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Abstract Wepresent a simplifiedmodel of the strategic allocation of trajectories in a generic
airspace for commercial flights. In this model, two types of companies, characterized by dif-
ferent cost functions and different strategies, compete for the allocation of trajectories in
the airspace. With an analytical model and numerical simulations, we show that the rela-
tive advantage of the two populations—companies—depends on external factors like traffic
demand as well as on the composition of the population. We show that there exists a stable
equilibrium state which depends on the traffic demand. We also show that the equilibrium
solution is not the optimal at the global level, but rather that it tends to favour one of the
two business models—the archetype for low-cost companies. Finally, linking the cost of
allocated flights with the fitness of a company, we study the evolutionary dynamics of the
system, investigating the fluctuations of population composition around the equilibrium and
the speed of convergence towards it. We prove that in the presence of noise due to finite
populations, the equilibrium point is shifted and is reached more slowly.

Keywords Evolutionary dynamics ·Agent-based model ·Air traffic management · Strategic
allocation

1 Introduction

Transportation systems have a crucial importance for countries because of their social and
economic impact. The air transportation in particular is closely linked to the economic devel-
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opment of the areas in which it expands. This is why it is very important for policy makers
to ensure a smooth development, even—and especially—in areas where the traffic increase
forecasts are the highest. Indeed, the air traffic system will get closer and closer to its actual
capacity, especially in Europe and in the USA where the traffic is expected to increase by
50% in the next 20years [7]. As a consequence, it is important for the air traffic management
world (i) to forecast the consequences on the current infrastructures and procedures and (ii)
to find the appropriate solutions to cope with this increase. For this reason, large investment
programs like SESAR in Europe and NextGen in the USA have been launched.

Apart from airport capacity, one of the important bottlenecks for the increasing traffic
flow will be the management of the airspace and sectors, where the controller needs to
actively separate flights in order to avoid conflicts. However, solving conflicts in areas of
high traffic complexity is already nowadays a demanding task. With the increase in traffic,
the cognitive capacities of air traffic controllers will likely reach their limits and drastically
increase the number of conflicts or force to cap the capacities of the sectors. As a consequence,
navigating through the European sky will become more and more difficult in the future and
will require more careful planning capacities for the network manager and for the airlines. In
other words, the airspace is becoming a scarce resource, especially in congested situations,
like, for example, during major shutdowns of large areas (extreme weather, strikes, volcano
eruptions, etc.).

It is thus expected that the airlines will compete fiercely for two of the most important
resources: time and space. More specifically, it is foreseen that the allocation of slots at the
airports will change and will be structured as a market for companies. On the other end, the
airspace will be more densely populated and the airlines will also compete for it. From the
point of view of the transportation companies, this increases the effort required to find better
route allocation strategies, whose success depends, among other things, on the strategies
adopted by the other users.

Motivated by these considerations, in this paper we study a model of the allocation of the
flight plans on the airspace from the point of view of the dynamics on a complex network. This
point of view is fruitfully used in different fields, like dynamics of epidemiology, information
propagation on the Internet, percolation, opinion spreading, systemic risk, etc. [2,3].Recently,
an increasing attention is being devoted to the network description of transport systems [13],
in particular the air transport system [4,6,9,12,14,15,18,19]; for a recent review, see Zanin
and Lillo [20].

The model describes the strategic allocation of flight plans on an idealized airspace,
described as a network of interconnected sectors. The sectors are capacity constrained, i.e. a
maximumnumber of flights can be simultaneously present. This implies that companiesmight
not get their optimal flight plan and thus they will fall back to suboptimal solutions, for which
theywill develop different strategies. By using two different strategies for companies, stylized
version of low-cost companies and so-called traditional carriers, we show how different
factors explain the satisfaction of different types of company. Some of these factors (the
network topology and the pattern of departing times) can be regulated externally by the policy
maker, while others (the fraction of airlines of each type) depend on the airline population and
onmarket forces.We then study the evolutionary dynamics of the populations by considering
a “reproduction” rate (i.e. the capacity to expand business) of a company, which is based on
its past satisfaction, namely how well its past flights were allocated. In other words, the
satisfaction plays the role of a fitness function.

Our main findings can be summarized as follows. By using a simplified baseline model,
we prove analytically that in the static framework there exists a Nash equilibrium for the
fraction of airlines of different types. Extensive numerical simulations on more complicated
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settings, including empirically calibrated models, confirm the robustness of this finding. We
then show that the equilibrium point is distinct from the optimal point for the system and the
(static) equilibrium tends to favour the archetype for low-cost companies. When the evolu-
tionary dynamic is considered, we show that the model can be recast into a replicator-type
equation. We study the more interesting finite population case, by showing analytically that
the dynamics can be described by a linear stochastic differential equation (SDE). Numerical
simulations of the model and the analytical study of the SDE show that the noise due to
finite populations lead to a further shift in the equilibrium point in the direction of favouring
low-cost companies. Finally, we show that the equilibrium is reached more slowly because
of finite populations.

The paper is organized as follows. In Sect. 2, we present briefly the model. In Sect. 3,
we investigate a simplified version of the model that we are able to investigate analytically.
In Sect. 4, we present some results on the static equilibrium of the model, concerning the
behaviours of the airlines in different situations, and in Sect. 5 we investigate the population
dynamics in an evolutionary environment. Finally, we draw some conclusions in Sect. 6.

2 The Model

In this section, we present our model, which has been introduced in Gurtner et al. [11]. The
implementation of the model is open and can be freely downloaded for any non-commercial
purpose.1 A more detailed version of the model with a tactical part is also available2 [10].

The model describes the strategic allocation of trajectories in the airspace. Mimicking
what is done in the European airspace, the model considers airlines submitting their flight
plans to the network manager (NM). The NM checks whether accepting the flight plan(s)
would lead to a sector capacity violation. If this is not the case, the flight plan is accepted,
otherwise it is rejected and the airline submits the second best flight plan (according to its
utility or cost function). The process goes on until a flight plan is accepted or a maximal
number of rejected flight plans are reached, and in this case the flight is cancelled. The NM
keeps track of the allocated flights and checks violations of newly submitted flight plans
responding in a determined way to the requests, without making counter-propositions.

Airspace The airspace is modelled as a network of sectors. Each sector has a capacity C ,
here fixed to 5 for all sectors. Some of these sectors contain airports, and the geometry of a
flight plan is a path connecting two airports. Specifically, we use a triangular lattice with 60
nodes. In order to avoid paths having exactly the same duration, which could lead to ties in the
optimization, we sample the crossing times between sectors from a log-normal distribution so
as to have a 20min average and a very small variance (inferior to 10−4 min). Unless specified
otherwise, we fix the number of airports to 5. In the following, we present results in which we
drew 10 times the position of the airports randomly, then ran 1000 independent simulations
on each of these realizations.

