1), 

the voltage on the output node Q starts slowly swinging to an 
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Fig. 5. Simulation results for the HiPeR latch when the clock is kept constant to a high logic value and (a) a TF affects INT2 at t1, when it pre-
sents a low logic value; (b) a TF affects INT2 at t1, when it presents a high logic value; (c) a TF affects INT3 at t1, when it presents a low logic 
value; (d) a TF affects INT3 at t1, when it presents a high logic value.  
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incorrect logic value due to leakage currents. After a time inter-

val t = t2 – t1 ranging from 31ns (Fig. 5(a)) to 149ns (Fig. 

5(d)), the output node Q moves to an incorrect logic value. 

More in details, from Figs 5(a) and (d) it can be observed 

how leakage currents flowing through the series MP5-MP6 and 

MN5-MN6 start to slightly charge the node Q after t1, while 

from Figs 5(b) and (c) we can observe how such leakage cur-

rents start to slightly discharge the node Q after t1. This process 

continues during the time interval t=t2-t1 (Figs 5(a), (b), (c) 

and (d)). As described before, during t an incorrect logic value 

of INT2 (i.e., provoked by a TF affecting INT2 or INT3) may 

turn on transistors MP3 or MN4 (Fig. 1), thus generating a con-

tention between transistors MP3 and MN3 (which drive node 

INT1a), or between transistors MP4 and MN4 (which drive 

node INT1b). The logic value on nodes INT1a and INT1b is not 

changed by this contention, because MN3 and MP4 are de-

signed to be dominant over MP3 and MN4. However, the con-

tinuous increase (decrease) of the voltage on node Q due to 

leakage makes transistor MP4 (if Q=0, in Figs. 5(a), (d)) or 

MN3 (if Q=1, in Figs. 5(b), (c)) become less conductive, thus 

less dominant over transistor MN4 or MP3, respectively. At 

time t2, transistors MP4 or MN3 are eventually no longer domi-

nant over MN4 or MP3, and nodes INT1a and INT1b flip to an 

incorrect logic value, thus making the latch provide a wrong 

output value. 

5 PROPOSED HIPER-CG LATCH 

In order to avoid the problems described in the previous sec-

tion, which might originate if clock gating is adopted, a simple 

modification to the HiPeR latch is here proposed. This solution, 

hereinafter referred to as HiPeR-CG, is suitable to be used to-

gether with clock gating. In fact, it prevents the output Q from 

being in a high impedance state, after a TF affects any of its 

internal nodes. The electrical scheme of such a proposed latch 

is shown in Fig. 6. 

The main differences with respect to the HiPeR latch are the 

following: i) the pMOS transistor MP7 is now driven by the 

internal node INT1a, rather than by CK’; ii) the nMOS transis-

tor MN7 is now driven by the internal node INT1b, rather than 

by CK; iii) addition of two transistors MP8 and MN8 driven by 

the output node Q; iv) addition of the transistor MN10, driven 

by CK, in series with MN5 and MN6, thus modifying the output 

C-element. 

Let us now describe the behavior of the HiPeR-CG latch. 

When CK=0, the logic value (d) present at the input node D 

propagates to the output Q through transfer gate TG1, and to 

INT2 through transfer gate TG2. Since the voltage on Q is equal 

to the voltage on INT2, the complemented logic value of the 

input is propagated to INT3 (through the C-element composed 

by MP8, MN8 and I2) and to INT1a (through MP3 or MN3, 

depending on whether d=0 or d=1, respectively) and to INT1b 

(through MP4 or MN4, depending on whether d=0 or d=1, re-

spectively). Thus, INT1a=INT1b=INT3, and the logic value on 

INT2 is confirmed by the C-element composed by MP7, MN7 

and I1. It is worth noticing that, when CK=0, the additional 

transistor MN10 is OFF, thus avoiding possible contentions 

between the gate driving the latch input and the series transis-

tors MN10-MN5-MN6. 

