
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Towards Secure Cloud Orchestration for Multi-Cloud 

Deployments

Paladi, N., Michalas, A. and Dang, H.

 

This is an electronic version of a paper presented at the 5th Workshop on CrossCloud 

Infrastructures & Platforms, Porto, Portugal, 23 to 26 April 2018.

© Paladi, N., Michalas, A. and Dang, H. | ACM 2018. This is the author's version of the 

work. It is posted here for your personal use. Not for redistribution. The definitive Version 

of Record will be published in the Proceedings of The 5th Workshop on CrossCloud 

Infrastructures & Platforms. Porto, Portugal 23 to end of 26 Apr 2018, ACM.

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161103943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


Towards Secure Cloud Orchestration
for Multi-Cloud Deployments

Nicolae Paladi
RISE SICS

nicolae.paladi@ri.se

Antonis Michalas
Tampere University of Technology

antonios.michalas@tut.fi

Hai-Van Dang
University of Westminster

H.Dang@westminster.ac.uk

Abstract
Cloud orchestration frameworks are commonly used to de-
ploy and operate cloud infrastructure. Their role spans both
vertically (deployment on infrastructure, platform, applica-
tion and microservice levels) and horizontally (deployments
from many distinct cloud resource providers). However, de-
spite the central role of orchestration, the popular orchestra-
tion frameworks lack mechanisms to provide security guar-
antees for cloud operators. In this work, we analyze the secu-
rity landscape of cloud orchestration frameworks for multi-
cloud infrastructure. We identify a set of attack scenarios,
define security enforcement enablers and propose an archi-
tecture for a security-enabled cloud orchestration framework
for multi-cloud application deployments.

Categories and Subject Descriptors Security and privacy
[Systems security]: Distributed systems security

Keywords Orchestration, cloud infrastructure, microser-
vices, virtualization, security.

1. Introduction
Cloud infrastructure deployments became larger and more
elaborate in the two decades since the cloud-computing
paradigm emerged. The growth in the number of inter-
communicating components, variety of supported applica-
tion programming interfaces (APIs), and additional mech-
anisms to enable flexible scalability and computation ef-
ficiency led to a remarkable increase in complexity. As a
result, cloud orchestration became essential at all stages of
the cloud infrastructure lifecycle.

The role of cloud administrators gradually shifted from
manually deploying, configuring and monitoring cloud in-

[Copyright notice will appear here once ’preprint’ option is removed.]

frastructure components to configuring orchestrator frame-
works (or simply, orchestrators) and deployment templates.
This includes writing configuration policies that describe
what the orchestrator should do to realize the cloud infras-
tructure, or expressing high-level imperative intents describ-
ing how the infrastructure should look like and leaving the
implementation details to the orchestrator. Beyond deploy-
ment functionality, modern orchestrator systems also include
monitoring, load balancing and continuous workload de-
ployment functions, supporting the cloud infrastructure life-
cycle. Automated orchestrators allow to maintain a stable,
continuous, and highly available set of cloud services with
minimal or no human interference, based solely on configu-
ration policies or intents.

While cloud operators leverage orchestration capabilities
to set up and operate cloud infrastructure, adversaries can
leverage misconfigured or maliciously modified orchestra-
tors, as well as forged configuration policies and intents, to
conduct attacks on cloud infrastructure. For example, ad-
versaries can exploit orchestrator vulnerabilities to disrupt
the generation of credentials provisioned to virtual machine
(VM) instances; insert backdoors in VM images to automate
the deployment of maliciously modified VM instances; or
take control over the placement policy of virtual resources,
either to benefit a service provider (in case of federated de-
ployments) or deploy virtual components on hardware re-
sources with compromised physical security.

We aim to outline a security architecture for cloud or-
chestrators, that addresses the current attack vectors in cloud
infrastructure deployment. The proposed security architec-
ture aims primarily to address the attack vectors in existing
orchestrators; however, it is extendable to make use of the re-
cent evolution in the field of micro-services, trusted comput-
ing and lightweight virtualization. In particular, with regard
to lightweight virtualization, the emerging unikernels [14]
may present a more secure alternative to container-based
(hypervisor-free) approaches, as application developers have
explicit control over core security areas. Finally, logical cen-
tralization of orchestrator systems is another important as-
pect at the crossroads between functional and security archi-
tectures: decentralized orchestration needs careful consider-
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ation with regard to discovery, synchronization, coordination
and security aspects of cloud application agents.

