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ABSTRACT 

Precise estimation of age is essential in evolutionary anthropology, especially 

to infer population age structures and understand the evolution of human life history 

diversity. However, in small-scale societies, such as hunter-gatherer populations, 

time is often not referred to in calendar years and accurate age estimation remains a 

challenge. We address this by proposing a Bayesian approach that accounts for age 

uncertainty inherent to fieldwork data. We developed a Gibbs sampling Markov chain 

Monte Carlo algorithm that produces posterior distributions of ages for each 

individual, based on a ranking order of individuals from youngest to oldest and age 

ranges for each individual. We first validate our method on 65 Agta foragers from the 

Philippines with known ages, and show that our method generates age estimates 

which are superior to previously published regression-based approaches. We then 

use data on 587 Agta collected during recent fieldwork to demonstrate how multiple 

partial age ranks coming for multiple camps of hunter-gatherers can be integrated. 

Lastly, we exemplify how the distributions generated by our method can be used to 

estimate important demographic parameters in small-scale societies, here age-

specific fertility patterns. Our flexible Bayesian approach will be especially useful to 

improve cross-cultural life history datasets for small-scale societies for which reliable 

age records are difficult to acquire. 

 

 

SIGNIFICANCE STATEMENT 

Understanding demographic and evolutionary processes shaping human life 

history diversity depends on precise age estimations. This is a challenge in small-

scale societies, and especially those who do not follow a calendar year. Our method 

opens new possibilities in demographic and life history studies allowing for cross-

sectional data to be incorporated in cross-cultural comparisons and for a better 

understanding of the adaptive importance of human life history variation. 

\body 

  



INTRODUCTION 

Accurate estimation of the age of individuals is essential in evolutionary 

anthropology. Major questions in the field require an accurate inference of the timing 

of life history events, such as age at menarche, age at first reproduction, age at 

cessation of reproduction, inter-birth intervals and death. Age is also essential when 

assessing infant growth, developmental trajectories and estimating age structure 

properties of a population (e.g. the potential for population growth or decline, 

recovering signatures of epidemics and assessing vulnerability to ecological 

perturbations). Humans have important derived life history features, such as shorter 

inter-birth intervals, longer lifespan, extended post-reproductive longevity and 

childhood dependence (1). These life history traits vary across species in the slow-

fast continuum (2), and they likely vary within humans in response to differences in 

ecology such as differential mortality rates (3) and energetics (4). However, due to 

unreliable age estimates, very few studies have highlighted variability in life history 

traits in traditional societies (3, 5-6). The challenge of estimating ages is particularly 

problematic for populations where individuals do not relate their age to calendar 

years, as is the case among many hunter-gatherer and other small-scale societies 

(7-8). Although longitudinal studies are an ideal approach to address questions 

about variation in life history traits in small-scale populations, these are rare 

(although see 7, 9). There is consequently a need for methods to estimate ages 

based on cross-sectional data from these populations. 

A few approaches have been proposed to estimate ages in small-scale 

societies (reviewed in 7). The simplest one is visual inspection and approximate 

clustering into age cohorts (e.g., infant, child, teen, adult, old age). A clear 

disadvantage of this method is its lack of precision, as establishing life history 

strategies requires a refined age structure. Furthermore, differences in physical 

appearance trajectories in forager populations in comparison to western counterparts 

are likely to cause misattribution of ages. For instance, forager infants are often 

small and underdeveloped, appearing younger than their western peers, while older 

individuals may appear older when compared to western individuals of the same 

age. An alternative class of approaches are indirect demographic models developed 

in the field of human demography (21), which are characterized by model 

parameters that are estimated based on actual population data. For example, Howell 



(8) applied a ‘steady-state model’ approach to the Dobe !Kung foragers. This method 

assumes a stable population structure, ascertains a relative age list of all individuals 

and estimates the death and fertility rates of the population. This approach permits 

an approximation of the population age structure by mapping these rates onto 

different life-tables (in which, for example, 80% live to age 1, 75% live to age 2, etc.) 

and selecting the life-table with the best correspondence. Given that these life tables 

are created from very different populations, caveats of this approach include the 

difficulty to find matching life tables, particularly for growing or declining populations 

for which these rates are unknown (7). Crucially, stable population models fix the 

proportion of individuals that live up to a certain age, which may obscure differences 

in life history adaptations and demography.  

To overcome these problems, Hill and Hurtado (7, but also see 10 for the 

Hadza) designed an alternative method to estimate the ages of Ache hunter-

gatherers that did not assume a stable population. It is based on a relative age list 

including all individuals, with absolute ages for a subset of individuals. The relative 

age list was constructed by first dividing the population into age cohorts containing 

individuals of approximately the same age. Each individual ranked all others within 

their cohort, as well as those in the cohorts above and below them (i.e. either older 

or younger than themselves). These relative lists were combined into cohorts and 

then a master population list by selecting the rankings with the smaller number of 

contradictions. The absolute ages of some of the individuals were obtained from birth 

certificates, estimated from known events, or by an “age-difference chain” 

(individuals were questioned about their age at the time a younger individual was 

born by picking an individual of a known age and matching their age at the time of 

birth of the younger individual, 7). Given these absolute ages and the relative age 

list, a fifth-order polynomial curve was fitted with relative age rank as independent 

and age as dependent variables. Finally, the ages of the remaining individuals were 

estimated as the value of the polynomial curve at the corresponding rank.  

Despite improving upon previous methods, this approach still presents several 

drawbacks. First, the choice of fifth-order polynomial is arbitrary. Previous authors 

(10) have, for example, used third-order polynomials. Some ages may be fitted 

poorly by a polynomial, while overfitting may also be an issue, especially for data 

sets with few known ages. In addition, the uncertainty associated with any age 



estimate is not taken into account. This is particularly problematic in age-difference 

chains as the error is cumulative, leading to high uncertainty, especially for older 

individuals. For example, for the Ache with known ages Hill and Hurtado (7) have 

shown that the error in age estimates using this age-difference chain is 

approximately +0.5 years (SD=1.2) for each 12.5 year interval.  Although relatively 

small, with the oldest individuals potentially overestimated in age by an average of 

~2 years, this method does not control for the concomitant increase in error with age. 

Based on standard deviations this would be between +8.6 and  

-3.4 years for the oldest individuals based on their predicted age from the regression 

model. This has particular relevance to the estimation of age at some important life 

history events in later life, such as age at last reproduction and menopause.  

