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The economic value of additional airport departure
capacity

Abstract

This article presents a model for the economic value of extra capacity at an
airport. The model is based on a series of functional relationships linking the
benefits of extra capacity and the associated costs. It takes into account the
cost of delay for airlines and its indirect consequences on the airport, through
the loss or gain of aeronautical and non-aeronautical revenues. The model is
highly data-driven and to this end a number of data sources have been used. In
particular, special care has been used to take into account the full distribution
of delay at the airports rather than its average only. The results with the simple
version of the model show the existence of a unique maximum for the operating
profit of the airport in terms of capacity. The position of this maximum is
clearly dependent on the airport and also has an interesting behaviour with the
average number of passenger per aircraft at the airport and the predictability
of the flight departure times. In addition, we also show that there exists an
important trade-off between an increased predictability and the punctuality at
the airport. Finally, it is shown that a more complex behavioural model for
passengers can introduce several local maxima in the airport profit and thus
drive the airport towards suboptimal decisions.

1. Introduction

A number of major airports in Europe are already under stress due to high
volumes of traffic during peak times (Gelhausen et al., 2013). Since traffic in
Europe is expected to grow by 50% in the next 20 years (EUROCONTROL,
2013), it is expected that many other airports will be severely congested in the
medium term, and that airports that are currently congested at peak times will
have problems all day long. As a consequence, the major European public-
private research partnership SESAR (Single European Sky ATM Research) has
dedicated an Operational Focus Area (OFA05.01.01) to the development of the
Airport Operations Center (APOC) to consider mitigation measures to avoid
large delays at these airports and the associated costs.

Delays are a direct consequence of levels of congestion at airports. These
impact directly on the airlines. For these, delays usually mean sub-optimal levels
of operation, as well as decreased satisfaction of their customers, leading to
potential decreases of market share. The value of this shortfall can be evaluated
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for different types of airline, aircraft, and delay duration, etc. (Cook and Tanner,
2015).

However, it is clear that expanding the capacity of an airport is costly.
Depending on the nature of the bottleneck and the severity of the congestion,
the airport might need to physically expand its infrastructure. This could mean,
for example, increasing the number of runways, the number of terminals, or the
number of gates. In all cases, the total operating costs for the airport will be
higher after the expansion. As a result, there will be an optimal capacity for
the airport which balances the level of congestion with the costs associated with
the extra capacity.

This is the concept which is explored in this paper, using a simple model to
capture this effect. More specifically, the model aims to provide some quanti-
tative measures of the cost of capacity and the corresponding cost of delay in a
very data-driven way. To this end, different types of data have been collected
that guide the modelling process and allow for detailed calibration.

The structure of the paper is as follows. Section 2 presents the literature
review, focusing on the main mechanisms that should be included in the model.
The types and sources of data used are also discussed. Section 3 presents the
model in detail, including the calibration process. Section 4 provides some
results obtained with the model. Finally, conclusions are drawn in Section 5.

2. State of the art

2.1. Literature review

Many studies have been undertaken concerning various aspects of airport
economics over the past few years and in this section a concise overview of
the most relevant research is provided. In particular, consideration is given to
the main mechanisms that link capacity to cost and delay, and the associated
strategies adopted by airports over the years.

Since a significant part of an airport’s operating costs is fixed, excess capacity
will produce high overall unit costs, as the fixed costs will be spread over lower
than optimal traffic levels. Whilst attempts may thus be made to use the
current facilities as much as possible, to take advantage of economies of density
or capacity utilisation (McCarthy, 2014), being close to capacity is likely to
produce more delays. So both capacity utilisation and delays can have an impact
on airport cost efficiency (Pathomsiri et al., 2008), with (Adler and Liebert,
2011) empirically finding that the positive impact of utilisation is greater than
the negative impact of delays.

Delays have impacts for both passengers and airlines (Cook and Tanner,
2015). As passenger satisfaction may be linked to commercial spend — the
money spent by passengers — at the airport (Airports Council International,
2016), delays can have a direct negative impact on an airport’s performance,
although this relationship is yet to be confirmed (Merkert and Assaf, 2015) due
to very limited research. This in turn is due to the lack of appropriate and
publicly available passenger satisfaction data. On the other hand, higher delays



at the airport may have the opposite effect, since passengers have more time
to use the commercial facilities (D’Alfonso et al., 2013), even though the only
known empirical study in this area found no significant relationship between
commercial revenues and delayed flights (Fuerst et al., 2011).

Adapting airport capacity to the expected level of traffic is a complex task
and many possibilities are discussed in the literature. First, so-called ‘soft’ man-
agement approaches have been examined. These include minor modifications to
management processes at the airport, without having an impact on the infras-
tructure itself. They are quick to implement and relatively low cost, but clearly
limited in scope. They can relate to strategic planning or tactical adjustments
(Barnhart et al., 2012). They can also include more local solutions, such as
improvement planning (Daniel, 2002; Jorge and de Rus, 2004), changes to air
traffic control (ATC) rules, price changes, and incentive schemes for airlines to
use larger aircraft — given that the infrastructure for this is already in place —
even if this may lead to additional congestion in the terminals (Gelhausen et al.,
2013; Berster et al., 2013). In the broader sense, they include developing inter-
modality with high-speed trains, diverting traffic or using multi-airport systems
(Martin and Voltes-Dorta, 2011), even though these typically require at least
some infrastructure change.

The feasibility and effectiveness of using pricing to manage congestion has
been frequently discussed in the literature, with the theoretical arguments sum-
marised by (Zhang and Czerny, 2012). However, such practices have rarely
been applied and tested. One of the key issues is the extent to which airlines
already self-internalise congestion, on which point views vary (Brueckner, 2005).
Moreover, (Adler and Liebert, 2011) empirically found that delays had no im-
pact on aeronautical revenues but that this was significantly higher at congested
airports. Other research has shown that it is important to take into account dif-
ferent passenger types when assessing the efficiency of any potential new pricing
scheme. Unsurprisingly, passengers having a higher value of time — typically cor-
responding to business-purpose passengers — will benefit from increased charges
during peak times to protect them from the congestion caused by passengers
with lower values of time (Czerny and Zhang, 2011; Yuen and Zhang, 2011).
Such pricing solutions are also difficult to implement because many airports are
subject to economic regulation, most commonly in the form of a price-cap (Adler
et al., 2015). Another alternative, but related, demand-management technique
frequently studied in the literature is a type of reform of the current slot alloca-
tion process, for example by using slot auctions and secondary trading systems.
This would have a major impact on airlines and passengers, but most likely a
lesser impact on airport revenues (Madas and Zografos, 203-226; Verhoef, 2010).

The second possibility to cope with excess demand is to change the infras-
tructure itself, usually by extending the current number of terminals, runways,
gates, etc.: so-called ‘hard’ management approaches. These measures are usu-
ally slow to implement and very costly, but can bring great increases in capacity
in some way or another. There will be a significant lag between the potential
expansion decisions and the full released capacity, during which demand and
the environment may change. This introduces a complex dynamic behaviour of



development and investment, which in part creates a demand for more flexible
solutions (Leucci, 2016; Kwakkel et al., 2010). It also poses the problem of the
risk aversion of the airport operators, and, more generally, the problem of how
expectations are formed with regard to the likely investment return. Some re-
search points out that the various uncertainties in the airport system, including
the uncertainty of future demand (Xiao et al., 2013) and the unpredictability
of degradation (Desart et al., 2010), increase the difficulties of airport capac-
ity decision-making processes. Moreover, as airports are not isolated entities,
airline network (delay propagation) effects can add further complexity to the
validity of a capacity extension (Cook and Tanner, 2015). The decision-making
process of the airport under various uncertainties is a complex subject, as noted
in (Sun and Schonfeld, 2016; Kincaid et al., 2012).