Real airspaces are clearly more complex. Topological properties of the real networks of
sectors have been investigated in Gurtner et al. [12]. In “Appendix A”, we present some
robustness checks of the model by considering two more realistic set-ups. In the first one,
we consider a scale-free network of airports, i.e. not all the airports are equivalent in terms
of number of flights/destinations, but hubs and spokes are present. In the second, we use real
ECAC data to construct the network of sectors, the sector of capacities, the origin/destination

1 https://github.com/ELSA-Project/ELSA-ABM-StratS.
2 https://github.com/ELSA-Project/ELSA-ABM.

https://github.com/ELSA-Project/ELSA-ABM-StratS
https://github.com/ELSA-Project/ELSA-ABM
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frequencies, and the waves structure. We find that the results are indeed similar to the ones
presented thereafter for the stylized model, where a much more controlled setting is used.

Airlines The main agents of the model are the airline operators (AOs) who try to obtain
the best trajectories for their flights and the NM who accepts or rejects the flight plans.
In the simplified version, we assume that the quality of a trajectory depends on its length
(the shorter, the better) and the discrepancy between the desired and actual departing/arrival
time (the smaller, the better).3 Companies might be different in the relative weight of two
components in their cost or utility function. Companies caring more about length are called
of type “S” (for shifting) companies, since when their flight plan is rejected by the NM, they
prefer to delay the flight, but keeping a short trip length, mainly because of cost—fuel and
airspace charges. Companies caring more about departure punctuality are called of type “R”
(for rerouting), since when the flight plan is rejected they prefer to depart on time even if
they need to use a longer route to destination, mainly to avoid disruption in their network
operations—e.g. connecting flights. As a consequence, S companies can be thought as “low
cost”, whereas R companies are more like “traditional” ones. Note that each AO has only one
flight. Hence, in our model the optimization takes place after the previous, larger strategic
allocation of flights where AOs decide or not to operate the route, with which aircraft, etc.
For this reason, all the optimizations here are independent from each other for each flight.
However, it is important to stress that the capacity constraints of sectors create a dependency
between the accepted flight plans.

More quantitatively, for each flight anAO chooses a departing and arrival airport, a desired
departing time, t0, and selects a number Nfp of flight plans. The kth flight plan, k = 1, . . . , Nfp,
is the pair (tk0 ,pk), where tk0 is the desired time of departure andpk is an ordered set containing
the sequence of sectors in the flight plan. The flight plans are selected by an AO according
to its cost function. In our model, it has the form

c(tk0 ,pk) = αL(pk) + β(tk0 − t0), (1)

where L(pk) is the length of the path on the network (i.e. the sum of the lengths of the edges
followed by the flight). We also assume that flights are only shifted ahead in time (tk0 ≥ t0)
by an integer multiple of a parameter θ which is taken here as 20min (all durations in this
article is in minutes unless specified otherwise). The parameters α and β define the main
characteristics of the company. Given the discussion above, R companies have β/α � 1,
while S companies have β/α � 1.

Departing waves An important determinant of the allocations is the desired departing
time t0 chosen by the AO. We assume that departing times are drawn from a distribution
inside the day characterized by a certain number of peaks or waves. This is indeed typically
observed at most airports.

We define first Td = 1440 as the length of the “day” (in minutes), i.e. the time window
of departure for all flights. In this time window, we define Np peaks of T0 = 60min, by
setting a time �t between the end of the peak and the beginning of the next one (thus,
Np = �Td/(�t+T0)� ). Then, we define a total number of flights Nf and divide them equally
between peaks. In the following, we also use the corresponding hourly density d = Nf/24,
i.e. the average number of flights per hour.

3 Note that we take into account only the departure time and not the arrival one. This is because at a strategic
level the arrival delay is a linear combination of the departure delay and the length of the new flight plan with
respect to the best one. In other words, adding the arrival delay to the utility function in Eq. 1 only changes
the values of the weights α and β.
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Dynamics Given a mixed population of AOs of different types, at each time step, an
AO is selected randomly.4 The AO chooses the departing and arrival airports and the desired
departing time t0 for its flight, drawing it from the departing time distribution. It then computes
the Nfp best flight plans for the flight according to its cost function and submits them, one by
one in increasing order of cost, to the NM. The NM accepts the first flight plan which does
not cross overloaded sectors, i.e. at already maximal capacity. If none of the Nfp flight plans
is accepted, the flight is rejected and cancelled.

Metrics The metric measuring the satisfaction (or fitness) of a company about a given
flight f is

Sf = cbestf /cacceptedf , (2)

where cbestf is the cost of the optimal flight plan for the flight f according to the AO cost

function (i.e. the first flight plan to be submitted for the flight), and cacceptedf is the cost of the
flight plan eventually accepted for this flight. If no flight plan has been accepted, we set Sf
to 0. Note that Sf is always between 0 and 1. The value 1 is obtained when the best flight
plan is accepted.

Since the AOs have only one flight, the satisfaction of a flight is also the satisfaction of
its company. When several companies are of the same type (same ratio β/α), we make use
of the average satisfaction across them. Thus, SS and SR are the average satisfactions of S
and R companies, respectively. We use also the average satisfaction across all flights as a
measure of the global satisfaction of the system:

STOT = fS × SS + fR × SR, (3)

where fi and S i are the fraction of flights and the average satisfaction of company i , respec-
tively, and fS + fR = 1. Finally, we consider the difference of satisfaction between S
companies and R companies to estimate how well they perform with respect to the other
type:

�S = SS − SR.

The main features of the model have been presented in Gurtner et al. [11] where only the
static setting with two airports has been investigated with numerical simulations. Gurtner et
al. [11] showed that with a single type of company, there is a (congestion) transition, much
like the congestion observed in other transport systems [16], e.g. car traffic, when the number
of flights becomes too large. When two extreme types of companies (R and S) are competing
for the airspace, Gurtner et al. [11] used numerical simulations to show that there exists a
unique fraction of mixing corresponding to a stable Nash equilibrium. The strategies are
interacting positively, leading to an absolute maximum in satisfaction for the overall system
at a mixing fraction different from 0 and 1.

Compared with Gurtner et al. [11], the main innovations presented in the following are:

– We present first a baseline version of the model, which can be treated analytically, and
we show explicitly the existence of the equilibrium and how it depends on the model
parameters.

– We consider simulations of a more realistic setting with multiple airports.
– We consider an evolutionary setting where the capability of a type of company of con-

tinuing its business depends on its past satisfaction.

4 The random order of arrival of AOs is chosen to guarantee that neither type of company has an advantage
because it arrives first to the NM.
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3 Analytical Treatment of a Baseline Model

Given the complexity of themodel, the results presented in the following sections are obtained
through numerical simulations. In order to understand the results more mathematically, in
this section we present a simplified baseline model which can be treated analytically. The
main result, namely the existence of an equilibrium in the mixed population case, is derived
here and later compared with the numerical results of the complete model.

