
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Towards Cloud Application Description Templates Supporting 

Quality of Service

Pierantoni, G., Kiss, T. and Terstyanszky, G.

 

This is an electronic version of a paper presented at IWSG 2017, 9th International 

Workshop on Science Gateways, Poznan, Poland 19 to 21 June 2017.

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161105451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 

 

 

Towards Cloud Application Description Templates 

Supporting Quality of Service 

Gabriele Pierantoni, Tamas Kiss, Gabor Terstyanszky 

University of Westminster 

London, UK 

pierang@westminster.ac.uk, {t.kiss, g.z.terstyanszky}@westminster.ac.uk 

 

 
Abstract—Typical scientific, industrial and public sector 

applications require resource scalability and efficient resource 

utilization in order to serve a variable number of customers. Cloud 

computing provides an ideal solution to support such applications. 

However, the dynamic and intelligent utilization of cloud 

infrastructure resources from the perspective of cloud 

applications is not trivial. Although there have been several efforts 

to support the intelligent and coordinated deployment, and to a 

smaller extent also the run-time orchestration of cloud 

applications, no comprehensive solution has emerged until now 

that successfully leverages large scale near operational levels and 

ease of use.  COLA is a European research project to provide a 

reference implementation of a generic and pluggable framework 

that supports the optimal and secure deployment and run-time 

orchestration of cloud applications. Such applications can then be 

embedded into workflows or science gateway frameworks to 

support complex application scenarios from user-friendly 

interfaces.  A specific aspect of the cloud orchestration framework 

developed by COLA is the ability to describe complex application 

architectures incorporating several services. Besides the 

description of service components, the framework will also 

support the definition of various Quality of Service (QoS) 

parameters related to performance, economic viability and 

security. This paper concentrates on this latter aspect analysing 

how such application description templates can be developed 

based on existing standards and technologies. 

Keywords — Cloud Orchestration, Cloud Application 

Topologies, TOSCA, COLA 

I.  INTRODUCTION 

Cloud Computing has successfully and steadily addressed 

issues of increasing complexity of IT management[1][2] and 

control of its costs for the last decade. However, at each step, 

new challenges must be solved. Nowadays, the use of 

Infrastructure as a Service (IaaS) layers to externalize the 

management and decrease the relative costs of the infrastructure 

is quite common but its adoption still raises difficulties of both 

technical and economic nature. Although it could offer 

significant savings, the move to Cloud IaaS has been somehow 

slower and more cautious in certain fields due to limited 

application-level flexibility and security concerns.  

Typical applications from the scientific, industrial and public 

sector require resource scalability and efficient resource 

utilization in order to serve a variable number of customers. 

However, the dynamic and intelligent utilization of cloud 

infrastructure resources from the perspective of cloud 

applications is not trivial. Although there have been several 

efforts to support the intelligent and coordinated deployment, 

and to a smaller extent also the run-time orchestration of cloud 

applications, no comprehensive solution has emerged until now 

that could be applied in large scale near operational level 

industry trials.  

The migration to IaaS platform is also slowed down by the 

intrinsic complexity required to describe the correlated services 

that compose an application, the QoS that describe its execution 

and the procedures to deploy, undeploy and migrate 

applications in different IaaS platforms. When faced with such 

complicated solutions, users may decide to procrastinate or 

refuse to use IaaS solutions if they are not properly supported. 

This problem bears some conceptual similarities to those faced 

in large scale systems, included Science Gateways and 

Workflow systems in optimally exposing information to its 

different users at runtime[4][5]. However the current problem 

focuses on the description of “what is an application made of” 

(e.g. the graph of its services and how to execute them given a 

set of QoS parameters) rather “what is an application doing” as 

investigated in the Science Gateway and Workflow problem. 

A new European funded research project, Cloud Orchestration 

at the Level of Application (COLA) [3] aims at addressing these 

difficulties to foster the adoption of cloud computing services. 