The literature also points out the need for more subtle definitions of capac-
ity, in particular ensuring that there is differentiation between arrival versus
departure capacity, and runway versus terminal capacity. It has been shown
that there is some trade-off between the former (Gilbo, 1993), and that there
exist some non-trivial relationships between the latter (Wan et al., 2015). Cur-
rently, runways typically represent the bottleneck for the traffic flow, rather
than terminals (Gelhausen et al., 2013; Berster et al., 2013; Wilken et al., 2011;
Butler and Poole, 2008). There is also the trade-off between operational and
commercial capacities, the extent of complementarity between these two, and
the associated cost allocation approaches (Zhang and Zhang, 2010; D’Alfonso
et al., 2013). This is linked to the flexibility allowed within each individual
airport economic regulatory system and subsequent incentives which may arise
(International Transport Forum, 2013).

A common research theme concerns cost-benefit analyses examining the im-
plications of a ‘hard’ modification. In particular, it is important to emphasise
that changing infrastructure may not merely affect the volume of traffic or pas-
sengers, but also the nature of the traffic and operations at the airport. Indeed,
larger airports are usually more diversified in being able to provide a greater
range of commercial facilities. As a consequence, commercial spend can in-
crease disproportionately with the size of the airport. Also, leisure passengers
have been shown to spend more than business passengers (Fuerst et al., 2011;
Castillo-Manzano, 2010), and low-cost carrier (LCC) passengers less (Lei et al.,
2010). Traffic mix changes will also bring different associated costs related to
the service expectations of the airlines, related, for example, to ensuring a fast
transfer time at hub airports, or swift turnarounds for LCCs. As regards airport
size, much mixed evidence exists, but generally it shows that airports experience
cost economies of scale, albeit with different findings related to if, and when,
these are exhausted, and whether diseconomies then occur. For UK airports
some research has estimated that long-run average costs decreased up to 5 mil-
lion passengers, were constant for 5-14 million passengers, and then started to
increase (Bottasso and Conti, 2012), whereas another UK study (Main et al.,
2003) found a steep decrease in average costs until around 4 million passen-
gers and then very moderate, but persistent decreases in costs until at least
64 million passengers. Meanwhile, for Spain it has been concluded that cost



economies are not exhausted at any level of traffic for the airports considered
(Martin et al., 2011), with similar results confirmed for a worldwide sample
(Martin and Voltes-Dorta, 2008). These studies considered both operating and
capital (i.e. long-run) costs.

A key related issue is how aeronautical charges may change as the result of
the costs of new infrastructure. However, it has been shown that aeronautical
revenues are very much influenced by market-oriented factors, such as price sen-
sitivity or competition (Bel and Fageda, 2010; Bilotkach et al., 2012), as well as
pure cost drivers. The impact of changes in charges may also be limited, since
they tend to represent a small portion of the airline costs. This also depends
on the extent to which airlines will absorb such changes or pass them on fully
to passengers (Starkie and Yarrow, 2013), which is difficult to evaluate without
further empirical evidence.

This literature review has provided a high-level overview of the airport sys-
tem, in particular with regard to relevant variables and the relative importance
of the various effects that need to be considered. This helps with informing and
building the model itself, which is presented in Section 3.

2.2. Data sources and usage

A large range of data sources has been used for the current research, as
presented in Table 1. The year of reference was chosen to be 2014, which was
the most recent available year of data across the different sources.

A major input was airport financial and operational data sourced (through
subscription) from FlightGlobal (London, UK). ATRS (Air Transport Research
Society; USA and Canada) benchmarking study data were purchased, in ad-
dition, particularly for the provision of complementary data on airports’ costs
and revenues. At the time of analyses, only ATRS data for 2013 were avail-
able, and these selected data were used as a proxy for 2014, after checking their
validity for this. Financial and operational data were compared with in-house,
proprietary databases, with adjustments made as necessary. Data on airport
ownership, and additional data on passenger numbers, were provided by Air-
ports Council International (ACI) EUROPE (Brussels). European traffic data
were sourced from EUROCONTROL’s Demand Data Repository (DDR) with
delay data primarily from the Central Office for Delays Analysis (EUROCON-
TROL, Brussels). Note that, whilst pure turnaround delay would ideally be
used, as this reflects airport in situ effects only, general (total) air traffic flow
management departure delay was found to work as a statistically good proxy
for this. Furthermore, we did not have access to clean, local (airport generated)
air navigation service (ANS) delay data. Other in-house sources of data were
used in addition to those listed, also drawing on the literature review.

Considering the wider context of operations in 2014, there were 1.7% more
flights per day in the EUROCONTROL statistical reference area, compared
with 2013. The network delay situation remained stable compared to 2013,
notwithstanding industrial action, a shifting jet stream and poor weather affect-
ing various airports throughout the year, particularly during the winter months



(EUROCONTROL, 2014). The average delay per delayed flight demonstrated
a slight fall relative to 2013, and operational cancellations remained stable ibid.
The issue of industrial action, prevalent in 2014 in particular, was shown not to

impact the model.

Source Typical Content Use
Number of flights,
FlightGlobal number of passengers, Cluster analysis,
share of European calibration
flights
EUROCONTROL Delay per airport & Comparison with DDR
CODA per cause of delay delays
EUROCONTROL .Full trajectories of Deliay dist.ributif)n.,
DDR aircraft for one month  capacity fitting, airline
of data traffic shares
Number of passengers
ACI (domestic, Calibration purposes

Skytrax, etc
ATRS

ATRS

Private
communication,
EUROCONTROL
(2016)
University of

Westminster (Cook

and Tanner, 2015)

international, etc.)
Passenger satisfaction

Financial data

Airport charges

Maximum Take-Off
Weight

Cost of delay

3. Presentation of the model

3.1. Description

Cluster analysis
Cluster analysis,
calibration
Comparison with
aeronautical revenues
per aircraft

Cost of delay
calibration

Cost of delay
calibration

Table 1: Data sources, content, and use.

The model is based on several core ideas arising, in part, from the literature

review. It does not include every aspect presented in the literature, but rather
tries to find the minimal modelling ingredients to capture the most important
features, with sufficient data to be calibrated. In particular, demand manage-
ment techniques have not been included in the model because they should only
play a role after the main capacity (the infrastructure) has been decided. In fact,



these demand management techniques affect the cost efficiency of the airport
and as such are represented within its cost function, as described thereafter.
First, it is necessary to select only the delay caused by a given airport, elim-
inating all delays triggered by other airports or other sources. A representative
agent description is used, i.e. all the airlines are described by a single, average
representation. The following mechanisms were selected for the model:

e Delay is created primarily by a shortage of capacity.

e Delay has a direct cost impact on the airlines: passenger reaccomodation,
crew costs etc.

e Airlines try to avoid additional costs from delay and thus might decide to
drop a route if the delay is too high.

e Passenger choices are primarily driven by external, non-airport manage-
ment choices (airport location, airline fare and service) and thus are not
modelled here.

e Airport revenues can be divided into two components: (i) aeronautical
(depending directly on the number of flights); non-aeronautical (depending
directly on the number of passengers).

e Intra-day traffic patterns and distributions of delay should be taken into
account due to the non-linearity of the cost of delay for airlines.