Here, we present a new Bayesian method for age estimation improving upon 

previous approaches. Bayesian approaches have previously been designed and 

successfully applied in, for example, Paleodemography (19-20) and Radiocarbon 

dating in Archaeology (22), however, they are not readily applied to data typically 

collected in anthropological fieldwork on small-scale societies. Our method requires 

two inputs. First, a single ranking or multiple partial rankings of individuals by age 

obtained from interviewing members of the population. And second, an arbitrary a 

priori age distribution per individual chosen by the researchers familiar with the 

population, that can be either based on accurate measures or ‘eyeballing’. These 

two pieces of information are combined using a statistical inference technique called 

Gibbs sampling, generating a posterior age distribution for each individual. This 

posterior distributions represent all that can be known about the ages of that 

individual given the age ranks and prior age distributions. We show that our method 

generates more accurate age estimates than regression-based approaches on 65 

individuals from a hunter-gatherer society with known ages. As further empirical 

validation, and to show the flexibility of our method for actual fieldwork, we present a 

case study on Agta foragers from Palanan, the Philippines. Finally, we analyse age-

specific fertility patterns in the Agta, fully integrating the uncertainties in the 

estimated ages of mother and offspring. This demonstrates how the posterior 

distributions produced by our method can be reliably used for estimating important 

demographic parameters in small-scale societies for which precise dates of birth do 

not exist. Our method opens new possibilities in demographic and life history 



studies, allowing for cross-sectional data to be incorporated in cross-cultural 

comparisons.  

 

RESULTS 

Validation and benchmarking: Bayesian out-performs regression-based 
approaches to age estimation  

First, we assess how well our Bayesian approach estimates ages compared 

to regression methods. We apply five-fold cross validation (CV), i.e. we randomly 

partition 65 Agta with known ages (obtained from reference 13) into five groups of 13 

individuals, consider the ages of the individuals in each group in turn as known, and 

estimate the ages of the remaining individuals. For each of the five partitions, this 

procedure yields 52 estimates that are then compared with the true known ages. See 

Materials and Methods for details. The results are summarised in Figure 1 and SI 

Appendix, Sup. Table S1. The distribution of differences between known age and 

mean age estimated by our method across all five CV partitions shows that the 

median error of the differences per individual is about 0.29 years (i.e. four months), 

and the mean 0.91 years (i.e. 11 months). Estimation accuracy becomes worse for 

older individuals, whose ages are inherently more difficult to estimate due to wider 

prior age brackets and larger age differences between the individuals (see SI 

Appendix, Sup. Table S1). Interestingly, similar results are achieved even when no 

age is considered known and ages are estimated based on rank and age brackets 

alone. The near-equivalence of the Bayesian method with and without known ages is 

also supported by statistical comparison of the two distributions of error: a Bayesian 

t-test finds no evidence for different means, while a non-parametric two-sided 

Kolmogorov-Smirnov (KS) test reports no significant differences between the two 

distributions (Bayes factor (BF) = 0.23, p = 0.61, see Figure 1). 

In comparison to the Bayesian approach, polynomial regression has a higher 

median error of the differences per individual of around 1.16 years (14 months) and 

a high mean of 2.66 years (32 months). The latter is the result of multiple outliers in 

the error distribution caused by high estimation errors for very young or very old 

individuals, especially when the closest individual with known age is far from these 

individuals. For example, the first individual with known age in partition three (see 



Figure 2) has rank 12. Counter-intuitively, regressing on both known ages and 

midpoints of the age brackets does not improve the estimation (see Material and 

Methods for the rationale behind including the midpoints). The mean error for 

polynomial regression fitted with midpoints of the age brackets is 52 months, and 

comparing it to the distribution without midpoints via a Bayesian t-test and KS test 

yield very strong evidence for greater error in the model using midpoints (BF > 

4x1020, p < 1x10-10, see Figure 1). We also tested a third approach based on local 

regression (LOESS, 17), which drops the requirement for the data to fit a fifth-order 

polynomial and allows for more flexible curves. LOESS shows intermediate 

performance with a median error of 0.64 years (seven months). See SI Appendix, 

Sup. Table S2 for p-values and Bayes factors of all pairwise comparisons of error 

distributions, including LOESS. 

We tested the influence of the number of known ages, employing two to 13-

fold cross validation. The performance of the Bayesian approach is not significantly 

influenced by the number of known ages. This is not the case for the polynomial 

regression, for which large differences are observed, especially when fewer ages are 

known, mostly reducing the accuracy (see SI Appendix for details). Furthermore, we 

asked how robust the approaches are to errors in known ages and ranking order. SI 

Appendix, Sup. Figure S4 shows that our Bayesian method is not influenced by 

slight errors in known ages, whereas polynomial regression and to a lesser extent 

LOESS follow a trend towards worse performance. Errors in ranking order cannot be 

tested independently of errors in known ages for regression approaches. We 

therefore only assessed our Bayesian approach, and find a clear impact of errors in 

ranking order on the estimation accuracy as shown in SI Appendix, Sup. Figure S5. 

Yet, even with 40% errors in the ranking order the estimation accuracy is 

comparable to that of polynomial regression when supplying the correct order. 

Lastly, we explored how well the resulting posterior distributions quantify the 

estimation uncertainty. To be useful as quantification, a 95% credible interval for 

example should contain the true age in 95% of the individuals whose age is being 

estimated, while a 50% credible interval only in half of the individuals. We tested this 

with highest posterior densities (HPD), and confirmed that HPDs closely mirror 

estimation uncertainty (see SI Appendix, Sup. Figure S2).  



In summary, we observe that our Bayesian approach outperforms both 

LOESS and polynomial regression. It achieves this accuracy nearly independently of 

the availability of known ages and correctly quantifies estimation uncertainty. Lastly, 

it is robust to errors in known ages and to some extent in rank order. 

 

Palanan Agta Case study: A flexible method for fieldwork data 

 After testing the data in a longitudinal dataset with known ages, we applied 

our aging methodology to an anthropological cross-sectional case study on Agta 

foragers from the Philippines, for whom most ages are unknown. In particular, we 

highlight two key aspects of our approach: first, the flexibility of our method in dealing 

with fieldwork data by allowing for multiple partial ranks in age estimation; and 

second, exemplifying how the uncertainties in age estimates can be integrated into 

subsequent analyses, such as estimating age-specific fertility patterns, which 

requires the estimation of both mothers and child ages, potentially increasing 

estimation errors.  

