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Abstract 

Over the past decade there has been significant pressure to minimise emissions and safety risks related 

to commercial driving. This pressure to meet the triple bottom line of cost, environment, and society 

has often resulted in the rapid application of vehicle technologies designed to mitigate undesired effects. 

Often the cognitive and behavioural effects of technologies on the commercial driver have not received 

in-depth analysis to determine comprehensive viability. As such, this paper aims to identify a timescale 

for implementation for future technologies for UK road freight, and likely associated human factors 

issues, improving upon the currently employed ‘trial-and-error’ approach to implementation which may 

carry high economic, environmental, safety-related risk. Thought experiments are carried out to broadly 

explore these future systems. Furthermore, this work aims to examine whether technology alone will 

be enough to meet future CO2 reduction targets, and assess the role of behavioural and systems 

interventions for future research. 
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1.  Introduction 

1.1.  Triple Bottom Line 

Over the past decade there has been significant pressure on the logistics industry to minimise emissions 

and safety risks related to commercial driving, augmented by the tension created by growing operational 

demands. Since the passage of the Climate Change Act of 2008, the UK Department of Energy and 

Climate Change has set the ambitious goal of reducing carbon emissions to 80% of reported 1990 levels 

by 2050. Department for Transport figures from 2009 reported that freight vehicles above 3.5 tonnes 

contributed to approximately 20% of all domestic transport carbon emissions and 4.2% of total national 

carbon emissions (Department for Transport, 2009a). Despite this, logistics activities are fundamental 

to economic growth and are on a trajectory to rise further with globalisation and consumer trends such 

as mass personalisation (AEA, 2012). This means the triple bottom line of cost, society, and 

environment have and will become increasingly difficult to achieve. Due to the UK’s limited space, 

transport congestion and existing rail infrastructure, modal changes are unlikely to meet future needs 

and alternative manufacturing methods such as 3D printing have not yet reached a level of maturity 

which is suitable for mass adoption (McKinnon, et al, 2015). A great deal of existing logistics research 

has converged on system-level practices such as life cycle carbon accounting and integrated 

assessments to ensure that this triple bottom line is met, by considering the supply chain as a whole 

(e.g. Giminez, et al., 2012; Hacking & Guthrie, 2008; Rodrigues, et al., 2015; Schaltegger & Csutora, 

2012). Systems approaches to these complex problems at the finest level of granularity are growing in 

use, and engineering interventions – particularly in vehicle design – also offer some attractive solutions. 

However, studies of human-technology interaction at the operational level are rare, despite the potential 

of designed technologies to support human behaviour throughout logistics activities (e.g. AEL, 2010). 

Logistics, therefore, is a fertile new ground for applied ergonomics with scope for significant impact. 

This paper attempts to demonstrate the role of human factors and technology design in future logistics 

systems to holistically assess the impact of carbon reduction measures in road freight, and to serve as a 

platform for future human factors work. 

1.2.  Moving forward from ‘Hyper-Rationality’ 

Ergonomics is often the intervening variable between the expected benefits of technology and its actual 

outcomes, which can sometimes be substantially less than originally expected (Beekun, 1989). The 

roots of this paper are in localised end-user behaviour, particularly from the perspective of the 

commercial driving task. Road freight vehicles carry disproportionately significant carbon impact and 

safety risks in comparison to other transport modes; both of these are crucial points for which there 

exist considerable pressure to develop preventative technological solutions. As such, they are often 

trialled and quickly implemented without consideration of potentially substantial human factors issues 

such as the ability of people to reclaim control from automatic systems (e.g. Norman, 1990), the new 

and sometimes arbitrary tasks created (e.g. Bainbridge, 1986), behavioural and risk adaptation (Wilde, 

1982), and the panoply of effects arising simply from all the unplanned adaptions people perform in 

order to make a new technology suit their own needs and preferences (Clegg, 2000). 

The often rapid application of vehicle technologies designed to mitigate undesired effects and balance 

the triple bottom line means that the cognitive and behavioural aspects of the commercial driving task 

have been impacted. Disparities between actual versus expected outcomes seem to reside in a tacit 

theory of human behaviour: that within the logistics system humans are ‘hyper-rational’ (Croson, 2013). 

According to Croson et al. (2013), hyper-rational actors are characterised by the following: 



1. they are motivated by self-interest in ultimately monetary terms; 

2. they always operate in a conscious, deliberate manner; and 

3. they behave optimally for a specified objective function. 

Despite the growing acknowledgment of contextual human behaviour which defies this ‘hyper-rational’ 

characterisation – as evidenced by the recent increase in behavioural operations management literature 

(Bendoly, et al., 2009) – penetration of human factors research in the logistics sector is limited. The 

majority of human factors research in this domain has focused for a brief period of time on 

manufacturing activities – such as work published by the International Journal of Human Factors in 

Manufacturing – or otherwise on the physical ergonomics of assembly line work sub-systems (e.g. 

Bartholdi III, et al., 2010; Sundin, et al., 2004). Bendoly et al. (2009, p. 450) recommend that future 

work in behavioural operations management should centre on the question: ‘can this observed (though 

perhaps unanticipated) result be linked specifically to human behaviour? [...] Can we change the 

conceptualization of this effect from an ‘unanticipated’ one to one we can in fact expect?’ This 

trajectory speaks towards this high level aim and draws from established literature and industry insight 

to address it.  

1.3.  Profiling the Commercial Driver 

The focus of the technology trajectory is the commercial driver, a relatively neglected human factors 

subject in comparison to the private car user (e.g. Quimby & Watts, 1982; Walker, et al., 2009; Young, 

et al., 2011). To provide a robust analysis of the effects of new technology a profile of the commercial 

driver end user was constructed from the academic literature. The commercial driver naturally spends 

more time behind the wheel in comparison to private vehicle drivers (up to 56 hours in any given work 

week) (European Directive (EC) 2003/88/EC, 2003), and the sustained mental workload associated with 

long-term tasks may cause performance to deteriorate (Lim, et al., 2010). It was found that (relative to 

private vehicle drivers) commercial vehicle drivers may exhibit stronger stress reactions to traffic 

conditions and commit more risky driving behaviours (Oz, et al., 2010), a factor which may compound 

itself in the time pressure which exists the industry. Commercial vehicle drivers (CVDs) may also 

exhibit heightened criticism of automation due to professional identity, exposure or familiarity with the 

traditional task, and some degree of technical knowledge of the current system (Donmez, et al., 2006), 

a finding which can be further supported by similar human factors research in air traffic control (Bekier, 

et al., 2012). Working consistently along familiar routes may foster inattentional blindness, which is of 

particular relevance to ensuring the safety of vulnerable road users (Yanko & Spalek, 2013). Naturalistic 

data also suggests that professional drivers have faster response times when performing an evasive 

manoeuver when compared to private vehicle drivers (Dozza, 2013). In terms of occupational health, 

long-term exposure to noise and vibration may affect the ability to engage with vehicle feedback 

(Majumder, et al., 2009). Quality of rest of CVDs may also be salient, as this affects attention as well 

as the potential for safety-critical incidents (Baulk & Fletcher, 2012; Bunn, et al., 2005; Darwent, et al., 

2012; Hanowski, et al., 2007; McCartt, et al., 2000; Pirrera, et al., 2010). It is possible that further 

considerations may be necessary in technology design in order to accommodate the British CVD 

workforce which has a disproportionately increasing average age (Charlton, et al., 2013; Lees, et al., 

2012; Llaneras, et al., 1998). 

This characterisation of the CVD as an end user group, and an examination of the existing knowledge 

base as such, supports a platform for effective practical contributions to both research and practice in 

the logistics sector. Endeavours to meet the triple bottom line balancing economic, environmental, and 

safety benefits are currently operating under a complex set of industry constraints, in an extremely time-



sensitive sector. Attempts to meet the triple bottom line through isolated interventions suggest a 

sensitivity of the behaviour in the logistics system to a plethora of situational factors, which may hinder 

the radical changes necessary to meet carbon reduction targets (Ricardo AEA, 2012). This complexity 

necessitates a wider systems approach that considers not only future technology use, but the future task 

context in which operations will take place. This work is designed to take such a systems approach to 

holistically assess interventions which may, in reality, have minimal – or potentially even detrimental 

– environmental and safety-related effects, sometimes at considerable economic cost. 