Instead, when CK=1, transfer gates TG1 and TG2 are turned 

off, while transistor MN10 is turned on. As a consequence, the 

value previously present on node Q is maintained by the modi-

fied output C-element.  

The behavior of the proposed HiPeR-CG latch in case of 

TFs is similar to that of the latch in Fig. 1, described in Section 

2. However, node INT2 is now driven by a C-element com-

posed by the transistors MP7 and MN7 and the inverter I1, thus 

avoiding that TFs generated on node INT3 can propagate to 

INT2. Similarly, node INT3 is driven by another C-element 

composed by the transistors MP8 and MN8 and the inverter I2, 

thus preventing TFs generated on node INT2 from being propa-

gated to INT3. Therefore, differently from the HiPeR latch, TFs 

affecting nodes INT2 or INT3 of the HiPeR-CG latch produce a 

voltage glitch that is not confirmed, so that the correct voltage 

value is recovered on the hit node (i.e., INT2 or INT3), and the 

output node Q is not left in a high impedance state. 

Finally, as for TFs affecting the other latch nodes (i.e., nodes 

INT1a, INT1b, and Q), similarly to the case of the HiPeR latch, 

they are tolerated. 

6 HIPER-CG LATCH IMPLEMENTATION AND 

VERIFICATION 

The HiPeR-CG latch has been implemented considering a 

standard 90nm CMOS technology with Vdd = 1V. The following 

transistor aspect ratios have been considered (Fig. 6): (i) 

(W/L)=1 for the transistors MN2, MN3, MN4, MN5, MN6, 

MN7, MN8, MN10, MP3 and the nMOS of inverters I1 and I2; 

(ii) (W/L)=2 for the transistors MN1, MP2, MP5, MP6, MP7, 

MP8 and the pMOS of inverters I1 and I2; (iii) (W/L)=4 for the 

transistors MP1 and MP4. The particle hits have been emulated 

by connecting an ideal current generator to the affected node, as 

described in Section 3. 
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Fig. 6. Electrical structure of the proposed HiPeR-CG latch.  
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As for the HiPeR-CG latch behavior, considerations analo-

gous to those given for the HiPeR latch hold true in case of 

normal operation (that is, without clock gating). Instead, when 

clock gating is applied, the HiPeR-CG latch differs considera-

bly from the HiPeR latch. The simulation results achieved for 

this latter case are here reported. 

 Figs. 7(a), (b), (c) and (d) show the cases of TFs affecting 

either INT2 or INT3 at a time instant denoted by t1, while keep-

ing the clock fixed at its latching value (CK = 1 in our case) for 

long time intervals. 

More in details, Fig. 7(a) and (b) report the cases of a TF af-

fecting node INT2 when it presents a low and a high logic val-

ue, respectively. As can be seen, the particle hits produce a volt-

age glitch that changes temporarily the state of the affected 

node. However, the correct logic values of INT2 and INT3 are 

restored after a time interval depending on the particle energy, 

strength of the transistors driving the node and node capaci-

tance.  

Analogous considerations hold true for the case of TFs af-

fecting INT3, reported in Figs. 7(c) and (d). However, the logic 

value of the output Q is not altered by these TFs in all consid-

ered cases. 

7 COMPARISON EITH ALTERNATIVE SOLUTIONS 

In this section, the proposed HiPeR (Fig. 1) and HiPeR-CG 

latches (Fig. 6) are compared with the standard latch [27] and 

with the most recently proposed robust latches in [19, 13, 20, 

15, 21, 16, 11], considering robustness against TFs and cost (in 

terms of area, power and delay). The solution in [17] has not 

been considered for comparison purposes, since it has been 

proposed for scan FFs.  

Electrical level simulations of all compared latches have 

been performed employing a standard 90nm CMOS technology, 

Vdd = 1V and a clock frequency of 500MHz. Additionally, for 

the purpose of comparison, the case of minimal area design 

(i.e., minimum possible transistor sizes making the latches work 

properly) has been considered for all latches. 