A key difficulty with small-scale societies – including the Agta – is that 

individuals living in geographically distant camps rarely know each other well enough 

to accurately rank each other’s ages. As a result, this loose pattern of familiarity 

among individuals precludes the assembly of a single age rank. Rather, multiple 

partial ranks are generated, in our case 266 partial ranks, that include different – yet 

overlapping – subsets of individuals, but never the entire population. One of the 

great flexibilities of our Bayesian approach is that this situation can intuitively be 

accommodated. We present our approach to multiple partial ranks informally here, 

and give more details in the SI Appendix. In the first step, consistent partial ranks are 

merged. For example, (A,B,C) and (B,C,D) are consistent and can be merged to 

yield (A,B,C,D). In contrast, (A,B,C) and (B,A,D) are not consistent and therefore 

kept separate. Longer ranking orders that result from merging tend to impose 

stronger constraints on the prior age distributions, especially for individuals otherwise 

at either end of the partial rank, which results in narrower posterior distributions and 

consequently more accurate age estimates. Together with the priors on the 

individuals’ ages, all partial ranks resulting from this merging step are then used as 

input for separate runs of the Gibbs sampler, where a run produces distributions of 



ages for each individual contained in the partial rank. At this stage one has multiple 

results from independent applications of our Bayesian approach to different partial 

ranks and the same age priors. The last step is to merge all distributions that belong 

to the same individual, generating a final age distribution per individual. To this end, 

the different distributions are combined to form a weighted mixture density, which 

can be thought of as simply adding up the various distributions and rescaling them to 

integrate into one. This way, ranking orders that have been frequently reported by 

multiple individuals are naturally weighted more than those reported once or only a 

few times. The upper two panels in Figure 3 demonstrates this procedure for two 

Agta, where combining the age distributions for a mother and her child yields a 

distribution for the age of the mother at the time of parturition. 

Besides its flexibility to deal with multiple partial ranks, a distinctive feature of 

the Bayesian approach presented here is that it produces full posterior age 

distributions that quantify uncertainty rather than mere point estimates. Figures 3 and 

4 illustrate how the full information in the posterior can be integrated into subsequent 

analyses, here age-specific fertility. Computing the age at parturition is trivial when 

the age of both mother and child are known exactly: simply calculate the difference. 

However, if the age of the mother, the child, or both are uncertain and therefore 

described by a distribution, the solution becomes less obvious. This is precisely the 

case here, as our age estimation procedure results in distributions that capture the 

uncertainty in the age estimate. In Figure 3, we use convolution to derive the 

distribution of age at parturition for a mother (see Materials and Methods for the 

definition of convolution), which explicitly considers the uncertainty about maternal 

and child ages. This analysis was performed on all mother and child pairs, forming 

the mixture of the resulting distributions (think of as ‘averaged’, i.e. stacked and 

normalised) in order to obtain the overall distribution of the age at parturition in the 

Agta population. Figure 4 depicts this posterior distribution of age at parturition 

separately for cases where both the mother’s and the child’s ages are known exactly 

from birth certificates (histogram) and for all other cases (density curve). While we do 

not necessarily expect the distributions to be the same as fewer precise ages are 

available for older individuals (see SI Appendix, Sup. Table S3), we nonetheless fail 

to reject the null hypothesis that both are sampled from the same distribution (KS-



test p > 0.10). We interpreted this as an internal check validating our approach and 

results. 

 

DISCUSSION 

This study introduced a Bayesian approach to estimate ages in a fully 

probabilistic framework. Its strengths are high accuracy and great flexibility. Initial 

age ranges or prior distributions can be chosen from a wide spectrum of distributions 

to reflect the level of confidence in the a priori age estimate for each individual: from 

point masses when date of birth is known, to wide uniform distributions when ages 

are vaguely estimated and lie in a poorly informed range. The second type of input 

data that is required is a ranking of individuals by age. However, our approach can 

also work on multiple partial ranks, a common difficulty when aging small-scale 

societies. Figure 5B exemplifies how these two data types are integrated to produce 

posterior distributions that fully capture and quantify the uncertainty in the resulting 

age estimates.  

By comparing our method to regression-based approaches, we have 

demonstrated that the Bayesian approach outperforms all regression methods 

considered, and furthermore correctly quantifies estimation uncertainty. Notably, this 

is true even when no known dates of birth are provided; a situation where regression 

based approaches cannot be applied. Hence, our approach can also work when 

absolute ages for all or most individuals are not available. However, we caution that 

the number of individuals and the density with which they cover the range of ages is 

critical for the accuracy of estimated ages. No accurate estimate is possible with only 

a few individuals of very different ages. Nonetheless, the necessary data can be 

obtained in short field trips, which should make age estimates for various small-scale 

societies readily available, facilitating future studies on the evolution of human 

adaptive variation. 

The Agta case study demonstrated that our method performs well in typical 

fieldwork conditions and challenges. The large geographical area of Agta camps 

made it impossible to compile a single complete age rank, and therefore, we 

extended our basic Bayesian framework to deal with partial ranks (see Figure 3). 

This demonstrates that specific social organisations with particular traits can be 



integrated by relatively simple extensions of our approach, making our method 

widely applicable in diverse fieldwork conditions. 

Finally, we analysed the results we generated for the Agta to illustrate how the 

posterior age distributions produced by our method can be used in subsequent 

analysis. Age-specific fertility patterns are a fundamental aspect of population 

structure and are necessary to understand demographic and model population 

processes (11). Figures 3 and 4 show how the uncertainties in the posterior age 

estimates can be propagated through the different steps of the analysis and 

integrated into the final result. In contrast, approaches based on summary statistics 

(e.g. mean and median, that by definition do not capture the full information 

contained in the data), or binning point estimates into arbitrary age classes, may 

distort and inflate confidence in final results, and do not allow comparisons at the 

individual level. 

The example above illustrates the importance for future work to derive 

statistical methods that use the posterior age distributions directly and therefore the 

full information content of the data. In these cases, the potential of our probabilistic 

approach can be fully reached, although we show in Figure 1 that point estimates 

(mean age of the posterior distribution) generated by our method already improve 

accuracy. Even though no generic solutions exist for analyses involving ages, 

standard approaches such as resampling from the posterior distribution can be 

implemented on top of the output produced by our method. It should be noted that, 

as with all MCMC-based Bayesian approaches, the MCMC chain, once mixed, is a 

sample from the posterior, making such approaches easy to implement. 

In summary, our Bayesian approach has the potential to increase the utility of 

cross-cultural life history datasets for hunter-gatherers and small-scale societies 

living in various environments, and enable robust and powerful statistical 

comparisons between human population groups to shed light on the adaptive 

processes shaping variability in human life history. 