1.4.  Technological Trajectory 

In order to support a systems approach, the trajectory below will not only address technologies related 

to operational driving tasks but also technologies related to distribution and delivery tasks. This paper 

aims to outline future logistics technologies and their associated human factors. A survey involving a 

cross-section of major UK logistics companies was performed to gain insight into future real-world 

systems, by direct line of communication with key decision-makers developing and implementing 

commercial vehicle technology. Using a semi-structured interview format, technologies are identified 

by domain experts for potential implementation by 2020, 2025, 2030, and 2050. A framework for 

identifying appropriate human factors relevant to technologies in the commercial driving task is 

outlined and applied, based on past research in technology development and human-automation system 

performance. The degree of automation of each technology is reviewed to further link individual 

operational capabilities and behaviour with system design. Results support a more user-centred 

approach to meeting key logistics challenges, and a way to identify novel behavioural interventions. 

Logistics technologies intended to reduce fuel costs, road accidents, and carbon emissions all hold the 

potential for unexpected and previously unstudied human-technology interactions, and this work aims 

to highlight where and of what types these interactions may be, as relevant to future system design. 

However, the primary focus of this initial work is to assess the impact of carbon reduction technologies 

set for implementation in commercial vehicles, in order to evaluate the progress toward government-

set reduction targets and determine whether or not this goal can be achieved by technology alone. 

2.  Materials & Methods 

2.1. Design 

To provide the necessary insights into technology-induced impacts on the commercial driver a survey 

of leading logistics practitioners was performed.  Industry-led insights were reflected by a systematic 

review of the knowledge base. The focus of the review was on commercial vehicle technologies 

intended to reduce greenhouse gas emissions, which enabled a technological trajectory to be developed 

featuring elements relevant to the commercial driving task. Although the focus of this work is on 

technologies designed to reduce carbon emissions, all technologies or systems issues identified by 

expert participants were included. Participants were selected from managerial roles and did not include 

the ‘system users’ (drivers) themselves, in order to first assess the efficacy of future systems on a broad 

level prior to delving into the specifics of usability. Ultimately, today’s drivers have little say in the 

commercial vehicle technology with which they work daily – and the variation in existing vehicle design 

is vast. While this is undoubtedly a point for improvement in the design process for future systems, the 

objective of this study was to focus on the key decision-making point for technology adoption in order 

to track large-scale trends. This provided a hypothetical picture of future road freight transport systems 



and their evolution over time, which could be used as a point of reference for high-level human factors 

and carbon reduction assessments. 

2.2. Literature Review 

Academic journal search engines were used in initial searches for logistics technology information, 

followed by a targeted search of logistics, transportation, environmental interest, and human factors 

publications (e.g. Transportation Research; Annual Reviews in Control; Safety Science). This was 

supplemented by publicly-accessible web engine searches for technical documentation and statistical 

information from industry and relevant government bodies (e.g. Amsterdam Group; Department for 

Transport). Iterations of this process were carried out to ascertain the technical details, maturity, and 

affected user of each technology or trend. First-stage search terms were developed to detect technologies 

across logistics contexts, for example: heavy goods vehicle technology, intelligent transport systems, 

warehouse management systems technology, green logistics technology, logistics ICT, etc. Iteratively 

this was expanded as necessary to cover specific trends, technologies, vehicle types, and user 

characteristics as they occurred, for example: collision avoidance, logistics telematics devices, 

commercial driver fatigue, tachograph tampering, wireless sensor networks, etc. Attention was given to 

alternative terms, spelling variations, and acronyms, to ensure inclusion of specialised terms from each 

of the targeted subject areas. 

2.3. Procedure 

Relevant organisations were identified, and experienced specialists in managerial roles were selected 

and contacted from a wide range of industry sectors, including: logistics policy, infrastructure 

technology development and implementation, and key commercial activities with in-house distribution 

and/or third-party logistics (see Table 1). Key stakeholders from the UK logistics industry participated 

in the study. These included several major third-party logistics operators, international vehicle 

manufacturers, and UK government bodies. Semi-structured interviews were conducted in person or by 

telephone with 23 respondents. Open-ended interview questions were based around the following 

structure: What vehicle/warehouse/logistics transport technologies do you envision being implemented 

in the next 5 years; 10 years; 15 years; and beyond 15 years? Elaboration was encouraged where 

possible to maximise the specificity of general technologies or timelines. Salient trends were followed 

up with a question of the form: Could you elaborate on this trend/technology, and clarify when it is 

likely to be implemented in the logistics environment?  

Table 1: Interview Participant Sample 

LOGISTICS AREA CATEGORY JOB TITLE 

INTERNAL LOGISTICS 

FLEET  

Customer Group Transport Manager 

Customer Transport, Logistics & Warehouse Fleet Manager 

Customer Senior Fleet Manager 

WAREHOUSE 

MANAGEMENT 

Intermediary Consultancy Director 

THIRD-PARTY 

LOGISTICS 

Customer Innovation & Efficiency Manager 

Customer Technical Services Director 

LOGISTICS/VEHICLE 

SPECIFICATION 

POLICY 

Intermediary Commercial Vehicle Development Manager 

Intermediary Director of Policy 

Intermediary Managing Director for Membership & Policy 

Customer Road Strategy & Technology Lead 

TECHNOLOGY 

RESEARCH & 

DEVELOPMENT 

Intermediary ITS Regional Director 

Supplier Head of ITS Development 

Supplier Principal Engineer 



Supplier Development Engineer 

Supplier Strategy & Business Development 

Supplier Advanced Engineering Program Manager 

Supplier Transport Solution Specialist 

Supplier Project Manager 

Supplier Chief Engineer - Chassis Strategies & Vehicle 
Analysis Supplier Vehicle Control & Analysis 

Supplier HMI Technology Project Manager 

Supplier Cognitive Engineer 

Supplier Specialist in HMI for Intelligent Vehicles 

 

Technologies and timescales identified were documented as individual entries from each participant, 

along with applicable context (e.g. vehicle, infrastructure). Most technologies were identified 

consistently by multiple participants; however, where discrepancies were present, an average was taken 

and a standard deviation calculated to provide a range. Individual entries were synthesised into 

comparable categories as appropriate (e.g. both in-vehicle and portable telematics devices were 

categorised as ‘Telematic Data Collection’) supported by technical knowledge gained in the literature 

review. 

2.4. Examination of Human Factors 

From the literature review three central classes of technology were found, as described by Walker et al. 

(2001): transparent, opaque, and enabling. Technologies described as ‘transparent’ often relate to 

ubiquitous computing tasks which may be less directly apparent to the user, but which aim to optimise 

the fundamental links between vehicle and driver controls. The use of ‘opaque’ technologies may be 

more apparent to the end user, as these have a more detectable interface between vehicle and driver. 

Both transparent and opaque technologies have the potential to carry feedback which is minimally or 

highly obvious to the end user, with which they interact throughout performance of the task. ‘Enabling’ 

technologies create a framework for all technology, and support the congruence of vehicle technology 

components to improve overall mechanical and electrical efficiency. In this work, enabling items may 

also include basic design interventions such as aerodynamic fairings, or supporting systems technology 

such as natural gas infrastructure which is effectively tied to the ‘range’ of vehicles using natural gas 

fuels. Technologies identified by interview participants are described in terms of these categories. 