Based on these considerations, we build the model around the relationships
presented below. Note that in terms of heterogeneity of traffic and delays, we
use 1-hour time windows, from 0500 to 2200. For each of the time windows,
we consider the average traffic, computed over one month of data to have a
good estimation of the typical intra-day pattern. Moreover, within each time
window we use a full distribution of delays. This distribution is thus different
from one time window to another. Equations 1, 2, 3, and 4 presented below are
applied independently of each of the time windows and the results are summed
afterwards. For the same reasons, the quantities involved in the equations are
usually to be interpreted as ‘per hour’.

A given, constituent equation is defined for the relationship between the level
of traffic and the delay generated. In order to do this, capacity is considered
as an emergent property of the relationship between traffic and delay, more
specifically, as the amount of traffic that the airport can handle before the
delay increases. Based on the literature review (Desart et al., 2010; Wan et al.,
2015) and on our own regressions (see calibration discussion), an exponential
relationship is chosen between the number of departures per hour 7" and the
average delay at departure &t (in minutes):

0t = 120(exp(T/C) — cc), (1)

where cc is related to the delay generated when the traffic is very low, and
C is the capacity. Hence, this equation can be considered as the definition of



the capacity for an airport. It represents the typical limit beyond which delay
appears. In particular, it is important to note that we do not assume a priori
that the capacity is linked primarily to the runways or to the terminals, or that
it increases linearly with the number of these infrastructures. The capacity as
a whole is a complex interplay between numerous processes, which creates the
delay.

Note also that considering that the delay within a time window is only
dependent on the traffic within this time window is a simplification. In reality,
the delay is also a function of the traffic within the previous time windows.
This is not formally considered by the model, but is captured to some extent
by the regression made during the calibration process. Indeed, the direct effect
of delay spilling over is the increase of delay in a time window where the traffic
would theoretically be low enough to have a lower level of delay. This probably
means that on average, low traffic time windows manifest a delay increase. As
a consequence, this should be captured by the regression to some extent, with
a greater weight applied to the low traffic periods.

This delay has a cost ¢4 for the airlines, and (Cook and Tanner, 2015) have
shown that in general this can be modelled as a quadratic function of the delay
duration:

ca =T.06t+0.186t>+ (—6.0t —0.0926t*)VMTOW
if 6t >0,
=0. otherwise, (2)

where 0t is the individual delay of a single flight in minutes, MTOW is the
maximum take-off weight of the aircraft measured in metric tonnes and the cost
is measured in euros. This relationship has been obtained based on delay cost
modelling by aircraft type and delay duration, undertaken from 2002, based
on literature reviews, stakeholder inputs and industry consultations, the third
phase of which was reported in 2015 (Cook and Tanner, 2015). The equation
above has only one parameter in addition to the delay itself, which is the square-
root of the maximum take-off weight of the aircraft. It should be noted that
this function is not linear, a) because of the quadratic term and, b) because
‘negative’ delays (early departures) do not yield gains for the airlines. As a
result, one cannot directly replace §t by its average &t in this equation, but
one needs to take into account the full distribution of delay. In particular, it is
clear that even an airport with a null average delay has a non-null cost for its
airlines. This point is crucial and is further studied in the calibration discussion
of Section 3.2.

An increase in the cost of delay has a direct consequence of making flights less
profitable for airlines. As a result, it is assumed that airlines tend to decrease
their participation at an airport when this happens. For this, a logistic function
is chosen, based on the cost of delay ¢4 and a decision ‘smoothness’ s (measured



in the same units as ¢4, i.e. euros) as follows:

2

Po=——F7,
1+ eca/s

(3)
where P, represents the probability of the airline actually operating the flight.
This function is monotonically decreasing with the cost of delay. The parameter
s drives the choice of the airline, which immediately stops the operation of the
flight as soon as the cost is greater than 0 if s is small, but otherwise continues
its operation even if the cost is non-null if s is high. This models the fact
that the airline does not base its decision only on one flight, but on its whole
network, and is thus likely to even accept some loss if the flight brings some
benefits elsewhere. This function is clearly linked to the demand elasticity, but
we chose this form of function because an earlier version of the model included
some degree of risk aversion from the airline, naturally taken into account with
this kind of function. This feature was removed because of the lack of distinct
results with and without risk aversion and the difficulty to calibrate the risk
aversion parameter.

Note also that we did not consider the airport charges in the cost function
of the airline. Indeed, some airlines are not particularly sensitive to airport
charges, whereas others are. This depends on a number of factors such as the
airline business model, length of haul, etc. Moreover, whilst some airports may
be able to raise their charges, others will be constrained by being subject to
formal economic regulation which may not allow this, or will have to consult
and seek government approval for any increase. Therefore, due to the number of
unknowns here, it was decided to keep airport charges constant in our analysis.

The probability of operating the flight then fixes the actual traffic (number
of flights departing per hour), in the form of T'= P, 3, where § is the potential
demand. However, in turn, this level of traffic changes the average delay, which
changes the cost, the probability of operating the flight and so on. There is then
the need to solve an implicit equation, which can be interpreted as an economic
equilibrium with the mean delay playing the role of price (see Appendix B).
This interpretation is important to bear in mind for the understanding of some
of the results in Section 4.

Once the traffic is known, the revenues of the airport are computed. It is
assumed that the average number of passengers per flight ny is constant for
all the flights at the airport, hence generating a linear relationship between the
number of passengers and the number of flights. The revenues are divided into
two components, as mentioned above:

e Aeronautical - linear in the number of flights, T
e Non-aeronautical - linear in the number of passengers, n;T.

Aeronautical revenues are indeed generally made up of a landing charge levied on
the MTOW or MAW weight of the aircraft (which broadly correlates with pas-
senger numbers) and a passenger charge levied per passenger. So both charges



in effect are roughly based on passenger numbers. However when a constant av-
erage number of passengers per aircraft is assumed — as it is the case here — the
weight will be constant and the revenue will increase linearly with the number
of flights. Non-aeronautical revenues are very much driven by passenger num-
bers because if the airport operator provides commercial facilities themselves, it
is normally the case that more passengers mean more spending. If the airport
subcontracts out commercial facilities (which is more typical) the concessionaire
will normally pay a fee based on their own revenue to the airport operator which
again will be closely related to passenger numbers.

Ultimately, in this framework both types of revenue are directly proportional
to the traffic volume. Hence the total revenues have the form:

ra = (P+nyw)P,p, (4)

where P represents the aeronautical revenues in euros per flight, w are the non-
aeronautical revenues per passenger, and ny the average number of passengers
per flight. The former is considered fixed throughout this paper, since it arises
mainly from airport charges, which are regulated in many countries and thus do
not represent a variable of major adjustment for the airport, as explained above.
The latter are considered fixed in this section and for the first results, but are
relaxed in the last part of Section 4, allowing for more complex behaviours from
the passengers.

