
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

On the Complexity of the Natural Deduction Proof Search

Algorithm

Bolotov, A., Shangin, V. and Kozhemiachenko, D.

This is an electronic version of a paper presented at ARW2017 - 24th Automated

Reasoning Workshop, Bristol 03 to 04 Apr 2017, University of Bristol Technical Report. .

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161105584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

On the Complexity of the Natural Deduction Proof Search Algorithm
D.A. Kozhemiachenko,1 A.E. Bolotov,2 V.O. Shangin,3

1 Lomonosov Moscow State University, kodaniil@yandex.ru
2 University of Westminster, A.Bolotov@wmin.ac.uk

3 Lomonosov Moscow State University, b.shngn@gmail.com

Abstract: We present our first account of the complexity of natural deduction proof search algorithms.
Though we target the complexity for natural deduction for temporal logic, here we only tackle classical case,
comparing the classical part of the proof search for temporal logic with the classical analytical tableau.

Rules of Natural Deduction System.
We commence with the review of the classical part of

the natural deduction system for temporal logic [3] define
below the sets of elimination and introduction rules, and
where prefixes ‘el’ and ‘in’ abbreviate an elimination and
an introduction rule, respectively.

Elimination Rules:

∧ el1
A ∧B
A

∧ el2
A ∧B
B

¬ el
¬¬A
A

⇒ el
A ⇒ B, A

B
∨ el

A ∨B, ¬A
B

Introduction Rules:

∨ in1
A

A ∨B
∨ in2

B
A ∨B

∧ in
A, B
A ∧B

⇒ in
[C], B
C ⇒ B

¬ in
[C], B, ¬B

¬C
In ‘⇒ in’ and ‘¬ in’ formula [C] must be the most recent

non discarded assumption occurring in the proof. When we
apply one of these rules on step n and discard an assump-
tion on step m, we also discard all formulae from m to n−1.

Searching Procedures
Searching Procedures update lists of formulae in the

proof, list of goals (list proof, list goals) or both of them.
Let ⊥ abbreviate a dedicated goal, contradiction, and
‘Gcur’ abbreviate the current goal.

Procedure (1) simplifies structures of formulae in
list proof by an applicable elimination rule. Procedure
(2) is fired when the current goal is not reached. Here we
distinguish two subroutines. Procedure (2.1) applies when
the current goal is not reached. Analysing the structure
of the current goal we update list proof and list goals, re-
spectively, by new goals or new assumptions. Subroutines
(2.1.1)–(2.1.9) guide this process. The rules below have
structure Γ
 α −→ Γ′
 α′ indicating that the rule mod-
ifies some given inference task Γ
 α to a new inference
task −→ Γ′
 α′.
(2.1.1) Γ
 ∆, A −→Γ,¬A
 ∆, A,⊥
(2.1.2) Γ
 ∆,¬A −→Γ, A
 ∆,¬A,⊥
(2.1.3) Γ
 ∆, A ∧B −→Γ
 ∆, A ∧B,B,A
(2.1.4.1) Γ
 ∆, A ∨B −→Γ
 ∆, A ∨B,A
(2.1.4.2) Γ
 ∆, A ∨B −→Γ
 ∆, A ∨B,B
(2.1.5) Γ
 ∆, A ⇒ B−→Γ, A
 ∆, A ⇒ B,B

If applying Procedure (2.1.4) we could not reach goals
A, B then we delete these goals, leaving the current goal,

A ∨B.
Procedure 2.2 is invoked when Gn = ⊥. It searches for
formulae in list proof as sources for new goals. We abbre-
viate these designated formulae as Ψ. The idea behind this
procedure is to search for ”missing” premises to apply a
relevant elimination rule to Ψ.

(2.2.1) Γ,¬A
 ∆,⊥ −→Γ,¬A
 ∆,⊥, A

(2.2.2) Γ, A ∨B
 ∆,⊥ −→Γ, A ∨B
 ∆,⊥,¬A

(2.2.3) Γ, A ⇒ B
 ∆,⊥−→Γ, A ⇒ B
 ∆,⊥, A
Applying the Procedure (2.2.1) we have ¬A in the proof

and are aiming to derive, A itself. If we are successful then
this would give us a contradiction.

When we apply Procedures (2.2.2-2.2.3), our target is to
derive formulae that being in the proof would enable us to
apply a relevant elimination rule, ∨el,⇒el.
Procedure 3 checks reachability of the current goal in
list goals. If Reached(Gn) = true then list goals=
list goals- Gn and Gcur = Gn−1.
Procedure 4 guides the application of introduction rules.
Any application of the introduction rule is completely de-
termined by the current goal in list goals. This property
of our proof searching technique protects us from infer-
ring by introduction rules an infinite number of formulae
in list proof.

Proof-Searching Algorithm [3]
Given a task ⊢ G, we commence the algorithm by set-

ting the initial goal, G0 = G. Then for any goal Gcur, we
apply Procedure 3, to check if it is reached. If Gi is not
reached we apply Procedure 1. If Gcur is still not reached,
then Procedure 2 is invoked which updates list proof and
list goals dependent on the structure of Gcur. If Gcur is
reached, then Procedure 4 is applied. Otherwise, which
could only be in the case, when current goal is set as ⊥
and we do not have contradictory formulae in list proof, we
update list goals looking for possible sources of new goals
in list proof. Continuing searching we may reach the initial
goal, G0, in which case we terminate having found the de-
sired proof. Otherwise, we reach the stage when our search
cannot update list proofand list goals any further. In the
latter case we terminate, and no proof has been found and a
counterexample can be extracted.