The concept of Technology Readiness Level (TRL) played a key role in the development of the 

following human factors framework. TRLs are defined as measures used to assess the maturity of 

evolving technologies during their development, and in some cases during early operations, on a scale 

of 1 to 9. These scales are used internationally to track progress in technology development and 

determine when a novel technology is ready for widespread, real-world use. Recent reviews of the role 

of the TRL have noted that early and ongoing modelling of advanced technology at a contextual systems 

level will be a key challenge for future efficacy (Mankins, 2009). Reference was made to existing 

NASA/FAA guidance on TRLs to consider current practices for examination of human factors issues 

at each stage of technology development (Krois, et al., 2003). This provided a foundational outline of 

broad issues from which categories were selected, including: ‘mental workload’, ‘situation awareness’, 

‘allocation of function’, and ‘knowledge, skills and abilities’. These factors were narrowed to include 

only categories which were relevant to an immediate timescale, at a level of granularity which focuses 

only on the end user. Thus selected factors are tied directly to the operational behaviour of the end user 

in the immediate term, and not attached to broad considerations such as ‘safety and health’, team-level 

considerations such as ‘communications and teamwork’, or long-term considerations such as ‘training’. 



The remaining factors and knowledge of existing human factors themes gained from the literature 

review were used to develop three commonly recurring component-level attributes against which 

technologies could be broadly assessed for applicability: feedback, attention, and locus of control 

(Krois, et al., 2003; Walker, et al., 2015). As the goal of this examination is only to highlight potential 

issues as a platform for more detailed and contextual future research, attributes were chosen on the basis 

of being immediately essential to human-environment interactions in their most raw and simple form 

as required for adequate task performance. Attributes were selected to address what interactions are 

present in the system, and identify when these interactions are likely to occur, from a fundamentally 

operational perspective (as opposed to tactical or strategic considerations relating to less apparent 

cognitive processes, such as the effects of training on user adaptation to systems over time). This was 

intended to address requirements for the first and last stages of information processing, information 

acquisition and action implementation, at their most basic level in a way which can potentially be 

measured and related to system design. These attributes were: 

Feedback – This attribute describes the extent to which the work system provides ‘cues’ to the end user 

enabling them to effectively perform their task in context – in this case, the task of delivery driving of 

a commercial vehicle. This feedback consists of three types of physiological signals received from the 

environment, including auditory signals such as engine noise or alarms; haptic signals such as vehicle 

handling ‘feel’ or vibrations; or visual signals such as speedometer readings or observation of other 

vehicles in the road environment. Not only is feedback essential to task performance for the direct user, 

but it is also essential for the surrounding agents within the environment to ascertain information about 

behaviour which may impact their own tasks. For example, pedestrians at a crossing may use visual 

cues or auditory feedback from approaching vehicles to gauge whether it is safe to cross. Technologies 

described as ‘transparent’ or ‘opaque’ carry feedback which is moderately or highly obvious to the end 

user, with which they interact throughout performance of the task. 

Attention – Cognitive attention is required from the user to ensure that all is as expected throughout the 

task. This enables a natural process whereby the user ‘supervises’ the system as it responds to user-

system interactions. This allows a comparison of real-time contextual behaviour to the user’s 

expectations of system performance developed from training and experience, and is critical in 

prompting the identification of situations in which more engaged decision-making is required. The 

characteristics of attention, and the user’s assessment of system behaviour, are also important elements 

in user adaptation to systems over time and, in turn, identifying emergent behavioural implications of 

system design.  

Locus of control – From a systems perspective, any socio-technical work system has an allocation of 

function – a division of task responsibilities between human and technological actors. A human user’s 

understanding of this distribution of task responsibilities is the individual’s locus of control, and this 

perception of responsibility has influence on where and how the user’s cognitive attention is directed 

to filter the overwhelming amount of feedback available in the environment. Recent research has 

characterised locus of control as a malleable contextual attribute affected by situational factors such as 

driver training, rather than a fixed personality trait, suggesting a connection to human-system 

interactions (Huang & Ford, 2012). In the case that the allocation of function and the locus of control 

are not complementary, issues for system performance may arise, and risk of system failure increases. 

While allocation of function may constitute a more objectively measurable attribute if systems analysis 

is already complete, a human user’s locus of control provides an even more granular ‘component’ level 

attribute. 



The applicability of the above attributes to each technology was evaluated with emphasis on the 

commercial driving task. 

3.  Results & Discussion 

3.1. Trajectory of Technology 

Each interview participant identified a technology and its likely time of implementation, and responses 

were logged in a master list to track the number of times each technology was identified, as well as the 

variability in perceived timescale to implementation. The trajectory for commercial vehicle technology 

use in the UK was constructed from these results, and was further classified by those technologies 

suggested to be in widespread or niche use. The review of industry and academic literature undertaken 

reflected this master list of technologies constructed from participant responses, and provided the 

relevant carbon reduction estimates as cited in Table 2.  



Table 2: Classification, Description and Carbon Reduction Impact of Technologies Identified by Participants 

GROUP TECHNOLOGY DESCRIPTION PURPOSE CO2 REDUCTION 

PER HGV 

TRANSPARENT 

TECHNOLOGIES 

Automated Emergency 
Braking (AEB) 

Automated emergency braking (AEB) detects nearby vehicles or objects and 
autonomously takes over control of the vehicle to slow or stop in the event of an 
imminent crash 

Safety-related  

Active Collision Avoidance 
Systems (CAS) 

Active collision avoidance systems (CAS) employ automated emergency braking as 
well as trajectory control in the event that the surround sensor system detects an 
imminent crash with an oncoming or leading vehicle 

Safety-related  

Active Steering Active steering adjusts the degree to which steering wheels contributes to wheel 
movement dependent on vehicle speed, such that manoeuvring in urban areas or small 
spaces at low speed is ergonomically optimised for the driver 

Supports longer, 
heavier vehicles 

 

Active Dolly Steering Active dolly steering relies on advanced electronic control unit algorithms to enable 
large articulated vehicles to manoeuvre in roundabouts or otherwise tight spaces 

Supports longer, 
heavier vehicles 

 

Mild Hybrid Propulsion & 
Stop/Start Systems 

This vehicle type is designed to be partially supported by electric propulsion, often with 
capability to automatically turn off the vehicle’s engine after a short period of time at a 
stop in order to conserve fuel use 

Applicable for 
medium duty urban 
vehicles and light 
duty vehicles only 

 

Electric Hybrid, Battery 
Electric, Dedicated/Dual Fuel 
Gas, or Hydrogen Fuel Cell 
Propulsion 

Each of these propulsion methods are supported by alternative fuels, which necessitate 
advanced control engineering, drive-by-wire systems, and regulation of the vehicle via 
the electronic control unit 

Variable – not 
detailed due to 
uncertainty of uptake 

 

Reduction of Rearward 
Amplification 

The advanced development of control engineering to reduce rearward amplification is 
intended to increase stability, decrease the risk of rollover, and adjust vehicle dynamics 
for optimal fuel use for longer heavier vehicles 

Supports longer, 
heavier vehicles 

 

OPAQUE 

TECHNOLOGIES 

Topographical Adaptive 

Cruise Control (TACC) 

Topographical adaptive cruise control autonomously adjusts vehicle speed based on the 

movement of surrounding vehicles, a set target speed, or a projection of upcoming 
gradient using GPS triangulation, or any combination 

Reduces CO2 2.0% - 6.0% (Baker, 

et al., 2009) 

Advanced Driver Assistance 
System (ADAS) Feedback 

ADASs utilise vehicle dynamics data to provide warnings to the driver in safety-critical 
situations, and increasingly as feedback to improve eco-driving practice 

Variable  

Collision Warning Systems Collision warning systems use surround sensor systems to detect nearby road objects to 
warn the driver of a projected collision 

Safety-related  



Haptic Interfaces Haptic interfaces include touchscreen displays, vibratory seats or seatbelts, haptic 
pedals, haptic steering etc. 

