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Behavioral/Cognitive

Human Frontal–Subcortical Circuit and Asymmetric Belief
Updating

Christina Moutsiana,1 Caroline J. Charpentier,1,2 Neil Garrett,1 Michael X. Cohen,3 and Tali Sharot1

1Affective Brain Laboratory, Department of Experimental Psychology, University College London, London, WC1H 0AP, United Kingdom, 2Institute of
Cognitive Neuroscience, University College London, London, WC1N 3AR, United Kingdom, and 3Department of Psychology, University of Amsterdam,
Amsterdam, 1018 XA, The Netherlands

How humans integrate information to form beliefs about reality is a question that has engaged scientists for centuries, yet the biological system
supporting this process is not well understood. One of the most salient attributes of information is valence. Whether a piece of news is good or bad
is critical in determining whether it will alter our beliefs. Here, we reveal a frontal–subcortical circuit in the left hemisphere that is simultaneously
associated with enhanced integration of favorable information into beliefs and impaired integration of unfavorable information. Specifically, for
favorable information, stronger white matter connectivity within this system, particularly between the left inferior frontal gyrus (IFG) and left
subcortical regions (including the amygdala, hippocampus, thalamus, putamen, and pallidum), as well as insular cortex, is associated with
greater change in belief. However, for unfavorable information, stronger connectivity within this system, particularly between the left IFG and
left pallidum, putamen, and insular cortex, is associated with reduced change in beliefs. These novel results are consistent with models suggest-
ing that partially separable processes govern learning from favorable and unfavorable information.
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Introduction
Human decision-making is guided by beliefs of what may happen
in the future, which are updated in response to new information.

Whether new information will significantly alter our views is
influenced partially by the question: is the news good or bad? In
particular, people tend to alter self-relevant beliefs to a greater
extent in response to favorable compared with unfavorable infor-
mation (Eil and Rao, 2011; Sharot et al., 2011), although signifi-
cant individual differences exist (Sharot et al., 2011; Moutsiana et
al., 2013; Chowdhury et al., 2014; Garrett et al., 2014).

The finding that valence affects how we alter beliefs fits with
the notion that emotion is fundamental to decision-making
(Loewenstein et al., 2001; Loewenstein and Lerner, 2003; Bechara
and Damasio, 2005; Bossaerts, 2009). Indeed, updating beliefs
involves not only brain regions known to perform complex cog-
nitive functions, such as regions of the frontal lobe (Li et al.,
2011a; Sharot et al., 2011; d’Acremont et al., 2013), but also key
structures for emotion, including the amygdala (Li et al., 2011b),
insula (Huber et al., 2015), and striatum (Li et al., 2011a;
d’Acremont et al., 2013), which also code statistical features used
for belief formation (Christopoulos et al., 2009; for review, see
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Significance Statement

Beliefs of what may happen in the future are important, because they guide decisions and actions. Here, we illuminate how
structural brain connectivity is related to the generation of subjective beliefs. We focus on how the valence of information is related
to people’s tendency to alter their beliefs. By quantifying the extent to which participants update their beliefs in response to
desirable and undesirable information and relating those measures to the strength of white matter connectivity using diffusion
tensor imaging, we characterize a left frontal–subcortical system that is associated simultaneously with greater belief updating in
response to favorable information and reduced belief updating in response to unfavorable information. This neural architecture
may allow valence to be incorporated into belief updating.
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Bossaerts, 2009; Gläscher et al., 2010; Payzan-LeNestour et al.,
2013). This leads to the hypothesis that the effect of valence on
belief updating is related to the ability of these regions to interact.

Although certain cognitive and perceptual demands can be
attributed to functionally specialized regions (Kanwisher, 2010),
learning is thought to be mediated by adaptive and dynamic net-
works (Lee et al., 2012), which can be characterized using con-
nectivity analyses (Conturo et al., 1999; Catani et al., 2002).
Frontal–subcortical circuits in particular are principal in mediat-
ing learning and behavior (Mega and Cummings, 1994). Abnor-
malities in this neural circuitry, such as disruption of the
connectivity between the nodes, are associated with a variety of
cognitive, affective, and neuropsychiatric disorders (Mayberg,
1997; Tekin and Cummings, 2002).

We hypothesize that valence-dependent belief updating in-
volves a complex network that links cortical regions with subcor-
tical structures known to be important for emotion, valuation,
and learning. To test this and characterize the neurological sys-
tem mediating valence-dependent learning, we capitalize on in-
dividual differences in both brain structure and behavior. This
approach has been used successfully in the past to study the neu-
ral systems underlying metacognition (Fleming et al., 2010), re-
ward learning (Samanez-Larkin et al., 2012), and long-term
memory (Cohen, 2011), to name a few (for review, see Kanai and
Rees, 2011).