To prevent malicious actions in increasingly automated
and autonomous cloud deployments, cloud orchestrators
must include built-in mechanisms to validate inputs and
component behavior against predefined security policies,
verify the integrity of deployed software and take correc-
tive measures in case of deviations. However, while popular
orchestrator systems include some security features, none of
them implements cloud orchestration with a comprehensive
set of security mechanisms.

We address this by proposing a security architecture for
federated infrastructure orchestration. We base the security
architecture on Occopus, a multi-cloud orchestrator to de-
ploy and manage complex infrastructures [11]. We further
extend the cloud orchestrator security architecture to the ap-
plication level, based on MiCADO, a microservice-based
cloud application-level dynamic orchestrator [10].

1.1 Contribution
The contribution of this paper is twofold. First, we address a
gap in existing literature by analyzing the security landscape
of cloud orchestration. Based on an extensive security review
of current orchestration approaches, we outline the potential
risks that must be considered when designing cloud orches-
trators. We use the analysis of existing security issues and
identified risks to define a threat model specifically address-
ing the requirements of cloud orchestrators. Based on the
identified risks and on the introduced threat model, we de-
scribe a set of security and privacy-preserving mechanisms
for cloud orchestrators and an initial security architecture.

1.2 Organization
The remainder of this paper is organized as follows. We
review related work in Section 2, discuss two main cloud
orchestration paradigms in Section 3 and introduce the threat
model in Section 4. Next, we present and motivate a set of
orchestration security enablers in Section 5. In Section 6
we propose an orchestration security architecture using the
security enablers. We conclude in Section 7.

2. Related Work
Security of cloud orchestration and cloud bursting was inves-
tigated earlier, as multi-cloud deployments became increas-
ingly popular. Nair et al. [16] identified a set of security con-
cerns for orchestration in multi-cloud deployments. These
include data privacy, confidentiality and integrity; security
integration with existing infrastructure; and platform vulner-
abilities. Although the concerns are relevant for the available
cloud orchestrators, the analysis does not describe a suitable
threat model and does not outline any solutions. We comple-
ment this work by extending the security risks with a set of
attack scenarios and respective security enablers.

Pawar et al. [21] present a trustworthiness assessment
framework for a multi-cloud orchestration and and broker

system. The assessment uses an empirical approach and as-
sesses compliance with service level agreement parameters,
service provider satisfaction ratings, and service provider be-
haviour. However, the framework does not include security
guarantees on either service provider or resource component
level. We address this gap through several cloud orchestra-
tion security enablers performing virtualization platform at-
testation and virtual image container verification.

Weerasiri et al. [24] lists security as one of the cross-
cutting concerns in cloud orchestration implementations,
along with service level agreements and negotiations, porta-
bility, interoperability, standardization, resource demand
profiling, resource pricing, profit maximizing and other run-
time issues. The study, found that such cross-cutting con-
cerns are addressed both by research initiatives, and to a
larger extent by proprietary orchestration products, such
as: Amazon Web Service OpsWorks, CFEngine, Docker,
Heroku, Juju, Puppet, and VMWare vSphere.

3. Orchestration Models
We first review the role and purpose of cloud orchestra-
tion, and analyze the two major models of cloud orches-
tration. In complex systems such as clouds and software-
defined network (SDN) deployments, system administrators
use orchestrators to dynamically deploy services. Orchestra-
tors are logically centralized entities that manage and coor-
dinate the lifecycles of components constituting the service.
For services within one administrative domain, one orches-
trator may be responsible for the end-to-end service setup.

Cloud orchestration is used when monolithic legacy
applications ported to cloud platforms are replaced by
microservice-based dynamic applications. Legacy applica-
tions use fixed layering and inter-layer invocation through
well-defined layer-specific interfaces. Likewise, they are tied
to infrastructure resources, such that the same entity owns
service features, functionality and physical resources.

In contrast, dynamic applications are built from micro-
services providing a small number of primitive features.
They use recursion rather than layering, and functionality is
accessed using generic service interfaces reused throughout
all layers of the stack. Furthermore, features are decoupled
from resources: owners of the features and functionality may
be different from the owners of the physical infrastructure.
The orchestrator can decide at each step in the decomposi-
tion process whether to manage a component itself, or hand
off responsibility for that component to a different orchestra-
tor in a different domain, that may in turn use recursive de-
composition to deploy that component on its own resources.