The COLA project will provide a reference implementation of 

a generic and pluggable framework that supports the optimal 

and secure deployment and run-time orchestration of cloud 

applications. Such applications can then be embedded into 

workflows or science gateway frameworks to support complex 

application scenarios from user-friendly interfaces.  A specific 

aspect of the cloud orchestration framework developed by 

COLA is the ability to describe complex application 

architectures incorporating several services. Besides the 

description of service components, the framework will also 

support the definition of various Quality of Service (QoS) 

parameters related to performance, economic viability and 

security. 

 

This work was funded by the COLA Cloud Orchestration at the level of 
Applications Project No. 731574 project. 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 

 

 

In order to assess the validity of its solutions, COLA will test 

the applicability of the developed infrastructure in 

demonstrators and twenty further proof of concept case studies 

from four distinct application areas that include SMEs and the 

public sector. COLA use cases incorporate social media data 

analytics for local governments, simulation-based evacuation 

planning, data-intensive web applications, and simulation 

solutions for manufacturing and engineering [10]. 

This paper focuses on the proposed application description 

template concept of the COLA project. The rest of the paper is 

structured as follows: Section II details the objectives of the 

project, Section III describes the overall architecture of the 

COLA, Section IV describes the state of the art in the languages 

used to describe applications, Section V describes the criteria 

under which TOSCA was selected, Section VI, outlines how the 

TOSCA language will be used and extended in COLA, finally, 

Section VII  covers conclusions and future work. 

II. OBJECTIVES OF THE COLA PROJECT 

On the resource provision side, Infrastructure as a Service 

(IaaS) clouds can scale up or down on demand; however, the 

dynamic and intelligent utilisation of such scalability from the 

perspective of cloud applications is not trivial. Many legacy 

applications have been migrated to cloud infrastructures that 

only consume and run on a predefined static set of resources. 

More cloud-aware applications have also been developed that 

offer dynamic scalability based on the demands of user numbers 

or application characteristics. However, these applications have 

typically been custom developed requiring significant time and 

low level cloud computing expertise to implement. On the other 

hand, typical application patterns can be relatively easily 

identified that support a large number of similar applications 

and can use rather similar underlying mechanisms from 

dynamic clouds.  

The overall objective of the COLA project is to define a generic 

pluggable framework, called MiCADO (Microservices-based 

Cloud Application-level Dynamic Orchestrator) [4] that 

supports optimal and secure deployment and run-time 

orchestration of cloud applications.  The MiCADO framework 

will be able connect to multiple cloud middleware (e.g. EC2, 

CloudSigma, OpenStack, OpenNebula, etc.) or generic cloud 

access layers (e.g. CloudBroker Platform) via well-defined 

standardised interfaces to avoid dependence on one particular 

cloud technology. MiCADO will also be expressed with a set 

of interfaces that support the integration of MiCADO enabled 

applications to workflow systems and science gateway 

frameworks to provide more convenient access for end-users. 

COLA will build on existing low level cloud container 

technologies (e.g. Docker[5], Swarm[6], Consul[7]), 

management and orchestration solutions (e.g. Chef, Puppet, 

Occopus[8]), and existing standards, such as, TOSCA [9]. 

COLA will provide the missing link between existing non cloud 

aware applications and the dynamic capabilities of IaaS Clouds 

in the form of a generic framework where multiple technology 

implementations can be plugged-in and applied on demand.  

III. COLA ARCHITECTURE 

In order to address the above objectives, COLA defined a 

generic architecture to cover all layers of application level 

orchestration. The overall framework (see Figure 1), called 

MiCADO, is generic in the sense that it does not dictate the 

actual implementation of its components. The identified layers 

and their desired functionality can be implemented in various 

ways using different technologies and services that in many 

occasions already exist. The layers of the generic MiCADO 

architecture (from top to bottom), are as follows: 

Application Layer contains actual application code and data to 

make an incarnation of an application definition. For example, 

this layer could populate database with initial data, and 

configure HTTP server with look and feel and application logic. 

This layer of the architecture will be represented by the COLA 

SME and public sector demonstrators that will be implemented 

using the developed MiCADO tools. 