Variable  

Next-Generation Digital 
Tachograph 

Next-generation digital tachographs transmit vehicle dynamics and legally-required 
working hours data wirelessly to cloud storage, as opposed to the current method of data 
storage on integrated circuit cards carried by drivers 

Safety-related  

On-Board Safety Cameras Safety cameras and in-cab displays make blind spots (thus surrounding road users) more 

visible to the driver, and are increasingly coupled with collision warning systems and/or 
ADAS feedback 

Safety-related  

Advanced Satellite Navigation 
& Routing Systems 

Sophisticated satellite navigation systems will be customised to specific vehicle types 
for weight and dimensional data in order to avoid restricted routes (e.g. low bridges), 

and increasingly incorporate real-time traffic data 

Variable  

Infrastructure-to-Vehicle 
(I2V) Communications 

Wireless communications (e.g. dedicated short-range communications) transmit local 
traffic condition information to each vehicle  

Supports advanced 
routing 

 

Head-Up Displays Head-up displays present information on the windscreen in order to optimise attentional 
resources 

Variable  

Automated Low Speed 
Manoeuvring 

Automated low speed manoeuvring utilises the surround sensor system to take 
autonomous control of the vehicle in order to make complicated reversals into loading 
bays or perform other low speed manoeuvres.   

Supports longer, 
heavier vehicles 

 

Heavy Goods Vehicle (HGV) 

Platooning 

Platooning utilises surround sensor systems to facilitate vehicle-to-vehicle 

communication, appointing a lead vehicle in a ‘road train’ and enabling autonomous 
control of following vehicles at an optimal distance, minimising aerodynamic drag 

Reduces CO2 2.1% (Bergenheim, 

et al., 2012) - 20.0% 
(Ricardo AEA, 
2009) 

Fatigue Detection Technology Fatigue detection technology monitors the driver to recognise physiological signs of 

fatigue, and provides warnings to alert the driver, or triggers autonomous vehicle control 
to reduce the likelihood or severity of an incident 

Safety-related  

ENABLING 

TECHNOLOGIES 

OR 

SYSTEMS/DESIGN 

INTERVENTIONS 

Electrification of Hotel Loads Electrification or alternative fuel use to support hotel loads (e.g. chilled trailers) in place 
of traditional fuel use 

Supports alternative 
propulsion methods 

 

Diesel-Mix Fuel Use Additives which help to maintain the engine and advanced engine control strategies 
which support precise injection of diesel-petrol mix fuels improve efficiency 

Reduces CO2 Unknown for 
logistics vehicle use 

Heat Management Heat management recovers and recycles engine heat to power a supporting turbine and 
generate energy 

Reduces CO2 3.0% - 6.0% (Baker, 
et al., 2009) 



Contactless Inductance 
Charging 

Contactless inductance loops allow vehicles with electric propulsion to charge while in 
motion, thus extending the range of the vehicle 

Supports alternative 
propulsion methods 

 

Aerodynamic Fittings Small aerodynamic adjustments to the cab or trailer reduce drag and fuel use Reduces CO2 2.0% - 4.0% (Atkins, 
2010) 

Expansion of Truck or Trailer 
Dimensions 

Larger hauls contribute result in fewer heavier vehicles on the roadways, thus the 
expansion of truck or trailer dimensions systemically reduces fuel use 

Reduces CO2 10.0% - 30.0% 
(Morrison, et al., 

2014) 

Lightweighting Use of novel lightweight materials reduces vehicle system weight and reduces overall 
fuel use 

Reduces CO2 1.5% - 3.0% (Atkins, 
et al., 2013) 

Integrated Aerodynamic 
Design 

Aerodynamic design of the total vehicle system (cab and trailer) reduces drag and fuel 
use 

Reduces CO2 10.0% - 12.0% 
(Baker, et al., 2009) 

 Low Rolling Resistance Tyres Low rolling resistance tyres minimise frictional losses between tyre and roadway, and 
thus reduce fuel use 

Reduces CO2 4.0% - 8.0% (Baker, 
et al., 2009)  

 Optimised Mirror Design Tailored cab and mirror design improves the driver’s visibility of nearby road users Safety-related  

 Real-time Traffic Data Provision of open-access real-time traffic data enables commercial software and 
application development for integration with in-vehicle information systems such as 
sophisticated satellite navigation systems 

Supports advanced 
routing 

 

 Natural Gas Infrastructure Natural gas infrastructure supports long-haul journeys in vehicles using natural gas as 
alternative fuel 

Supports alternative 
propulsion methods 

 

 Telematic Data Collection Telematic data collection supported by personal devices (e.g. smartphones) use 
accelerometers, GPS, and wireless connection to vehicle electronic control units to 
collect and analyse data related to driver behaviour 

Supports eco-driving 
reviews 

 

 Integrated Tachograph & 

Telematic Data Collection 

Advanced telematic data collection and tachograph systems may be integrated for 

streamlined collection of data for legal requirements, driver monitoring, and real-time 
feedback 

Supports eco-driving 

reviews 

 

 Simulator Training Driving simulators provide commercial vehicle driver training in a safe and controlled 
virtual environment 

 

Supports eco-driving 
training 

 

 

  



Figure 1 shows projected future technology use as identified by industry experts in the short term, by 

2020. These include technologies with a wide range of task demands, with the highest degree of 

automation being found for automated emergency braking systems. Items in Figures 1–3 denoted by an 

asterisk were identified for niche use only; in the short term this includes mild hybrid and stop/start 

systems. 

 

Figure 1: Commercial Vehicle Technologies in UK Identified for Short Term 2015-2020 

In the medium term, technologies with a wide range of task demands are expected to be implemented. 

These include sophisticated infrastructure-to-vehicle communications, vehicle-to-vehicle 

communications, and other applications relying on surround sensor systems. At the highest degree of 

automation, active collision avoidance systems are designed to brake autonomously, as well as adjust 

the trajectory of the vehicle in the event of a collision with an oncoming vehicle. Electric hybrid vehicle 

use was identified for niche industries or applications by 2025. 

 

Figure 2: Commercial Vehicle Technologies in UK Identified for Medium Term 2020-2025 



In the long term, many of the technologies identified fall in the range of moderate to high degrees of 

automation. The items identified out with this group were the expansion of truck or trailer dimensions 

by 2026, as well as the availability of natural gas infrastructure in 2037. Four of the ten technologies 

for implementation in the long term were identified for niche applications or industries only, including 

battery electric vehicles, dual fuel vehicles, dedicated gas vehicles, and hydrogen fuel cell vehicles. 

Technologies with the highest degree of automation included automated low-speed manoeuvring by 

2027, and commercial vehicle platooning by 2033. 

Many participants expressed caution regarding identification of novel technologies and applications 

beyond 2030, due to the 10-15 year life cycle of commercial vehicle development and uncertainty 

regarding future operating conditions. Although the majority of identified technologies were identified 

consistently by participants within a given time step, alternative propulsion methods (and supporting 

infrastructure) identified in Figures 1-3 carried the widest variability in time to implementation. This 

may be a reflection of each participant group’s localised perspective of the system, or due to concerns 

surrounding a solid business case for such technologies, including the geographical availability of future 

infrastructure to reliably support operations-as-usual in terms of journey range (Ricardo AEA, 2012). 

While technology ‘suppliers’ may understand that interventions are technologically ready, the fleet 

operators who represent the majority of technology ‘customers’ may be more risk-averse; current 

research suggests that drivers report more support for the implementation of environmentally-friendly 

technologies, while operators’ decision-making processes rely primarily on cost (Schweitzer, et al., 

2008). 

In order to link these individual technologies to an examination of system design, the degree of 

automation was considered in relation to the commercial driving task. Degree of automation 

characterises the task’s allocation of function, by defining the contribution of technologies in terms of 

level of automation (low, moderate, or high), and across each of the four stages of information 

processing (information acquisition, information analysis, decision & action selection, and action 

implementation; (Onnasch, et al., 2013). This analysis was documented for each identified technology, 

and then aggregated for each time step (as depicted in Figures 1-3).  