 

MATERIALS AND METHODS 

Bayesian estimation of ages 



In contrast to previous approaches, we address age estimation in a fully 

probabilistic framework. For a set of individuals, two types of input data are required: 

(i) a ranking or ordering of all individuals by age of the type A is younger than B is 

younger than C etc.; and (ii) an a priori age distribution per individual. For example, 

in the simplest case the a priori distributions may be uniform, i.e. given by hard 

bounds on the plausible age of the individual of the type not younger than ! and not 

older than ! with all ages in between equally probable. We also refer to the interval 

[!,!] as age bracket. We require rank order and age brackets to be compatible, that 

is a combination of ages must exist that has non-zero prior probability and satisfies 

the ranking order. Note that we relax the requirement of a single ranking including all 

individuals in the main text to allow for multiple partial rankings. Ranking and prior 

age distributions are processed to generate a probability distribution of age per 

individual. If an individual is not included in any ranking order, the a priori age 

distribution and age bracket is all that can be known about the individual’s age. 

In the following, we describe how these age distributions are generated by 

Gibbs sampling, while the mathematical definitions can be found in the SI Appendix. 

The heart of the procedure is iterative sampling of random numbers, which are 

constrained in a way to gradually approach the desired age distributions. 

Convergence to the correct distribution is certain and can be mathematically proven. 

As an example, panel A of Figure 5 illustrates the initialization and 2 sampling steps 

for five hypothetical individuals. Say the ranking of the individuals is reflected by their 

label, i.e. 1 is younger than 2 is younger than 3 etc., and their ages have been 

bounded a priori as shown by the age brackets. As a starting point for the sampling, 

we initialize the age of each individual to be the smallest possible value that satisfies 

both the constraints imposed by the ranking and the age brackets. In our example, 

that is achieved by choosing the left bound of the age bracket for individuals 1, 2 and 

3, however, individuals 4 and 5 must be older than individual 3 and therefore appear 

in immediate succession after individual 3. Note that this is only one of many 

possible starting configurations, but as long as the ordering and age range 

constraints are satisfied the actual starting point is irrelevant and all yield equal 

results. After setting the initial values, each individual is considered in turn from the 

youngest to the oldest and assigned a new age by random sampling. The essential 

requirement for Gibbs sampling to work is that the ranking constraints and age 



brackets are not violated. This means that an appropriate range to sample a new 

age from has to be chosen at each step, in panel A of Figure 5 for example marked 

by grey shading, which can be derived as follows. The youngest possible age is the 

higher value out of the preceding individual’s sampled age and the lower bound of 

the current individual’s age bracket. The oldest possible age is the lowest value out 

of the following: the upper bounds of the current individual, the upper bound of all 

succeeding individuals, and the next individual’s age sampled in the previous 

iteration. If sampling is repeated often enough, this procedure results in individual 

age distributions that combine both the information contained in the age brackets 

and the age ranking. For the individuals introduced in Panel A of Figure 5 and 

uniform prior distributions, the effect is shown in Panel B. Intuitively, one can think of 

the age ranking information as “distorting” the prior distributions. Note that the 

approach accommodates arbitrarily small age brackets, in the extreme even 

containing only a single value. Hence, if the age of certain individuals is known with 

certainty, this information is fully used without any change to the sampling scheme 

described above. 

The results represent all that is known about the age of the individuals, and 

are a combination of all the information already contained in the input; no information 

has been discarded or added based on additional assumptions. This also implies 

that if the age brackets or the ranking contain errors, so will the output of our 

method. However, as we show in the Results section, we are able to extend our 

method to work with multiple partial ranks, which allows us to avoid making choices 

and potentially introduce ranking errors in cases where rank order is unclear. The 

fundamental advantage of our method is that its output is a distribution. This allows 

subsequent analyses to incorporate the full uncertainty associated with point 

estimates (e.g. by confidence intervals around the mean age), or in the best case to 

directly use the full age distribution of an individual (see for example age at 

parturition estimation below) and therefore the entirety of the available information. 

 

Validation and benchmarking 

We validate our approach on 65 Agta hunter-gatherers from Casiguran (the 

Philippines), whose exact dates of birth are known (13), and can be directly 



compared to the estimates generated by our Bayesian approach. Ideally, we would 

have validated our method on multiple samples from populations with different age 

structures. However, we are not aware of any other public dataset providing both 

pictures and exact ages that we require to run our method. As with any validation, 

we therefore caution that our performance results do not necessarily generalize 

beyond the dataset we used. Yet, as we do not make any assumption about the 

population, including a specific age structure, we are confident that the performance 

results we present extrapolate well. 

As input data, we derived a relative ranking from the known dates of birth, and 

three of the authors (DS, AEP & MD) assigned upper and lower age bounds to these 

individuals based solely on visual inspection of the accompanying pictures (done 

prior to knowing the actual dates of birth). As photographs were taken in different 

years (between 1972 and 2010), all ages and age estimates were adjusted to the 

present day (2015), hence the youngest age is 15 and the oldest is 93. In order to 

make the results comparable, we summarized each posterior distribution by its 

mean, which can then be easily compared to the known age of the individual by 

calculating the difference between the two.  

Besides validating our results against the known true ages, we also compare 

the quality of our inference against two alternative methods: the regression 

approach, fitting a fifth-order polynomial (7), and a non-parametric alternative based 

on local regression with LOESS (14). 

We implement a five-fold cross validation strategy: We randomly split the data 

into five groups of 13 individuals and consider each group in turn. For each group, 

we estimate the regression equation and use it to deduce the ages of the remaining 

individuals. Within the Bayesian framework, known ages are taken into account by 

choosing discrete probability masses as priors for the age of an individual rather than 

uniform densities over an age interval. Figure 2 sums up our setup: the random 

partitioning of the individuals in five groups (top row), the known ages and the lower 

and upper limits (i.e. age brackets) derived from the individuals’ pictures, and the 

regression curves. The lower and upper age limits vary between individuals, with 

older individuals tending to have wider ranges as their age is generally associated 

with more uncertainty. Note that the regression approaches do not accommodate 

information on the age ranges provided by the age brackets, whereas our Bayesian 



approach does. We therefore also test a fifth-order polynomial regression fitted not 

only on the known ages of 13 individuals for a given cross validation partition but on 

the middle values of the age brackets for all other individuals as well. As far as the 

differences between the method presented here and regression allow, this ensures a 

fair comparison as both approaches are provided with equivalent input. Lastly, in 

order to test how our method would work in a situation where exact ages are 

impossible to obtain, we also apply our approach entirely without known ages, i.e. 

solely relying on the information from the age brackets and the ranking of individuals. 

 

Case study: Palanan Agta 

We apply our age estimation method to data we collected on the Palanan 

Agta, a hunter-gatherer population from north-east Luzon, north of the Casiguran 

Agta, in order to demonstrate the application and flexibility of our method. We give a 

detailed description of the collection procedure we devised for the two types of data 

required as input—the ranking orders, and the age brackets for all individuals—in the 

Sup. Materials and Methods section of the SI Appendix. Ethical approval for this 

project was granted by the University College London Ethics Committee (UCL Ethics 

code 3086/003) and carried out with permission from local government and tribal 

leaders in Palanan. Informed consent was obtained from all participants, and parents 

signed the informed consents for their children (after group and individual 

consultation and explanation of the research objectives in the Agta language). 