In the baseline model, we take the simplified case of an airspace with only two airports
in which the flights can only travel from one to the other. We also assume that the flights
travel instantaneously between the two airports, i.e. they are loading all the sectors in between
exactly at their time of departure. In this simplified setting, individual flights do not contribute
to the satisfaction when they are rejected and contribute by one unit otherwise. Hence, the
satisfaction is S = na/N , where na is the number of accepted flights and N is the total
number of flights. This simplified setup exhibits nevertheless the main features of the full
model.

3.1 Pure Populations

Consider first the case where all the companies are of type S, i.e. they shift their flight plans
in time. For �t = 0 (all waves are consecutive), shifting the flight plan does not yield any
improvement, since there are flights departing in the next wave. As a result, the satisfaction
is nSa � CNp = C� Td

�t+T0
�.

When �t increases and the waves are parting from each other, S companies start to have
some opportunity to shift their flight plan if they are rejected during the first waves. They
allocate more and more flight plans until they hit their maximum number of flight plans Nfp.
The number of accepted flights is thus

nSa �
⎧
⎨

⎩

C� Td
�t+T0

�
(
1 + �t

T0

)
if �t < θ(Nfp − 1)

C� Td
�t+T0

�
(
1 + θ(Nfp−1)

T0

)
if �t ≥ θ(Nfp − 1),

(4)

wherewe recall that θ is the increment bywhich theflight plans can be shifted. The satisfaction
of S companies is initially oscillating with �t , and for �t ≥ θ(Nfp − 1) it is non increasing.

On the contrary, R companies cannot shift their flight plan and, since the flights are
instantaneous, the number of accepted flights is nRa � CNpNu

fp = C� Td
�t+T0

�Nu
fp, where

Nu
fp is the number of flight plans among the Nfp which have no sector in common. As a

consequence, the satisfaction of companies R is monotonically decreasing with �t .

3.2 Mixed Populations

In the mixed populations case, a further complication appears, namely that the arrival of the
two types of companies is modelled as a random process and therefore different realizations
of the process can lead to different values of the satisfaction. To get some intuition on the
result, we consider first the case of the maximum attainable satisfaction and then consider
the expected value of the satisfaction over the distribution of airlines arrival.

In the mixed population case, a fraction fS of companies are of type S and a fraction
1− fS are of type R. The parameter fS will be called mixing parameter in the following. Let
us consider first S companies: on the one hand, since R companies cannot shift in time, S
companies are not competing with them when shifting in time and thus the periods between
waves are completely available to companies of type S. On the other hand, there is a compe-
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tition for the periods within waves and thus on average S companies will be able to allocate
only NpC fS flights within the waves. Hence, the resulting number of flights accepted for S
companies is:

nSa �
⎧
⎨

⎩

C� Td
�t+T0

�
(
fS + �t

T0

)
if �t < θ(Nfp − 1)

C� Td
�t+T0

�
(
fS + θ(Nfp−1)

T0

)
if �t ≥ θ(Nfp − 1)

(5)

Clearly this formula reduces to Eq. 4 when fS = 1. The behaviour of nSa is now a bit different
from equation 4, since, apart from the oscillations, it is increasing with �t when fS � 0. For
intermediate values of fS, the function has now a maximum in �t . This effect will be seen
also in the full model (see the right panel of Fig. 2 in Sect. 4). Note that nSa increases with
fS, but slower than the total number of S companies N fS, leading to a monotonic decrease
in the total satisfaction with fS.

Likewise, R companies face competition within each wave and only NpC(1 − fS) of the
best flight plans are allocated by them in average. On the contrary, their suboptimal rerouted
flight plans are specific to them and thus face no competition from S companies. This is
true under the condition that the rerouted flight plans do not cross the best flight plan at any
point—because it is also used by S companies. Hence, the number of accepted flights for R
companies is:

nRa � NpC(1 − fS) + NpC(Nu
fp − 1) = C� Td

�t + T0
�(Nu

fp − fS). (6)

On the contrary of nSa , this quantity decreases monotonously with �t . It also decreases with
fS, but slower than the total number N (1 − fS) of R companies. As a consequence, the
satisfaction of R companies increases with fS, i.e. decreases with its own fraction 1 − fS.

We are now interested in seeing how the relative satisfaction of S and R companies depend
on the wave structure. It is clear that there is always a root for �S as a function of fS. In
fact,

�S ∝

⎧
⎪⎪⎨

⎪⎪⎩

C� Td
�t+T0

�
(

1 + 1
fS

�t
T0

− Nu
fp− fS
1− fS

)

if �t < θ(Nfp − 1)

C� Td
�t+T0

�
(

1 + 1
fS

(Nfp − 1) θ
T0

− Nu
fp− fS
1− fS

)

if �t ≥ θ(Nfp − 1)
(7)

For �t < θ(Nfp − 1), there is a single value of fS for which �S = 0, which is given by:

f ∗
S = �t/T0

�t/T0 + Nu
fp − 1

.

Since Nu
fp is at least equal to 1, and usually larger, the value of f ∗

S is somewhere between 0
and 1, which means that there is always an equilibrium. Note, however, that for �t = 0 the
equilibrium is in fact fS = 0. For �t ≥ θ(Nfp − 1), the value of the root is given by the
same expression, replacing �t/T0 by (Nfp − 1)/(θ/T0). In this case, there is always a root
in (0, 1) when Nu

fp > 1.
Interestingly, the equilibrium value depends on �t , which means that different wave

structures lead to different relative advantages of companies of type S with respect to those
of typeR.More specifically, the f ∗

S increasesmonotonicallywith�t , until it reaches a plateau
for �t/T0 ≥ θ(Nfp − 1) where it does not depend on �t anymore.
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3.3 Effect of Randomness on the Arrival of Companies

The above equations give a first good approximation of the satisfaction for each type of
company, but it is easy to see that they are incorrect in some cases, in particular for small values
of�t . Indeed, the arrival of companies is random, forcing us to reevaluate the simple average
behaviour described above. For instance, when �t = 0, allocating the first C companies in a
wave to S or to R companies is very different. In both cases, C best flight plans are allocated,
but the subsequent S companies are blocked because they cannot shift their flight plan,
whereas the subsequent R companies can reroute. In other words, when allocating C flights
of type S and then C flights of type R, 2C flights are accepted. If C flights of type R are
allocated first and thenC flights of type S, onlyC flights are accepted in total. To capture this
effect, it is necessary to go into the details of the allocation by computing expected values
using probability distributions.