We use probabilistic tractography (Johansen-Berg and Rush-
worth, 2009) to identify white matter (WM) tracts connecting
frontal and subcortical regions, the strength of which correlates
with asymmetric information integration across individuals. We
selected the medial frontal cortex (MFC) and inferior frontal
gyrus (IFG) as seed regions because of preliminary evidence that
asymmetric error coding in these regions is associated with
valence-dependent learning asymmetries (Sharot et al., 2011).
The left IFG especially has been shown to play a role in both
coding errors in response to unexpected desirable news (Sharot et
al., 2011) and inhibiting learning from errors in response to un-
expected undesirable news as suggested by a transcranial mag-
netic stimulation (TMS) study (Sharot et al., 2012). These
findings can be interpreted in light of literature suggesting that
the IFG encodes “Bayesian surprise,” reflecting violation of ex-
pectation based on a combination of previous knowledge with
new evidence (d’Acremont et al., 2013). It is also in accord with
documented functions of the IFG in error monitoring (Mitchell
et al., 2009), reversal learning (Cools et al., 2002), risk prediction
error (d’Acremont et al., 2009), and inhibition (Aron et al., 2004).
However, it is unlikely to mediate valence-dependent integration
of information in isolation. The IFG does not code for valence per
se, neither is it thought to mediate reward processing. Thus, we
seek a more comprehensive characterization of the neural system
that gives rise to valence-dependent belief updating.

Materials and Methods
Participants
Thirty-two volunteers (aged 18 –34 years; mean age, 22.8 years; 14 males)
were recruited via a University College London website. All completed a
diffusion tensor imaging (DTI) scan and a behavioral task. Fourteen
participants completed the behavioral task outside the scanner and 18
inside the scanner during a functional magnetic resonance imaging
(fMRI) scan. Here, we report the behavioral data and DTI data only.
Participants gave informed consent and were compensated for their
time. The study was approved by the University College London Re-
search Ethics Committee. Because we were interested in examining
healthy individuals, three subjects with a Beck Depression Inventory

(BDI) score above 12 were excluded a priori from the analysis as done
previously (Moutsiana et al., 2013; Chowdhury et al., 2014).

Stimuli
Forty-six short descriptions of negative life events (e.g., passenger in a car
accident, home burglary; Table 1) were presented in random order
(adapted from Moutsiana et al., 2013). All events were shown to all
participants. For each event, the average probability (base rate) of that
event occurring at least once to a person living in the same sociocultural
environment as the participant was determined from online resources
(e.g., Office for National Statistics, Eurostat, PubMed). Our participants
were all living in a similar sociocultural environment, so probabilities
were the same for all. Very rare or very common events were not in-
cluded; all event probabilities were between 10 and 70%. To ensure that
the range of possible overestimation was equal to the range of possible
underestimation, participants were told that the range of probabilities
were between 3 and 77%.

Table 1. Stimuli

Stimuli

Abdominal (stomach) surgery
Abnormal heart rhythm
Anemia
Anxiety
Appendicitis
Asthma
Being convicted of crime
Betrayed by friend
Bicycle theft
Bone fracture (break)
Computer crash with loss of important data
Deceived when playing online games
Develop an addiction
Diabetes type I
Food poisoning
Getting a fine
Having fleas/lice
Holiday cancelled because of natural disaster
Home burglary
Hospital stay longer than three weeks
Household accident
Insect infestation (e.g. ants) in your home
Knee surgery
Liver disease
Lose wallet
Lose your house keys
Lung disease
Migraine
Mouse/rat in house
Obesity
Passenger in a car accident
Severe cut by sharp knife
Severe injury because of accident (traffic or house)
Severe teeth problems when old
Skin burn
Sport-related accident
Stopped and searched by the police
Stung by a wasp
Theft from person
Trapped in a lift
Trapped in the tube
Victim of mugging
Victim of violence by stranger
Victim of violence with need to go to the emergency room
Wisdom tooth surgery
Witness a traumatizing accident
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Procedure
We used the frequently used “belief update” procedure (Sharot et al.,
2011, 2012; Moutsiana et al., 2013; Chowdhury et al., 2014; Garrett and
Sharot, 2014; Garrett et al., 2014; Korn et al., 2014; Kuzmanovic et al.,
2015). On each trial, one of 46 adverse life events was presented in ran-
dom order for 4 s, and participants were asked to estimate how likely the
event was to happen to them in the future. Participants had up to 8 s to
respond. They were then presented with the base rate of the event in a
demographically similar population for 2 s (see Fig. 1, procedure). Be-
tween each trial, a fixation cross appeared for a jittered duration (1– 4 s).