Finally, we consider the operating cost c¢;,s of having a capacity C' with a
simple linear function:

Cinf = a(C — Cinit) + Cinit, (5)

where C;pn;¢ is the current capacity of the airport, (C — Cjpnit) represents, for
instance, a planned increment of the capacity, and c¢;,;; represents the cost to
operate the airport at capacity Cjn;¢- The costs are measured in euros per hour
and the capacity in number of flights per hour. The parameter o — in euros per
flight per hour — is crucial here, because it represents the marginal operating
cost of capacity, i.e. the cost of operating an extra unit of capacity. It should
be noted that this form of the cost does not preclude its utilisation for discrete
increments of the capacity, such as the construction of a new runway. The linear
law can hold even in this case, because it only assumes that two runways would
cost twice as much and yield approximatively twice the increase in capacity’.
The only caveat is to consider C as a discrete variable instead of a continuous one,
which is discussed in Section 4. We also emphasize that the quantity c;,y is the

I This is obviously an approximation. Running a second runway is clearly not as expensive
as running the first, for example because the control tower is already operating and would need
relatively few enhancements. On the other hand, having two runways is not twice as efficient as
having one, because of runway congestion and taxi times. Overall, a linear relationship seems
to be reasonable as a first approximation. In particular, our point here is that the operating
cost of running a given capacity is not a highly non-linear function of the capacity. This
is in contrast with the process of extending capacity, which is achieved through discrete
increments.

10



operating cost for the airport, i.e. the cost of actually operating the airport on
a day-to-day basis. In addition to labour, this includes contracted-out services,
maintenance and repairs, administration, and other similar costs. As with the
ATRS data, our definition does not include depreciation, although this does
sometimes get included in airport accounts as operating costs. Other capital
costs, such as the interest paid on new investment, are also not considered.

Note also that the passengers are directly impacted by the delays. In par-
ticular, their desire to take a flight at a very congested airport might decrease,
which could drive the profit of the airlines down also. This can be taken into
account through the cost of delay of the airline, but is likely to be small in any
case. More importantly, deriving passengers’ preferences with regard to their
time (‘value of time’ problem) and their decision-making process is a distinct
area of research which is far beyond the scope of the present study.

Note that in this model there is no profit maximisation for the airport.
Instead, we aim at deriving its operating profit based on different parameters
in order to potentially help decision makers regarding capacity expansion.

Note also that the model is fully deterministic and does not take into account
any kind of uncertainty a priori. In fact, in the calibration section we include
the uncertainties of the delay, which have a strong effect on the cost of delay
of the airlines. Most of the other quantities are fully deterministic however,
mainly due to the lack of data for calibration. The agents also do not exhibit
any kind of risk aversion, as previously emphasised, because of the difficulty
of calibrating risk aversion and the overall lack of information concerning this
point.

The five constituent equations 1, 2, 3, 4, and 5 form the backbone of the
model. The parameters in these equations are summarised in Table 2 and can
be estimated from data as described thereafter.

3.2. Calibration
The calibration of the model deploys three steps:

e The direct calibration, whereby a parameter of the model is directly re-
lated to a value which can be extracted from the available data.

e The functional relationship calibration, whereby a function between two
observables is matched to the data, sometimes using a regression to fix
some parameters.

e The post-calibration, whereby a parameter of the model is unobservable.
In this case, the values of the parameter are swept, measuring an output
of the model and trying to match it to an observable target from data.

3.2.1. Direct calibration
The first step allows estimates of different parameters of the model such as:

11



Type of

Name Description Unit
parameter
MTOW Max. take-off weight DC metric tonnes
Average number of .
s passengers per flight bC pax per flight
P Airport charges DC euros per flight
Cinit (Departure) capacity DC flights per hour
cc Delay offset at zero traffic DC minutes
v Value of time DC euros per minute
T Distribution of traffic DC flights per hour
w Average revenue per passenger DC euros per pax
Cinit Total initial cost DC euros per hour
I3 Traffic multiplier (demand) PC flights per hour
@ Marginal cost of capacity FP ﬂigehl;r(g)sefflf)ur
S Smoothness FP euros

Table 2: List of parameters of the model, with their types related to calibration. DC: direct
calibration, FP: free parameter, PC: post-calibrated. See Section 3.2.

e The average number of passengers per flight ny is given by the ratio of
the number of flights and the number of passengers.

e The (average) aeronautical revenues per flight P are given by the total
aeronautical revenues divided by the number of flights.

e The (average) non-aeronautical revenues per passenger w are given by the
total non-aeronautical revenues divided by the number of passengers.

e The distribution of traffic {T'} through the day is fixed by averaging one
month of data, splitting the day into 1-hour windows.

e The average square-root of the maximum take-off weight MTOW  based
on the individual weights of the aircraft operated by the airlines at the
airport.

3.2.2. Functional relationships calibration

The second step of the calibration is to build functional relationships between
some variables of the model through regression. A particular case is that of the
relationship between the average delay and the level of traffic. For this, a least-
square exponential fit of the delay against the number of departures per hour
over one month of data was performed. This yields the value of cc, which is
linked to the delay at low traffic (usually negative), and the capacity C. Tt
should be noted that performing this fit, or a linear fit, usually yields similar
results in terms of goodness of fit (with a R? between 0.6 and 0.9 for most of
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the airports), thus challenging the usual use of an exponential function from the
literature.

A second important relationship to be calibrated is the cost of delay. Whilst
the average of vV MTOW can be easily directly fixed from the data, account
needs to be taken of the distribution of delay in order to compute the average
cost of delay. This is done in three steps. First, for a given airport and for
each hour of the day, the empirical distribution of delay is built, and then a fit
with a log-normal distribution is performed. The reason to use a fit rather than
the empirical distribution is to allow for easily adjusting the parameter of this
distribution afterwards, in particular its variance, linked to the predictability
of the departure times. The specific choice of a log-normal distribution over
other distributions is based on a) its simplicity in terms of parameters and, b)
its fundamentally asymmetric shape, with a few rare events at very high delays.

With the distribution for each hour, the expected value of the cost of delay
is simply obtained, using:

a- | " calbt)p(ot) d(ot), (6)

where p(dt) is the probability of having the delay ¢, based on the log-normal
distribution described previously. Since for each hour of the day there is a
different value of the mean delay 0t, a plot of the equivalent of Equation 2 with
the expected cost against the mean value can be made and compared with the
cost of the average delay (replacing §t by &t in Equation 2). This plot is shown
in Figure 1 for a particular airport in the database, where it can clearly be
seen that the average cost of delay is significantly different from the cost of the
average delay.

The final step concerning the cost of delay is to perform a fit in order to
use it as a continuous variable in the model. This is done by using a complex
function, as explained in Appendix A. The result of this regression is shown in
Figure 1, with solid lines. The regressions are robust for most of the airports
considered in this paper (R? > 0.95).

8.2.3. Post-Calibration

The last step of the calibration process is to sweep the unobservable param-
eter 8 in order to match an output of the model with its value in the data. For
this, the total number of flights operated at the airport within each one-hour
window is used. Increasing 3, the model will slowly increase the total number of
flights in output and this is stopped when this value matches the one extracted
from the data for this time.