 

 Estimated age at parturition based on age distributions of mother and 
child  

 Let the age of mother and child be modelled by random variables ! and !, 

respectively. Analogous to the case where ages are known exactly, the age at 

parturition—say !—is then described by the difference between the two random 

variables, ! = ! − !. As ! and ! are both defined by distributions, so is !, and the 

full probabilistic description of the age at parturition we seek is given by the 

probability density function (pdf) of !, say !!(!). It can be derived from the pdfs of ! 

and ! by a mathematical operation called ‘convolution’: let !!(!) and !!(!) be the 

pdfs of ! and !, respectively, then 



!! ! = !! !  !! ! − !  !"
!

!!
. 

Convolution can therefore be thought of as an operation transforming two 

distributions into one, as illustrated in Figure 3. 

 

Implementation and statistical analyses 

The Gibbs sampler has been implemented in Python 2.7 (15) and can be 

downloaded from our website at http://www.ucl.ac.uk/mace-lab/resources/software. 

See SI Appendix for detailed information including burn-in, thinning and various 

diagnostic statistics. 

All analyses and plotting were implemented in the statistical analysis 

programming language R version 3.1.3 (16). Regression analyses were performed 

using the functions ‘lm’ (17, ch. 4) and ‘loess’ (17, ch. 8), Kolmogorov-Smirnov (KS) 

statistical tests with ‘ks.test’ and convolution with the function ‘convolve’ all from the 

R library ‘stats’. Bayesian t-tests were computed by the function ‘ttestBF’ (23) from 

the ‘BayesFactor’ library. The KS-test in Figure 4 is performed by rejecting the null 

hypothesis at level ! if the KS-statistic !!,!! is greater than the critical value 

approximated by !(α) !!!!
!!!

!/!
, with ! 0.1 = 1.22 (see Tables 54-55 in 18) and ! 

and !′ being the sample sizes, here 23 exact ages at parturition (summarized in the 

histogram) versus a distribution derived from 324 mother/child pairs. 
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 FIGURE LEGENDS 

Figure 1. Validation and benchmarking of the Bayesian approach. Boxplots of 

absolute differences between estimated and known ages for all 65 individuals in all 

five partitions from the Headland database of Agta (13) (see also Figure 2), for five 

different methods of estimation, i.e. fifth-order polynomial, fifth-order polynomial with 

mid-point age estimates, LOESS, Bayesian posteriors approximated by the mean, 

Bayesian posteriors computed without taking into account known ages approximated 

by the mean. Note that the latter distribution without known ages only comprises 65 

differences as no multiple partitions exist. Statistical comparisons are performed with 

Bayesian t-tests quantifying the strength of evidence for different means of the 

logged distributions via Bayes Factors (BF; BF greater than three are considered 

positive evidence, above 150 as strong evidence) and two-sided non-parametrical 

Kolmogorov-Smirnov tests assessing difference between distributions (see SI 

Appendix, Table S2 for all pairwise comparisons). The y-axis is in log-scale to 

highlight the majority of differences that are below 10; see SI Appendix,	Figure S6 for 

the raw values. 

 

Figure 2. Experimental Setup and results of validation and benchmark of the 

Bayesian approach. We show the results of four different ways to estimate ages, 

including the Bayesian approach presented here. We performed five-fold cross 

validation; that is randomly partitioned the 65 Agta with known ages in the Headland 

database (13) into five groups of 13 individuals each (groups given at the top of the 

first panel), and used each group as the basis to estimate the age of the remaining 

individuals. Each panel shows the results for the five partitions, from top to bottom: 

fifth-order polynomials, fifth-order polynomials fitted on 13 known ages and midpoints 

of the age brackets for the remaining individuals (age brackets are the lower and 

upper age limits, inferred by the authors’ from photographs of the individuals), 

LOESS (17), and finally the Bayesian method, including the results of a sixth run 

where no ages are considered known. 

 

Figure 3. Integrating uncertainties to estimate the mother’s age at parturition. 

The upper two panels illustrate how distinct partial rankings of individuals are 



combined by averaging the resulting age distributions (grey density curves) to give 

an overall age distribution (black density curves) per individual. The pair of 

individuals was chosen to be mother (right upper panel and right distribution in lower 

panel) and child (left upper panel and left distribution in lower panel), allowing us to 

“convolve” (see Materials and Methods) the age distributions and obtain the posterior 

distribution of the mother’s age (lower panel, blue density curve) at parturition. 

 

 Figure 4. Overall distribution of age at parturition for the Palanan Agta. The 

overall distribution of the age at parturition in the Agta is obtained by averaging the 

age distributions obtained by the procedure depicted in Figure 5 for all pairs of 

mother and child in our Palanan Agta data set (blue density). This excludes 23 pairs 

for which the age of both mother and child are precisely known and that are shown 

separately (histogram). 

 

Figure 5. Gibbs sampling of ages under ranking constraint (A) and exemplary 

input data and output of the Bayesian approach (B). Panel A illustrates how the 

iterative sampling of ages works. Given age brackets, the age of each individual is 

initialised (init.) to the smallest possible value so that together the ages respect the 

ordering constraint (here 1 in black, 2 in red, 3 in cyan, 4 in green, and 5 in purple). 

Considering each individual in turn, a new age is sampled at random so that the 

ranking order remains valid at any time (admissible regions shaded in grey). See SI 

Appendix	for the full mathematical description of the procedure. Panel B is a 

numerical example corresponding to individuals and age brackets from panel A and 

assuming uniform prior age distributions (in grey). The posterior distributions (same 

colour code as in panel A; here Kernel smoothed) generated by the iterative Gibbs 

sampling procedure described above are shown in black. 
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SUP. MATERIALS AND METHODS 

Estimating ages by Gibbs sampling 

We consider a random variable ! = (!!,… ,!!)  with ages of ! 

individuals. Furthermore, we introduce an ordering ! of these ! individuals 

from youngest to oldest, which can always be re-labeled such as ! =
(1,… ,!). In a Bayesian framework, age estimation can thus be formalized as 

computing the posterior distribution 

! ! ! =  ! ! ! !(!)
!(!|!)!(!)!!!∈!

 

where !(!) is an arbitrary prior distribution on the ages of the individuals 

satisfying ! ! = !(!!)!
!!! , and the likelihood function ! ! !  is defined as 

! ! = (1,… ,!) ! = !!,… , !! = 1 !" !! < !!  ∀ ! < !
0 !"#! . 