In a second session, immediately after the first, participants were asked
again to provide estimates of their likelihood of encountering the same
events, so that we could assess how they updated their estimates in re-
sponse to the information presented. Participants then rated all stimuli
on previous experience (“Has this event happened to you before?”; from
1 for never to 6 for very often), familiarity (“Regardless if this event has
happened to you before, how familiar do you feel it is to you from TV,
friends, movies, and so on?”; from 1 for not at all familiar to 6 for very
familiar), and negativity (“How negative would this event be for you?”;
from 1 for not negative at all to 6 for very negative).

Participants completing the task in the scanner responded using two
MRI-compatible response boxes with five buttons in each hand. Each
button corresponded to one digit.

Behavioral data analysis
Behavioral data analysis was equivalent to that
done previously (Sharot et al., 2011, 2012;
Moutsiana et al., 2013; Chowdhury et al., 2014;
Garrett et al., 2014). For each trial and each
subject, we estimated update as follows: favor-
able information update � first estimation �
second estimation; unfavorable information
update � second estimation � first estimation.
Thus, positive updates indicate a change to-
ward the base rate and negative updates a
change away from the base rate. For each par-
ticipant, we then averaged updates scores
across trials for which favorable information
was presented and separately for which unfa-
vorable information was presented. We then
calculated asymmetric information integration
as the difference between the two, with positive
values corresponding to greater update in re-
sponse to favorable information and negative
values to greater update in response to unfa-
vorable information.

Note that a recent study has shown that clas-
sifying trials using different methods— either
according to the subjects’ own rating of desir-
ability of the information or according to the
subjects’ estimates of the base rate rather than
self-risk—yields similar results (Garrett and Sha-
rot, 2014). Thus, we use the traditional design
and analysis here (Sharot et al., 2011). Moreover,
past studies have shown that the amount of up-
date does not alter whether subjects are asked to
estimate the likelihood of the event happening in
the future or the likelihood of the event not hap-
pening in the future (Sharot et al., 2011; Garrett
and Sharot, 2014). Thus, scores are not driven by
response to high and low numbers but to valence
per se. Because this has been established in the
studies above, we used the straightforward ver-
sion of the task here (i.e., eliciting estimation of an
event happening).

Data acquisition: DTI
Scanning was performed at the Birkbeck–
University College London Centre for Neuro-
Imaging using a Siemens Avanto 1.5 T MRI
scanner and a 32-channel head coil. Diffusion-

weighted images were acquired using echoplanar imaging (TR, 7500 ms;
TE, 104 ms). Each whole-brain volume comprised 46 contiguous axial
slices (voxel size, 2.3 mm isotropic). Diffusion-sensitizing encoding gra-
dients were applied to 64 directions (b � 1000 s/mm 2), and one volume
was acquired without diffusion weighting (b � 0 s/mm 2). We also ac-
quired a high-resolution MP-RAGE three-dimensional (3D) T1-
weighted structural scan (176 slices; TR, 2730 ms; TE, 3.57 ms) of the
whole brain.

DTI data analysis
Raw digital imaging and communications in medicine images were con-
verted into Neuroimaging Informatics Technology Initiative data format,
and all images were inspected manually for abnormalities and artifacts. DTI
data were analyzed using FMRIB (for Functional MRI of the Brain) Software
Library (FSL) tools (FSL version 5; http://fsl.fmrib.ox.ac.uk/fsl; Jenkinson
and Smith, 2001; Behrens et al., 2003). We followed the standard preprocess-
ing pipeline for diffusion-weighted images using FDT (FMRIB diffusion
toolbox): images were corrected for eddy currents and possible head motion
using affine registration (12 degrees of freedom) to a reference volume and
skull-striped using BET (FMRIB brain extract tool; Smith, 2002). From each
preprocessed image voxel, specific diffusion tensors were then calculated
using BEDPOSTX (Bayesian estimation of diffusion parameters obtained

Figure 1. Procedure. a, On each trial, participants were presented with a short description of one of 46 adverse events and asked
to estimate how likely this event was to occur to them in the future. They were then presented with the base rate of the event
occurring in a demographically similar population. The second session was the same as the first, except that the base rate of the
event to occur was not presented. Examples of trials for which the participant’s estimate was higher (b) or lower (c) than the base
rate. Here, for illustration purposes only, the blue and red frames denote the participant’s response (either a relative overestima-
tion or underestimation, respectively), and the blue and red filled boxes denote information that calls for an adjustment in a
favorable (b) or unfavorable (c) direction.
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using sampling techniques), which uses Markov
Chain Monte Carlo sampling to model crossing
fibers (Behrens et al., 2007).