Moreover, another effect plays a role for high values of�t . In this case, only the first time
periods after the wave can be reached by all the flights in the wave, but the last time period
can only be reached by those which are departing late in the wave. However, many of these
flights have already been allocated during the first time periods. The number of time periods
which can be reached by all the flights is m = �(θ(Nfp − 1)/T0)� − 1. For �t/T0 < m, all
the time periods are fully allocated, but after that the last one is only filled with the remaining
flights S which are late enough, which correspond to a fraction (1−m + θ(Nfp − 1)/T0) of
flights.

Let us denote n = N/Np the deterministic number of flights in each wave. Then, given
that nS flights of type S are to be allocated in a wave, and that n′

S of them are to be allocated
in the first C flights, for a single wave:

nSa �
{
n′
S + C�t/T0 if �t/T0 < m

n′
S + C(m − 1) + � if �t/T0 ≥ m

(8)

where

� = min(C, (nS − (n′
S + C(m − 1)))(1 − m + θ(Nfp − 1)/T0)) (9)

and with the extra condition that nSa < nS.
The probability to have nS flights among the n in the wave is described by the binomial

distribution with parameter fS, and the probability that n′
S of the first C flights is of type S is

described by the hypergeometric distribution. Therefore, the expected value of the number
of accepted flights is

E[nSa ] =
n∑

nS=0

C∑

n′
S=0

nSa (nS, n
′
S)B(nS; n, fS)H(n′

S; n, nS,C)

and the expected satisfaction of company S is:

SS = Np × E[nSa ]/(N fS).

Following the same reasoning, the number of accepted R companies given the number nR
R companies in a wave and the number n′

R of them in the first C allocated ones is given by
nRa = n′

R + (Nu
fp − 1)C , and its expected value is

E[nRa ] =
n∑

nR=0

C∑

n′
R=0

nRa (nR, n′
R)B(nR; n, 1 − fS)H(n′

R; n, nR,C),
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Fig. 1 Left: difference of satisfaction between S companies and R companies as a function of the fraction
fS of S companies for different values of �t . Right: total satisfaction in the system as a function of fS for
different values of �t . The dashed lines are the results of the analytical model, whereas the circles are the
results of the numerical simulations (Color figure online)

with the corresponding expected satisfaction:

SR = Np × E[nRa ]/(N (1 − fS)).

Figure 1 illustrates the analytical results of the baselinemodel with their numerical simula-
tions. The left panel shows the difference of satisfaction between the two types of companies
as a function of fS for different values of �t , whereas the right panel shows the correspond-
ing total satisfaction. As explained more in detail in the following sections, the roots of the
curves in the left panel represent stable equilibrium points for the system, which are distinct
from the optimal points of the system—the maxima of the curves in the right panel.

The agreement between the analytical computations and the simulations is very good,
showing that the approximations made have a negligible effect. The larger discrepancies are
close to �t = 0, where the analytical model predicts a constant difference in satisfaction,
whereas the simulations produce a slightly decreasing function. However, both arewell below
the zero line and as a consequence the equilibrium is located at fS = 0.

4 Static Equilibrium of the Full Model

We now study the simulations of the full model to investigate the impact of competition
between airlines in different environments. Indeed, in a more realistic environment with
multiple airports, the analytical model becomes intractable and simulations need to be per-
formed. We study directly the mixed population case. The airspace is now more complex
than in the previous section, with five airports, randomly chosen routes between them, non-
instantaneous sector crossing times, and bidirectional flight plans between airports.

Note that the topology of the network as well as the number of airports can have non-
trivial effects on the results. We show for instance in “Appendix B” that the satisfaction of
the system is a function of the number of flights on the airspace and the overlap between the
available paths in terms of number of sectors, which is a direct consequence of the topology
of the considered airspace.

4.1 Satisfaction of Companies

We first study how the satisfaction of each type of company depends on the wave pattern and
on the population composition. For this, we fix the number of flights, Nf = 24 × d = 480
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Fig. 2 Satisfaction of R (left) and S (right) companies as a function of the time �t between waves. Different
lines refer to different values of fS (Color figure online)

Fig. 3 Satisfaction of R (left) and S (right) companies as a function of the mixing parameter fS. Different
lines refer to different values of �t (Color figure online)

and we change the proportion fS of S companies. We also change the structure of the wave
pattern, by changing the parameter �t .

Figures 2 and 3 show the satisfaction of the two types of company as a function of �t
and fS. The results for R companies are quite intuitive and are consistent with those of the
baseline model described in Sect. 3. These companies are better off when they are competing
with a large fraction of S companies (Fig. 3 left) and when there are more waves, i.e. when�t
is small (Fig. 2 left). This is expected, since more waves means more “space” for companies
when the number of flights is fixed. Moreover, R companies have a stronger dependency on
the mixing parameter when the number of waves is small, i.e. �t is large, because of an
increased competition. Note that the different plateaus present on the plot are due to the fact
that for these ranges of parameter, the number of waves is constant and they are far from
each other. In particular, for �t ∈ [720, 1320], there are only two peaks, which come slowly
apart as �t increases. Since they are sufficiently apart, the flights from the previous wave do
not interact with the flights in the next one, and the satisfaction does not change with �t . In
other words, the first flight from the second wave departs after the last flight from the first
wave arrives.

The satisfaction of S companies is more complex, since for small values of fS, their
satisfaction is not monotonous with �t . This behaviour is explained by the following trade-
off. On the one hand, the larger the �t , the less waves there are. Hence, companies are
competing effectively with a higher number of other companies (which is the reason behind
the decreasing curve of R companies in the left panel of Fig. 2). On the other hand, S
companies try to delay their flight if the first flight plan is rejected. This means that if the
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Fig. 4 Difference of satisfaction �S between S companies and R companies versus the mixing parameters
for different values of �t . Left: low density of flights, d = 20. Right: high density of flights, d = 80 (Color
figure online)

waves are too close to each other, the delayed flight plans will likely conflict with the flights
in the next wave. For this reason, their satisfaction increases at the beginning when the waves
comes apart and then decreases when the waves are further apart and in smaller number.

Note that the decrease in satisfaction due to concentration within waves is less significant
when S companies compete with many R companies. Indeed, in this case, their increasing
concentration within a wave is of little importance for them, because they can always shift
their flight plan two or three times to get out of the wave and not conflict anymore with R
companies. For this reason, their curve is monotonous with �t for high values of fS. More
strikingly, their satisfaction is higher for very high �t than for very small ones if fS � 1.
All these results are consistent with the ones of the baseline model and presented in Sect. 3.

Hence, companies are reacting differently to different wave structure because they are
sensitive to different mechanisms. The interplay of the mechanisms leads to interesting pat-
terns that translate in interesting behaviours when framing the model in an evolutionary
environment.

4.2 Global Satisfaction

Figure 4 shows the difference of satisfactions �S between S and R companies as a function
of the mixing parameter fS and for several values of �t . In the left panel, the density of
flights is quite small (d = 20), corresponding to the one used in Figs. 2 and 3. In the right
panel, we show the result for a much higher density (d = 80), corresponding to a severely
congested airspace.