In order to avoid explicit computation of the normalizing constant, we 

opted to approximate the posterior distribution by statistical sampling 

techniques. A naïve approach to sample from the posterior is to randomly 

draw an age for each of the ! individuals independently, and then test if the 

resulting sample satisfies the ranking constraint. If not, the value is discarded. 

However, the more the individuals’ prior age distributions overlap, the more 

samples generated by this approach would have to be discarded. To solve 
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this more efficiently, we implement a Gibbs sampling approach, which 

samples from the posterior distribution directly without having to discard any 

age-vector. The key to achieve this lies in considering only univariate 
conditional distributions, i.e. the age distribution of one individual when all 

other individuals are assigned a fixed value from their respective range (3, p. 

16), i.e. !! !!   !!,… !!!!, !!!!,… , !!). How an initial set of values ! satisfying 

the age ranking can be found is described below (point 1). Iterating over all 

individuals in this manner generates a sample !, and it can be shown that the 

sequence of samples ! thereby generated converges to the desired target 

posterior distribution (3, p. 17) . 

In our case, a Gibbs sampler can be constructed in the following 

manner. First, we observe an ordering ! of all individuals and label them 

accordingly, i.e. individual labeled 1 is younger than individual 2 etc., the 

oldest being individual !. Next, iterative rounds of sampling are performed. 

Denote the !!! sample of ages ! by !(!) = (!!(!),… , !!(!)). Assume for example 

that !!(!)~!"#$(!,!), i.e. the a priori age of any individual is distributed 

uniformly within an interval bounded by values !  and ! . We note that 

alternative distributions for !!(!) – such as a normally distributed a priori age 

– are easily accommodated in a way analogous to the one described below. 

Setting !! ≔ −∞ and !!!! ≔ ∞ for the sake of simplicity, our Gibbs sampler 

proceeds as follows: 

1) Initialize the first sample ! = 0: 

!!! =  max(!! , !!!!(!) ), for ! ∈ {1,… ,!} 

2) Iterate ! times to generate ! + 1 samples, i.e. ! ∈ {1,… ,!}: 

!!(!)~ !"#$(max !! , !!!!! ,min !! ,… ,!!, !!!!(!!!) ), for ! ∈ {1,… ,!} 

This procedure generates as many samples as desired. As always with 

empirical distributions, the general trade-off is that more samples occupy 

more memory space and require longer computation time, but reduce the 

stochastic sampling error and therefore better approximate the underlying 

distribution. 
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Figure 5 in the main text illustrates the type of input required and output 

generated by our method for five fictitious individuals. 

 

Implementation details 

We have implemented the Gibbs sampling algorithm in Python 2.7 (5). 

In order to find sensible parameter values for the total number of iterations, 

burn-in and thinning, we analysed 50,000 sampling iterations for the toy 

example with five individuals presented in Figure 5B of the main text. 

Panel A of Supplementary Figure S3 shows perfect mixing, with low 

autocorrelation (see Panel D) also confirmed by a high effective sample size 

of 33521.62, meaning that for the estimation of the posterior mean 50,000 

samples correspond to 33,522 independent samples. This suggests that no 

thinning is required. Panel B and C illustrate how the sample mean changes 

in the course of the sampling process. Based on visual inspection, we chose a 

burn-in of 50 iterations, largely exceeding Raftery-Lewis (9) method’s 

recommendation of two to four. Panel B already suggests that convergence is 

achieved relatively quickly, as means remain stable after 10,000 iterations. 

Gelman and Rubin’s shrink factor (8), a formal test for convergence 

presented in Panels E and F and computed on 4 independent runs of the 

Gibbs sampler with the first 10,000 iterations discarded, shows a shrink factor 

of 1 after 10,000 additional iterations. Therefore, we set our default to 20,050 

iterations in total, resulting in 20,000 ages sampled per individual with no 

thinning and 50 iterations discarded a burn-in. 

 All diagnostic statistics were computes and plotted in R version 3.1.3 

(6) using functions from the ‘coda’ and ‘mcmcplots’ libraries. 

 

Palanan Agta: data collection method 

In order to construct relative age rankings, we took and printed 

photographs of all individuals in every camp. Individuals were then assigned 

to approximate age cohorts (0-4, 4-8, 8-12, 13-19, 20-45, and 45+). Those not 

easily assigned to one cohort were included in the two nearest cohorts (e.g., 
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an individual aged ~45 would be included in both the 20-45 and 45+ cohorts). 

Either individually or in small groups, we presented these photographs to 

individuals from a target cohort, one at a time. The target cohort was the 

cohort the individual (‘ego’) was included in, as well as all cohorts younger 

than ego. Cohorts, especially for children, were often presented together, so 

that some rankings included, for instance, all individuals aged 0 to 12. 

Children under the age of five were often unable to make the age rankings 

themselves, and in this instance either their mothers or older siblings would 

conduct the ranking. Individuals from a specific camp were shown pictures of 

others from their camp and neighbouring camps. More distant camps were 

not included due to a lack of familiarity, unless ego knew individuals from 

more distant camps particularly well (e.g. they grew up in the same camp and 

moved apart upon marriage). For cohorts including ego, ego’s picture was 

displayed first. Participants were first asked if they knew the individual on the 

photograph (i.e. the target), and if so they were then asked if they knew the 

target well enough to give their approximate date of birth relative to other 

individuals. Each photograph was put into one of three categories; ‘don’t 

know’, ‘know but not the age’, and ‘age known’. If ego knew both the target 

and their age, they were asked to rank the age of the target relative to others. 

Although similar to the method by Hill and Hurtado (2), rather than having two 

piles of simply older and younger (with ego as reference), our method 

produced a relative age list from youngest to oldest. This process was 

repeated multiple times with different subjects producing a total of 266 partial 

ranks, including 587 individuals. 

The second stage involved deriving age estimates for these 587 

individuals. One invaluable source of information, especially for older 

individuals, was the Headlands’ database from Casiguran (4), since some 

individuals from our study population were included in this database, with 

relatively accurate dates of birth assigned. Absolute ages of individuals were 

ascertained via various other methods, including; asking individuals if they 

knew their own or their children’s age (which could be from various sources, 

such as, birth certificates, other documentation, school grades, own 

estimates, etc.), births near dated events (such as martial law in 1970 or 
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various known typhoons), and age-mates of individuals with known birthdays. 

For children up to the age of 12 years, it was also possible to estimate age 

brackets by dental development.  