The distinction above leads to two types of orchestra-
tors: imperative orchestrators and declarative orchestra-
tors [5, 13]. Imperative orchestrators focus on the deploy-
ment approach and expect detailed input about the proce-
dure of deploying services and prescribing the exact set of
actions the orchestrator must take. Automation techniques
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Table 1. Impact of the orchestration paradigm on orchestrator architecture.

Declarative Architectures Imperative Architectures
Organizing construct: recursive decomposition Organizing construct: static layering
Arbitrary number of levels of recursion Fixed number of layers
Flexible resource layer: resources accessed as services, and
services exposed as resources (no architectural distinction)

Inflexible resources layer: distinction between resource
layer and services layer is baked into the architecture

Identical orchestration functionality at each recursion level Layer-specific orchestration functionality
Interface paradigm based on negotiation (request/response)
and delegation

Interface paradigm based on management (higher layers
control lower layers)

Interface implementations in a Domain-Specific Language Interface implementations based on APIs
Identical Domain-Specific Language on all recursion levels Layer-specific APIs
Federation built-in: North-south and east-west interfaces
are the same

Federation must be added-on: North-south and east-west
interfaces are different

such as “infrastructure as code” are an example of this ap-
proach. Declarative orchestrators focus on the intended in-
frastructure and expect a description of the end-goal of the
envisioned service deployment, delegating the interpreta-
tion and implementation up to the orchestrator [13]. Table 1,
summarizes the comparison between declarative and imper-
ative orchestrators. While imperative orchestrators are still
relevant for porting legacy applications to cloud infrastruc-
ture, the recent introduction of serverless computing [1, 9]
emphasizes the shift towards declarative orchestrators. We
address both models, specifically in Section 4, where we
outline the threat model considerations for orchestrators.

4. Threat Model
The shift from legacy applications to dynamic applications
(both deployed on cloud infrastructure) introduces new se-
curity challenges. These include key provisioning, dynamic
integrity verification of hosts and system components, as
well as integrity (and potentially confidentiality) protection
of system configuration data. Furthermore, cloud tenants that
own and operate dynamic cloud applications require verifi-
able guarantees that the infrastructure is deployed according
to the specified templates or intents.

We next describe the security threats towards cloud or-
chestrators. We aim to present a generic overview of the
threat model for cloud orchestration; this threat model will
be later used to define the orchestrator security architecture.

4.1 Threat Model Assumptions
We base the threat model for cloud orchestration on related
models defined in [17, 18, 20]. We first outline the assump-
tions underpinning the orchestration threat model.

Hardware Integrity Media revelations highlighted the is-
sue of hardware tampering en route to deployment sites [8].
We assume that cloud providers take necessary technical and
non-technical measures to prevent such hardware tampering.

Physical Security We assume physical security of the
data centers where the Infrastructure-as-a-Service (IaaS)

resources are deployed. The assumption applies both for
provider-managed resources as well as third-party datacenter
capacity, since physical security can be observed, enforced
and verified through known best practices.

Low-Level Software Stack We assume that at installation
time, IaaS providers reliably record integrity measurements
of the low-level software stack: the core root of trust for
measurement; BIOS and host extensions; host platform con-
figuration; option ROM code, configuration and data; ini-
tial platform loader code and configuration; state transitions
and wake events, and a minimal hypervisor. We assume the
record is kept on protected storage with read-only access and
the adversary cannot tamper with it.

Cryptographic Security We assume encryption schemes
are semantically secure and the adversary cannot obtain the
plain text of encrypted messages. We also assume the signa-
ture scheme is unforgeable, i.e. the adversary cannot forge
the signature of the tenant and that the message authenti-
cation code (MAC) algorithm correctly verifies message in-
tegrity and authenticity. We assume that the adversary, with
a high probability, cannot predict the output of a pseudoran-
dom function.

Availability We explicitly exclude denial-of-service (DoS)
attacks [15] that aim to disrupt service availability of the in-
frastructure deployed by the orchestrator platform. DoS can
be caused by a wide variety of approaches and is especially
difficult to prevent in distributed environments relying on
components in different administrative and trust domains.

