

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

Assessing European mobility Cook, A.J. and Perez, D.

Presented at the ACARE Implementation & Review Group, European Commission, Brussels, 13 Dec 2016.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

Assessing European mobility

Dr Andrew Cook
Principal Research Fellow
University of Westminster
London

David Perez
Director
Innaxis Foundation & Research Institute
Madrid

Overview and objectives

- Modelling developments
 - POEM
 - DATASET2050
 - Vista

'Mercury' mobility model core capability

- Data visualisation
- Discussion
 - 4H D2D revisited ...
 - Concluding remarks (but not conclusions!)

Overview and objectives

Project	In a nutshell	Funding & timeframe	Partners	Key scope	
POEM	Passenger- centric metrics	SESAR WP-E 2011-13	University of Westminster Innaxis	Current Gate-to-gate Pax c.f. flights	
DATASET20 50	Data-driven pax mobility	EU Research & innovation programme (CSA) (H2020) 2014-17 (CSA)	Innaxis University of Westminster Bauhaus Luftfahrt EUROCONTROL	Current, ≈2035, ≈2050 Door-to-door Pax mobility	
Vista	KPA trade- offs	SESAR Research & innovation action (H2020) 2016-18	University of Westminster Innaxis Belgocontrol EUROCONTROL Icelandair Norwegian Air Shuttle SWISS	Current, ≈2035, ≈2050 Door-to-door Pax mobility Wider stakeholders	

POEM Passenger-Oriented Enhanced Metrics SESAR Outstanding Project Award

Motivation

- To build a European network simulation model for flights and explicit passengers, which:
 - realistically captures airline decision-making and costs
 - includes a range of new performance metrics: e.g. passenger-centric and propagation-centric
 - operates under a range of flight and pax prioritisation scenarios
- Key objectives, to investigate under these scenarios:
 - performance (cost and delay) trade-offs
 related
 - propagation of delay through network
- Included stakeholder workshops & two (airline) case studies

Motivation

- Policy-driven motivation
 - ultimate performance delivery to the passenger
 - ACARE Strategic Research & Innovation Agenda (Sep. 2012)
 - Commission's new roadmap (2011) to a Single European Transport Area for 2050: pax mobility & network resilience
 - extension of passenger rights (e.g. review of Regulation 261)
- Operational drivers
 - pax dominate most AO delay costs and therefore strongly influence AO behaviour in the network (strategically and tactically)
 - currently only using flight-centric metrics (Europe & US), although flight delay \neq pax delay (US factors of 1.6 – 1.7)
- How can we measure specific progress without metrics?

- 2000: SES launched by Commission
 - specifically in response to increasing delays
- Early 2000s: cost of delay
 - state of the art not very mature
 - no single, comprehensive study meeting industry needs
 - various values; lack of consensus
- University of Westminster started from scratch
 - review of method
 - all minutes are not equal
 - 2002-2004 (260 page 'summary')
 - data sources: secondary & primary, extensive interviews

- Key objectives of the 'new' framework
 - comprehensive & transparent approach
 - § including margins of error
 - consultation and industry agreement
 - § common reference values
 - operationally meaningful aligned with AO mind set
 - § bottom line in accounts (very challenging); interviews
 - shift the focus away from fuel-only costs
 - useful at network level, e.g. total and average ATFM delays

Key features

- tactical cost of delay
 - § incurred on the day of operations, not planned in advance
 - § mostly marginal costs
 - § e.g. aircraft waiting at-gate
- strategic cost of delay (then a new concept)
 - § incurred in advance, often difficult to recover later ('sunk' cost)
 - § mostly unit costs
 - § e.g. schedule buffer ('opportunity' cost) & route extension (later)
- passenger cost of delay
 - 'hard' cost to AO
 - 'soft' cost to AO
 - internalised costs (c.f. US)

types of cost (in-house models, except fuel)

fleet

fuel

crew

maintenance

passenger

all fleet costs (depreciation, rentals & leases)

Lido/Flight, BADA, manufacturers

schemes, flight hours, on-costs, overtime

extra wear & tear powerplants/airframe

major update in 2010 ...