Defining seed regions for DTI
Exact locations of seed regions were deter-
mined based on past studies (Sharot et al.,
2011, 2012) demonstrating a role for the left
and right IFG (Talairach coordinates x, y, z,
�48, 18, 16) and the right MFC (Talairach co-
ordinates x, y, z, �10, 62, 28) in belief updating
in this task. First, coordinates were converted
from the Montreal Neurological Institute
(MNI) space to Talairach space using Gin-
gerAle (http://www.brainmap.org/ale/), and
then masks were a priori defined as a 5 mm
sphere around the coordinates above using the
MarsBaR (Brett et al., 2002) toolbox. For the
probabilistic tractography analysis, each mask
was then transformed into each individual’s
DTI space.

In this procedure, DTI scans were trans-
formed to the FSL MNI space using rigid-body
transformations [FLIRT (FMRIB Linear Image
Restoration Tool); Jenkinson and Smith,
2001], and the inverse transformation matrix
was applied to the seed image masks, thus
transforming the group mask into each sub-
ject’s DTI space. Only voxels in the mask over-
lapping each individual’s nondiffusion brain
image were included in the masks. Masks were
then inspected manually and binarized. Partic-
ipant specific masks were then used as seed
voxels in separate fiber tracking analyses
below.

Fiber tracking
Fiber tracking was performed probabilistically using probtrackx (Beh-
rens et al., 2007), part of the FMRIB diffusion toolbox. From each voxel
in the seed mask, 5000 tract-following samples were generated, and a
curvature threshold of 0.2 was used. The output of this analysis is a
visitation map, namely a brain volume, in which each voxel has a prob-
ability value that corresponds to the number of pathways starting from
the seed region and passing through that particular voxel (Cohen et al.,
2009; van den Brink et al., 2014). The number of pathways is used widely
as one of the main indicators of tract strength (Johansen-Berg and Rush-
worth, 2009; van den Brink et al., 2014). Probabilistic tracking was per-
formed separately for each seed in a whole-brain analysis, and hence we
acquired 32 visitation maps per seed region, one for each participant.

Belief updating asymmetry and structural connectivity correlates
To test the hypothesis that information integration asymmetry is related
to connectivity strength between seed regions and subcortical areas, we
estimated separately each of the seeded tracts using subject specific prob-
abilistic tractography (Behrens et al., 2007).

Voxelwise analyses were then performed (separate for each seed mask)
across participants, correlating the visitation maps (“tract strength”)
with information integration asymmetry scores (following a procedure
previously used by Cohen, 2011; for an illustration of the analysis steps,
see Fig. 2). To that end, visitation maps were first scaled to control for
differences in the number of voxels in individuals seed masks by dividing
the probability values of the voxels by the number of voxels in the DTI
mask � 5000 (number of generated paths), normalized to MNI space
with 3 mm isotropic resolution using each participants’ inverse transfor-
mation matrix created in the previous step and spatially filtered with a 3D
� of 2.54, corresponding to a 6 mm full-width at half-maximum
(FWHM). The aligned four-dimensional (group) visitation maps data of
all subjects was fed into a voxelwise covariance analysis. To allow enough
variance in the data for performing correlations, only voxels in which at

least 80% of the participants had a nonzero fiber tract strength were
included in the analysis (Fig. 2d). This resulted in testing 24% of brain
voxels for a correlation between fiber track connectivity with seed regions
and asymmetric information integration. To ensure that our results were
not dependent on this constraint, we repeated the analysis including any
voxels for which at least one participant had nonzero tract strength.

We conducted a voxelwise whole-brain regression across all subjects
[familywise error (FWE) corrected], relating connectivity strength of
each voxel with each seed, with the asymmetric information integration
scores included as a regressor of interest. We controlled for memory
errors (see below), mean first estimate (see below), gender, age, and BDI
by including these as noise regressors in the model. Correlation maps
were acquired using the FSL randomize tool (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Randomize; Winkler et al., 2014) with threshold-free cluster-
enhancement (TFCE; Smith and Nichols, 2009) thresholding. For each
contrast of interest, there were 5000 permutations, generating a distribu-
tion of correlation coefficient at each voxel. TFCE-corrected statistical
maps were thresholded at 0.95, corresponding to p � 0.05, and raw
statistics were FWE corrected.