8.2.4. Summary of calibration
In summary, the calibration process includes the following steps:

e Maximum take-off weights MTOW are included in the cost-delay rela-
tionship.
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Figure 1: Evolution of the expected cost of delay based on a log-normal distribution of the
delays. The black line represents the cost when the variances of the distribution tend to
zero. The coloured points are the expected values for a given airport at different times of the
day (with different mean delay). Different colours represent different values of the standard
deviation of the distributions. The standard deviations are normalised, so ‘c = 1’ represents
the standard deviation found originally in the data, ‘c = 0.5’ half of the standard deviation
found in the data, and so on. Finally, the solid coloured lines are obtained via regression using
a quite complex function, see Appendix A.

e Average number of passengers per flight ns, aeronautical revenues per
flight P and non-aeronautical revenues per passenger w, value of time v,
total initial cost ¢;pnit, and distribution of traffic {T'} through the day are
taken directly from data.

e Fitting parameters cc and C;p;; (the latter being the capacity) for delay-
traffic load relationships are set.

e The cost of delay relationship is corrected based on intra-hour log-normal
fitting distributions of delays.

e A demand factor 8 is post-calibrated by matching the number of flights
with the data.

Note that the “total initial cost c¢;ni;” represents the total current costs of the
airport, i.e. the costs for providing the current capacity.

Finally, there are two parameters remaining, the smoothness of the airline
decision s and the marginal cost of capacity «, which is the cost of operating
one extra unit of capacity. The latter could be estimated, for example, by
considering that the primary mission of an airport is to deliver capacity for
flights, and thus that all its costs are related somehow to this mission. Hence,
dividing the current capacity by the total costs would give the marginal cost of
capacity. This, however, should only be considered as a rough estimation, and
« is considered as a free variable in the following.
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The smoothness s is thus the last free parameter of the model. It represents
the sensitivity of the airline to the cost of delay, which is very hard to estimate
because of the lack of detailed airline data. It is worth noting, however, that:

e A basic sensitivity analysis (see Appendix D) shows that the results of the
model do not depend strongly on the value of s.

e The parameter is actually not totally free, but is constrained at low values.
This is because a low elasticity cannot fulfil demand requirements.

Table 2 presented a summary of how the parameters are calibrated.

4. Results

In this section we present the results obtained with the model. This begins
with some results with the model calibrated on a large European hub. Then
the impact of different parameters on the results is shown, before comparing
different airports. Finally, some results obtained with more a complex behaviour
of the passengers are presented.

4.1. Profit evolution for a large hub

Following the procedure described previously, firstly the model is calibrated
on a large European hub. In order to see if a potential increase in the capacity
would be profitable for this airport, the plot in Figure 2 presents the operating
profit of the airport as a function of the capacity and the marginal operating cost
a. The figure shows that for high values of «, the profit decreases monotonically
with the capacity, because capacity is very expensive in this case. When « has an
intermediate value, there exists a unique maximum in the profit, whereas when
« is low, the profit increases monotonically because the capacity is essentially
free.

The presence of an optimum is important for the airport: it means that
the airport could potentially increase its revenue by increasing its capacity. As
already noted, an airport cannot usually increase its capacity continuously, but
rather by discrete increments, e.g. by building a new runway. The graph shown
in Figure 2 shows the possibility of assessing the profitability of the increment,
by comparing the expected profit with the extra capacity, to the profit with the
current capacity.

It is also interesting to find the average delay that corresponds to the optimal
state — the maximum profit. If one takes the marginal cost of capacity a to be
60 000 euros per hour, comparable to the current cost of the airport of running
its current capacity, one finds that the optimal average delay is around 9.5
minutes, slightly below the current delay of 9.6 minutes for this airport. The
gain in punctuality in this case is thus small both for the airport and for the
passengers.
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Figure 2: Daily profit of the airport as a function of capacity, for different values of the
marginal operating cost a.

4.2. Effect of the average number of passengers per flight on the optimal state

The presence of an optimal capacity for the airport is important, but it
needs to be assessed whether this could be affected by different parameters.
The first is the average number of passengers per flight at the airport ny. This
is motivated by previous research that reports that an increase in the average
number of passengers per flight has been used by airlines at congested airports
as a relatively cheap way of increasing their capacity (Berster et al., 2013).
It should be noted that, in principle, an increase in the average number of
passengers per flight has no impact on runway capacity but can affect terminal
capacity. However, it seems clear from the literature review that the current
bottleneck is the runway and not the terminal, at least for highly congested
airports (Gelhausen et al., 2013; Berster et al., 2013).

In order to investigate this, the model is calibrated on the same airport as
above and then the average number of passengers per flight is changed. The
capacity is also swept to detect the position of the optimum as a function of
the average number of passengers per flight. The marginal cost of capacity « is
fixed once again at 60 000 euros per hour. Figure 3 displays the results of the
procedure. In this plot, we have capped the optimal capacity such that it does
not fall below the current capacity. As a result, increasing the average number
of passengers per flight at first does not change the optimal point, which is
the current capacity. Going further, the position of the optimum then increases
linearly with the average number of passengers per flight. This happens because
a higher average number of passengers per flight will create a higher yield for the
airport when attracting new flights, which pushes the optimal capacity upwards.

This simple linear relationship could be easily used as a rule of thumb for
airports. For instance, instead of considering an increase in capacity to decrease
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Figure 3: Evolution of the optimal hourly capacity as a function of the average number of
passengers per flight.

the delay by X%, the airports could try to incentivise airlines to increase their
average number of passengers per flight by Y%. This simple relationship can
also be used to roughly predict when the average number of passengers per flight
at the airport will increase, based on the congestion at the airport and what its
optimal capacity would be.

4.3. Effect of the predictability on the optimal state

Of further interest is the effect of predictability. Many stakeholders, includ-
ing passengers and airlines, use significant buffers because of the uncertainty
in the system, which leads to longer travel times. Once again, using the cal-
ibrated model for the same airport, the effect of predictability by varying the
distribution of delays is studied. As previously described, based on real delay
data, a log-normal fit is used to simulate the delay and compute its cost. In this
experiment, the variance of these distributions (for each one-hour time window
of the day) is decreased, keeping the means constant. This simulates a situation
where the predictability is increased while the punctuality (mean delay) is fixed.
More specifically, the standard deviation of all the distributions during the day
is reduced by the same factor. Once again, « is fixed and the capacity swept to
detect the optimal value.

To understand the impact of predictability, the left panel of Figure 4 shows
the evolution of the profit of the airport for a fixed capacity against the reduc-
tion of the standard deviation. As expected, profit grows as predictability is
increased (from right to left on the graph). However, there is a striking side
effect, which is that the average delay at the airport actually increases with the
predictability, as displayed in the right panel of Figure 4. In other words, there
seems to be a trade-off between predictability and punctuality at an airport.
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Figure 4: Left panel: daily profit as a function of the standard deviation of the distribution of
delay. Right panel: average delay in minutes against the standard deviation of the distribution
of delay. The standard deviation is actually measured with respect to its initial value. Hence,
a standard deviation of 1 represents the state where the initial predictability is used and 0
represents the perfectly predictable case.