4.2 Adversary Capabilities
The remote adversary can intercept, drop, inject or otherwise
interfere with all network communication.

Network Infrastructure The adversary has physical and
administrative control of the network. The adversary is in
full control of the network configuration, can overhear, cre-
ate, replay and destroy all messages communicated between
the tenant and their resources (VMs, virtual routers, storage
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abstraction components) and may attempt to gain access to
other domains or learn confidential information.

4.3 High Level Attacks
We next describe a set of high-level attacks that the adver-
sary can launch by exploiting vulnerabilities in cloud orches-
tration platforms. The set of high-level attacks is based on
earlier research [18, 20] and review articles [3, 7, 22, 24].

VM Substitution Attack The adversary induces the or-
chestrator to launch a VM instance that contains hidden vul-
nerabilities, using a maliciously modified VM image instead
of the tenant-selected image. In case of success, the adver-
sary can extract sensitive information from the VM instance
or monitor the activity of the tenant in the VM instance.

Host Substitution Attack The adversary induces the or-
chestrator to ignore placement policies regarding host selec-
tion, to instantiate the VM on a compromised or vulnerable
virtualization host. In case success, the adversary can extract
sensitive information from the VM instance or monitor the
tenant’s activity in the instance.

Storage Host Substitution Attack The adversary induces
the orchestrator to ignore data storage placement policies, to
attach data storage with exploitable vulnerabilities. In case
of success, the adversary can extract sensitive information
from the stored data.

Resource Parasite Attack The adversary induces the or-
chestrator to modify the infrastructure configuration re-
quested by the tenant. In case of success, the adversary can
execute hidden parasite processes (such as e.g. crypto cur-
rency mining) on the tenant infrastructure [23].

Placement Bias Attack The adversary induces the orches-
trator to ignore placement policies in federated cloud de-
ployments to favour a deployment target. In case of success,
the adversary can increase the utilization and implicitly the
profit of a chosen infrastructure service provider.

5. Orchestration Security Enablers
We next introduce a set of security enablers for secure multi-
cloud orchestrators.

Crypto Engine The Crypto Engine implements a set of
cryptographic algorithms and can be deployed as a separate
microservice that supports the following functionality:

• Computing cryptographic hash functions;
• Computing MACs, i.e. Message Authentication Code;
• Key generator;
• Nonce generator.

Credential Manager The Credential Manager (CM) stores
the credentials of entities that can access the cloud orches-
tration service. The CM can receive requests from any entity
and is responsible for realizing the corresponding credential

in a secure and privacy-preserving way. Furthermore, all cre-
dentials managed by the CM are stored such that the CM can
only verify their validity, without revealing any other infor-
mation about the content of the credential.

Firewall Service This service updates the firewall rules of
the virtual containers instantiated by the orchestrator accord-
ing to the security policies defined from user intents or topol-
ogy descriptions.

PKI Manager The PKI Manager is responsible for issu-
ing and revoking credentials based on a typical challenge-
response protocol between the requestor and the issuer.

Attestation Service While hypervisors (or operating sys-
tems) enable isolation of virtual execution environments,
this is insufficient to establish a trust relationship with
the target computing resource, since tenants cannot know
whether they are communicating with the intended software
or a maliciously modified instance. We use remote attes-
tation to address this gap in cloud orchestration security.
Attestation of a target is perfomed by an appraiser, an en-
tity - generally a computer or a network - making a decision
about one or more other cloud resources, known as targets.
A target is a party (for example a computer system) about
which an appraiser needs to make such a decision [6]. Com-
munication between an appraiser and a target is conducted
through an attestation protocol, as defined in [6].

Image Integrity Verifier Corrupted image files are a sub-
stantial threat for cloud environments. Image integrity func-
tionality allows the orchestrator to verify the integrity of
virtual container image files. We adopt a broad defini-
tion of virtual containers, that includes virtual machines,
lightweight virtualization containers and unikernels but ex-
cludes stateless functions [1, 9], that rely on process isolation
only.

Image Delta Verifier This functionality of the attestation
service identifies configuration differences between image
files. Concrete implementations include verifying differ-
ences between VM images [2] or lightweight virtualization
containers [12].