To determine whether correlations between asymmetric information
integration and connectivity were driven by the relative updating in re-
sponse to favorable information and unfavorable information and/or by
independent contributions of each, we conducted an analysis analogous
to teasing apart an interaction by looking at simple effects (a procedure
that does not suffer from circular analysis; Kriegeskorte et al., 2009),
while at the same time controlling for the variables of no interest. Specif-
ically, for each subject, we extracted the connectivity values from the
voxels showing significant effects above and averaged those in each ana-
tomically defined region (anatomical masks were created using the FSL
altas tool in the MNI stereotaxic space brain). We then conducted canon-
ical correlation analyses in each region with our two-dimensional depen-
dent variable (update in response to favorable information and update in

Figure 2. Illustration of the main analysis steps. a, One of the three seed regions used in whole-brain probabilistic tractography
analysis is portrayed in blue on an MNI template brain (seed was converted to individuals’ DTI space). This seed includes voxels in
the left IFG identified from our previous fMRI and TMS studies (Sharot et al., 2011, 2012). b, Visitation maps (tractography results)
of two representative participants in subjects’ (sbj) DTI space. Each visitation map was first normalized to MNI space. c, Tractog-
raphy results for all subjects in MNI space. For visualization purposes, the mask is the sum of all the individual masks. Light blue
represents voxels in which connectivity with the left IFG was observed in 100% of participants. Darker blue depicts voxels in which
connectivity with the left IFG was observed in �100% of participants. d, Region in which connectivity with the left IFG was
observed in at least 80% of the participants was used as a mask for cross-subject correlational analysis (all individual tractography
results were normalized to MNI space and scaled for the size of the mask). For each voxel in the mask, a correlation analysis was
performed between the fiber tract strength of that voxel with the left IFG and the asymmetric information integration score, while
controlling for all noise regressors.
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response to unfavorable information), independent variable (tract
strength), and all variables of no interest. The latter included estimation
errors and memory errors for favorable and unfavorable information,
base rate asymmetry (i.e., difference in statistics presented for favorable
and unfavorable events), average size of the update, mean first estimate,
age, gender, BDI score, mean fractional anisotropy (FA), and the gray
matter (GM) volume in the specific region (for detail of all these vari-
ables, see below). Because tract strength values are non-normally distrib-
uted, they were transformed to log10 values, before running canonical
correlation analyses.

Additional memory analysis control
Although all the analyses above were performed while controlling for
memory scores, we also tested for effects of memory asymmetry per se
rather than information integration asymmetry by repeating the proce-
dure above using the memory errors asymmetry score as the main vari-
able of interest instead of information integration asymmetry score.

Covariates of no interest
We describe the variables controlled for in the canonical analysis as fol-
lows (in addition to age and gender):

Mean first estimate. For each participant, the average first response
over all trials was calculated and used as a covariate in the model in the
whole-brain analysis. We also included the average first response over all
trials in the canonical correlation analysis model.

Mean overall update. For each participant for each trial, absolute up-
date (first estimate � second estimate) was computed, and then the
average over all trials was calculated and entered in the canonical corre-
lation analysis.

Estimation errors. For each participant for each trial, an estimation
error (estimation error � first estimation � probability presented) was
computed. We included both favorable and unfavorable information
estimation errors in the canonical correlation analysis model.

Memory. To test memory for the information presented, subjects were
asked at the end of the study to provide the previously presented base rate
of each event. Memory errors were calculated for each subject and each
trial as the absolute difference between the base rate and the participants’
recollection of that statistic (memory error � base rate � recollection of
base rate). Errors were than averaged separately for all trials in which
subjects received favorable information and unfavorable information.
The difference between the two was calculated (memory asymmetry) and
added as a covariate in the whole-brain analysis in the model. We also
entered memory errors for favorable information and memory errors for
unfavorable information in the region of interest (ROI) analysis.

Base rates. For each participant, we calculated the average base rate
presented for favorable information and the average base rate presented
for unfavorable information. The two were subtracted to create an asym-
metry score that we used as a covariate.

BDI. To ensure that the results were not explained by depression
symptoms, we added BDI scores as a covariate in the analysis.

FA. For each participant, an FA map was created during voxelwise
fitting of the diffusion tensor (see previous section). FA maps were nor-
malized to MNI space using nonlinear registration. We extracted mean
FA values within the group masks using FSL atlas (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/Fslutils) commands. FA values for each ROI were included
as covariates in the analysis for that ROI.