Cost element	2004	2010
Pax hard cost	Treated as zero for <15 minutes of delay	Major update - full cost curves (power curve) derived as function of primary delay
Pax soft cost	Treated as zero for <15 minutes of delay	Major update - full cost curves (logit curve) derived as function of primary delay; scalability now accounted for: small fraction of total now used in most contexts
Crew	Treated as zero for <15 minutes of delay	Extensive new model addressing crew payment schemes and overtime rates; costs assigned to all delay magnitudes
Maintenance	Overheads not fully assessed; costs based on block-hour costs	Overheads fully assessed; cost base extended and re-calibrated on full ICAO data sets
Fleet	Major model developed, based on extensive financial literature	Cost base extended and re-calibrated on full ICAO data sets, supplemented with update from financial literature
Fuel	0.31 EUR/kg	0.60 EUR/kg; carriage penalty now applied to arrival management
Reactionary	Two multipliers: one for below 15 minutes of delay, one for above	Extended model: multipliers fully quantified as function of primary delay magnitude, caps applied using new rotationary models

- Passenger costs modelling from 2010 (2nd edition)
 - originally Austrian + 'Airline Z' (very close), single average value
 - Regulation (EC) No 261/2004 (17 February 2005)
 - logit curve (soft), power curve (hard) basic, but f (duration)

Airline passenger Kano satisfaction model, Wittmer and Laesser (2008). In-house, bespoke surveys & airline models

Regulation 261 + airline policy.

Limited airline data & literature; care
& reaccommodation model

- Major updates in 2015 (3rd edition) 2014 cost basis
 - 3 aircraft added (DH8D, E190, A332)
 now 15 aircraft, 63% coverage of CFMU area
 - rotations per day, service hours, average MTOWs, ATFM delay distributions, seat & load factors; reactionary data – all updated
 - fuel 0.8 €/kg; APU fuel added at-gate (base scenario: 25% running)
 - crew & maintenance: □; fleet: □□ (all continuing 2010 trends)
 - passenger costs: still only limited evidence
 - § EC Impact Assessment (Reg. 261) + limited literature (e.g. claim rates)
 - § UoW consultation document Aug-Oct15; 400+ contacts (mostly AOs)
 - § 8.8% (inflationary) ... pax densities => net = 20%

- 2014 15-minute distributions very similar to those for 2010
- Pax costs also dominate enroute at higher delays

- POEM evaluates different flight & pax prioritisation strategies
- Includes tactical costs to the airline (4 AO types)
- Key data-related characteristics of Mercury core model:
 - runs a busy day and month (September 2010 & 2014)
 - non-exceptional in terms of delays, strikes, weather
 - busiest 200 ECAC airports (e.g. 97% pax & 93% traffic, 2010)
 - 50 non-ECAC airports (based on pax flows in/out Europe)
 - extensive range and logic checks (e.g. speeds, registration seqs)
 - taxi-out unreliable; taxi-in missing; IOBT c.f. schedule
 - calibration (independent sources, e.g. network delays and LFs)
- Unique combination of PaxIS and PRISME data ...