There are, however, some issues with methods used to estimate 

absolute ages, especially estimates given by individual Agta, the dental aging 

and school grade. For example, many individuals gave various conflicting 

dates and/or ages, including; saying a child was four years old, yet born in 

2004 (during the 2013 fieldwork season), or giving a birth date for one child as 

2004 (~eight years old) yet saying a younger child was nine years old, and 

age conflicts between parents (for example, one child was given an age of 

seven months by one parent and two years by the other). For both teeth ages 

and school grades, the margins of error were often quite large (+/- half a 

year), which was especially problematic regarding school ages, as the grade 

reached was often variable for individuals of a similar age, and most children 

in the community either do not go to school, or start school at older ages than 

their agricultural neighbours. Therefore, strict criteria were used to select 

accurate ages/birth dates. First, if an individual was given two markedly 

different birth dates, that person was excluded from the absolute age list. 

Second, if ages for an entire sibling-set were provided, but at least one age 

was wrong (e.g., did not correspond to teeth ages, or did not allow at least 

nine months pre- or post-birth of the nearest sibling), then ages for the whole 

sibling-set were excluded. Furthermore, for all children, the birth date had to 

fall within the range of teeth ages to be accepted, and a similar protocol of 

matching with teeth ages was established for estimating the ages of 

individuals from school grade. For ages estimated based on comparisons to 

individuals with known birth dates, these individuals with estimated ages were 

given a year of birth with a +/- one year margin to account for error. Using 

these methods, 98 individuals (out of 587; 16.7%) were given an exact 

birthday, while many others were given age estimates within +/- one year 

(Supplementary Table S3).  

For individuals which we could not attach a secure date or estimate, 

three of the field researchers (DS, AEP, & MD), as well as the principle 

investigator (ABM) estimated the ages based on cues such as dental 
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development, school grade, birth order (if older or younger siblings have a 

known age), age of ego’s children (if known), number of children, and visual 

inspection. Independently, each of the four researchers estimated an upper 

and lower age bound for each individual. In collating these estimates, the 

youngest lower bound and oldest upper bound of the four estimates were 

used in order to include as much uncertainty as possible. There was 

increased uncertainty for older individuals, as the average difference between 

upper and lower estimates increases with age (Supplementary Table S3). 

 

 SUP. RESULTS 

Validation and benchmarking 

Table 1 and Figure 1 in the main text show that the Gibbs sampler 

provides more accurate age estimates than the regression approach. 

However, the performances may be influenced by the specific cross-validation 

parameters chosen, i.e. k=5 partitions of n=13 individuals each for which ages 

are assumed to be known exactly. Therefore, we tested other parameter 

values from k=2 partitions, resulting in n=32 individuals, to k=13, with n=5 

individuals per partition. We considered each partition in turn to estimate the 

regression equation and then deduced the ages of the remaining individuals. 

This procedure enabled us to assess how the number of individuals with 

known ages affects each method’s accuracy.  

Supplementary Figure S1 shows that the accuracy for the fifth-degree 

polynomial approach massively drops when more than five partitions are 

chosen (i.e. k>5). This is expected, as fewer known ages are available for the 

regression, resulting in a less constraint curve leading to overfitting. Note that 

although the LOESS approach also shows reduced accuracy in smaller 

partitions, the magnitude of the error is much smaller. 
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A flexible method for fieldwork data: dealing with multiple partial 
ranks 

 We relax the assumption of a single complete ordering !  of all ! 

individuals from youngest to oldest, and rather allow for multiple partial ranks. 

The approach we describe in the following is heuristic. Describing the problem 

of multiple partial ranks in a formal manner and finding optimal solutions is an 

important and interesting problem for future research. 

 Let ! = {!!,… ,!!}  be a set of partial rankings of individuals. As 

described in the main text, we first merge partial ranks that are compatible, 

resulting in a modified set of partial ranks {!′!,… ,!′!} , ! ≤ !, where each !′! 
represents a subset of mutually compatible partial ranks from the initial full 

set, i.e. !′! ⊆ !. Merging is not always possible without ambiguity, as various 

different ways in which rankings could be merged may exist, e.g. if !! is 

compatible with !! and !!, but !! and !! are not compatible with each other. 

In this case, we leave the corresponding ranks separate ({!′!,… ,!′!}  is 

therefore a partition of the set !). It should be noted that alternative heuristics 

can easily be envisaged at this stage, for example a greedy strategy. The next 

step is to compute the posterior ! ! !′!  separately for all merged partial 

ranks !′! , ! ∈ 1,… , ! ,  by Gibbs sampling. Finally, we merge the resulting 

distributions per individual by forming a weighted finite mixture: 

! !! = !|! = !!(!′!)
!!(!)

!

!!!
! !! = ! !′!  

where !!()  denotes the number of times individual !  occurs in the 

corresponding set of rankings. The nominator term !!(!′) therefore preserves 

the information how many times an individual has been ranked consistently in 

a certain way in the initial set of unmerged partial rankings !. 
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SUP. FIGURES 

 

Supplementary Figure S1. Differences in estimation accuracy under 

varying cross-validation parameters. Boxplots of the mean of the differences 

between known ages and those estimated using regression analyses; top: 

third-order (3rd degree) polynomial, middle: fifth-order (5th degree) 

polynomial, bottom: local regression (LOESS; 7). The x-axis shows the 

number of partitions used (‘k’) and the number of individuals (‘n’) in these 

corresponding partitions; ‘k2,n32’ for example means 2 partitions of 32 

individuals whose ages are known and used to estimate the regression 

coefficients. The y-axis shows the mean of the differences between known 

and estimated ages per individuals over the k partitions. Note that the scale of 

the y-axis of these three panels is not the same. 
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Supplementary Figure S2. Error calibration of posterior distributions. 

For the cross-validation experiment corresponding to Figure 1, we show that 

the highest posterior densities (HPD) contain the true age as often as the size 

of the interval suggests, and the posterior therefore correctly quantifies 

estimation uncertainty. For example, the 95% HPD covers the true age in 

95% of the individuals. Panel A shows the results for each of the 5 cross-

validation partitions (black points), their average (grey points) and standard 

deviation (black bars). Panel B shows the same analysis for the case where 

no age has been fixed, i.e. all priors were proper intervals. 
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Supplementary Figure S3. Gibbs sampler diagnostic statistics. 50,000 

sampling iterations were performed for the toy example with five individuals 

presented in Figure 5B of the main text. In Panels A to D, all sampling 

iterations are included, i.e. no burn-in is discarded. Panel A shows the trace 

and resulting density estimates (less smoothed versions of densities shown in 

Figure 5B) for the first 2000 iterations. Panel B and C show the running mean 

age for all 50,000 respectively for the first 500 samples. Panel D visualises 

the autocorrelation between consecutive samples. Panel E and F show 

Gelman and Rubin’s shrink factor (8) on all respectively the first 2000 

samples after discarding the first 10,000 in 4 independent runs of the Gibbs 

sampler.  
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Supplementary Figure S4. Estimation robustness to error in known 