Application definition layer is where software components 

and their requirements (both infrastructure and security 

specifications) as well as their interconnectivity are defined 

using application descriptions. As the infrastructure is agnostic 

to the actual application using it, the application template can 

be shared with any application that requires such an 

environment. At this level the COLA project investigates and 

develops generic and widely applicable application templates 

that can be reused by application developers in multiple use-

case scenarios, significantly speeding up the development 

process. The guidelines driving the design of the Application 

Description Template are to support re-usability, to foster the 

exchanging and sharing of descriptions among similar 

applications and, finally, to allow different profile of users to 

focus on the facet they are most interested in allowing the 

incremental definition of the entire application.  

Orchestration layer is divided into four sub-layers. 

Coordination interface API provides access to orchestration 

Figure 1, The COLA Project Architecture 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 

 

 

control and decouples the orchestration layer from the 

application definition. Microservices discovery and execution 

layer manages the execution of microservices and keeps track 

of services running. Microservices coordination logic layer 

gathers and analyses information on the current performances 

of the cloud execution environment. Cloud interface API 

offers an abstraction layer to cloud access.  

Cloud interface layer provides means to launch and shut down 

cloud instances. Finally, Cloud infrastructure layer contains 

cloud instances as provided by IaaS cloud providers. 

The rest of this paper concentrates on the Application definition 

layer of MiCADO.  

IV. APPLICATION DESCRIPTION 

A fundamental aspect of COLA and its success is to allow users 

to define applications in a simple, reusable and flexible fashion 

and, at the same time, to allow the definition of Quality of 

Service (QoS) terms with which the applications must be 

executed. The application description language should also be 

capable of supporting the description of security and other 

policies. Additionally, the applications description language 

should be supported by tools to be easily written and 

understood, to be shared and queried in repositories and 

marketplaces, and to be either directly understood by cloud 

orchestrator components or be translated easily into their own 

native language. 

To support efficient orchestration of application execution on 

the Cloud COLA elaborates the concept of application template 

to support application description at three levels: architecture, 

service, and implementation. The architecture level manages 

architectures that can be used by different applications in 

business, industry and public sector. Application templates 

describe these architectures specifying their service types, 

relations, and requirements. The service types are high-level 

services, for example business logic, presentation logic, data 

service, etc. The service level identifies particular types of 

services specified in the application template, for example 

MongoDB, SQL or other database as data service. Service 

descriptions must be added to the application template to create 

a service template. The implementation level specifies the 

service version needed to run the service, for example 

MongoDB v3.1, v3.2 etc., and the required service signature. 

Adding this information to the service template developers 

create an implementation template. Each application template 

may have multiple service templates, and each of them may 

have multiple implementation templates, as shown in Figure 2. 

 
 

Figure 2, Application, Service and Implementation Templates 

The problem of application description is fundamental in Cloud 

Computing and a large body of work has been produced both in 

the Academia and the Industry. One of the first tasks of the 

COLA project has been to assess various solutions and the 

following, either technology dependent or independent options 

have been considered. 

A. Amazon Machine Image Template 

Amazon uses Amazon Machine Image (AMI) template [11] to 

describe all information required to launch an Amazon EC2 

instance. An AMI template includes: root volume for the 

instance, launch permissions that control which AWS accounts 

can use the AMI, and block device mapping that specifies the 

volumes to attach to the instance when it is launched. There are 

three AMI templates: base AMI template that contains only the 

OS image, foundational AMI template that includes elements 

of a stack that change infrequently, and, full stack AMI template 

that contains all elements of the stack.  

Amazon CloudFormation[12] supports development, 

deployment and running of applications on the Amazon cloud. 

The applications are described by the AWS CloudFormation 

templates that combine AMI templates. The templates are 

stored as text files that comply with the JavaScript Object 

Notation (JSON) or YAML[13]. The templates can be created 

and edited in any text editor and can be managed in the source 

code IDE. 

B. Azure Resource Manager Templates 

Microsoft Azure describes resources through Azure Resource 

Manager (ARM) [14]. ARM combines compute, storage and 

network resources and shows them as a single unit that can be 

created, managed and deleted together. ARM templates contain 

four entities: parameters, variables, resources to be deployed, 

and outputs to be produced. There are four template scopes. 