Dom_Al	Mar_Al1	Mar_Al2	Mar_Al3	Orig	Connect_2	Connect_3	Dest	T	Class	Est_Pax	Avg_Fare	
KL	KL	KL	KL	ABZ	AMS	FCO	AOI	EC	ON DISC	4	153.5	
KL	KL	KL	AZ	ABZ	AMS	FCO	BRI	EC	ON DISC	2	180.4	
KL	KL	KL	AP	ABZ	AMS	FCO	CAG	EC	ON DISC	2	167.9	
KL	KL	KL	KL	ABZ	AMS	FCO	PMO		OTHER	9	94.9	
KL	KL	KL	KL	ABZ	AMS	FCO	TRS	В	JSINESS	5	443.7	
KL	KL	KL	KL	ACA	MEX	AMS	FCO	EC	ON DISC	4	223.9	
KL	KL	KL	KL	ADL	KUL	AMS	FCO	EC	ON DISC	8	623.3	
AZ	AZ	AZ		AMS	FCO		ACC	EC	ON DISC	3	344.4	
AZ	AZ	AP		AMS	FCO		AHO	EC	ON FULL	11	105.2	
AZ	AZ	AZ		AMS	FCO		AMM	EC	ON DISC	15	209.5	
AZ	AZ	AZ		AMS	FCO		ATH	EC	ON DISC	100	125	
AZ	AZ	AZ		AMS	F20		ATH	EC	ON DISC	122	127.2	
AZ	AZ	AZ	PZ	AMS	FCO	EZE	CBB	EC	ON DISC	6	357.6	
KL	LP	KL	KL	AQP	LIM	AMS	FCO	EC	ON DISC	3	425.3	
AZ	AZ	AZ	AZ	ARN	AMS	FCO	BDS	EC	ON DISC	3	180.8	
KL	KL	KL	KL	ARN	AMS	FCO	808	EC	ON DISC	3	167.8	
KL	KL	Aircra	A Aires	at Tune	Corr_				4			
KL	KL	Opera	_	AO_ID	Registration	Shats	ADEP	ADE	B A	OBT_3	ARVT_3	FitNum
KL	PZ	KLM		3738	PHBXF	171	SHAM	LIRE	17/09/	2010 05:03	17/09/2010 07:0	4 KLM EHAMLIRF01
KL	KL	KLM	_	3738	PHBGB	171	EHAM	LIRE		2010 07:55	17/09/2010 09:5	
		AZA	_	A320	EIDSC	159	EHAM	LIRE		2010 11:29		
		EZY	_	A319	GEZBH	156	EHAM	MRF	_	2010 11:56		
		KLM		8738	PHBXF	171	EHAM	LIFE	17/09/	2010 11:49	17/09/2010 13:5	1 KLM EHAMLIRF03
		KLM		8739	PHBXR	139	EHAM	LIRE	17/09/	2010 14:31	17/09/2010 16:3	4 KLM_EHAMLIRF04
		AZA		A320	EIDSA	159	EHAM	LIRE	17/09/	2010 15:07	17/09/2010 17:0	8 AZA_EHAMLIRF02
		AZA		A320	IBIKU	159	EHAM	LIRE	17/09/	2010 17:13	17/09/2010 19:2	4 AZA_EHAMLIRF03
		KLM		8738	PHBXM	171	EHAM	LIRE	17/09	2010 18:41	17/09/2010 20:3	7 KLM_EHAMLIRF05

- aggregated PaxIS (IATA ticket) pax data allocated onto individual flights (PRISME traffic data, from EUROCONTROL)
- assignment algorithms respecting aircraft seat configurations and load factor targets
- full pax itineraries built respecting MCTs and published schedules
- 27k flights in scope
- 3.8 million pax
- >150k routings

2014

0 m n

- Modular structure, can adapt and add new functionalities
- Varying levels of fidelity, for example:
- Rule 23: en-route recovery (was very basic, now DCI uptake!)
- Rule 33: passenger reaccommodation
 - Regulation (EC) 261/2004; IATA (involuntary rerouting & proration rules)
 - trigger: pax late at gate (a/c not wait); cancellation; (denied boarding)
 - aircraft seat configuration data used with routing sub-rules
 - passenger prioritisation sub-rules (alliances, ticket flexibility, ties)
 - hard costs (rebooking, cost of care, overnight accommodation)
 - soft costs (dissatisfaction, market share; capped at 5 hours)
 - (passenger value of time)
 - multiple sources, including airline input and airline review