In order to understand this mechanism, reference is made to the resolution of
the implicit equation explained in Section 3 and Appendix B. The direct effect
of the reduction of uncertainty is the decrease of the correction term applied to
the cost of delay as computed by Equation 6, i.e. a direct reduction of the cost
of delay. As a consequence, for a given mean delay, the airline is more willing to
operate a flight, which drives the demand function of Figure B.9 up. Since the
supply is unchanged, this means that the delay at equilibrium is higher than
before, which explains the behaviour of Figure 4, when the uncertainty starts
to decrease. Conversely, it also explains the increase in the profit of the airport,
since airlines are more willing to operate at the airport at no extra capacity
cost?. This effect is counter-intuitive but is equivalent to an increase in price
due to easier access to a market of commodities®.

In any case, the position of the optimal capacity for the airport is likely to be
modified by the predictability. This is indeed the situation, as shown in Figure
5. When the predictability increases, the optimal capacity increases too, essen-
tially because the airport is able to manage more flights with the same level of
delay. It should be noted that this effect is linear at first, but saturates when
reaching very small deviations. This region is probably unrealistic in any case,
because the mean (arrival) delay would probably drop when the predictability
decreases so much. High systematic delay, driven by low predictability, would
be predicted by the airlines and off-set through increased buffers and earlier

2In reality, this increase in predictability is likely to be the consequence of the adoption
of some technology, which has a price. This price, which is likely to be shared among several
stakeholders, is not taken into account here.

3Average delay and its variance are actually correlated. This does not change the con-
clusion of the model, in the sense that the impact of the variance is as described. This
neglects behavioural feedback and additional effects from concomitant changes in punctuality
introduced by the new technology/procedure.
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departures, for example, thus reducing the arrival delay.
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Figure 5: Evolution of the optimal hourly capacity as a function of the normalised standard
deviation of the distribution of delays.

Finally, note that the effect of predictability is far from being negligible.
According to the model, even an increase of 10% in predictability could lead
to an increase of 16% in profit, with only a 4% increase in the mean delay
(less than a minute). Of course, the (operating) cost of the improvement of the
predictability is not taken into account here, and could drastically change the
picture.

4.4. Comparison between airports

So far, the results of the model for one airport have been investigated. The
differences between airports are now considered as it is clear that different air-
ports can sustain different costs, in particular regarding the operating costs
related to extra capacity. To study this point, an increment of one unit of ca-
pacity is assumed for all airports in the database and the value of « is found
where the profit of the airport would be the same as with the original capacity.
This value of « indicates the maximum operating cost for which an extra unit
of capacity becomes profitable for the airport.

The results are displayed in Figure 6. The first conclusion is that different
airports have very different levels of profitability, from around 1 000 euros per
hour to more than 100 000 euros. Clearly, larger airports can more easily sustain
an increment in capacity, simply because of their different operating expenses
and revenues. When the profitable level is compared to the total operating costs
at the airport, the dependence on the total number of passengers disappears, as
shown in Appendix C.
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Figure 6: Comparison for different airports of the maximum marginal cost for which an
increase of one unit of capacity is profitable against their yearly number of passengers. The
colour refers to different types of airports, as derived in (Gurtner et al., 2016), which roughly
corresponds to large hub/small hubs/non-hub airports.

It should be noted, however, that this dependence with size is far from
perfect. In particular, some large airports (such as Istanbul Atatiirk airport)
have a smaller profitable level than much smaller airports, such as Hamburg.
This is also expected since different airports should have different needs in terms
of capacity. In particular, the profitable level « is expected to be higher for
airports which are already highly congested. Furthermore, national, or even
regional, characteristics have to be taken into account, since the operating costs
depend on the types of airport, the economic development of the country, and
so on. The figure, however, shows a high-level picture which can be used to
compare concisely and consistently the states of different airports.

4.5. Exploratory results

In this section the assumption of constant non-aeronautical revenues per
passenger as applied previously is relaxed. Since there are no public data on the
precise behaviour of passengers at an airport, the model cannot be completely
calibrated. Therefore, this is only an illustration of the potential impact of
different mechanisms. From the literature, two possible mechanisms emerge.
Passengers may spend more if they:

e Have a longer airport dwell (waiting) time.
e Are more satisfied.

It is interesting to note that these two effects work in opposite directions when
delays are present. Delays increase the waiting time, leading to potentially
longer shopping time, but they typically decrease the overall satisfaction of the
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passengers, which would lead to a lower quality of the shopping time. It is
difficult to assess if these two effects have the same magnitude in reality, for
instance by cancelling each other out.

In order to illustrate these effects, ‘more shopping time’ and ‘better shopping
time’ are assumed to have effects on different time scales. More specifically, it
is assumed that small delays are relatively neutral from the satisfaction point
of view, but that higher delays have a relatively larger effect. On the other
hand, it is assumed that the passengers have a constant probability of spending
a fixed amount of money per unit of time. These two assumptions result in the
following functional forms:

w(dt) = Winit + wshop(ét) + Wsat (5t)a (7)
where: 5t — 6t
_ — Olinat
wshop(ét) - te 120 Winit, (8)
and:

Ot—0Otin: 2 :
Se (2552 )  wing  if 6t < Otina

St—tinis )2 .
—Se (T(;”“) Winit Otherwise.

wsat(at) = { (9)
By tuning the parameters s, and t., we are able to create non-trivial patterns for
w. As already stated, the absolute values of these parameters are of relatively
little importance. However, the model is kept self-consistent by setting w to the
constant value w;n;; used in the previous version of the model when §t = 6t;,4¢,
the average delay at the airport.

Combining this function with Equation 4, the model calibrated on the large
European hub as in sections 4.1, 4.2, and 4.3, is again used. The results for the
revenues per passenger and the profit of the airport are presented in Figure 7. As
expected, the (total) revenue per passenger for the airport is no longer constant,
but first decreases with the capacity, before increasing again. This shape now
has a subtle interplay with the increased demand from P4 (not shown here) to
produce the shape of the profit curve on the right.
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Figure 7: Revenues per passenger (left) and total daily profit (right) for the airport as a func-
tion of the capacity when non-constant non-aeronautical revenues per passenger are assumed.
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This curve does not have a unique maximum as was the case previously. The
presence of two maxima for the profit could have different consequences. Indeed,
on the one hand, considering the air traffic management system as a stochastic
system, where the airport seeks to maximise its profit, it could very well be that
the airport would be ‘trapped’ in a local maximum, instead of reaching the global
maximum. Reasons for this could be economic risk-aversion, where an optimal
choice, in principle, is discarded in favour of a lower-risk one, or simply the
difficulty of raising investment capital, or overcoming regulatory constraints. On
the other hand, the presence of a local maximum could actually be (temporarily)
beneficial in some respects, where the airport waits for more investment or a
better future solution. Regardless of the characteristics of the profit landscape,
an important point is that the airport could be de-incentivised from investing in
capacity infrastructures because delay could be beneficial to it, to some extent.
Indeed, in this case, the profits for the airport are close to each other at the two
optima, but the gains for the passengers are quite different. Whereas the first
one corresponds to an average delay of approximately 8.7 minutes, the global
maximum reaches approximately 7.8 minutes, to be compared with the initial
value, of approximately 9.6 minutes. This is an issue that regulators could tackle
with the right incentive or performance scheme.