GM volume. Using the New Segment option and the default settings in
Statistical Parametric Mapping 8 (SPM8; http://www.fil.ion.ucl.ac.uk/
spm), we first segmented each T1-weighted image into GM, WM, and
CSF. Subsequently, we performed diffeomorphic anatomical registration
through exponentiated lie algebra for intersubject registration of the GM,
and WM images (Ashburner, 2007). The registered images were
smoothed with a Gaussian kernel (FWHM of 8 mm) and transformed to
MNI DTI stereotactic space using affine and nonlinear spatial normal-
ization implemented in SPM8. To ensure that the local GM volume was
retained before and after spatial transformation, the image intensity was
modulated by the Jacobian determinants of the deformation fields. After
these preprocessing steps, we obtained smoothed modulated normalized
images; hence, the value of GM volume represents the tissue volume per

unit of spatially normalized image in arbitrary units. GM values for each
ROI were included as a covariates in the analysis for that ROI.

Results
Our analysis includes the following steps. First, we quantify
asymmetric information integration for each individual. We then
correlate those scores with the connectivity index values along the
white matter pathway obtained using probabilistic tractography
on DTI data. This produces a map of regions in which anatomical
connectivity is related to asymmetric information integration
across participants. Finally, we examine whether these correla-
tions are driven by the net effect of the asymmetry, a reduction in
information integration in response to unfavorable news, an in-
crease in information integration in response to favorable news,
or both.

Quantifying asymmetric information integration
Participants performed the belief update procedure that allows
quantification of the magnitude of belief change in response to
information that is better or worse than expected (Sharot et al.,
2011, 2012; Moutsiana et al., 2013; Chowdhury et al., 2014; Gar-
rett and Sharot, 2014; Garrett et al., 2014; Korn et al., 2014; Kuz-
manovic et al., 2015). They were presented with 46 adverse life
events and asked to estimate how likely the event was to happen
to them in the future. They were then presented with the base rate
of the event in a demographically similar population (Fig. 1, pro-
cedure). Trials were divided into those in which participants re-
ceived favorable information (i.e., the probability presented of
encountering an aversive event was lower than the subject’s esti-
mate of their own probability; Fig. 1b) or unfavorable informa-
tion (i.e., the probability presented was higher than the subject’s
estimate of their own probability; Fig. 1c). Note that different
methods of dividing trials in this task has shown to yield similar
results (Garrett and Sharot, 2014).

In a second session, immediately after the first, participants
were asked again to provide estimates of their likelihood of en-
countering the same events. For each subject and each trial, an
update term was then calculated (favorable trials update � first
estimation � second estimation; unfavorable trials update � sec-
ond estimation � first estimation). Thus, positive updates indi-
cate a change toward the base rate and negative updates a change
away from it. Then, for each participant, we calculated separately
the average update for favorable trials and unfavorable trials. The
difference between the two was the asymmetric information in-
tegration score (favorable update � unfavorable update). Posi-
tive values correspond to greater update in response to favorable
information and negative values to greater update in response to
unfavorable information.

Replicating previous results (Sharot et al., 2011, 2012; Mout-
siana et al., 2013; Garrett and Sharot, 2014), our sample demon-
strated asymmetric information integration such that beliefs
were updated to a greater extent in response to favorable (mean,
12.87) than unfavorable (mean, 5.44) information (t(31) � 4.16,
p � 0.001). Important for the current investigation, the magni-
tude of this asymmetry varied across individuals (mean � SD,
7.43 � 10.11).

The extent of updating for favorable information did not cor-
relate across subjects with the extent of updating for unfavorable
information (r � �0.05, p � 0.78). Across individuals, there was
no asymmetry in memory errors for favorable (mean, 12.6) and
unfavorable (mean, 11.3) information (t � 1.92, p � 0.065).
Moreover, the asymmetry for memory errors did not correlate
across individuals with the asymmetry for updating (r � �0.14,
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p � 0.44). Participants’ first estimate did
correlate with asymmetric belief updating
(r � �0.36, p � 0.04); we have controlled
for memory and first estimates in all the
statistical analyses by entering these scores
as covariates of no interest in the model.