- event-driven: event stack,
 ordered sequence of events,
 each with a stamp
- dynamic tracking of costs for each a/c & passenger
- some pre-computed cost functions: recursive (from end of day backwards along propagation tree); discrete dly
- stable after appx. 10 runs
- MATLAB (R2016b)
- 5-20 minutes to run one day (depends on complexity)
- Amazon-cloud grid of five super-computers

```
[...] (17-Sep-2010 12:25:00) 47 out of 49 of pax (95.92 pct.) of DLH EDDLEGBB02:15877 were
ready, flight over 80 pct. occupancy, no more delay added
(17-Sep-2010 12:25:00) Total cost of flight DLH EDDLEGBB02:15877 departing at 17-Sep-2010
12:25:00 now estimated at 127.15 euros (DUS-BHX)
(17-Sep-2010 12:25:00) No further pax delay will be introduced, thus flight
DLH EDDLEGBB02:15877 is now pushback ready, reaccommodating connecting pax
(17-Sep-2010 12:25:00) Pax group DLH1815:37550 of 2 inflex
                                                                          coming from
DLH EDDHEDDL06:12246 to EGBB did not make it to DLH EDDLEGBB02:15877 (no more connections
afterwards) and need to be reaccommodated
(17-Sep-2010 12:25:00) 2 inflex pax of group DLH1815:37550 of DLH EDDHEDDL06:12246 that
missed DLH EDDLEGBB02:15877 were successfully reaccommodated in DLH EDDLEGBB03:23396 same
alliance, DLH1815/1:145607 Arrival: 17-Sep-2010 17:50:00 delay: 04:00'00" (airport wait
03:01'51")
(17-Sep-2010 12:25:00) Trying to reaccommodate the 80 pax waiting at EDDL:10 (DUS)
(17-Sep-2010 12:25:00) A total of 2 pax of DLH EDDLEGBB02:15877 were left behind and all
of them were successfully reaccommodated
(17-Sep-2010 12:25:00) Flight SAS ENKBENGM03:15843 loading 67 pax and all of the 67 pax
are not coming from a previous flight. There are NO connecting pax
(17-Sep-2010 12:25:00) There are 29 pax groups in SAS ENKBENGM03:15843 connecting with
another flight afterwards (SAS3310:87574, SAS3311:87575, SAS3312:87576, SAS3313:87577,
SAS3314, [...]
                                                        (KSU-OSL)
```

Type, and level	Designator	Summary description
No-scenario, 0	S ₀	No-scenario baselines (reproduces historical operations for baseline traffic day)
ANSP, 1	N ₁	Prioritisation of inbound flights based on simple passenger numbers
ANSP, 2	N ₂	Inbound flights arriving more than 15 minutes late are prioritised based on the number of onward flights delayed by inbound connecting passengers
AO, 1	A1	Wait times and associated departure slots are estimated on a cost minimisation basis, with longer wait times potentially forced during periods of heavy ATFM delay
AO, 2	A2	Departure times and arrival sequences based on delay costs – A ₁ is implemented and flights are independently arrival-managed based on delay cost
Policy, 1	P ₁	Passengers are reaccommodated based on prioritisation by final arrival delay, instead of by ticket type, but preserving interlining hierarchies
Policy, 2	P ₂	Passengers are reaccommodated based on prioritisation by final arrival delay, regardless of ticket type, and also relaxing all interlining hierarchies

- A₁ and reactionary delay
 - increases from 49% (S_0) to 51% as a proportion of all dep. delay
 - ... but focused on relatively few (waiting) aircraft (purposefully)
 - ... saving in total costs wholly due to reduction in hard costs
 - explicit estimations of reactionary delay: a significant advance
- Smaller airports implicated in delay propagation
 - more than hitherto commonly recognised
 - expedited turnaround; spare crew (& a/c); connectivity & capacity
- Back-propagation important in persistence of network delay
 - CDG, MAD, FRA, LHR, ZRH, MUC: all > 100 hours (baseline day)
 - most delay distributed between a relatively limited no. of airports
- Granger causality in complex network theory context ...