5. Conclusions, assumptions, and future work

5.1. Conclusions

In this article we have presented a simple model of an airport capturing the
trade-off between an increase in capacity and its associated costs. Indeed, an
airport operating close to its operational capacity is very likely to produce flight
delays. These delays represent a direct or indirect cost for the airlines, which
decreases the attractiveness of the airport as a business environment. This can
decrease traffic demand, which represents an indirect cost of congestion for the
airport. The balance between the operating cost of providing extra capacity
and the shortfall due to congestion leads to the presence of an optimal capacity.

A simple deterministic model based on several functional relationships has
been designed to capture this effect, and its magnitude, with the help of nu-
merous sources of data. Among them, taking into account the full distribution
of delay instead of the simple average, has proven very important to compute
exactly the cost of delay for the airlines.

We have also shown that the position of the optimal capacity depends on
several parameters. Among them, the average number of passengers per flight
and the predictability of the flights, are the most important. Indeed, the aver-
age number of passengers per flight is currently regarded as a relatively cheap
way of increasing the effective capacity of an airport, and it is important to
study to what extent this can continue in the future for different airports. Even
more important, unpredictability is supposed to decrease significantly in future,
thanks in particular to various technologies envisioned by SESAR. It is also
important to realise that an increase in predictability can produce, in principle,
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a sizeable decrease in the cost of delay for the airlines. Moreover, such an in-
crease in predictability may lead in fine to a degradation of punctuality, since
the average congestion will increase, as the airport is more attractive. Note,
however, that we do not explicitly model delay formation. Complex relation-
ships between average delay (punctuality) and its variance (unpredictability)
can arise in practice. A simple queuing model could, for example, be integrated
into the model to reflect this.

We also showed that the airport may unintentionally thwart an ultimate
key goal, considering that delay can increase the non-aeronautical revenues of
the airport — up to a certain point. This can decrease the incentive of the
airport to increase its capacity, trapping it into some intermediate state where
neither its revenues nor the passenger/airline satisfaction are maximal. This
could be tackled by the right incentive scheme. We are, however, unable to
draw conclusions regarding the presence of this effect in reality, due to the lack
of data.

5.2. Assumptions

The model we present in this article makes several simplifications and hy-
potheses. Concerning the airports, most do not have the simple objective of
maximising their profit. Indeed, there is a whole spectrum of airport gover-
nance in Europe, ranging from fully private (for which we could assume that
they are indeed profit maximisers) to fully public (where considerations other
than profit are taken into account). However, the model presented here does not
assume that the airport maximises profit. Since the model is able to compute
the profit in different situations, the information could be used in a wider cost-
benefit approach, e.g. balancing optimal capacity and additional local noise, or
the quality of service.

We use the important concept of ‘capacity’ for the airport. Usually, capacity
is viewed as a hard constraint which cannot be exceeded. We argue that this
vision is insufficient because, even if such a hard constraint exists, capacity has
different consequences far before this constraint becomes limiting. For instance,
it is clear that delays at an airport appear even before the declared capacity is
reached, and grow rapidly with the traffic close to this limit. As a consequence,
our view is that the capacity should rather be viewed as elastic. The conse-
quences of having finite capacity are many, but one of the most important is
the generation of departure (and arrival) delay at the airport.

As a consequence, we define airport capacity in the model as arising from a
purely phenomenological law between delay and traffic, computing its value with
a regression on the appropriate data. In particular, we do not use the declared
capacity of the airport, and we do not assume the source of the delay itself.
Indeed, it is known (Gilbo, 1993; Wan et al., 2015) that capacity can be broken
down into terminal and runway capacities, but we do not need this distinction
here since capacity is an emergent property of the airport performance data.
The exact relationship between delay and traffic can be very complicated. In the
model, average delay is associated with average traffic, using one-hour windows
for the averages. A first problem with this choice is that the intra-hour variance
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of departure times could play a significant role. This could be fixed by reducing
the time window, but at the risk of losing the more systemic effects whereby
flights have a broader impact on airport congestion. This leads to the second
issue, as there could be correlations between time windows if the latter are too
small. Massive congestion in the morning would have consequences into the
afternoon operations, for example. To capture this effect, one would need to
make a regression with lagged variables with more coefficients than capacity
alone, which is out of scope for the present article but planned for a future
study.

Related to capacity, we also need the model to have an estimation of the cost
thereof. Due to the heterogeneity of the situation of airports, it is difficult to
devise a general law. However, we argue that a linear law is our best estimate.
Indeed, it is known that some airports display economies of scale (Bottasso
and Conti, 2012; Main et al., 2003; Martin et al., 2011; Martin and Voltes-
Dorta, 2008), which means that their capacity should increase faster than their
cost. On the other hand, incrementing capacity at an airport is not always
easy, especially for large airports, and does not yield the same benefits as initial
increments. Indeed, having two runways, for instance, does not provide double
the capacity of one. As a consequence, we use a linear law in the model, the
coeflicients being estimated as explained in Section 3.2.

Another issue is that demand at airports changes over time, and cannot be
perfectly predicted. Airports have to consider medium- and long-term changes
in traffic — some of them easily predictable (e.g. seasons), others less predictable
(e.g. economic crises). In the model, we assume that a reliable forecast for de-
mand is available, and in practice one should use the best prediction of the
traffic for a given future in order to have the best estimate of the optimal capac-
ity. More importantly, it is easy to use the model in different traffic conditions,
compare the levels of profit, and make an informed decision on whether the
airport should expand its capacity or not. The uncertainties in the system (de-
mand, other costs) are easy to take into account too, and the model can simply
compute the profit and optimal capacity in different scenarios. The likelihood
of having a given scenario must be computed independently, and an estimation
of the expected profit/optimal capacity can thus be obtained. Regarding uncer-
tainties, no risk aversion is included in the model, since it is intended to be a
tool to assess the financial situation of airports, and not how they would react
to a given situation — which can be irrational to some extent, including some
degree of risk aversion.

We also consider that the aeronautical charges are fixed for the airport. This
is a simplification arising from the fact that airports may be very differently
regulated. Some of them are free to set these charges, but others have their
charges controlled by a regulator in a number of different ways, such as with a
price cap. As a consequence, we decided to keep them fixed. A more realistic
model would allow a double optimisation with regards to charges and capacity
for the most liberalised airports, which is also planned for future work.

Another simplification of the model is that the number of passengers per
aircraft is assumed to be constant. Some authors (Berster et al., 2013) have
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reported that the major airports in Europe seem to undergo a transition where
the average aircraft gets larger and accommodates more passengers, which is a
simple way (for the airport) to increase passenger throughput, but other authors
report otherwise (7). The change in the number of passengers per aircraft is
important, and is indeed reflected in the model by the parameter ny, which
can also be tuned to match various predictions. Moreover, we believe that the
heterogeneity of this number among aircraft has a small impact and that an
average value is sufficient at this stage.

5.3. Future work

This model should be seen as a first step towards a more detailed description
of the costs and benefits of enlarging the capacity at different airports, to serve
as a guide for different decision makers. In particular, the model should also
take into account the changes in the demand landscape since the construction of
a new runway, for instance, will be finished at a point in time where demand will
be different from the current situation. Provided that good demand forecasts
exist, they can be easily incorporated into the model, for example by adjusting
the parameter S to increase the overall demand, or by changing the daily pattern
during the calibration phase.