While high degrees of automation support routine operations, they also carry negative effects when the 

system malfunctions or fails; in layman’s terms, this is referred to as the ‘lumberjack effect’, indicating 

that ‘the higher they are, the harder they fall’ in terms of recovery from system failure. The meta-

analysis carried out by Onnasch et al. (2013) found that this effect is exacerbated in certain system 

designs, and a performance step change occurs when the design of automation shifts from allocation of 

information analysis, to decision and action selection. From the analysis of identified technologies, 

‘information analysis’ was found to be the stage of information processing with the largest increase in 

allocation to technology between 2020 and 2050, followed closely by ‘action selection’. Overall, this 

trend toward increasing emphasis of information analysis and action selection suggests that future 

technologies are at high risk for the ‘lumberjack effect’ whereby system performance under expected 

conditions is adequate, but in the event of a failure, disruptions are difficult to recover from. In the 

specific context of commercial driving and logistics operations, the degree of automation remains more 

or less constant over time, however the characteristics of such automation become generally more 

complex and more demanding of technological agents.  



 

Figure 3: Commercial Vehicle Technologies in UK Identified for Long Term 2025-2050 

 

Figure 4: Proportion of Transparent, Opaque and Enabling Technologies Identified Mapped Against Degree of 
Automation Categories 

Figure 4 also shows a broad relationship between technology classification and degree of automation. 

This shows that of the technologies identified by participants, enabling technologies occur most 

frequently at no or low degrees of automation. In contrast, opaque technologies were found most 

frequently at high degrees of automation. Interestingly, the proportion of transparent technologies varies 

with degree of automation; this suggests that the technologies designed to mediate and optimise 

interactions between vehicle and driver may not be apparent to the end user, but are projected to carry 

out a range of tasks with widely varying complexity. 



More detailed characterisation of the system from this perspective may be used to highlight critical 

parts, and guide future system development. Specific end user characteristics may leverage human 

factors considerations such as the degree of automation; for example, the design of automation 

corresponding to various levels of stress (Sauer, et al., 2013).  

 

Figure 5: Associated Human Factors of Logistics Technologies in UK & their Aggregated Significance over Time 

Figure 5 shows the potential human factors associated with each identified technology, and their 

aggregated significance over time. The highest relevance was found for haptic feedback, followed by 

auditory feedback, suggesting that total vehicle design will of significant importance to optimising the 

commercial driving task. The moderate significance of ‘locus of control’ at each time step of the 

trajectory along with the consistent increase in commercial vehicle automation over time suggests that 

an adequate approach for system evaluation will also include consideration of the allocation of function. 

Studies indicate that drivers may adjust their locus of control in a natural process of adaption to new 

technology over long-term use, carrying potential risks to safety or at the very least technological 

effectiveness in the case of system failure.  

The risks associated with these factors – particularly the factors of locus of control and attention – may 

be exacerbated by a host of user and industry factors which hold more subtle influence over individual 

operational capabilities. This translates not only to ineffective carbon reduction approaches, but also to 

higher exposure to accident and injury to the driver or other road users (Day, et al., 2012). Further 

research might consider the extent of these human factors issues for each technology in the short-term 

and long-term of driver use (Saad, 2006). A fuller understanding of the commercial driver – and the 

role of knowledge, skills, abilities, and training required to perform the driving task – will be key to the 

evaluation of future commercial vehicle technology.  

It should be noted that the human factors evaluation applied in this paper highlight generic human 

factors, and provide only a foundation for contextual analysis of each technology to determine more 

complex factors related to specific task settings. Haptic and auditory feedback maintained high 

significance throughout the targeted timeline, perhaps highlighting the prevalence of transparent 



technologies which provide feedback to the user despite little conscious interaction between human user 

and technology. Further investigation is required to conclusively determine the effects of 

implementation of identified technologies, however the high and increasing prevalence of feedback to 

the user may result in mode errors and problems with situation awareness. 

Figure 6 presents a high level overview of general logistics trends offered by the expert participants.  

Short-term trends include the development of driver training legislation, and further customisation of 

vehicle technology to drive cycles and applications. In the medium term, we expect to see 

communications integration with intelligent transport systems, and the development of increasingly 

autonomous vehicles. In the longer term, specific legislation and regulation of autonomous vehicle 

applications are expected. 

 

Figure 6: Commercial Road Freight Trends Volunteered by Expert Participants 



Throughout the technology trajectory the changing nature of the driver role is acknowledged in driver 

training and legislation. Training is often the intervention of first choice when dealing with behavioural 

issues, but experience in applied ergonomics suggests a range of other potentially useful interventions. 

These include error-tolerant systems, adaptive automation, and designs which cleverly constrain 

behaviour so that the desired behaviour is the same as the easiest, most natural one for people to perform 

in real-life. 

Any or all of the factors outlined in the end user profile may lead to higher exposure to accident and 

injury to the driver or other road users (Clarke, et al., 2009; Day, et al., 2012; Stuckey, et al., 2007), and 

as a result industrial responsibility for employee safety has gained importance in logistics. Although 

these factors may not all apply (as they have been studied in isolation for various driver types, and 

because of the specialised task and environment), these warrant further investigation and give 

reasonable cause for attention to human factors considerations specifically in a commercial driving 

context. 

3.2. Trajectory of CO2 reductions 

The intended goal for many identified technologies is for carbon emission reduction, and based on 

industry estimates for engineering technologies, Figure 7 has been constructed to show progress in 

carbon reductions against future targets, and it can be seen that engineering technologies identified 

within the timeline fall short of achieving the required carbon reduction targets of 80% by 2050. This 

figure was constructed from an approximated range of carbon reduction estimates for each identified 

technology as cited in Table 2, and the most current national statistics available (Allen & Brown, 2008; 

Department of Energy & Climate Change, 2014; Department for Transport, 2009b; Department for 

Transport, 2009c; Department for Transport, 2010a; Department for Transport, 2010b; Department for 

Transport, 2012a; Department for Transport, 2012b). These statistics were used to estimate the 

distribution of miles travelled by each vehicle type as a proportion of the national logistics fleet, in order 

to coarsely assess the impact of projected technologies on a wider scale. These vehicle categories 

considered weight and drive cycle, and associated assumptions of the carbon reduction estimates in 

Figure 7 may be seen in Table 3 below. 

Table 3: Vehicle Category Assumptions for CO2 Reduction Projections (seen in Figure 7) 

VEHICLE CATEGORY 
 
 
 

WEIGHT 
RANGE 
 

DISTANCE 
TRAVELLED* 
 

PROPORTION OF 
DISTANCE 
TRAVELLED BY 
VEHICLE 
CATEGORY 

(tonnes) (km/year) % 

Heavy duty / heavy goods 25 – 44 11,067,000,000 20.41% 

Medium duty inter-city distribution 7.5 – 25 2,557,400,000 4.72% 

Medium duty urban distribution 7.5 – 25 807,600,000 1.49% 

Medium goods 3.5 – 7.5 3,149,000,000 5.81% 

Light goods 0 – 3.5 36,630,000,000 67.57% 

*approximated from Department for Transport (2010a); Department for Transport (2010b) 

 

The compatibility and ‘stackability’ (i.e. impossibility of co-implementation of certain technologies) 

(AEA, 2012, p. 45) of the identified technologies was then assessed for each vehicle category, and the 

appropriate carbon estimates for each category were used. 



Based on consistent identification of alternative propulsion methods as technology only for niche 

applications, as well as uncertainty in the proportion of future uptake, such technologies have been 

excluded from Figure 7. Figure 7 relies heavily on the assumption that each engineering technology 

identified is adopted by 100% of applicable vehicle types, in order to illustrate that this shortfall is likely 

even under idealised conditions. As can be seen in the high occurrence of ‘niche only’ technologies in 

Figure 3 as well as the estimates in Figure 7, there may be diminishing returns gained by carbon 

reduction technologies over time from the implementation of engineering interventions in isolation. In 

fact, by 2030, many engineering technologies will be in widespread use, placing increasing emphasis 

on behavioural and systems solutions as time progresses.  