Asymmetric information integration is
related to frontal–subcortical
anatomical connectivity
Our analysis revealed left IFG connectivity
to widespread ipsilateral cortical and sub-
cortical areas, as well as some contralateral
areas (Fig. 2, for example individual visita-
tion maps, see b, and for a summary result of
visitation maps across all 32 participants, see
c). Across subjects, asymmetric information
integration scores correlated with connec-
tivity strength from the left IFG along three
major tracts in the left hemisphere: the infe-
rior fronto-occipital fasciculus, the anterior
thalamic radiation, and the uncinate fascic-
ulus (note that DTI does not provide direc-
tional information and thus “from” and
“to” refer to statistical seed and target vox-
els). This cluster included voxels in the left
anterior thalamus extending to the puta-
men, insula, and pallidum, as well as the
amygdala and hippocampus (Fig. 3, Table 2;
FWE corrected, p � 0.05). The results indi-
cate that individuals with greater asymmet-
ric information integration (i.e., greater
belief updating after favorable information
relative to unfavorable information) have
stronger connections between the left IFG
and a network of subcortical and cortical re-
gions (Fig. 3, Table 2). Memory for the in-
formation provided, mean first estimates,
gender, age, and BDI score were controlled
for by entering these values as noise re-
gressors in the model (see Materials and
Methods). No negative correlations
were found.

Similar results were also observed when including all voxels
for which at least one participant had a nonzero value. Specif-
ically, this analysis resulted in a comparable cluster (436
voxels, p � 0.05 FWE corrected) encompassing the left ante-
rior thalamus extending to the putamen, insula, pallidum,
amygdala, and hippocampus.

These findings were specific to the left IFG, and we did not
observe significant results when seeding from the right IFG or
from MFC. This suggests that the pattern of results is specific
and does not reflect general connectivity patterns across the
brain. Moreover, control analysis testing for associations be-
tween tract strength and memory errors did not yield any
significant results, further supporting the notion that the
structure-information integration correlates found here are
not accounted for by memory effects per se. This is not sur-
prising, because we have shown repeatedly that memory asym-
metry and asymmetric information integration are unrelated
(Sharot et al., 2011, 2012; Moutsiana et al., 2013; Garrett and
Sharot, 2014).

Frontal–subcortical anatomical connectivity is associated
with information integration in opposite direction for
favorable and unfavorable information
Asymmetric information integration can be driven indepen-
dently by (1) greater integration in response to favorable infor-
mation, (2) reduced integration in response to unfavorable
information, or (3) both. To examine whether fiber tract connec-
tivity was related to the net effect of the asymmetry (i.e., individ-
uals who show greater integration in response to favorable
relative to unfavorable information) or whether each type of

Figure 3. White matter connectivity correlates with asymmetric information integration. a, 3D cluster in orange of fiber tracts
in which strength seeded from the left IFG correlates positively with asymmetric information integration across participants. b,
Cluster shown in a 3D brain. c, Cluster shown on sagittal, coronal, and axial planes portraying significant effects in the left pallidum,
left putamen, left insula, left amygdala, left hippocampus, and left thalamus (whole-brain FWE corrected, p � 0.05).

Table 2. Brain regions in which strength of white matter connectivity to the left
IFG correlated with asymmetric information integration

Cluster properties (441 voxels) Peak (T, p) FWE corrected MNI coordinates x, y, z

Left amygdala 3.82, 0.02 �27, �6, �15
Left hippocampus 3.75, 0.02 �33, �21, �12
Left insula 3.58, 0.03 �39, �3, �12
Left pallidum 3.09, 0.05 �24, �18, �6
Left putamen 3.51, 0.03 �26, 6, 9
Left thalamus 3.42, 0.03 �12, �27, 6
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valence-dependent update was related independently to anatom-
ical connectivity strength, we ran a follow-up analysis examining
independent contributions. This would reveal whether the effect
described above results from option 1, 2, or 3. Specifically, for
each subject, we extracted and averaged the connectivity values
from the voxels identified above in each anatomically defined
region (Fig. 3c). Using canonical correlation analysis, we then
looked at the relationship between connectivity strength in each
region and update in response to favorable information and un-
favorable information while also entering in the model all the
covariates of no interest: the magnitude of estimation errors for
favorable and unfavorable information trials, memory errors for
favorable and unfavorable information trials, age, gender, BDI
score, average size of the update over all trials, mean first estima-
tion, base rate asymmetry between favorable and unfavorable
events, mean FA, and GM volume of the specific region by in-
cluding them all in the model. Note that the goal of this analysis is
to explain and characterize what is driving our initial results (i.e.,
distinguish between options 1, 2, or 3). This is analogous to teas-
ing apart an interaction by looking at simple effects, a procedure
that does not suffer from circular analysis (Kriegeskorte et al.,
2009) and is performed to enable interpretation of the primary
result.