7.1 Robustness Against TFs 

In this subsection, the robustness of the considered latches 

against TFs are evaluated and compared to each other. As dis-

cussed in [20], the SER of a latch can be expressed by the sum 

of several contributions, each referred to a node of the latch. In 

turn, the TF susceptibility of each node can be expressed as a 

function of: i) the window-of-vulnerability (WOV), which is 

the time interval within a CK period (TCK) during which a TF 

hitting the node can propagate till the output of the latch and 

give rise to a SE; ii) the critical charge (Qcrit) of the considered 

node, that is the amount of charge collected by the hit node that 

produces a voltage glitch with an amplitude exceeding the logic 

threshold of the fan-out gate. Therefore, the total SER for a 

latch is given by: 

  

               (2) 

           
             (a)              (b) 

 

            
           (c)              (d) 

Fig. 7. Simulation results for the HiPeR-CG latch when the clock is kept constant to a high logic value and (a) a TF affects INT2 at t1, when it 
presents a low logic value; (b) a TF affects INT2 at t1, when it presents a high logic value; (c) a TF affects INT3 at t1, when it presents a low 
logic value; (d) a TF affects INT3 at t1, when it presents a high logic value.  
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where n is the number of nodes, i is a constant proportional to 

the area of the node i, and  and  are fitting parameters. 

As discussed in [20], SEs caused by TFs affecting the inter-

nal/output nodes of a latch are the major contributors to the 

overall latch SER, while SEs caused by TFs affecting the latch 

input node have a marginal impact. This mainly because the 

WOV of the latch input node (which is generally equal to the 

latch setup time) is considerably smaller than the WOVs of the 

latch internal and output nodes, which is generally equal to half 

of the CK period [20], that is to the clock latching phase (CK = 

1 for all considered latches). Therefore, for comparison purpos-

es, the robustness of the latches has been evaluated by consider-

ing only TFs affecting their internal and output nodes when 

CK=1. 

In order to compare the robustness of the latches, the critical 

charges of internal and output nodes for all considered latches 

are evaluated. We can distinguish three kinds of nodes. Nodes 

of kind i), that is nodes such that an affecting TF produces only 

a voltage glitch on the node, without propagating to (i.e., affect-

ing) the output node Q, independently of the energy of the hit-

ting particle. For these nodes, the critical charge is convention-

ally set to infinity: Qcrit → ∞. Nodes of kind ii), that is nodes 

such that an affecting TF produces a voltage glitch that may 

propagate to the output Q, whose correct value is restored after 

a time interval depending on the particle energy, on the strength 

of the transistor driving the node and on the node capacitance. 

As discussed previously, even though the correct value of Q is 

restored, the glitch generated at the output may propagate 

through the downstream logic and be captured by a memory 

element, or it may alter the value stored in a high impedance 

node within a dynamic circuit, thus possibly producing a SE. 

For such nodes, the critical charge Qcrit is evaluated by means of 

Hspice simulations, as the amount of collected charge that gen-

erates an output glitch with an amplitude equal to half the pow-

er supply, that is equal to the logic threshold of a symmetric 

fan-out gate. Finally we can identify nodes of kind iii), namely 

nodes such that an affecting TF produces an upset at the output 

of the latch. This is the most critical kind of nodes, since an 

output soft error may be generated. Analogously to nodes of 

kind ii), the critical charge Qcrit is evaluated by measuring (by 

means of Hspice) the amount of collected charge resulting in an 

output voltage glitch equal to the fan-out logic threshold. 

As for the proposed HiPeR latch, TFs affecting the internal 

nodes INT1a and INT1b do not alter the logic value of the out-

put Q (they are tolerated by design). Therefore, these nodes are 

of kind i) and their critical charge is assumed to be Qcrit(INT1a) = 

Qcrit(INT1b) → ∞. Analogous considerations hold true for nodes 

INT2 and INT3, so that Qcrit(INT2) = Qcrit(INT3) → ∞. As for TFs 

affecting directly the output node Q, they produce a voltage 

glitch on such a node that is recovered after a time interval de-

pending on the particle energy, on the strength of the transistor 

driving the node and on the node capacitance. Therefore, this 

node is a node of kind ii) and, from Hspice simulations, a criti-

cal charge Qcrit(Q) = 7fC has been estimated. Finally, considering 

the HiPeR-CG latch, results analogous to those obtained for the 

HiPeR latch have been found. Particularly, it is Qcrit(Q) = 7.9fC.  