 

Figure 7: Estimated Carbon Reduction Gained by Identified Engineering Technologies (not including alternative 
propulsion methods due to uncertainty in proportion of uptake) 

Even in the event of 100% uptake of identified engineering interventions, discounting increases in 

overall freight operations which are likely to accompany economic growth, and taking into account 

projected general engine efficiency improvements (AEA, 2012), Figure 7 supports that practical results 

will rely heavily on behavioural and systems considerations. Interview responses as shown in Figures 

1-3 as well as Figure 6 confirm that while alternative propulsion methods may yield considerable 

environmental benefits per vehicle, uptake is likely to be limited to niche applications due to perceived 

risks associated with cost, ensuring infrastructure support, and uncertainty of the longevity and 

dependability of real-world commercial vehicle use (Ricardo AEA, 2012). The wide 27.85% gap 

between the maximum and minimum estimates for CO2 reductions per HGV points to the complexities 

of technology trials in real-world logistics systems, and the need for contextual analysis to maximise 

practical impact. Interview responses also suggest short time frames of predictability and the sensitivity 

of the logistics system to time, which may delay the uptake of more radical technologies in risk-averse 

environments, further emphasising the need for deconstruction and analysis of one currently elusive 

influence: the human factor.  

4.  Is technology alone enough? 

Is technology alone enough? The results of this study suggest that it is not. This work reveals the key 

to achieving mandated carbon emissions will increasingly rely on behavioural interventions and systems 



design. From the above results it is clear that future commercial vehicles will incorporate a great number 

and wide range of transparent, opaque, and enabling or systems technologies. 

In place of a lengthy ordering of facts an alternative method has been chosen to convey the alternate 

realities that await the logistics sector, particularly the lorry driver, in the 21st century. This alternative 

method is to synthesise the findings into two test drives, in order to speculatively demonstrate the wide 

range of potential issues or benefits. Two optimistic and pessimistic theoretical commercial vehicle test 

drives are described below. 

4.1. Scenario 1 – An Optimistic 2030 Test Drive 

Before leaving for work, the driver checks their assigned tablet or phone and signs in to their profile on 

their organisation’s app, which displays their truck and delivery assignment. When reaching the 

assigned truck, the driver notices some minor fender damage, and takes a picture with their tablet or 

phone which is sent with a time stamp to the vehicle depot garage, where the damage can be roughly 

assessed and parts can be manufactured from their 3D printer and replaced at the end of the driver’s 

shift. The driver then switches to a tachograph app, and switches in to ‘driving’ mode through the 

touchscreen interface, which activates Bluetooth communication to connect with the CANbus and 

continuously collect vehicle dynamics data. This legally-required tachograph data is sent to a cloud 

storage point associated with the driver and their base office, along with the driver’s ‘shift profile’ 

driving behaviour which is calculated in relation to a targeted delivery timeline, fuel efficiency, or eco-

driving behaviour. The driver’s fleet manager can track or review this information at any time, and the 

driver can opt to have this information sent to their profile or personal e-mail address in a weekly report, 

should they wish to examine their performance between meetings with fleet managers. To heighten the 

competition in order to sustain engagement with the program, weekly tables are posted (in an 

anonymised format) in the base office, where drivers can see the progress they have been making and 

their rank amongst the other company drivers. 

The driver then starts up the vehicle, activating the advanced driver assistance system and the head-up 

display which provides the information for navigation, weather and road conditions, and rest stop areas. 

Route directions are displayed on the windscreen and are dynamically updated throughout the journey, 

based on real-time congestion data, roadworks information provided by infrastructure-to-vehicle 

communication, and the set dimensions and weight as calculated by the vehicle’s CANbus. Moving 

through an outer urban area, the driver accelerates a bit too harshly, and the ADAS provides visual 

feedback on the windscreen, advising the driver to slow and ‘smooth’ this driving behaviour in order to 

optimise fuel usage. The driver continues on and attempts a left-hand turn, during which a cyclist in the 

driver’s blind spot triggers the sophisticated active collision avoidance system which is continually 

feeding surrounding sensor data to the vehicle’s computerised control unit. The sensors detect a possible 

(but not imminent) collision, and the ADAS collision warning uses a vibratory alert in the steering 

wheel. This haptic warning and the auditory warning coming from the dashboard draws the driver’s 

attention immediately to the on-board safety camera visual, which has appeared in the head-up display. 

Paired with traditional mirrors which have been optimised based on interface guidance (built from 

information on blind spots and visual search behaviour) this enables the driver to manoeuvre 

cooperatively with the cyclist, avoiding an accident. 

On arriving at the pick-up point, the lot is packed with vehicles. To minimise the waiting time for 

vehicles further down the queue, and the chances of getting into a tough spot or causing a safety incident 

in the lot, the driver pulls in and switches on the automated low-speed manoeuvring function which 



seamlessly and autonomously reverses the 40-tonne vehicle into the loading bay while using the sensor 

system to detect for nearing obstacles. The driver again uses the telematics tachograph application on 

their assigned personal device to switch to ‘other work’ mode, before switching off the vehicle and 

opening an app containing delivery information. After using the personal device to complete any 

administrative work and loading the vehicle with goods, the driver switches the tachograph app back 

on to ‘driving’ mode, and uses the dynamic force steering to manoeuvre easily around tight corners and 

spaces at the pick-up point. 

Accelerating on approach to the highway, the driver works effortlessly with the vehicle, as despite the 

larger vehicle dimensions, greater payload, and intensive lightweighting, the truck-trailer combination 

has undergone an integrated aerodynamic design. Similarly, while the trailer unit is propelled partially 

by isolated electromobility and many other parts of the vehicle are controlled electronically, the 

computerised control unit continually optimises vehicle dynamics and stability. Entering the highway, 

the driver switches on the topographical adaptive cruise control (TACC), which communicates with 

GPS to project the gradient of upcoming terrain, and takes control of vehicle dynamics to optimise 

medium-term fuel usage. The CAS corrects the truck’s trajectory where necessary, ensuring that it 

remains between the lane boundaries. This same data is simultaneously used in determining the 

trajectory of oncoming vehicles so that in the event of a possible head-on collision, the truck can 

autonomously adjust its own steering and dynamics to create an aversive trajectory. Suddenly, a 

passenger vehicle traveling in the adjacent lane cuts in front of our vehicle, triggering the automated 

emergency braking which stops the truck just in time to avoid an incident. The driver regains control of 

the vehicle, and switches the TACC back on as traffic resumes normally. 

Several other trucks on the highway join up with our driver, using vehicle-to-vehicle sensor 

communication to create an aerodynamically optimised vehicle platoon. The following drivers in the 

platoon take a supervisory role over their vehicles, and are able to finish some administrative 

‘paperwork’ (completed via a tablet application) for their next destinations. 

A few miles before reaching the off-ramp for the delivery point, the truck’s CANbus wirelessly sends 

notifications to the ADAS of surrounding road train vehicles that our driver will soon be exiting the 

platoon and the preceding truck in the queue will be required to take over. A roadside wireless 

infrastructure-to-vehicle communications point links the local area’s traffic management system in with 

the vehicle’s ADAS, and a warning appears on the head-up display regarding a point of congestion on 

the route which was projected by the satellite navigation system at the outset of the shift. The satellite 

navigation system suggests a route change to the next off-ramp, which under normal conditions would 

take a few minutes longer, but in this instance will save a substantial amount of time by avoiding the 

incident causing congestion ahead. The driver accepts this suggestion, and then switches off the TACC 

to make a lane change, and continues ahead to the next off-ramp in order to make it to the first delivery 

destination in a safe and timely manner. 

After a long and tiring day behind the wheel, the driver is on the way back to the base of operations. It 

is dark and overcast, and the toll of the day causes the drowsy driver to close his eyes. The fatigue 

detection system, using an optical tracking camera, is immediately triggered by this behaviour and 

prepares to take temporary control to stop the vehicle. However, the simultaneous haptic vibration in 

the seat as well as an auditory alarm alerts the driver before this is necessary, and the ADAS projects 

the remaining miles on the journey onto the head-up display, and suggests a nearby rest stop location 

for a short break. After a temporary switch to ‘break’ mode in the tachograph app and having a strong 

cup of coffee, the driver returns smoothly to the base office and signs off, feeling satisfied with their 

driving style and performance in the face of today’s hard work and the next fleet manager meeting. 