ages. We repeated the validation from Figures 1 and 2, however, added 

different amounts of error to the individuals’ ages, where errors are 

constrained not to change the ranking order. Panel A summarizes how this 

affects the different methods: linear regression shows that estimation 

accuracy measured as the median of the differences between estimated and 

actual ages of the individuals across the 5 cross-validation partitions is 

reduced most for the polynomial regression approach, slightly for LOESS and 

not at all for our Bayesian method. Panel B gives the corresponding 

distributions in form of boxplots.	
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Supplementary Figure S5. Estimation robustness to error in ranking 

order. We repeated validation from Figures 1 and 2, however, introduced 

different amounts of error in the ranking order (all errors we introduce are 

consistent with the age brackets). As changing the ranking order would 

require to adjust the age of the individuals to reflect the altered ranking order, 

we focus on the performance of our Bayesian method when no ages are 

considered known. This prevents that the effects of errors in ranking order 

and age (see Supplementary Figure S4) are conflated. Panel A summarizes 

the results showing the medians of the differences between estimated and 

actual ages of the individuals, Panel B gives the corresponding distributions in 

form of boxplots. 
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Supplementary Figure S6. Raw values behind Figure 1. We show the 

same distributions as in Figure 1 in the main text, however, without showing 

absolute differences and with a y-axis in natural scale. 
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SUP. TABLES 

	

Supplementary Table S1. Numerical values corresponding to absolute 
differences between actual and estimated ages shown in Figure 1 of the main 
text. The minimum, 25th percentile, median, mean, 75th percentile and 
maximum given in the last row (total) directly correspond to the boxplots 
plotted in Figure 1. The remaining rows provide more detail as the results are 
split by age cohort. Bold red values indicate worst, bold black best 
performance. See legend of Figure 1 and explanation of the benchmarking 
procedure in the main text for further information. Note that photographs in the 
Headland database (13) were taken in different years (between 1972 and 
2010), and all ages and age estimates were therefore adjusted to the present 
day (2015). Hence, the youngest age is 15 explaining why the 10-20 cohort is 
the first row. 
Abbreviations: minimum (min.), maximum (max.), percentile (per.), standard 
deviation (sd.), mid-point (MP) 
	

Age 
Cohort 

Sample 
Size 

Statis- 
tic 

5th-order 
polynomial 

5th-order 
polynomial, 

with MP 
LOESS Gibbs 

(mean) 

Gibbs 
(mean), no 

known 
ages 

  min. 0.06 1.17 0.03 0.00 0.04 
  25th per. 0.71 6.71 0.12 0.08 0.15 

10-20 10 median 1.64 7.92 0.18 0.18 0.24 
  mean (sd.) 4.71 (6.30) 7.96 (3.20) 0.25 (0.20) 0.25 (0.27) 0.28 (0.23) 
  75th per. 3.91 8.88 0.29 0.31 0.32 
  max. 18.46 14.55 0.84 1.12 0.85 
  min. 0.01 0.02 0.01 0.00 0.00 
  25th per. 0.23 1.70 0.20 0.11 0.12 

20-45 40 median 0.67 4.32 0.57 0.25 0.26 
  mean (sd.) 1.13 (1.19) 4.25 (2.73) 0.94 (1.11) 0.45 (0.58) 0.47 (0.56) 
  75th per. 1.65 6.23 1.19 0.49 0.53 
  max. 5.41 10.37 5.59 3.38 2.59 
  min. 0.08 0.07 0.14 0.01 0.21 
  25th per. 1.64 1.81 1.25 0.57 0.88 

45+ 15 median 3.42 2.89 2.71 1.03 3.46 
  mean (sd.) 5.38 (6.01) 8.02 (11.03) 4.09 (4.05) 2.57 (2.68) 3.45 (3.15) 
  75th per. 5.94 11.83 5.28 4.06 4.81 
  max. 28.32 34.70 16.82 10.02 10.15 
  min. 0.01 0.02 0.01 0.00 0.00 
  25th per. 0.38 2.05 0.21 0.12 0.18 

Total 65 median 1.16 4.39 0.64 0.29 0.33 
  mean (sd.) 2.66 (4.35) 5.69 (6.09) 1.47 (2.36) 0.91 (1.64) 1.13 (2.01) 
  75th per. 2.90 7.36 1.57 0.80 0.90 
  max. 28.32 34.70 16.82 10.02 10.15 
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Supplementary Table S2. Kolmogorov-Smirnov p-values and Bayes factors 
for all pairwise comparisons of error distributions shown in Figure 1. BFs 
greater than three are considered positive evidence, above 150 as strong 
evidence. Abbreviations: mid-point (MP), Bayes factor (BF) 

	

	 5th-order 
polynomial	

5th-order 
polynomial, with 

MP	
LOESS	 Gibbs (mean)	

5th-order 
polynomial, 

with MP	

p=1.554312e-15; 

BF=4.128145e+20 

   

LOESS	
p=0.0004320986; 

BF=	29.39566 

p=1.776357e-15; 

BF=	7.426503e+38 

  

Gibbs (mean)	
p=3.108624e-15; 

BF=2.81064e+12 

p=1.554312e-15; 

BF=2.04265e+63 

p=4.486276e-06; 

BF=1377.745 

 

Gibbs 
(mean), no 

known ages	

p=9.447281e-06; 

BF=419.9913 

p=7.771561e-16; 

BF=6.354463e+27 

p=0.02777288; 

BF=1.054143 

p=0.6081314; 

BF=0.2328565 
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Supplementary Table S3. Average difference between upper and lower 
bound of the age bracket and number of accurately known ages for different 
age cohorts of the Palanan Agta. For the purposes of this table, the mean 
value of the upper and lower bound was considered an individual’s age and 
used for grouping into cohorts. Number of exact birth dates and birth dates 
accurate within +/- 1 year are also displayed. 
 

Age 
Cohort 

Sample 
Size 

Average 
Difference 

Number of 
Exact 

Birthdates 

Percentage 
of Exact 

Birthdates 

Number of 
Birthdates 
+/- 1 year 

Percentage 
of Birthdates 

+/- 1 year 
<1 20 0.16 15 75% 20 100% 
1-5 103 1.73 30 29.13% 67 65.05% 

5-10 103 3 19 18.45% 33 32.04% 
10-20 116 4.1 13 11.21% 33 28.45% 
20-45 164 9.47 18 10.98% 26 15.85% 
45+ 81 18.56 3 3.7% 12 14.81% 

Total 587 6.85 98 16.7% 191 32.54% 
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