The difference of satisfaction�S between the twopopulations strongly depends on the two
parameters. At both densities, the first values of �t are clearly crippling population S, since
in this configuration �S is always negative. This is due to the fact that very frequent waves
prevent S companies to delay their flight, whereas R companies can find an available path by
suitable rerouting. For higher values of �t , the situation becomes more favourable to S com-
panies, since the difference is usually positive. The details of the variations of the difference
are quite complexwith the two parameters, but it is clear it is always decreasingmonotonically
with fS. The point where it crosses 0 varies with �t , but not wildly (except for small �t).

It is worth noting that these curves can be considered as fitness curves for two populations
competing for the same resources in a given environment. Assuming that the higher fitness
affects positively future reproduction rate (i.e. the possibility of continuing and expanding
business), we study in Sect. 5 the dynamics of the two populations in an evolutionary frame-
work. Here, we simply recall that the points where the difference of fitness curves vanishes
are equilibrium points for the dynamics. The existence of a single root (as in Fig. 4) shows
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Fig. 5 Left: global satisfaction as a function of the mixing parameters for different �t . Right: value of fS
maximizing global satisfaction and the equilibrium point as a function of �t . The error bars represent the
uncertainty on the positions of the maximum and the point of equilibrium due to the uncertainty on the value
of the satisfaction. In particular, they are quite large for the positions of the maxima because STOT is quite
flat around its maximum for some values of �t , as can be seen in the left panel (Color figure online)

that there is only one equilibrium point (apart from the two absorbing states at fS = 0 and
fS = 1). The slope of�S at its root measures the stability of the equilibrium. Since the slope
is negative, the equilibrium is stable. In other words, when the proportion of S companies is
too high, their satisfaction/fitness decreases, thus giving a lower reproduction rate for them,
favouring R companies and driving back the system towards the equilibrium.

Another important question is whether the equilibrium point is optimal also for the system.
For this reason, we compute also the global satisfaction, Eq. 3, which is the average satis-
faction of all the flights. A higher global satisfaction means that globally resources are better
allocated, leading to increased profits for airlines and possibly better service for passengers.
In the left panel of Fig. 5, we show global satisfaction as a function of the mixing parameter
fS for different values of �t . The first conclusion is that the global satisfaction is usually
better for 0 < fS < 1 than for pure populations. This is expected, because we saw that each
population performs better against the other one, as is typical when different populations
have different niches and thus their interaction is beneficial for both. The second conclusion
is that for all values of �t , there exists a unique maximum and its position varies with �t .

On the right panel of Fig. 5, we plot both the value of fS at the global optimum, extracted
from the left panel, and the equilibrium point, extracted from the left panel of Fig. 4. Both
exhibit similar variations. For small values of �t , both the equilibrium point and the global
optimum are at fS � 0. When �t increases, S companies increase their advantage against
R companies, because they are not affected by the next wave. Then, both values decrease,
stabilizing at a value fS � 0.5, showing the greater advantage of S companies when the
departing pattern is composed by well-separated waves.

More importantly, both curves are clearly distinct for �t � 100, even considering error
bars. This is an important result, because it shows that the equilibriummixing condition is not
the optimal at the global level. In particular, the evolution of the system towards its equilibrium
mixing would tend to favour drastically population S, whereas the global optimum would
be reached with a much smaller market share of S companies. This is exactly where policy
makers should step in and issue policies driving the system to the optimum.

5 Evolutionary Dynamics

In the previous section, we interpreted the satisfaction of each company as its fitness when
competing with the others for the same resources—namely, time and space. Interpreting
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Fig. 6 Evolution of the mixing parameters with the generations, averaged over 100 realizations (and only one
network realization). The blue lines are the averages, the violet lines are exponential fits, and the error bars
are the average standard deviations. The coefficients of determination of the regressions are over 0.98. Left:
�t = 23 × 60. Right: �t = 0 (Color figure online)

these fitnesses as the capability of expanding business, i.e. a reproduction rate, it is possible
to develop a dynamical evolutionary model for studying the dynamics towards equilibrium
and its fluctuations, as well as the role of finite size populations.

We assume that the population size at time t + 1 of a company depends on its satisfaction
at time t . In order to keep the simulations under reasonable computational time and following
what is done in evolutionary biology models [17], we keep the total population fixed. This
means that only the mixing parameter fS is changing between time t and t + 1. For the
reproduction rule, we use an exponential reproduction, i.e. the rate of reproduction of a
population is proportional to its fitness and its current population. Combined to the fixed
population conditions, this leads to a discretized version of the so-called replicator model
[17]:

f t+1
S = f tS + �St f tS (1 − f tS), (10)

where f tS is the mixing parameter at time t and �St is the difference in satisfaction between
S and R companies at time t . In the following, �St is simply called the fitness function (of
S). In the simulations, we also choose to keep the number of companies of each kind to a
minimum of 1. This ensures that the equilibria at fS = 0 and fS = 1 do not act as absorbing
barriers (sinks). Indeed, since the populations are finite, a small non-null f tS could lead to

exactly 0 company S, which leads in turn to f t
′

S = 0 for all t ′ > t . Analogously, the same
happens when f tS = 1. All the other parameters (�t , number of airports, airspace structure,
etc.) are kept constant throughout the reproduction process, i.e. the environment is stable.

In a finite population case (see for example [1]), the term �St in Eq. 10 depends on
the specific realization of the process and it is therefore a stochastic variable. To study the
dynamics towards equilibrium, we use the linearization �St � γ ( f tS − f ∗

S )+ ση, where f ∗
S

is the root of�St , σ is a parameter going to zero with population size, and η is a Gaussian iid
variable. Under this assumption, in “Appendix C” we show that the dynamics of f tS can be
described by a linear SDE. We find that the dynamical equilibrium point f eqS > f ∗

S and the
convergence to equilibrium are exponential in time and slower than in the infinite population
case.

We tested these analytical conclusions with numerical simulations. Figure 6 shows the
dynamics of f tS for two distinct values of �t obtained with numerical simulations. The solid
blue lines are averages over 100 runs, and the solid violet lines are the results of an exponential
fit with the functional form:
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Fig. 7 Equilibrium value of the mixing parameter in the evolutionary setting as a function of�t (Color figure
online)

f tS = f eqS + ( f 0S − f eqS )e−t/τ , (11)

directly inspired by the behaviour of Eq. 12. Both lines are well fitted (R2 > 0.98), and the
equilibrium is clearly reached in both cases. On the left, there is only one wave of departure;
thus, S companies have an advantage and the point of equilibrium is f eqS > 0.5. On contrary,
the figure on the right shows that when there are no waves (�t = 0), S companies are very
disadvantaged and f eqS � 0. Both figures are roughly consistent with left panel of Fig. 4,
where the root of �S is close to 0 when �t = 0 and close to 0.7 when �t = 23 × 60.