Flight delay causality network for S₀

redder => higher connectedness (E_o) larger => more nodes 'forced' (out-degree)

Flight delay causality network for A₁

- Main conclusions of Granger causality analyses
 - all four layers very different, i.e. airports play different roles in terms of flight and passenger delay propagation, and different again under A₁
- Main effects of A₁ (cost-minimising aircraft wait rules)
 - delay propagation contained within smaller airport communities
 - ... but these communities more susceptible to such propagation
 - largest persistent airports: Athens, Barcelona & Istanbul Atatürk
 - all scenarios: no stat. signif. changes in current flight-centric metrics!
 - □ €39 avg. cost / flight
 - □ 9.8 mins avg. arr. / dlyd pax
 - □ 2% reactionary delay

trade

-off

DATASET2050

Data-driven approach for seamless, efficient European travel in 2050

Key questions

- What is the current D2D time?
 - how can we improve without quantifying appropriate metrics?
- How achievable is the 4H D2D ambition by 2050?
 - demand? (more later …) supply-driven?
 - where is the key compressibility? regulatory (e.g. Reg 261) role?
 - disruptive change required? e.g. journey ownership, pax data mgt
- EU 28 and EFTA, plus extra-European flows
- What is the cost/benefit ratio? What if we do nothing?

Key trade-offs

Large spend

90%

Travel

Competition

Airline profitability (LFs)

Airport profitability (non-aero)

Small spend

10% (shape & metrics)

Technology (+&-) & env.

Cooperation & responsibility

Network resilience

Pax dwell times

Building a picture for 2050

- Model framework: high-level factor groups
 - H1. Traffic / demand
 - H2. Market forces / technologies / supply
 - H3. Policy / regulation
- Populate with: future European passenger archetypes
 - data-driven, evidence-based (better availability for 2035)
 - multiple data sources & factors considered (e.g. ICT use, education)
 - 65+ group around 25% of population in 2035 ('Best Agers')
 - passengers may belong to more than group

Building a picture for 2050

- Access and egress
 - by mode
 - by time of day
 - OpenStreetMap;Google; other aps
 - websites (incl. airport access tools)
 - timetables (primary data)
 - market research
 - wider literature(journals, reports, accessibility plans)

High-level factor group		Model scenario 1: WEAK supporting changes	Model scenario 2: EXPECTED supporting changes	Model scenario 3: STRONG supporting changes	
H1. Traffic / demand					
Door-to-kerb NET		LOW	LOW	MEDIUM	
	Future traffic	Low	Low	Low	
	HSR substitution	Low	Medium	High	
Kerb-to-gate	NET []	LOW	MEDIUM	MEDIUM	
Gate-to-gate	NET []	LOW	MEDIUM	MEDIUM	
H2. Market forces / technologies / suppl	у				
Door-to-kerb NET [LOW	MEDIUM	HIGH	
Kerb-to-gate	NET	LOW	MEDIUM	MEDIUM	
	Seamless ticketing	Low	Low	Medium	
	Self-service take-up	Low	Low	Medium	
	Baggage handling	Low	Medium	High	
	Security processes	Low	Medium	High	
Gate-to-gate	NET []	LOW	MEDIUM	MEDIUM	
H3. Policy / regulation					
Door-to-kerb	NET []	LOW	MEDIUM	HIGH	
Kerb-to-gate	NET []	MEDIUM	MEDIUM	нідн	
Gate-to-gate	NET []	LOW	MEDIUM	MEDIUM	

Two largest effects (??)

- Access times
 - driven by technology (travel supply) & regulation
- Dwell (buffer) times
 - driven by airport policy (revenue) & regulation (?)

passenger attitudes

Policy implications

Vista

Examines effects of conflicting market forces on European performance, through evaluation of fully monetised & quasi-cost impact metrics on four stakeholders, and the environment

Assessing impacts

- Business (market) factors (incl. tools & technologies) may conflict with (new) regulations (and instruments) [review]
- Exploring unintended consequences, such as:

```
– cheaper to cancel a flight?
                                             (Reg. 261)
```

- delay recovery v. emissions impact? (ETS; Directive 2008/101)
- ANSP delay levels driven too low? (SES PS; Reg. 549/2004)
- Impact metrics
 - classical (e.g. average delay) & complexity (e.g. community detect^N)
 - monetised (e.g. cost of delay; ATCOs) & quasi-cost (NO_x, σ^2_{arr})
- Stakeholders
 - passengers, airlines, ANSPs, airports; environment