Capacity scope delivers a set of resources in a standard 

topology that is pre-configured to be in compliance with 

regulations and policies. Capability scope is focused on 

deploying and configuring a topology for a given technology. 

End-to-end solution scope is targeted beyond a single 

capability, and instead focused on delivering an end to end 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 

 

 

solution comprised of multiple capabilities. Finally, solution 

scope manifests itself as a set of one or more capability scoped 

templates with solution specific resources, logic, and desired 

state.  

C. Oracle Virtual Machine Templates 

ORACLE enables quick configuration and provisioning of 

multi-tier application topologies onto virtualized and cloud 

environments by capturing the configuration and packaging of 

existing software components as self-contained building blocks 

known as appliances. These appliances can then be easily 

connected to form application blueprints, called as assemblies 

[15]. They are built on Oracle VM Templates that allow 

deploying a fully configured software stack by offering pre-

installed and pre-configured software images. The Template 

contains the virtual machine configuration information, and 

virtual disks that contain the operating system and any 

application software. These components are packaged together 

as an Oracle VM Template file according to the industry-

standard Open Virtualization Format (OVF). ORACLE offers 

developers the Oracle Virtual Assembly Builder (OVAB) [16]  

to support customisation and provisioning of complex 

enterprise applications with no manual intervention onto 

virtualized and cloud environments. 

D. Chef recipes and cookbooks 

Chef [17] [18] is open source cloud orchestration tool that 

supports integration with cloud-based platforms. It launches 

and maintains servers, and manages clients that run on nodes, 

which can be physical or virtual machines. This client performs 

the automation tasks the specific node requires. The nodes 

register at a server, which then provides recipes defining these 

automation tasks and assigns roles. Cookbooks are used to 

organize related recipes, which are basically Ruby scripts, and 

supporting resources. Roles contain lists of recipes, which are 

then executed by the Chef client upon retrieval from the server 

leading to the desired configuration. 

Chef uses a pure-Ruby, domain-specific language (DSL) to 

describe system configuration and it explicitly describes how to 

deploy and connect cloud application components. 

E. Heat Orschestration Templates 

Heat [19] [20] is a pattern-based orchestration mechanism 

developed by OpenStack. It provides a template-based 

orchestration for describing a cloud application by executing 

appropriate OpenStack API calls that generate running cloud 

applications. The software integrates other core components of 

OpenStack into a one-file template system. The templates allow 

for the creation of most OpenStack resource types as well as 

more advanced functionality such as instance high availability, 

instance auto-scaling, and nested stacks. These templates, 

called Heat Orchestration Templates (HOT), are native to Heat 

and are expressed in YAML. These templates consist of: 

resources (mandatory fields) which are the OpenStack objects 

that must be created, like server, volume, object storage, and 

network resources. Each resource consists of references that are 

used to create nested stacks, properties that describe input 

values for the resource, attributes that describe output values 

for the resource, parameters (optional) that denote the 

properties of the resources, and output (optional) that denotes 

the output created after running the Heat template, such as the 

IP address of the server. 

F. Juju Charms 

Juju [21] [22] is an open source automatic service orchestration 

management tool that enables deploying, managing, and scaling 

software and services on a wide variety of cloud services and 

servers. It can significantly reduce efforts needed for deploying 

and configuring a product's services. Juju utilizes charms to 

simplify deployment and management tasks. A charm is a set 

of scripts that can be written in any language. After a service is 

deployed, Juju can define relationships between services and 

expose some services to the outside world. Charms encapsulate 

application configurations, define how services are deployed, 

how they connect to other services, and how they are scaled. 

Charms define how services integrate, and how their service 

units react to events in the distributed environment, as 

orchestrated by Juju. Charms usually include all the intelligence 

needed to scale a service horizontally by adding machines to the 

cluster, preserving relationships with all of the services that 

depend on that service. This enables developers to build and 

scale up and down the service on the cloud. 

G. TOSCA 

An OASIS technical committee [23], containing industrial 

partners, service providers and research organizations has 

developed the TOSCA (Topology and Orchestration 

Specification for Cloud Applications) Language Specification 

[9], [24], [25] [26] as an interface interoperability standard [12]. 