In order to compare the robustness of all considered latches, 

two metrics are introduced. They are denoted by RHiPeR and 

RHiPeR-CG, and report the ratios between the SER of the compared 

latches and that of the HiPeR and HiPeR-CG latch, respective-

ly. They are defined as follows:  
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 (4) 

If R>1, the reference latch (HiPeR or HiPeR-CG) is more 

ro- bust against TFs than the compared latch. 

The factor PNi (proportional to parameter 

i in (2)) accounts for the probability that a TF 

affecting the circuit hits a susceptible node. It is given by: 

                                     

                                   (5) 

 

where ADi represents the (susceptible) area of the drain junc-

tions of node i, while ATOT represents the area of all compared 

latches (employed as a normalization factor). For the HiPeR 

and HiPeR-CG latches, the following values of PNi have been 

found: PINT1a= 0.007; PINT1b = 0.018; PINT2= 0.021; PINT3= 0.011; 

PQ= 0.032. 

Evaluations analogous to those carried out for the proposed 

latches have been performed also for all compared latches. The 

obtained results are summarized in Tab. 1. For each latch, the 

table reports the number of susceptible nodes and their kind, the 

total susceptible area normalized to the total area of the latches, 

considering only nodes of kind ii) and iii), and the minimum 

and maximum values of the critical charge obtained considering 

all susceptible nodes. Finally, the last two columns report the 

values of the estimated RHiPeR and RHiPeR-CG, as defined in (3) 

and (4), respectively, whose values have been computed deriv-

ing the value of the parameter  from [29] ( = 72  1012 1/C 

for the considered 90nm CMOS technology). 

As can be seen, the standard latch, as well as the robust 

latches in [19, 20, 21] include nodes of kind iii), so that a TF 

affecting these nodes may result in a soft error. Instead, all other 

latches, including the proposed ones, present only nodes of kind 

i) and ii), thus avoiding the generation of a SE at the latch out-

put. Among all robust latches, the HiPeR and HiPeR-CG fea-

ture higher or comparable robustness, but for the latch in [15]. 

However, as clarified in the following subsection, this latter 

requires higher area overhead, propagation delay and power 

consumption.  

7.2 Cost Comparison 
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The cost of the latches has been compared in terms of re-

quired area overhead, propagation delay, power consumption 

and power-delay product. Electrical level simulations of all 

compared latches have been performed, considering a standard 

90nm CMOS technology, Vdd = 1V and a clock frequency of 

500MHz. The propagation delay has been estimated by evaluat-

ing the input-output delay (D-Q) when the latch is transparent. 

Particularly, it has been obtained by averaging the time elapsing 

between the occurrence of a transition at the latch input and the 

occurrence of the corresponding transition of the latch output 

(both measured at the 50% of Vdd,) for both 01 and 10 in-

put transitions. Finally, as for power consumption, it has been 

evaluated assuming an input switching activity of 25%. Moreo-

ver, the power consumption of the clock drivers has been in-

cluded in the evaluation. For all latches, a clock driver com-

posed by two cascaded inverters with aspect ratios (W/L)P=20 

and (W/L)N=10 has been considered. The static power con-

sumption due to leakage has been included as well. 

The results of the performed evaluations are reported in Tab. 

2. As can be seen, apart from the standard latch, the robust 

latches in [21, 13] are the smallest, while the proposed HiPeR-

CG latch is the one with the highest performance. The latch in 

[16] is the one with the lowest power, and power delay product. 