In Fig. 7, we plot the position of the equilibrium point—computed by averaging the last
40 generations in each run—as a function of �t and using the same parameters as in the
right panel of Fig. 5. By comparing the curves in the two figures, we note that the one
obtained with evolutionary dynamics displays larger values of f eqS than the static one. This
is again consistent with the model in “Appendix C” and is an important result, because the
noise coming from the fitness function can drive the equilibrium even further from the global
optimum than in the deterministic case.

Wenowconsider how the systemconverges to the equilibriumandhowexternal parameters
like �t influence the convergence. It is worth reminding the link between the fluctuations
around the equilibrium and the shape of the fitness functions. In the continuous version of
the replicator model, larger absolute slopes of the difference of fitnesses at its root translate
into a higher stability and faster convergence to the steady state [17]. However, our system
does not have a deterministic fitness function, since �St depends on the specific realization
of the model. As shown in “Appendix C”, this additional noise affects both the fluctuations
around the equilibrium and the time of convergence τ .

The magnitude of the fluctuations around the equilibrium, measured as the standard devi-
ation of f tS after the transient period, is shown in the left panel of Fig. 8. There is a weak trend
towards larger fluctuations when�t increases, but their magnitude reaches a plateau quickly.
Note that the standard deviation is far from being negligible, implying that the fluctuations
are typically 15% of the value of the equilibrium point. This means that the static analysis
performed in Sect. 4 is far from revealing all the features of the model.

The time of convergence to equilibrium τ of Eq. 11 is plotted in the right panel Fig. 8.
This time scale is quite high for small values of �t—where the fluctuations are small—but
decreases to a small value (around seven or eight generations) when �t increases—where
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Fig. 8 Left: Standard deviation of the value of fS when the equilibrium is reached against �t . Right: Typical
number of generations before the equilibrium is reached (time to equilibrium) as a function of�t (Color figure
online)

Table 1 Results of the ordinary least square regression of 1/τ on σ 2
S and γ

Variable Weight SE t test Conf. int.

Const 0.0838 0.019 0.002 [0.039, 0.128]

σ 2
S −0.6168 0.097 0.001 [−0.840, −0.394]

γ −0.0967 0.029 0.011 [−0.164, −0.029]

The table shows the estimated parameters, the standard errors, the p values of a t test, and the 5–95% confidence
intervals. The coefficient of determination is R2 = 0.95

the fluctuations are high. As already stated, the magnitude of the fluctuations depends on
two independent mechanisms, the variance of the fitness function and its slope. This can
be proved analytically in the model of “Appendix C”, see Eq. 13. In order to understand
which mechanism plays a major role in simulations, we performed an ordinary least square
regression of 1/τ , the inverse of the time to equilibrium, on σ 2

S , the variance of the fitness
function around the equilibrium point, and γ , the slope of the fitness function. The results of
the regression are presented in Table 1.

The regression is very good, with a coefficient of determination of 0.95. Both variables
impact negatively on the inverse of time to equilibrium. This is expected, since a higher
variance of the fitness function should increase the time to equilibrium, as well as a higher
slope (because the slope is negative). Finally, we can conclude that both mechanisms play
an important role, but σ 2

S explains most of the variations of the times to equilibrium, with
a weight six times superior to the weight of the slope γ . As a consequence, one cannot
simply infer the dynamics from the static considerations made in Sect. 4. Finally, we show
in Fig. 9 the results of the regression, plus a plot showing the variation of 1/τ against the
expression found analytically (see Eq. 13 in “Appendix C”). Also in this case, the agreement
is overall good, indicating that the SDE model captures quite well the dynamics. The better
performance of the regression might be due to the fact that the analytical model is linearized
around the equilibrium, whereas the system can in fact start quite far from it.

The conclusion of the regression is that the time to convergence is influenced by the
stochastic behaviour of the fitness function as well as its general shape. In physical terms,
it means that the air traffic system as idealized by this model can be quite far from the
equilibrium, due to (i) inadequate policies (the slope) (ii) the general stochasticity of the
system. Hence, policy makers should carefully assess if any changes in policy is likely to
have an impact due to the level of randomness of the system.
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Fig. 9 Inverse of time to equilibrium versus a combination of the standard deviation and the slope of the
fitness function. Left: the weights are the results of an ordinary least square (R2 = 0.95) regression. The solid
red line shows the results of the regression. Right: the weights are coming from analytical arguments (Eq. 13
in “Appendix C”). The solid red line is a linear regression (R2 = 0.67) (Color figure online)

6 Conclusions

In this paper, we have presented a stylized model of the allocation of flight plans. We used
an agent-based model to simulate the behaviour of different air companies and the network
manager. In themodel, different types of air companies are competing for the best paths on the
network of sectors and the best times of departure. Since the sectors are capacity constrained,
in some high traffic conditions the companies might be forced to choose suboptimal flight
plans, according to their strategies or cost function.

When different types of companies are competing on the same airspace, their relative
satisfaction depends highly on the environment—the airspace, the waves of departure—but
also the competition—the fractions of different types of companies. In a nutshell, we find
that the companies are performing better when they are competing against other types of
companies, in a mechanism of “niche” leading to behaviours similar to those of the minority
game [5]. This conclusion is quite generic, since we have shown to hold both in a baseline
model that can be treated analytically and in a more complex model, which we investigated
with numerical simulations.

As a consequence, it is possible to reinterpret the model as an evolutionary game, through
the use of the difference of satisfactions as a fitness function which sets the capacity of a type
of company to expand its business by having more flights in the future. In this framework,
the populations are the types of companies using the “rerouting” or “shifting” strategies. The
study of the shape of the fitness function shows the existence of a stable equilibrium point
for the mixing parameter for every values of parameters. Interestingly, this equilibrium point
is distinct from the point where a global satisfaction is optimal for the system as a whole.
This indicates that the system left alone will not converge to the global optimum, but to a
different equilibrium point.

In order to study more in details, the real dynamics of the system around the point of
equilibrium, we iterated the model with a reproduction rule mimicking the fact that higher
satisfaction for an airline may be converted to better possibilities of expanding business. We
found that the dynamical point of equilibrium is different from the one derived from the root
of the fitness function (static equilibrium). This is a purely dynamical effect which is driving
the point of equilibrium even further from the global optimum.Moreover, we found that both
the convergence time to the equilibrium and the fluctuations are highly dependent not only
on the slope of the fitness function, but also on its variance.
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These results have several policy implications. On the one hand, the fact that the root
of the fitness function is distinct from the global optimum means that the regulators should
step in. Indeed, issuing well-designed regulations could help the system to have a point of
equilibrium closer to the global optimum. On the other hand, the dynamical effects could blur
the picture. Indeed, long time to convergence and high fluctuations combined with changing
business conditions mean in practice that the system is always out of equilibrium. It is thus
hard for the regulators to design incentives to drive the system towards the optimum. A
more precise set-up and a more detailed calibration would be needed to definitely assert the
potential consequences of regulations.