Its main goal is to enable the creation of portable cloud 

applications and the automation of their deployment and 

management. In order to achieve this goal, TOSCA focuses on 

three goals: Automated Application Deployment and 

management: is achieved by requiring developers to define an 

abstract topology of a complex application and to create plans 

describing its deployment and management. Portability of 

Application Descriptions and their management (but not the 

actual portability of the applications themselves): TOSCA 

provides a standardized way to describe the topology of multi-

component applications and it addresses management 

portability by relying on the portability of workflow languages 

used to describe deployment and management plans. Finally, 

Interoperability and reusability of components: TOSCA 

aims at describing the components of complex cloud 

applications in an interoperable and reusable way [27] [28] 

[29]. The TOSCA language specification  is now based on 

YAML [30] [31] and it allows the description of topologies, 

nodes and relationships at three different levels of abstractions: 

Types: akin to an Abstract class in Object Oriented 

Languages, Templates: akin to a Concrete class in Object 

Oriented Languages and, finally, Instances: akin to an instance 

of a class in Object Oriented Languages.  



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 

 

 

The combination of these three levels of abstraction supports 

re-usability of descriptions and offers a flexible and expressive 

syntax for the definition of application templates at different 

level of granularity. Such an approach, also supports 

implementation where profiles can be automatically completed 

to ease the burden of complete specifications [26]. 

V. SELECTION OF APPLICATION DESCRIPTION APPROACH 

The decision on which approach would be ideal to meet 

COLA’s requirements was based on a comprehensive and 

multi-dimensional analysis to weight strengths and weaknesses 

of each solution. Such an analysis showed that TOSCA would 

be an ideal candidate for COLA for the following reasons: 

Basic Properties that cover the support for generic 

functionalities such as portability, scalability and possible 

implementation characteristics and constraints such as the 

packaging of installation artefacts and the availability of 

examples and tutorials. TOSCA offers support for generic 

functionalities (portability, scalability, etc.) suitable for the 

project, it offers the packaging of installation artefacts and 

supports a large variety of installation methodologies that vary 

from simple scripts to complex workflows. Furthermore and 

quite importantly, TOSCA is an accepted standard, it is 

supported by a strong and growing community, and there is 

ample literature of several and successful attempts of its usage 

by the research community. 

Entities and Storage that cover the capacity of the various 

solutions to describe the individual components and the whole 

application, their relationships and their overall design. This 

category also covers the support to publish, store query and 

share application description profiles. TOSCA’s philosophy is 

very similar and highly compatible with COLA’s three layered 

concept to describe applications, their components, their 

relationships and generic templates. TOSCA also supports the 

possibility to publish, discover and share application 

description templates. 

QoS parameters that covers the possibility (if not explicitly the 

capacity) of expressing Quality of Service parameters such as 

elasticity, scalability, and security. TOSCA does not directly or 

explicitly support QoS parameters but it is flexible and generic 

enough to allow them to be described as policies that will be 

later interpreted to other components of the MICADO 

architecture. 

Application execution that covers the support for the execution 

of the applications. TOSCA per se is a language specification 

so it does not directly provide runtime or container support but 

there are implementations that do so (as an example 

OPENTosca [32], [33] and [34]).  

As a further argument to select TOSCA is its interoperability. 

Even today many cloud orchestration tools are able to manage 

TOSCA based application/service descriptions and their 

number is increasing every year. Selecting a TOSCA based 

approach to specify applications/services will improve the 

possibility to share description of COLA applications. 

VI. EXTENDING TOSCA TO MEET COLA REQUIREMENTS 

TOSCA is a highly flexible language specification and it is 

already successfully employed in various cloud-based 

initiatives. Its adoption in COLA is promising for various 

reasons. 

First, COLA’s overall architecture (see Figure 1) is divided into 

applications, services and implementations that can be 

intuitively mapped into the TOSCA specifications of templates, 

nodes and relationships (see Figure 2) as detailed in Figure 3. 