4.2. Scenario 2 – A Pessimistic 2030 Test Drive 

Before leaving for work, the driver checks their assigned tablet or phone and signs in to their profile on 

their organisation’s app, which displays their truck and delivery assignment. When reaching the 

assigned truck, the driver notices some minor fender damage, and takes a picture with their tablet or 

phone which is sent with a time stamp to the vehicle depot garage, where the damage can be roughly 

assessed and parts can be manufactured from their 3D printer and replaced at the end of the driver’s 

shift. The driver then switches to a tachograph app, which requests an update before opening. After 

waiting several minutes for this to complete while in the depot, the driver switches in to ‘driving’ mode 

through the touchscreen interface, which activates short-range Bluetooth communication to connect 

with the CANbus and continuously collect vehicle dynamics data. This legally-required tachograph data 

is sent to a cloud storage point associated with the driver and their base office, along with the driver’s 

‘shift profile’ driving behaviour which is calculated in relation to a targeted delivery timeline, fuel 

efficiency, or eco-driving behaviour. The driver’s fleet manager tracks company drivers in order to 

ensure they arrive at their destinations on time in the most fuel-efficient way possible, and if necessary 

in the case of delays or poor driving behaviour, can phone or contact the driver immediately. At 

meetings with fleet managers, most drivers don’t mind the new technology however different drivers 

have a wide range of different driving styles, and different managers have varying levels of 

understanding regarding how the new technology functions. Some drivers receive weekly progress 

reports on their driving style and enjoy participating in the weekly tables – as all of the drivers know 

each other, it doesn’t take long to determine which scores belong to which driver in the anonymised 

format. However, the majority see these eco-driving reviews as a ‘check-the-box’ exercise and view it 

as conflicting with the primary goal under real-world conditions – quick and incident-free delivery – 

thus are not as invested in the program when independently at work on the road. Some drivers have 

even learned to cheat the system by using unconventional manoeuvres such as avoiding the brake pedal 

and only applying the handbrake when deceleration is needed at low speeds. Not only do manoeuvres 

such as these cause considerable wear to the vehicle, but these also may increase overall emissions from 

abrupt deceleration and acceleration manoeuvres. 

The driver starts up the vehicle, activating the advanced driver assistance system and the head-up 

display which provides the information for navigation, weather and road conditions, and rest stop areas. 

Although the ADAS contains valuable information, it’s all a bit too much for the driver before even 

leaving the base depot, and the driver spends a few minutes minimising and adjusting the majority of 

the default visuals. Whilst personalising their own display, they are distracted from the immediate road 

environment, causing jerky, abrupt manoeuvres which increase emissions for the first several minutes 

of the drive. Using the sophisticated satellite navigation system, the driver begins moving through an 

outer urban area and on pulling forward through an intersection the driver perceives that a vehicle 

travelling in a perpendicular lane is not slowing down enough to come to a full stop. Our driver ignores 

the ADAS’ visual feedback and accelerates harshly through the last of the intersection, in order to avoid 

an incident which might have been caused by the other driver’s misperception of how quickly a heavy 

vehicle can accelerate from a full stop. The vehicle in front of the truck comes to a sudden stop, and the 

truck’s sensors activate the automated emergency braking to bring the truck to an abrupt stop just before 

impact – and by sheer luck, our driver has already cleared the intersection at the rear, as the lights have 

again changed priority and traffic has resumed. Once the ADAS notifications have disappeared and 

traffic ahead has continued on, the driver moves forward and attempts a left-hand turn, during which a 

cyclist in the driver’s blind spot triggers the sophisticated active collision avoidance system. The sensors 

detect a possible (but not imminent) collision, and the ADAS collision warning uses a vibratory alert in 

the steering wheel. This haptic warning and the auditory warning coming from the dashboard alert the 



driver, but of the many forms and locations of feedback, the driver is having a difficult time determining 

which type of hazard is being picked up on by the system. This is especially because the cyclist has 

now moved out of the scope of the on-board safety camera, and while the driver is checking the visual 

on the head-up display, the cyclist has changed lanes away from the scope of the sensors and mirrors. 

From the perspective of the driver, the ADAS collision warning could have been activated by any 

number of cyclists zipping between lanes and through traffic, or simply a technological glitch. Amidst 

the continuously changing stream of information the driver is processing about the surrounding traffic 

at this intersection, the collision warning is quickly and unconsciously shrugged off, and the driver 

continues toward the pick-up point. 

On arriving at the pick-up point, the lot is packed with vehicles. To minimise the waiting time for 

vehicles further down the queue, and the chances of getting into a tough spot or causing a safety incident 

in the lot, the driver pulls in and switches on the automated low-speed manoeuvring function. All is 

going well until the surrounding activity in the lot repeatedly triggers the automated emergency braking, 

at which point the driver deactivates both the automated emergency braking and the low-speed 

manoeuvring function to perform the activity without interruption. The driver again uses the telematics 

tachograph application on their assigned personal device to switch to ‘other work’ mode, before 

switching off the vehicle and opening an app containing delivery information. However, the data 

connection is limited in this area and the wireless internet connection available at the pick-up point is 

strained from the number of users attempting to log on for their own delivery information. Our driver 

enters the pick-up point office, which is busy with drivers trying to sort out the details of their work in 

order to make it to their delivery point in time, and eventually receives the relevant information. After 

using the (slow, albeit functional) data connection to complete any administrative work on their 

personal device and loading the vehicle with goods, the driver switches the tachograph app back on to 

‘driving’ mode and prepares to depart. The dynamic force steering is designed to navigate easily around 

tight corners and spaces but the driver, prepared to depart for the highway, is not expecting the 

sensitivity of the steering wheel, and thus harshly corrects manoeuvers in order to adjust their driving 

style and avoid collisions and scrapes in the lot. 

Accelerating on approach to the highway, the driver feels disjointed from the vehicle, having to 

constantly adjust to unexpected handling characteristics produced by the combination of aerodynamic 

design and computer-optimised dynamics. Entering the highway, the driver switches on the 

topographical adaptive cruise control (TACC), which communicates with GPS to project the gradient 

of upcoming terrain, but at the start of the first incline the driver is unsettled by the lack of forward 

momentum and the feeling that they will roll back into traffic, causing them to switch the function off. 

The driver continues on, aware that the CAS corrects the truck’s trajectory where necessary to ensure 

that it remains between the lane boundaries and providing an automated aversive trajectory in the case 

of an oncoming vehicle. The driver assumes that the CAS will take over in an emergency and deems 

the likelihood of an emergency low given the current traffic conditions, and so takes a few moments to 

readjust settings within the vehicle, change music playing from his personal device, and get 

comfortable. As the driver is refocusing his attention back to the traffic environment, a passenger 

vehicle traveling in the adjacent lane accelerates and cuts in front of our vehicle. While the driver begins 

to instinctively manoeuver by slowing down and slightly swerving, the expected auditory and visual 

collision warning are activated, but the automated emergency braking is not – in his rush to reach the 

delivery point on time, the driver has forgotten to turn the function back on after leaving the pick-up 

point. Although the driver’s expectation is that the vehicle will take control and automatically stop, the 

driver manages to swerve into the next lane before regaining control of the near-incident.  