Further developments of the model are planned through the use of other
sources of data. In particular, it is important to take into account the reaction
of passengers to delay, since they are the ultimate consumers. A step in this
direction will be made by including a utility function for passengers linked to
their value of time. Another planned development is the use of better cost
functions for different types of airline. The data needed for this are highly
sensitive, but we have already made several advances in this direction. We also
plan to further our research into network effects and how the delay created at a
given airport propagates to others, thus decreasing the willingness of the latter
to improve its facilities.
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Appendix A. Correction for the cost of delay

In this appendix the last stage of the correction of the cost of delay function
as described in 3.2 is briefly discussed. For each one-hour time window, the
expected cost of delay is computed, taking into account the probability of a
given delay, based on European data. The results are shown in Figure 1, in the
form of 18 points for each value of the normalised variability, corresponding to
the 18 time windows considered within the model. Since each time window also
has a different value for the mean delay, the result is a functional relationship
between the expected cost of delay as a function of the mean delay. In order to
be usable within the model, where the mean delay is a continuous variable, a
suitable fitted function was sought. The aim here is to have a reasonably good
approximation of the individual points rather that a deep understanding of the
underlying mechanism behind the relationship.
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Figure A.8: Correction of the cost of delay function with quadratic fits.

Since the uncorrected cost of delay is a quadratic function, it is logical to
start with such a function. As shown in Figure A.8, the fit is quite good for
such a function. However, there are several crucial issues, the first one being
the overestimation of the correction for small deviations and high mean values.
As a consequence, for high mean delays, the cost for low variability eventually
gets larger than the costs associated with the higher value of the variabilities.
As a result, the cost of delay is not a monotonically decreasing function of
the variability of the departure time, which is a technical issue for the model
itself, and also for its interpretation. The second point is that the corrected
cost is not assured to be bigger than the uncorrected cost, as shown again by
the blue line. This does not make any sense in operational terms and thus
should not occur. The third point is that quadratic functions are problematic
in the far negative region of delays (not shown here), the cost will increase
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again at some point when the delay is sufficiently negative. This is obviously
problematic when trying to find a solution for the implicit equation of delay,
since the demand part is not monotonically decreasing anymore (see Appendix
B for more details). Finally, the simple quadratic function is not required to be
positive for all values of the mean delays. This is an issue since it is assumed, in
accordance with the literature and our experience, that negative delays (early
arrivals) do not typically represent a gain for the airlines. As a consequence,
a better function is sought which has all the required properties. Using the
uncorrected function as a baseline for the new function, we used:

f(z) = % (1 — tanh (%)) (c+def™) + % (1 + tanh (g)) ca(x),

where cq is the initial, uncorrected cost of delay function. This function allows
us to pass smoothly from the initial cost function at high mean delay down to a
new exponential function at low mean delay. The transition is made smoothly
thanks to a hyperbolic tangent. The results are shown in Figure 1.

Appendix B. Implicit equation of delay

One important feature of the model is that it is self-consistent for the delays,
i.e. the delays in the output are exactly the right level to match the actual traffic,
which in turn sets the average delay through the delay-capacity relationship. In
other words, setting a distribution of delays fixes the actual traffic through the
use of probability P4, which in turn fixes the delay at each hour of the day
through the capacity-delay relationship. In order to solve this circular issue, an
implicit equation needs to be solved. From Equation 3 we have:

— 2
Pa(ot) = ——MM—— B.1
A( ) 1+6Cd(5t)/s ( )
and inverting Equation 1, knowing that T = P(, yields:
— C ot
Pa(dt)==In | — . B.2
4 (0) ﬂn(mo—i-cc) (B.2)

The implicit equation is solved when both expressions are equal. This equation
does not have an analytical solution, but is trivial to solve numerically. Indeed,
the term in Equation B.1 is monotonically decreasing, whereas the term in
Equation B.2 is strictly monotonically increasing and spans (—oo, +00). More-
over, both functions are continuous. As a consequence, there is always a unique
solution to the implicit equation, and a simple, local and scalar minimiser can
find it in a very small amount of time, for example using the Brent method.

It is interesting to realise that these two equations can be reinterpreted in
terms of demand and supply curves. Indeed, equation B.1 is the equivalent of a
demand function, with 6t playing the role of the price, and equation B.2 is the
equivalent of a supply function. The ‘goods’ exchanged can be thought as the
number of flights departing from the airport. Figure B.9 shows the two curves.
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Figure B.9: Illustration resolution of the implicit equation of delay.

Their intersection represents the actual delay and traffic, which is equivalent to
the price and quantity of commodities actually exchanged when dealing with
standard demand and supply curves.

When the problem is framed like this, some features of the model can be
easily understood. For instance, the increase of the cost of delay in the demand
equation drives the corresponding curve down. Conversely, when the cost of
delay decreases for instance because the predictability of the departure times is
higher, the demand curve is driven up. A direct consequence is that the new
equilibrium point is shifted right and up on the graphic. As a consequence, the
number of flights departing increases (equilibrium ordinate is higher) and the
average delay increases also (equilibrium abscissa is more to the right). This
shows that there exists a trade-off between the predictability and the punctuality
(average delay), as explained in Section 4.3.

Appendix C. Comparison between airports

The comparison between the airports shown in Figure 6 shows that different
airports have different levels of profitable marginal costs of capacity. It is also
interesting to study whether with respect to their size, airports have different
profitable levels of a. Figure C.10 shows the ratio of the profitable level of
a divided by the total volume of costs against the total number of passengers
at the airport. Now the picture is quite different from Figure 6, because this
normalised profitable level is independent of the size of the airport. This is an
important finding, because it means that larger airports are not advantaged or
disadvantaged with respect to their size, but they can sustain higher capacity
levels purely because they already have larger infrastructure and high costs.
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Figure C.10: Profitable level of marginal cost of capacity as a function of the number of
passengers at the airport.

It should also be noted that whereas the size of the airport does not matter in
this sense, the airports still have quite different normalised levels of profitability,
from around 0.5% up to 3%. This could denote different management and cost
efficiency levels.

Appendix D. Sensitivity analysis

In this appendix, the results of a sensitivity analysis performed on a cali-
brated example of a large, European hub airport are concisely shown. Since
there is only one free parameter left in the model, it is simply swept to see how
the calibrated parameters change. In Figure D.11, the evolution of the average
delay in the output and the revenues of the airlines (in fact, only the cost of
delay, counted negatively) are shown. These two outputs are those of interest,
all others being fixed (e.g. the revenues per passenger) or trivially related to
them. Both quantities change with the smoothness, but not remarkably. For
example, delay changes from around 9 minutes per flight up to 11.7 minutes,
which is a fairly narrow window, although not negligible. It is worth noting
that the actual value of the delay for the calibrated airport is 9.6 minutes in
the data, which means in fact that this last parameter could be calibrated to
fit the average delay. This was not done for technical reasons, but in the main
analysis s = 500 was chosen, which gives a delay close to 9.5 minutes. It can
thus be concluded that the results presented in the main text are sufficiently
reliable with regard to the parameters.
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Figure D.11: Evolution of the average delay (left) and revenues of airlines (right) in the
calibrated model for various values of the smoothness parameter s.
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