Each of the COLA layers can be defined as a TOSCA Topology 

Template (a graph of Nodes and Relationship Templates) 

enriched by level-specific policies. At the lowest level, 

implementation plans are detailed either as scripts and/or 

workflows. This approach allows for reusability of application 

descriptions as these descriptions (and parts thereof) that are 

common (or have significant overlap) of different applications 

can be shared and individually finalized. This process can also 

be replicated across the different layers by deriving and 

incrementally defining the service topologies at each level.  

At the same time, TOSCA can be extended with the definitions 

of policies (e.g. to define scale-up and scale-down profiles at 

run time, redundancy approaches, security and trust) at the 

Application and Service layers that will be used to define the 

implementation parameters at the lowest levels.  

The two latter characteristics combined allow to implement 

information hiding strategies that diversify the contribution of 

each user profile to what is necessary to be decided at each 

level, leaving all other information to be inferred by templates 

at the upper level of automatic definition driven by policies. 

From a programmatic point of view, TOSCA also offers two 

points of great interest to COLA: the possibility to define the 

implementation plan both as scripts and as workflows thus 

offering solutions at the required level of complexity, and, the 

support to two different execution modes: imperative and 

declarative (one where the exact implementation steps are 

specified, the other where the result is defined and the 

implementation can be chosen among a certain range of 

solutions).  

Finally, TOSCA is being actively used both in the academic and 

industrial worlds and therefore offers not only a vast experience 

from which the COLA participants can greatly benefit but also 

a variety of implementations that can be directly used to provide 

inspiration to COLA. Among these, the most promising are: 

OPENTosca, an open source implementation of TOSCA and 

TOSCAMart [27], a place to share Application Descriptions, 

Winery [35], a modelling tool to create TOSCA profiles, and 

Vinotek [36], a portal for the provision of Cloud applications 

on demand. Using a combination of these tools will allow to 

share Applications Templates and also to edit them through 

dedicated GUIs in the same fashion as an IDE. 



9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017 

 

 

 

Figure 3, Extending TOSCA in the COLA project 

VII. CONCLUSION AND FUTURE WORK 

COLA is in its infancy at the moment. The project started in 

January 2017, and a few preliminary results have already been 

achieved. A survey of application description languages has 

clearly highlighted TOSCA as the best approach for COLA and, 

on the implementation side, first prototypes of MiCADO have 

shown the possibility to rapidly scale up and down deployment 

of a test application (data-avenue [37], a data transfer suite). In 

the current prototype, the scaling policies have not been 

described in TOSCA but rather with the local native language 

of the Cloud orchestrator tool, Occopus, applied. The definition 

of such policies in TOSCA in such a way to be understandable 

by MiCADO is one of the next steps of the project.  

References 

[1] D. R. Avresky, M. Diaz, A. Bode, B. Ciciani, and E. Dekel, Eds., Cloud 
Computing, vol. 34. Berlin, Heidelberg: Springer Berlin Heidelberg, 

2010. 

[2] F. Leymann, Cloud Computing. 2011. 
[3] “About – COLA Project – Cloud Orchestration at the Level of 

Application.” [Online]. Available: http://www.project-cola.eu/cola-

project/. [Accessed: 27-Mar-2017]. 
[4] H. Visti, T. Kiss, G. Terstyanszky, G. Gesmier, and S. Winter, “MiCADO 

– Towards a microservice-based cloud application-level dynamic 

orchestrator,” Jan. 2016. 
[5] “Docker - Build, Ship, and Run Any App, Anywhere.” [Online]. 

Available: https://www.docker.com/. [Accessed: 30-Mar-2017]. 

[6] “Docker Swarm overview - Docker Documentation.” [Online]. Available: 
https://docs.docker.com/swarm/overview/. [Accessed: 30-Mar-2017]. 

[7] “Consul Architecture - Consul by HashiCorp.” [Online]. Available: 

https://www.consul.io/docs/internals/architecture.html. [Accessed: 30-
Mar-2017]. 

[8] “Welcome - Occopus.” [Online]. Available: 
http://occopus.lpds.sztaki.hu/en_GB/. [Accessed: 29-Mar-2017]. 

[9] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable 

Automated Deployment and Management of Cloud Applications,” in 
Advanced Web Services, 2014, pp. 527–549. 