After rejoining with the normal flow of traffic, several other trucks on the highway join up with our 

driver, using vehicle-to-vehicle sensor communication to create an aerodynamically optimised vehicle 

platoon. However, one truck in the middle of the platoon is alerted to one or two faulty sensors, which 

disables it from receiving the information necessary to integrate with the other trucks and forces the 

driver to exit the platoon. In order to retain some degree of fuel saving, this driver manoeuvers to the 

back of the platoon but remains disconnected. Although aware of the disconnection with vehicles in 

front, the driver’s experience with platoons causes them to unconsciously maintain a slightly closer 

following distance than is safe without automated support. The lead driver in the platoon does not rely 

on semi-autonomous technology, but the following connected drivers take a supervisory role over their 

vehicles, allowing them to focus on other work tasks or have a quick bite to eat on the road. While 

several following connected drivers are simultaneously eating lunch, reading about safe rest stop 

location, and reviewing a driver performance profile from the previous week, the car traveling in front 

of the lead truck in the platoon decelerates harshly in reaction to an animal on the roadway. The lead 

vehicle’s automated emergency braking is activated in time to avoid a rear-end collision, and while the 

following connected drivers are distracted from the driving task, the vehicle-to-vehicle communication 

allows them to remain unscathed. However, the driver of the final disconnected vehicle in the platoon 

has no field of vision to be alerted to the incident and a faulty sensor system which has disabled both 

collision warnings and the automated emergency braking. Due to the normalcy of a close following 

distance in a platoon setting, the final disconnected driver’s close following distance and locus of 

control cause a delay in response, and a harsh rear-end collision results with the vehicle in front which 

is still connected to the platoon. The remainder of the platoon receives notifications of an incident on 

their head-up displays, however this provides few details. This allows the drivers who are still connected 

within the platoon to slow, and verbally communicate via the Bluetooth-enabled ADAS. There is 

considerable confusion about the events of the incident due to the fact that the final connected driver 

has now stopped and sensors are out of range resulting in a disconnection from the information 

circulating amongst the platoon. Once it has been assessed that only the last driver in the platoon has 

been affected, the unaffected section of the platoon is keen to move forward with their deliveries and to 

leave the involved drivers deal with the incident. Luckily, neither driver is injured, but both must call 

in the incident as each vehicle requires roadside assistance. Both have received automated incident 

report questionnaires which have been sent to their personal device after being activated by the vehicle 

dynamics data in the CANbus of their vehicle, which serve the dual purpose of incident reporting to the 

authorities and detailing insurance claims. While each driver is struggling to complete the section “Who 

do you believe is at fault for the incident and why?” assistance turns up on the scene and brings their 

attention to getting their vehicles evaluated and back on the road. 

A few miles before reaching the off-ramp for the delivery point, the truck’s CANbus wirelessly sends 

notifications to the ADAS of surrounding road train vehicles that our driver will soon be exiting the 

platoon and the preceding truck in the queue will be required to take over as lead vehicle. A roadside 

wireless infrastructure-to-vehicle communications point links the local area’s traffic management 

system in with the vehicle’s ADAS, and a warning appears on the head-up display regarding a point of 

congestion on the route which was projected by the satellite navigation system at the outset of the shift. 

The satellite navigation system suggests a route change to the next off-ramp, which under normal 

conditions would take a few minutes longer, but in the case of an incident will save a substantial amount 

of time by avoiding congestion. The driver accepts this suggestion, and waits for confirmation from the 

preceding vehicle that it is suitable to disconnect from the platoon. The driver eventually receives 

confirmation, but due to the distraction of following drivers this occurs only after passing the suggested 

off-ramp, and the satellite navigation system struggles to keep pace with the dynamic changes of the 

task. Preparing to double back, the driver continues ahead to the next off ramp and makes an exit while 



the satellite navigation system is processing new information from the roadside traffic management 

system points. Meanwhile, the head-up display is rapidly filling with rest stop suggestions and other 

local information. Eventually an optimal route is provided and displayed on the ADAS, but by the time 

it is provided the driver is forced to awkwardly manoeuver into another lane at the first junction in order 

to adhere to this route guidance. This is especially difficult given that the traffic management system is 

rerouting the majority of vehicles along this new route away from the originally reported incident, and 

as a result the local network is quickly becoming more congested. The driver has delivered to this 

location before, and being familiar with the area decides to switch off the ADAS and take roads they 

believe are likely to circumvent the major congestion areas in order to complete a safe and timely 

delivery. 

After a long and tiring day behind the wheel, the driver is on the way back to the base of operations 

with all automated support enabled. It is dark and overcast, and the toll of the day causes the driver to 

rub his eyes. The fatigue detection system, using an optical tracking camera, is immediately triggered 

by this behaviour and releases a haptic and auditory alert, which startles the driver and causes them to 

swerve slightly while another vehicle is preparing to pass. Although the lane-keeping system is not 

activated due to the inability to detect faded markings at the roadside, the driver quickly adjusts and 

regains control, meanwhile becoming increasingly frustrated with the multiple “nagging” vehicle 

warnings and producing the temptation to deactivate any automated support. The ADAS projects the 

remaining miles on the journey onto the head-up display and suggests a nearby rest stop location for a 

short break, which is ignored by the driver in their determination to finish their day and return home, 

despite the driver allowing the notifications to remain on the display (potentially causing further 

distractions) due to fatigue. As night falls and the cab darkens, it begins raining heavily and the driver 

opts not to turn on in-cab lighting in order to avoid impairing his vision of the surrounding traffic. The 

driver’s allows their eyes to close again just briefly, with the subconscious expectation that an alert will 

trigger the fatigue detection warning. However, the poor lighting conditions in the cab disrupt the 

system’s ability to perform, and it is not activated; instead, the driver is awoken by an abrupt stop caused 

by the automated emergency braking system. As they regain awareness of the situation, the driver pulls 

to the edge of the road to assess the situation, and begins to dread the next review meeting with 

management due to the high rate of harsh driving behaviours which occurred throughout the shift. 

The truck ends its day at the garage, however the maintenance check requested in the photo taken by 

the driver was bumped significantly in the queue due to a glitch in data connectivity at the start of the 

driver’s shift. As a result, the truck will be out of service for the following shift and a driver has to be 

assigned to drive a temporary replacement truck from another depot some miles away. 

5.  Conclusion 

Results indicate that future commercial vehicles and logistics distribution systems will be designed with 

increasingly complex automation, and that the nature of this increasing reliance on technology may also 

increase negative effects on system performance in instances of malfunction or failure. Examination of 

immediate human factors attributes as outlined within Section 2.4 may serve as a foundation for 

evaluation of current and future technologies, to be further elaborated on as necessary to ensure 

consideration of behavioural variability within this system, and set an industry precedent for ‘human-

in-the-loop’ design. Results also indicate that a mix of technologies, practices and approaches will be 

necessary to achieve necessary emissions reduction targets, and that while a multitude of factors should 

be considered, a sound business case may be of central importance to the selection of interventions by 



logistics operators. This further supports future research into relatively low-cost, low-risk human factors 

research in the road freight sector. 

In the pessimistic thought experiment, the ‘test drive’ showed the possibilities which support (or 

necessitate) behaviour which may be contradictory to eco-driving guidance and have practical 

implications for fuel efficiency. These considerations have a very real commercial and environmental 

impact to the road freight industry. However, it is also worth noting that for the purposes of illustrating 

as many of the identified technologies as possible, the experimental pessimistic test drive involves 

several instances of the driver quickly adjusting and regaining control of the vehicle in time to avoid an 

incident. Under real-world conditions, this is not always a guaranteed (or even likely) outcome. Any 

one of these instances may have resulted in a severe accident, cutting our thought experiment short with 

deeply serious consequences to our driver and his fellow road users. With an ageing workforce, the 

commercial driving sector may also experience greater difficulty with the acceptance of new 

technology, and systems require holistic design with consideration of this user demographic. This 

further stresses the importance of human factors design guidance not for the consideration of safety or 

environmental impact in isolation, but as a whole of interacting factors, and particularly as these pertain 

to the end user. In the first thought experiment, the optimistic test drive shows a glimpse of the potential 

of future technology and system design to achieve the triple bottom line. In order to ensure this potential 

is fulfilled and to maximise the impact of these results on wider system behaviour, future practice may 

incorporate a greater degree of user input throughout the design process. As a relatively new area of 

ergonomics research, exploration is also warranted for a wider range of systems issues within the 

commercial driving sector. This may include organisational factors, job satisfaction and potential links 

to ‘recruit and retain’ concerns currently expressed by operators. Future work includes the detailed 

examination of the commercial driving task; data and information communications structures necessary 

to execute critical tasks; the knowledge, skills, abilities, and training structure of commercial drivers, 

and; assessment of technologies in broader system design by human factors methods and future 

mapping techniques.  
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