Marking technique introduces and eliminates special
marks for formulae in list proof and list goals. Most of

these marks are devoted to prevent looping either in ap-
plication of elimination rules or in searching. In particu-
lar, we mark: formulae that were used as premisses of the
rules invoked in Procedure 1; goals A ∨ B in Procedure
(2.1.4); those formulae in list proof which were considered
as sources of new goals in Procedure 2.2 and these new
goals themselves to prevent looping in Procedure (2.1.1).

Let ‘last(list goals)’ return the last element of list goals,
and list goals — Gn deletes the last formula, Gn, from
list goals.

Now, based on the procedures (1)-(4) we introduce the
proof search algorithms NPCompALG.

(0) list proof(), list goals(), GO TO (1)

(1) Given a task Γ
 G0, Gcur = G0 (Γ ̸= ∅) −→
(list proof = Γ, list goals = G0,GO TO (2)) else
list goals = G0,GO TO (2).

(2) Procedure (3): Reached (Gcur) = true −→
list goals = list goals−Gcur

(Gcur = G0) −→ GO TO (6a) else Gcur =
last(list goals) GO TO (3)

Reached (Gcur) = false −→ GO TO (4).

(3) Procedure (4): apply an introduction rule, GO TO (2).

(4) Procedure (1): elimination rules

(4a) Elimination rule is applicable, GO TO (2) else
GO TO (5).

(5) Procedure (2): update list proof and list goals based
on the structure of Gcur

(5a) Procedure (2.1): analysis of the structure of
Gcur, GO TO (2) else

(5b) Procedure (2.2): searching for the sources of new
goals in list proof), GO TO (2) else

(5c) (if all compound formulae in list proof are
marked, i.e. have been considered as sources for
new goals), GO TO (6b).

(6) Terminate (NPCompALG).

(6a) The desired ND proof has been found. EXIT,

(6b) No ND proof has been found. EXIT.

Complexity Analysis
We consider a family Σn of formulas introduced by Cook

and Reckhow in [4].

Σn =
∪

{±A ∨ ±A± ∨ . . . ∨A±(n−1)±}

Here +A = p and −A = ¬p are literals. One can
exemplify this family with Σ1 = {A,¬A} and Σ2 =
{A ∨ A+, A ∨ ¬A+,¬A ∨ A−,¬A ∨ ¬A−}. Informally,
Σn is simply a family of all disjunctions of literals with n

disjuncts. It is clear that |Σn| = 2n. We will further desig-
nate each member of Σn with Fn

i (1 6 i 6 2n). Following
Cook and Reckhow, analytic tableaux can show inconsis-
tency of Σn in at least 2Ω(2n) steps.

We follow Massacci [5] (see also the discussion about
Massacci’s paper in [2]) and assume that literals are asso-
ciated from left to right. Under these conditions Massacci
showed that analytic tableaux can prove inconsistency of
Σn in no more than O(2n

2

) steps which was exponentially
shorter than lower bound provided by Cook and Reckhow.

We will further associate each Σn with two formulae:

F∨ =
2n∨
i=1

Fn
i and F∧ = ¬

2n∧
i=1

Fn
i

We assume that all Fn
i are associated and ordered arbi-

trarily in both cases.
It was shown that the proof searching algorithm for nat-

ural deduction is complete [1], i.e., that it can prove ev-
ery classical propositional tautology. The algorithm has a
remarkable property: it can delete steps of a derivation if
it finds the current goal to be unreachable. This property
means that there can be a difference between number of
steps in the resulting inference and the number of formulas
which were introduced to the inference.

The following theorems can be proved.

Theorem 1. Proof searching algorithm can prove F∨ in
O(2n) steps including deleted ones.

Theorem 2. Proof searching algorithm can prove F∧ in
O(n · 2n) steps including deleted ones.

References

[1] A.Bolotov, V. Bocharov, A. Gorchakov, and
V. Shangin. Automated first order natural deduc-
tion. In Proceedings of the 2nd Indian International
Conference on Artificial Intelligence, Pune, India,
December 20-22, 2005, pages 1292–1311, 2005.

[2] N. Arai, T. Pitassi, and A. Urquhart. The complexity of
analytic tableaux. J. Symbolic Logic, 71(3):777 – 790,
2006.

[3] A. Bolotov, O. Grigoriev, and V. Shangin. Automated
natural deduction for propositional linear-time tempo-
ral logic. In 14th International Symposium on Tempo-
ral Representation and Reasoning (TIME 2007), 28-30
June 2007, Alicante, Spain, pages 47–58, 2007.

[4] S.A. Cook and R. Reckhow. On the lengths of proofs
in the propositional calculus. In Proc. 6th ACM
Symp.on Theory of Computing (STOC-74), pages 135–
148, 1974.

[5] F. Massacci. The proof complexity of analytic and
clausal tableaux. Theoretical Computer Science,
243(1):477 – 487, 2000.