[10] S. J. E. Taylor, T. Kiss, G. Terstyanszky, P. Kacsuk, and N. Fantini, 

“Cloud computing for simulation in manufacturing and engineering: 
introducing the CloudSME simulation platform,” Proceedings of the 2014 

Annual Simulation Symposium. Society for Computer Simulation 

International, p. 12, 2014. 

[11] “Learn Template Basics - AWS CloudFormation.” [Online]. Available: 

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gett
ingstarted.templatebasics.html. [Accessed: 20-Feb-2017]. 

[12] “AWS CloudFormation - Infrastructure as Code &amp; AWS Resource 

Provisioning.” [Online]. Available: 
https://aws.amazon.com/cloudformation/. [Accessed: 30-Mar-2017]. 

[13] “The Official YAML Web Site.” . 

[14] “Microsoft Azure Essentials Azure Web Apps for Developers | Microsoft 
Press Store.” . 

[15] Kai Yu, “Design and Implement a SelfService Enabled Private Cloud with 

Oracle Enterprise Manager 12c.” . 
[16] “Oracle Fusion Middleware.” 

[17] “Chef - Automate IT Infrastructure | Chef.” [Online]. Available: 

https://www.chef.io/chef/. [Accessed: 29-Mar-2017]. 
[18] M. Pfeiffer, “Chef Server on the AWS Cloud: Quick Start Reference 

Deployment,” 2015. 

[19] R. Mateescu, “OpenStack Heat – Overview.” 
[20] “Heat - OpenStack.” [Online]. Available: 

https://wiki.openstack.org/wiki/Heat. [Accessed: 29-Mar-2017]. 

[21] “Juju | Cloud | Ubuntu.” [Online]. Available: 
https://www.ubuntu.com/cloud/juju. [Accessed: 29-Mar-2017]. 

[22] J. Baker and U. S. Team, “Service Orchestration for Cloud Environments 

with Juju,” 2012. 
[23] OASIS, “OASIS Topology and Orchestration Specification for Cloud 

Applications (TOSCA) TC,” Website, 2014. [Online]. Available: 

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca. 
[Accessed: 15-Feb-2017]. 

[24] “tosca-primer-v1.0.” 

[25] A. Brogi, J. Soldani, and P. Wang, “TOSCA in a nutshell: Promises and 
Perspectives.” 

[26] P. Hirmer, U. Breitenbücher, T. Binz, and F. Leymann, “Automatic 

Topology Completion of TOSCA-based Cloud Applications.” 
[27] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, and A. Brogi, 

“ToscaMart: A method for adapting and reusing cloud applications,” J. 

Syst. Softw., vol. 113, pp. 395–406, 2016. 
[28] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, and A. Brogi, 

“TOSCA-MART: A Method for Adapting and Reusing Cloud 

Applications TOSCA-MART: A Method for Adapting and Reusing 
Cloud Applications *,” 2015. 

[29] A. Brogi and J. Soldani, “Reusing cloud-based services with TOSCA *.” 

[30] “TOSCA Simple Profile in YAML Version 1.0.” [Online]. Available: 
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-

YAML/v1.0/csd03/TOSCA-Simple-Profile-YAML-v1.0-csd03.html. 

[Accessed: 15-Feb-2017]. 
[31] W. Draft, “TOSCA Simple Profile in YAML Version 1.0,” 2014. 

[Online]. Available: http://docs.oasis-open.org/tosca/TOSCA-Simple-

Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-
csprd01.html. [Accessed: 14-Feb-2017]. 

[32] “OpenTOSCA Ecosystem.” . 
[33] “OpenTOSCA Container – Architecture.” [Online]. Available: 

http://www.iaas.uni-

stuttgart.de/OpenTOSCA/container_architecture.php. [Accessed: 20-
Feb-2017]. 

[34] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud 

Applications.” 
[35] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and U. Breitenb, 

“Winery – A Modeling Tool for TOSCA-based Cloud Applications.” 

[36] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Vinothek – A Self-
Service Portal for TOSCA.” 

[37] “Welcome - Data Avenue.” [Online]. Available: https://data-avenue.eu/. 

[Accessed: 03-Apr-2017]. 

 