The model presented here is an idealized version of the reality, a simple, yet phenomeno-
logically rich, toy model. It allows to catch some high-level, emergent, phenomena that are
inaccessible to more complicated ones due to the large number of parameters. The existence
of a point of equilibrium, its behaviour in certain environments, and its dynamics have cer-
tainly a scope broader than the present model. Moreover, the model is not really specific
to the air traffic. In fact, it could be adapted to other situations, like packets propagation
over the physical network of the internet, with minimal effort. As such, it can be viewed
as a quite general model of transportation where entities need to send some material over a
capacity-constrained network, thus competing for time and space.

Two possible directions for extension of the present work are the following. First, a more
detailed modelling could allow to draw some more precise conclusions about the present and
future scenario in ATM. A first path has been made in this direction with another version of
the model [10], based on navigation points instead of sectors. The model is also coupled to
a tactical part, allowing to simulate the conflict resolution of traffic controllers. The code for
this model is freely available.5 The second direction is towards model calibration. This is in
general a challenging problem because data on strategic allocation are owned by companies
and hardly available, especially when the details on many airlines are needed. A potential
way to overcome this problem is through indirect calibration based on traffic data which
contain the original flight plan and the last filled one. Data mining techniques could be useful
to infer from these data unobservable parameters of our model and therefore to calibrate it.
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A Appendix: Robustness of the Model

In this appendix, we test the robustness of the model regarding the simplifying assumptions
we made in the main text. Specifically, we consider two modifications of the baseline model.
In the first one, instead of using a homogeneous network of airports, we use a more realistic
one. In the second one, we use real data on airspace structure and airport network and choose
the origin/destination pairs and the desired times accordingly.

5 https://github.com/ELSA-Project/ELSA-ABM.

http://creativecommons.org/licenses/by/4.0/
https://github.com/ELSA-Project/ELSA-ABM
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A.1 Scale-free Network for Airports: Description

It is well known that the distribution of degree in the airport network follows a power law
[9] and therefore is described by a scale-free network. This means that few airports offer a
large number of possible destinations, and many airports only a few possible ones. This is in
contrast with the baseline model where we assumed that all airports are equivalent. In order
to see if this feature changes our results, we decided to use a Barabási-Albert type of network.
This type of network generates a power law distribution for the degree (with exponent 3). In
the simulations, the air companies choose at random an origin/destination pair based on this
airport network, i.e. they have a higher probability to be connected to high-degree airports
(hubs) rather than to low-degree ones. The other properties of the model remain the same.

A.2 Real Network of Sectors: Description

For the second type of network, we use some traffic data (DDR) as well as some NEVAC
files to have the definition of the sectors. All these data have been acquired during the course
of SESAR funded WP-E project ELSA, “EmpiricaLly grounded agent baSed models for the
future ATM scenario”. More details about the data itself and the data acquirement process
can be found in Gurtner et al. [12].

For the purpose of testing the model, we used the data in the following way. First, we
considered one day of traffic data, the 5th of June 2010. Since our model features two
dimensions of space, we projected the trajectories and have a unique tiling of the ECAC
space. To this end, we selected a specific flight level (FL 350) and considered only sectors at
this altitude.6 From each flight trajectories, we have extracted the path of sectors it actually
followed. Then, we selected only 60 sectors, in order to have results comparable with the
model result. We selected them by considering the most central sectors of the ECAC space
(smallest distances between the centre of the network and the centre of the ECAC space).
The resulting network of sectors is displayed in Fig. 10.

The next step was to extract the crossing times between sectors. For this, we computed
the crossing times between sectors based only on their geographical distance and tuned the
average from all sectors to the data.

The next step was to set the capacities for the sectors. Unfortunately, we did not have
access to this kind of data. Instead, we decided to rely on the assumptions that the sectors
were designed so that their capacities are only slightly larger than the maximum traffic load.
So we computed the maximum number of flights in each sector and fix it as the capacity. We
are confident on the fact that the resulting capacities reflect at least the degree of heterogeneity
of the capacities between sectors, even if not their absolute values.

The final step is to extract from the data to possible origin/destination pairs and the desired
times of departure. For the pairs, we simply recorded the first and last sectors crossed by the
flights in the area. For the departure times, we assumed that the last filled flight plan available
in the data constituted a good approximation of the desired departure times.

We then ran some simulations, changing the number of flights Nf and themixing parameter
fS. For each set of parameters, we produced 100 simulations. In each of them, each AO first
picked at random an origin/destination pair from the available ones. Then, it picked at random
a desired departure time among the available ones. Finally, it picked a strategy (type S or R)
with a probability fS.

6 In order to have a clean tiling, we needed to merge some overlapping sectors, probably active at different
times during the day. Among 364 sectors, only 11 small sectors were slightly modified.
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Fig. 10 Sector network used for the simulations based on traffic data. The sectors chosen are the ones which
are the closest to the geographical centre of the ECAC space (approximately around the channel), at FL 350.
The sectors are linked to each other if at least one flight goes from one to the other in the traffic data. The
orange squares denote the sectors where there is at least one departure or one arrival. The numbers are arbitrary
labels (Color figure online)

A.3 Results

Figure 11 shows the most important result from the two previous procedures, namely the
difference of satisfaction as a function of the mixing parameter fS. For the artificial scale-
free network of sectors, we varied the time �t between waves, while in the simulations on
the real network the wave structure is fixed by the real data and therefore we considered
different number of flights N .

Figure 11 should be compared with Fig. 4. We observe that the general inverse relation
between�S and fS is the same as in the baselinemodel, i.e. companies are usually performing
better when they are competing against large populations of the other type of company. The
real case on the right is just a bit different in the magnitude of the change of satisfaction. It
seems that the effect of the mixing parameter is weaker in this case. However, for large traffic
(high N ) the inverse relation is very clear.

B Appendix: Effect of the Density of Airports

In this Appendix, we explore briefly the relationship between the topology of the airspace
and the satisfaction of the companies. More specifically, we examine the role of the number
of airports, since they open more routes and should decrease congestion when the number



Dyn Games Appl

Fig. 11 Simulation results of the two robustness checks of the model. Left: difference of satisfaction �S
between the two types of companies as a function of the mixing parameters fS for different values of �t for
an artificially generated Barabási–Albert airport network. Right: difference of satisfaction as a function of the
mixing parameter for different total numbers of flights N , in the case where the network is constructed from
real traffic data (Color figure online)

Fig. 12 Total satisfaction against density of flights for different number of airports. Both parameters seem to
have opposed effects. Left: non-rescaled plot. Right: the abscissa is rescaled by d/n0.15airpt (Color figure online)

of flights is fixed. However, it is not clear how much an increase in the number of airports is
similar to a decrease in the number of flights. In order to investigate this problem, we repeat
some simulations with constant parameters �t = 60 × 5 and fS = 0.5, but with different
number of flights and different number of airports.