The results revealed that frontal–subcortical anatomical con-
nectivity was associated with information integration in opposite
direction for favorable and unfavorable information. Subjects
with stronger connectivity between the left IFG and left amygdala
(� � 0.395, p � 0.02), putamen (� � 0.320, p � 0.016), pallidum
(� � 0.521, p � 0.04), hippocampus (� � 0.386, p � 0.018), and
thalamus (� � 0.331, p � 0.033) were more likely to change their
beliefs when receiving information that was better than expected
(favorable information); this was true also for one cortical region,
the insula (� � 0.278, p � 0.036; Fig. 4). At the same time,
subjects with stronger connectivity between the left IFG and left
pallidum (� � �0.559, p � 0.017), putamen (� � �0.469, p �
0.007), and insula (� � �0.381, p � 0.024) were less likely to
change their beliefs when receiving information that was worse
than expected (unfavorable information; Fig. 4). In other words,
the strength of white matter connections between the left IFG and

the above regions was associated with
learning in response to favorable and un-
favorable information in opposite direc-
tions, revealing a potential pathway
supporting motivational-driven belief
formation.

Discussion
Our results illuminate how structural
brain connectivity is related to the gener-
ation of subjective beliefs in humans. We
identify a neural system of interconnected
brain regions for which the extent of white
matter connectivity is associated with be-
lief updating as a function of valence. In
particular, our results reveal an opposing
relationship between left frontal–sub-
cortical white matter connectivity and
updating in response to favorable and un-
favorable information. For favorable in-
formation (e.g., learning you are less likely
to be burglarized than you thought),
stronger anatomical connectivity within
this system, particularly between the left
IFG and the left amygdala, hippocampus,

putamen, pallidum, thalamus, and insular cortex, was associated
with greater changes in belief across individuals. However, for
unfavorable information, the opposite finding emerged; stronger
connectivity between the left IFG and left putamen, pallidum,
and insular cortex was related to reduced change in beliefs. Thus,
left frontal–subcortical anatomical connectivity is associated
with belief change differently based on the valence of the infor-
mation presented.

This system includes regions that have been shown to mediate
learning, memory, emotion, and value processing, including the
amygdala (LeDoux, 1992, 2003), hippocampus (Cohen and
Eichenbaum, 1993), basal ganglia (Cohen and Frank, 2009), in-
sula (Damasio et al., 2000), and the left IFG, which has been
suggested to encode the improbability of outcomes given the
combination of priors and new evidence (d’Acremont et al.,
2013). Increased white matter connectivity within this system
may indicate greater potential for structures to share information
related to valence, emotional state, event probabilities and other
statistical factors incorporated into belief formation. Such a sys-
tem could enable elements of emotion to be integrated in the
process of belief updating and therefore decision-making.

These results could not be explained by how well subjects
remembered the information presented to them nor the base
rates of the events, their first estimates, the overall size of the
update, depression scores, differences in GM volume, FA, age,
or gender, because all these factors were carefully controlled
for. Furthermore, given that the results are valence specific
(i.e., indicating the difference in performance in respo-
nse to favorable and unfavorable information), they can-
not be explained by IQ and other non-valenced high-level
characteristics.

The left IFG performs an important function in subjective
belief updating (Sharot et al., 2011), such as encoding Bayes-
ian posterior probabilities computed from previous knowl-
edge and new evidence (d’Acremont et al., 2013). The current
results show that a system connecting this structure to regions
known to process emotion and value is associated with asym-
metric belief updating. Indeed, interfering with activity in this

Figure 4. Teasing apart correlation results. Canonical correlational analysis was run to test whether the relationship between
white matter connectivity and asymmetric information integration was driven by the net effect of asymmetric information inte-
gration or by independent contribution of update in response to favorable news and/or unfavorable. This analysis is equivalent to
teasing apart an interaction effect. The graph shows � values from the canonical correlational analysis representing the relation-
ship between fiber strength and update in response to favorable and unfavorable information while controlling for all covariates
(see Materials and Methods). *p � 0.05.
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system by administering TMS to the left IFG abolishes
valence-dependent asymmetric updating (Sharot et al., 2012).
Furthermore, damage to this frontal–subcortical circuit after
stroke predisposes patients to depression (Vataja, 2004). This
is of special interest, because depression has been associated
with balanced information integration from desirable and un-
desirable information in this same task (Garrett et al., 2014;
Korn et al., 2014).

Together with past findings (Sharot et al., 2011, 2012), the
current results characterize a neural architecture that may al-
low valence to be incorporated into self-relevant belief updat-
ing. The results are in accord with the suggestion that partially
separable processes govern learning from favorable and unfa-
vorable information (Frank et al., 2007; Collins and Frank,
2014).
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