6. Orchestration Security Architecture
We next review the proposed security architecture and de-
scribe the interaction of the main components (see Figure 1).
We propose a security architecture for orchestrator frame-
works under development, such as [10, 11]. However, it can
also be adapted to legacy cloud orchestrators.Furthermore,
it is important to meniton that in this paper we only focus
on security components. For a concrete description of the
core components in an orchestrator framework, we refer the
interested readers to [10].

6.1 Secure Component Deployment
We aim to enable remote system administrators to securely
deploy cloud applications and obtain security guarantees
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Figure 1. Security Architecture. Security Components in light grey.

about the underlying computing infrastructure. We assume
that the underlying master nodes of the platform have been
already launched and operating. During infrastructure de-
ployment, the PKI manager publishes the public keys of ar-
chitecture components. The public keys are generated by the
Crypto Engine, according to administrator-defined security
policies defining key length, algorithm selection and entropy
requirements. System administrators describe their orches-
tration intents in policy files, using a domain-specific lan-
guage, such as the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [4].

To deploy an application, users first generate a template
describing the topology and the security policies of the appli-
cation. The template file is next sent over a secure commu-
nication channel to the orchestrator submitter, and protected
with the public key of the orchestrator submitter. Upon re-
ception, the orchestrator submitter extracts the contained se-
curity policies along with the application information and
VM configuration of worker nodes, included by the user. The
orchestrator submitter parses the user template and submits
security policy data and access credentials to the Security
Policy Manager - a component that defines and implements
security policies. Upon reception of the message, the Secu-
rity Policy Manager validates the received security policies
(i.e. that the received policies are subset of a predefined se-
curity policies set). If policy validation is successful, the Se-
curity Policy Manager uses the access credentials and other
relevant information (e.g. the image identifier of the virtual
container where the application will be hosted) to enforce the
user-defined security policies. These include firewall settings
(implemented by the Firewall Service), as well as policies
regarding the use of other security enablers (crypto engine,
credential manager, attestation service). The security archi-
tecture parallels the orchestrator architecture, which extracts
functional information from the TOSCA templates to deploy
the cloud infrastructure, set up the network communication
topology and the intended applications.

6.2 Component Interaction
The Security Policy Manager invokes security enablers and
interacts with orchestration components, as follows.

Prior to application deployment, the Security Policy Man-
ager validates the virtual container. Thus the Security Pol-
icy Manager verifies the integrity of the virtual container
image before the virtual container is launched, by invok-
ing a function of the Attestation Service described in Sec-
tion 5. Once the virtual container is validated, the Security
Policy Manager authenticates the user to the cloud service
provider and instantiates the virtual container from the im-
age. This enables the VM orchestrator to uses user-supplied
cloud credentials to authenticate to the available cloud ser-
vice providers and subsequently generate or delete VMs on
remote resources. Meanwhile, the virtual container manager
generates, deletes or migrates virtual containers based on
resource consumption of the running application. Prior to
launching the application, the system administrator can re-
quest to attest the integrity of the software executing on the
host, using the attestation authority described in Section 5.
This provides the user with security guarantees about the
trusted state of the entire host. The underlying protocol for
the remote attestation is based on previous work [19, 20].

6.3 Discussion
In the proposed security architecture, we focus on the sep-
aration between the security and the core components in an
orchestrator architecture. This provides more flexibility in
extending security features in an existing orchestrator sys-
tem. Apart from that, in orchestrator frameworks, multi-
cloud deployment relies on the worker node manager com-
ponent which supports various platforms. Furthermore, most
of the provided security features are at machine and/or con-
tainer level. Thus, the implementation during the develop-
ment phase can be really simplified. The only exception is
the attestation service, where the Security Policy Manager
needs to deal with a multi-cloud deployment.

7. Conclusion
In this paper, we reviewed the security landscape of cloud
orchestration and address the current knowledge gap in re-
lated literature. This paper, describes the building blocks of
a cloud orchestrator for federated cloud deployments with
support for security enablers. In this study, we analysed the
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security of current orchestrators and described a set of rele-
vant security risks. We defined a threat model, outlined the
security assumptions and described the actual attack surface.
Based on the security analysis, we proposed a set of security
and privacy-preserving enablers for cloud orchestraors for
federated cloud deployments. Finally, we proposed a secu-
rity architecture that has the potential to enhance the secu-
rity of cloud orchestration. In upcoming work, we intend to
extend the MiCADO open-source orchestration framework
by adding security enablers identified in this work.
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