KPIs established for 2015 (all in SES PS, RP2)

'Mercury' model: at core of evaluation framework

Ambition: TRL2 (technology concept and/or application formulated;

applied research)

Trade-off analysis: Pareto frontier; expected utility; Granger causality;

precursor-successor analysis

Assessing impacts

- Better understanding of future KPA roadmap & interactions
- Supporting industry to better adapt to change
- Reducing the risk of future performance misalignment and unintended consequences
- Improving the potential of implementing synergistic targets and cost-efficient policy and regulatory measures
- Supporting specific initiatives, such as:
 - improving the gap analysis set as a goal of Network Strategy Plan
 - driving quantified rather than reportedly "conceptual" trade-off assessments in FAB Performance Plans (required by Perf. Reg.)
 - providing extended insights into metric trade-offs for future editions of ATM Master Plan & SES PS planning horizons
 - highlighting further research needs towards ACARE 4H D2D goal

Regulatory example

- Regulation (EC) No 261/2004
 - establishes the rules for compensation and assistance to airline passengers in the event of denied boarding, cancellation or delay
 - came into effect on 17 February 2005
 - implementation across Europe not consistent
 - case law and national rulings have a decisive impact; legally binding European Court of Justice rulings (also interpretive guidelines)
 - consultation: but lack of agreement on proposed changes
 - 2014: proposed strengthening passed first reading in European
 Parliament; awaiting European Council (member states) agreement
- Complicated in practice, especially regarding 'extraordinary circumstances', and reactionary delays – legal advice

Regulatory example

Haul	Delay duration							
Haui	≥ 90 mins	≥ 2 hours	≥ 3 hours	≥ 4 hours	≥ 5 hours	≥ 8 hours		
Short haul	©	© 101	© 10 €250	© 101 €250	© 🖹 🕪 €250	+®		
Medium haul	©	© 101	© 1●I €400	© 101 €400	© 🖺 🕪 €400	+®		
Long haul	©	© 101	© 10 I €300*	© 1●I €600	© 🖹 🕪 €600	+®		
	Reim€ Com© RightR Bette	Care (e.g. reasonable meals and refreshments) Reimbursement of ticket Compensation (refers to arrival delay) Rights re. missed connecting flights Better rights re. re-routing on other airlines						

Benefit of more radical regulatory change, beyond 261?

Data visualisation

File New visualisation Help

Metrics Scenarios

Discussion

4H D2D revisited ...

- Just a minute ... will 90% of travellers actually want 4H D2D in 2050?
- More speed => more stress? Changing social norms?
- Current Call: how will ICT applications (e.g. wifi) tend to reduce the perceived cost of travel time? Examine the potential shift *away* from the 'speed paradigm'. Segmentations, and transport project CBA impacts ...

Topic: mobility for growth; pillar: societal challenges; work programme part: smart, green and integrated

Discussion

Concluding remarks (but not conclusions!)

Concluding remarks

- Early mobility modelling has established the need for passenger-centric and cost-centric metrics
- Capabilities and plans regarding the most developed European model ('Mercury') have been presented; this model is laying foundations for further development
- There is still a lot to be done, in particular to:
 - build a full, mature, <u>intermodal</u> European mobility model
 - develop new mobility metrics for the future (RP3 and beyond)
 - move closer towards data-driven policies (e.g. pax-resilient networks)
 - integrate such models and metrics with SESAR (e.g. UDPP, A-CDM)
 - use these to help (e.g.) airlines to develop better strategies
 - examine performance of particular airlines, routes, airports (c.f. network)
 - integrate such models with industry tools (tactical and strategic)

Thank you

Andrew: cookaj@westminster.ac.uk

David: dp@innaxis.org

Stand-bys

Cost of delay

Trends and headlines

Primary at-gate increase: 18%; en-route: 22% (c.f. 2010)

iable our Earopean Airi i acia, cost cominates	Table 30.	European	ATFM delay	cost estimates
--	-----------	----------	------------	----------------

Factor	2014 value	2010 value
Average cost of delay of an ATFM-delayed aircraft	1 970	1 660
ATFM delay cost averaged over all flights	103	130
Network average cost of ATFM delay, per minute	100	CARE! 81

Costs in Euros. 2014 delay weights use 2014 ATFM data.