The results are presented inFig. 12.As one can see on the left panel, the average satisfaction
decreases with the number of flights and increases with the number of airports. In order to
find a relationship between both parameters, we rescaled the abscissa by d/nα

airpt, trying to
find the value of α where the curves would collapse the best. Purely empirically, we found
that α � 0.15 is the best match that we could get, except for very low numbers of airports,
for which the curve does not collapse well with the others (see right of Fig. 12). We do not
have an analytical argument to interpret this scaling, but we suspect that it is linked to the
degree of the network, since α = 0.15 � 1/6, and 6 is the degree of the triangular lattice on
which the airspace is embedded.

Whatever the reason is behind the exact scaling, it is thus obvious that both parameters play
some inverted roles. Roughly speaking, more airports give more choices to companies and
more flights “fill” these choices. In order to capture this point, we computed a metric Q that
we call “overlap” and which represents how much the paths open to companies are similar to
each other. More specifically, if p1 and p2 are two paths on the network, we compute first:

Qp1,p2 = p1 ∩ p2
p1 ∪ p2

,
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Fig. 13 Left: Overlap between paths as a function of the number of airports in the airspace. Right: Total
satisfaction against Q × d for different densities and overlap. The curves collapse very well (Color figure
online)

which is simply the number of common nodes (sectors) in p1 and p2 divided by the total
number of unique sectors in p1 and p2. To compute an aggregated value, we consider all
flight plans computed by the companies, i.e. including also the suboptimal ones. From them,
we consider all the paths contained in the flight plans and we compute the overlap between all
the pairs of possible paths to obtain Q. Note that this metric does not consider the time at all,
so it might be that two flight plans with the same path actually depart at very different times
and have no chance of interacting. This could be called a “static” overlap, but we consider this
metric because it is simple and it is very specific to the network, rather than the companies
themselves. Even with this simple metrics, one can catch an interesting feature of the model.

Left panel of Fig. 13 shows the overlap as a function of the number of airports in the
airspace. As expected, the overlap between potential paths decreases with the number of
airports. When one opens a path on the network, on average the capacity of the other paths to
accept flights decreases by Q. So the “density” of flights per route is effectively QNf/Nroutes,
where Nroutes is the total number of routes. Since the average satisfaction is likely to be a
function of this density, all curves for different number of flights and different number of
airports should scale as Qd . This is exactly the result we obtain in the right panel of Fig. 13,
where we plot the total satisfaction against Qd . As expected, all the curves collapse very
well.

This result shows that the effect of changing the number of airports can be deduced from
the effect of a change in traffic, or vice versa. This has a very practical impact, which is that
the simulations can be run on different number of airports, or different number of flights,
but not necessarily both. This is why in the main text we keep the number of airports to
5 and only study the effect of variations of density. This scaling relation could have also a
more general impact, because, if the results would hold on a more realistic airspace (which
should be the case because of the general scope of the overlap metric), a policy maker could
for instance try to push for the creation of new airports to counter balance increasing traffic.
This, of course, supposes that the demand is constant and not too localized (i.e. an additional
airport in a big city).

C Appendix: Analytical Derivation of Equilibrium for Infinite and Finite
Populations

The standard replicator model with two populations [17] fixes the total population size and
describes the dynamics of the fraction of population of a given type (for example companies
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S). If x(t) ∈ [0, 1] is the fraction of population of a given type at time t (the other being
1 − x(t)), the dynamics in the infinite population case is

ẋ = f (x)x(1 − x),

where f (x) is the difference of the fitness between the two populations and ẋ is the derivative
of x with respect to time. In this expression, the fitness function is a deterministic function
of one variable, x . Clearly the equilibrium points of this dynamical system are x = 0, x = 1,
and the roots (if any) of f , i.e. the points where f (x∗) = 0.

However, for finite populations, the fitness can depend on the exact realization of the
model, because of different origin/destination distribution for instance. The behaviour of the
replicator equation in finite size population has been explored in [1]. In order to take this into
account, we substitute f (x) by f (x)+ση, where η is a Gaussian white noise with mean zero
and variance one. The variance σ 2 goes to zero when the population size goes to infinity.
The equation is now a nonlinear Langevin equation [8]. In order to solve the equation, we
linearize it around the equilibrium point. With x̃t = xt − x∗ and f (x) = γ x̃t , where γ (< 0)
is the derivative of the fitness at x∗, the equation becomes:

˙̃xt = γ x∗(1 − x∗)x̃t + (x∗(1 − x∗) + (1 − 2x∗)x̃t )σηt .

Since the noise term is multiplicative, in order to transform it into a stochastic differential
equation (SDE), we assume Stratonovich integration [8] and we obtain

dx̃t = ax̃t dt + (d + bx̃t )σdWt , (Stratonovich)

whereWt is aWiener process andwhere a = γ x∗(1−x∗), d = x∗(1−x∗), and b = (1−2x∗).
We now pass to the Ito formalism7 obtaining

dx̃t = A(B − x̃t )dt + CσdWt (I to), (12)

where

A = −γ x∗(1 − x∗) − (1 − 2x∗)2

2
σ 2 (13)

B = x∗(1 − x∗)(1 − 2x∗)σ 2

−2γ x∗(1 − x∗) − (1 − 2x∗)2σ 2 (14)

C = x∗(1 − x∗) + (1 − 2x∗)x̃t . (15)

Equation 12 is a linear Ito SDE. The linear drift term A(B − x̃t ) tells us that the dynamics
of x̃t is mean reverting around the position B at an exponential rate (−A)−1, when A < 0.
Framed in our problem this fact has two implications:

– The dynamical equilibrium point is xeq = x∗ + B. Since in our model x∗ > 1/2, it is
xeq > x∗, i.e. the new equilibrium has a larger fraction of S companies with respect to
the value obtained from the infinite population case.

– The speed of convergence to the equilibrium is (−A)−1 which is larger than the zero
noise case (−γ x∗(1 − x∗))−1. This implies that convergence is reached more slowly
than in the infinite population case.

Therefore, as observed in simulations, the equilibrium in finite populations favours even
more S companies and it is reached at a slower rate than the one predicted by the slope of
the fitness at the equilibrium point. Finally, as expected, when the population size increases,
σ → 0 and the infinite dimensional solutions are recovered.

7 Given dXt = αt dt + βt dWt in Stratonovich sense, the corresponding Ito equation is dXt = (αt +
1
2βt ∂xβt )dt + βt dWt [8].
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