For a detailed comparison, the relative cost in terms of area 

(A), power consumption (P), propagation delay (d) and 

power-delay product ((Pd)) of the considered latches over 

the HiPeR and HiPeR-CG latches are reported in Tab. 3. In the 

last column, the relative SER (SER) is also reported. For the 

HiPeR latch, the relative variations have been computed as:  = 

100(HiPeR – compared_latch) / HiPeR). Similarly, for the 

HiPeR-CG latch. 

Compared to the standard latch, similarly to all considered 

robust solutions, our latches require higher area overhead and 

power consumption.  

As for propagation delay, our proposed latches are faster 

than all other considered latches (included the standard one). 

Particularly, the HiPeR-CG latch is the fastest one, with a prop-

agation delay slightly lower (-6%) than that of the HiPeR latch. 

Compared to the HiPeR-CG latch, the increase in propagation 

delay of the alternative solutions ranges from +3.4% for the 

latch in [20], to +195% for the latch in [21].  

As for robustness, the HiPeR and HiPeR-CG latches feature 

a SER that is lower than, or comparable to that of the other 

considered latches, but for the latch in [15], which features a 

lower SER, but requires a higher area overhead, propagation 

delay and power consumption. 

As for area overhead, our latches feature higher area than the 

latches in [19, 13, 20, 21, 16] which, however, are considerably 

slower and provide a higher SER. 

As for power consumption, the HiPeR and HiPeR-CG latch-

es consume more power than the scheme in [16, 20, 13, 19] 

which, however, are slower and less robust. 

8 CONCLUSIONS 

In this paper first a new high performance robust latch (de-

noted as HiPeR latch) has been presented. It is insensitive to 

TFs affecting its internal and output nodes by design, inde-

pendently of the energy of the hitting particles. Then, a modi-

fied version of the HiPeR latch (denoted as HiPeR-CG latch) 

has been proposed, that is suitable to be used together with 

clock gating. In fact, as shown in the paper, when clock gating 

is implemented to reduce power consumption, TFs affecting 

some internal nodes of the HiPeR latch may leave its output 

TABLE 2 
ABSOLUTE COST OF THE COMPARED LATCHES  

 

TABLE 3 
RELATIVE COST AND ROBUSTNESS OF THE COMPARED LATCHES 

WITH RESPECT TO THOSE OF THE HIPER LATCH (FIG. 1) AND THE 

HIPER-CG LATCH  (FIG. 6)  

 

TABLE 1 
COMPARISON OF THE ROBUSTNESS OF THE HIPER LATCH (RSER-

HIPER) AND THE HIPER-CG  LATCH (RSER-HIPER-CG) WITH  THAT OF 

THE STANDARD LATCH AND THE  OTHER CONSIDERED ROBUST 

LATCHES 
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node in a high impedance state, thus possibly allowing leakage 

currents to change the stored logic value, with consequent relia-

bility risks. It has been shown that this problem is overcome by 

the proposed HiPeR-CG latch at the cost of 13% extra area, and 

with no impact on performance, which is indeed improved. 

It has been shown that the HiPeR and HiPeR-CG latches 

feature considerably better characteristics in terms of perfor-

mance compared to all other considered robust latches, but for 

the latch in [20], which presents comparable input-output delay, 

but features a considerably lower robustness to TFs. In addition, 

our proposed latches provide higher or comparable robustness 

to TFs compared to the considered alternative robust solutions, 

except for the latch in [15], which features the higher robust-

ness, but requires higher costs in terms of area and power.  

More in details, our latches features higher area than the 

latches presenting lower robustness [19, 13, 20, 21, 16]. As for 

power, the latch in [16] is the less consuming, but it is consider-

ably slower and less robust than our proposed latches.  Finally, 

compared to the latch in [11], the proposed solutions present 

comparable area, power and robustness, but are considerably 

faster. Therefore, thanks to the good tradeoffs in terms of per-

formance, robustness and cost, our proposed latches are particu-

larly suitable to be adopted on critical paths. 
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