NB. The decrease in the ATFM delay cost averaged over all flights is driven by a decrease in the *number* of flights with ATFM delay as a percentage of all flights, from 7.9% in 2010 to 5.2% in 2014.

Users and example SESAR projects

- EUROCONTROL (EHQ & EEC); SESAR
 - tactical and strategic, planning and assessment levels
- Airlines (two-way process); Working Group
- ANSPs, airports, national government
 - expansion and privatisation
- Legal cases (large delay compensation claims)
- Industry (e.g. delay management software)
- Academia (more global reach c.f. above)

POEM

Core metric*	Units	Definition	Threshold
Flight departure delay	mins / flight	Delay from the gate relative to schedule	0.2
Flight arrival delay	mins / flight	Delay at the gate relative to schedule	0.2
Departure delay of departure-delayed flights [^]	mins / flight	Delay from the gate relative to schedule	1.0
Arrival delay of arrival- delayed flights [^]	mins / flight	Delay at the gate relative to schedule	1.0
Pax departure delay [†]	mins / pax	Delay from the gate relative to schedule	0.2
Pax arrival delay [†]	mins / pax	Delay at the gate relative to schedule	0.2
Departure delay of departure-delayed pax^	mins / pax	Delay from the gate relative to schedule	1.0
Arrival delay of arrival- delayed pax [^]	mins / pax	Delay at the gate relative to schedule	1.0
Passenger hard cost	Euros / pax	Hard costs (see Appendix A) averaged per passenger	0.2
Passenger soft cost	Euros / pax	Soft costs (see Appendix A) averaged per passenger	0.2
Passenger value of time	Euros / pax	Pax value of time (see Appendix A) averaged per passenger	0.2
Non-passenger costs	Euros / flight	Fuel, crew and maintenance costs averaged per flight	10
Per-flight pax hard cost	Euros / flight	Passenger hard costs to airline averaged per flight	10
Per-flight pax soft cost	Euros / flight	Passenger soft costs to airline averaged per flight	10
Total flight cost‡	Euros / flight	Passenger plus non-passenger costs per flight	10
Total flight cost per minute of departure delay¶	Euros / min	Pax plus non-pax costs per minute of departure delay	2.0
Reactionary delay ratio	ratio	Reactionary delay (see Section 2.5) / flight departure delay	n/a
Arrival-delayed passenger / flight ratio	ratio	Arrival delay of: arrival-delayed pax / arrival-delayed flights	n/a
Review Group			Uı

		_	N ₁ & N ₂	2	P ₁	P ₂		A ₁	
	Core metric	Units	Inbound prioritisati based on: si pax number on onward f delayed	on mple rs, or lights	Passenger reaccon delay at final preserving interlining hierarchies	nmodated based or destination relaxing interlining hierarchies	Dep bas mi (& c	artures times sed on cost nimisation consideration ATFM delay)	
	Flight departure delay	mins / flight			ı				
flight-	Flight arrival delay	mins / flight				int changes			
centric	Departure delay of departure-delayed flights	mins / flight		in current flight-centric metrics: stresses need for passenger-centric metrics			:		
	Arrival delay of arrival- delayed flights	mins / flight			F				
	Pax departure delay	mins / pax			[-	+0.4	
	Pax arrival delay	mins / pax			[-0.4	ſ	-1.6	
	Departure delay of departure-delayed pax	mins / pax	no signific		revised	1		=	
new	Arrival delay of arrival- delayed pax	mins / pax	change under sin inboun	nple	passenger re- booking rules produce only	-2.2		-9.8	
metrics	Passenger value of time	Euros / pax	scenari driven l	700000000 <mark>-</mark> 0	weak improvements	-0.2		-0.7	
111011103	Non-passenger costs	Euros / flight	000000000000000000000000000000000000000	<mark>-</mark> 000000000000000000000000000000000000	passenger whilst current numbers, or airline	whilst current airline	_		=
	Per-flight pax hard cost	Euros / flight	by numbe delaye	rs of	interlining rules are	+26		-40	
	Per-flight pax soft cost	Euros / flight	onward fli		preserved,	_		=	
	Total flight cost	Euros / flight			c.f. →	+26		-39	
	Total flight cost per minute of departure delay	Euros / min					<u> </u>	-7.8	
	Reactionary delay ratio	ratio				49%		51%	

Granger causality

- Key features and results
 - time series, q, is considered to Granger-cause another time series, p, if inclusion of past values of q can improve forecasting of p
 - two time series with a high correlation
 - two time series 'forced' by a third system

usually fail, as q doesn't add new info for p

- built flight and pax networks for S₀ and A₁
- time series of arrival delay for node pairs (unweighted directed network)
- for each node, calculated eigenvector centrality: delay connectedness
- comparing eigenvector centrality rankings through Spearman rank correlation coefficients: all four layers almost completely different

Selected key results

 A_2

Wait times and associated departure slots are estimated on a cost minimisation basis, with longer wait times potentially forced during periods of heavy ATFM delay

Departure times and arrival sequences based on delay costs – A₁ is implemented and flights are independently arrival-managed based on delay cost

Scenario A₂

- addition of independent, cost-based arrival management apparently foiled the benefits of A₁ due to lack of coordination between departures and arrivals
- reflected in higher dispersion (σ) of all core metrics and the highest reactionary delay ratio (58%)
- arrival queuing may have non-linear delay multiplier effects in the network (Kwan and Hansen (2011))

Vista

ATM Master Plan (Edition 2015)

Kevi	performance	SES High-Level Goals		SESAR ar vs. baseli		
110	area	vs. 2005	Key performance indicator	Absolute saving	Relative saving	
	Cost efficiency: ANS productivity	Reduce ATM services unit cost by 50% or more	Gate-to-gate direct ANS cost per flight Determined unit cost for en-route ANS* Determined unit cost for terminal ANS*	EUR 290-380	30-40%	
ø	Operational efficiency	-	Fuel burn per flight (tonne/flight) Flight time per flight (min/flight)	4-8 min 0.25-0.5 tonne	3-6 % 5-10 %	
P	Capacity	Enable 3-fold increase in ATM capacity	 Departure delay (min/dep) En-route air traffic flow management delay* Primary and reactionary delays all causes Additional flights at congested airports (million) Networkthroughput additional flights (million) 	1-3 min 0.2-0.4 (million) 7.6-9.5 (million)	10-30 % 5-10 % ¹ 80-100 % ²	
0	Environment	Enable 10 % reduction in the effects flights have on the environment	 CO₂ emissions (tonne/flight) Horizontal flight efficiency (actual trajectory)* Vertical efficiency Taxi-out phase 	Additional flights, not saving 0.79-1.6 tonne	5-10 %	
Bd/	Safety	Improve safety by factor 10	Accidents with ATM contribution	No increase in accidents	Improvement by a factor 3-4	
A	Security		ATM related security incidents resulting in traffic disruptions	No increase in incidents		

Regulation 261 - practice

Summary of Regulation 261 compensation payments assigned by delay types

Delay code	Type of delay	Approximate percentage ^(a)	Compensation paid for primary delay	Compensation paid for reactionary delay
'A'	ANS / ATFM (mostly)	13%	*	×
'TW'	Turnaround and (non- ATFM) weather ^(b)	40%	✓	✓
'R'	Reactionary	47%	If type 'TW'	If type 'TW'

⁽a) Estimates based on EUROCONTROL (2014) and EUROCONTROL (2015a). (Strikes are subsumed across these categories (data not explicitly shown in reports), probably mostly as 'A'.)

⁽b) Mostly aircraft turnaround; this will include *some* exempted (exceptional) weather, but this is likely to be a rather low proportion and thus neglected, and even this sub-category still triggers reactionary compensation in any case.