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Abstract—This paper presents an example application of digital 
alias-free signal processing, where a sequence of irregularly 
spaced, yet uniformly gridded, samples of a bandlimited 
discrete-time signal is filtered by using an oversampled finite 
impulse response filter. The mathematical model of the 
proposed filter is introduced, and a new interpolation formula 
for calculating the convolution operation of the filter, based on 
nonuniform sampling, is derived. In addition, uniform grid 
versions of Total Random, Stratified and Antithetical Stratified 
random sampling techniques are demonstrated. We carry out 
numerical comparison between these techniques and the 
proposed one in terms of Fourier transform estimates of the 
filtered output signal. The proposed interpolation technique 
shows enhancements over other sampling techniques after 
certain number of sampling points. Furthermore, it has a faster 
uniform convergence rate of the normalized root mean squared 
error than other techniques. 

Keywords-digital alias-free signal processing; random 
sampling; FIR filter; nonuniform interpolation 

I.  INTRODUCTION 
Continuous-time signals are either uniformly or 

nonuniformly sampled in order to be converted to digital form. 
In uniform sampling, signal amplitude is acquired at evenly 
spaced time instants. Whereas, irregular time samples are used 
in nonuniform sampling (NUS), which can be a result of 
intentional or unintentional reasons. Sometimes, we have no 
control over the time presence of a signal, and so, it can’t be 
sampled regularly. Examples of such unintentional NUS are 
found in astronomy, medicine, wireless communications and 
hardware manufacturing imperfections [1]-[3]. However, we 
may deliberately sample signals nonuniformly, for example, 
to circumvent aliasing problems in conventional digital signal 
processing (DSP), to compress data and save memory or just 
to reduce computational cost. Applications include IT and 
computer networks, signal processing, filter design, Fourier 
transform (FT), wideband spectrum sensing and compressed 
sensing, cognitive radio and radar [4]-[6]. 

The notion of NUS of deterministic continuous-time 
signals to avoid aliasing has been addressed by some 
researchers in the last century [7]-[9]. But, conventionally, it 
was coined by Shapiro and Silverman [10] who showed that 
alias-free sampling could be performed with sampling 
frequency less than the Nyquist rate, 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁. Bilinskis 
introduced in [11] digital alias-free signal processing (DASP), 
where new techniques, methods and algorithms were 

proposed in attempts to overcome the aliasing problem, or at 
least decrease its harmful effects, in conventional DSP.  

Tarczynski and Najib have discussed in [12] the use of 
NUS to estimate the FT of irregularly sampled signals. Having 
introduced the total random (ToRa) sampling technique, they 
proved that the uniform convergence rate of 1/𝑁𝑁𝑟𝑟 can be 
achieved using ToRa, where 𝑁𝑁𝑟𝑟 denotes the number of 
random sampling points. Another technique to estimate the 
FT, named stratified sampling (StSa), was presented by Masry 
[13], where the observation period is divided into strata (time 
slots), and one sample is taken randomly per each stratum. In 
StSa, reduced estimation errors have been achieved. Later in 
2009, He published another paper [14] in which the 
antithetical stratified (AnSt) random sampling technique was 
used to estimate the FT. The new stratum in AnSt is designed 
to include two sampling points: the first one is taken randomly 
within the stratum (exactly as in StSa), while the other one is 
a mirror reflection of the first point with regards to the centre 
of the stratum. Improved results were achieved, but only if the 
signal being sampled has a continuous second order derivative 
and is monotonically smooth.  

The above-mentioned techniques depend on the simple 
Rectangle rule to estimate the FT. Eventually, estimating a 
particular FT component means calculating the area under the 
curve of the product of signal NUS points and their associated 
complex exponentials. So, we propose a new nonuniform 
interpolation technique, CS3NS, based on Lagrange second-
order polynomial [15], to estimate both the output of the 
convolution operation of a finite impulse response (FIR) filter 
and the FT of the filtered output signal. All estimated FTs are 
then compared to the FT of a reference signal. 

NUS-based asynchronous filtering was discussed in [16]-
[17], where level-crossing approach was used as the random 
sampling technique, but this is out of the scope of this paper. 

The rest of the paper comprises four sections: uniform grid 
filter model, mathematical formulation of the convolution, the 
proposed CS3NS interpolation rule and numerical results. A 
conclusion is also provided at the end of the paper. 

II. UNIFORM GRID FILTER MODEL 
There are some challenges in randomized signal 

processing with regards to time synchronization. For example, 
doing mathematical operations between time-based random 
variables, or random and non-random variables, is very 
difficult since they are often not accurately aligned. Doing so 
could lead to large estimation errors or even incorrect results. 



To overcome this challenge, and for the sake of potential 
practical implementation of our research, we assume that the 
samples of the input signal are taken “randomly” from 
otherwise uniformly oversampled grid-based signal. This is 
why we are going to build a bandpass FIR filter model using 
dense and equally spaced impulse response samples, so that 
there will always be an exact time-match between signal 
samples and filter samples. Therefore, the impulse response of 
the proposed FIR filter is uniformly oversampled with 
frequency 𝐹𝐹𝑠𝑠 ≫ 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁, and has a grid time step of 𝑇𝑇𝑠𝑠 = 1 𝐹𝐹𝑠𝑠⁄ . 
This means signal samples are also integer-multiples of 𝑇𝑇𝑠𝑠, as 
shown in Fig. 1. Choosing 𝐹𝐹𝑠𝑠 depends on the resources 
available to a given application. However, the higher the 
sampling rate the more accurate the output results. Moreover, 
we assume that the proposed filter model will be stored offline 
as a lookup table in the memory buffer of an application 
hardware [16]. This will reduce the computational cost of 
filtering as no real-time interpolation is to be used.   

 
Fig. 1. Uniformly oversampled filter impulse response, ℎ(𝑖𝑖𝑇𝑇𝑠𝑠), timely 
synced with nonuniformly sampled grid-based input signal 𝑥𝑥(𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠). 

III. MATHEMATICAL FORMULATION 

A. Convolution of the Input Signal 
We are considering an input continuous-time signal 𝑥𝑥(𝑡𝑡) 

that is densely and uniformly sampled in the time interval 
[0,𝑇𝑇], to produce the discrete-time version 𝑥𝑥𝑢𝑢(𝑘𝑘𝑇𝑇𝑠𝑠). A 
reference signal, 𝑦𝑦𝑢𝑢(𝑖𝑖𝑇𝑇𝑠𝑠), is defined as the FIR filtered output 
signal of 𝑥𝑥𝑢𝑢(𝑘𝑘𝑇𝑇𝑠𝑠), where both 𝑘𝑘 and 𝑖𝑖 are integers, and 𝑁𝑁𝑢𝑢 =
𝑇𝑇/𝑇𝑇𝑇𝑇, is the total number of uniform samples: 

𝑦𝑦𝑢𝑢(𝑖𝑖𝑇𝑇𝑠𝑠) = 𝑇𝑇𝑠𝑠 ∑ 𝑥𝑥𝑢𝑢(𝑘𝑘𝑇𝑇𝑠𝑠) ℎ(𝑖𝑖𝑇𝑇𝑠𝑠 − 𝑘𝑘𝑇𝑇𝑠𝑠)𝑁𝑁𝑢𝑢−1
𝑘𝑘=0 . (1) 

Our aim is to filter discrete-time nonuniformly sampled grid-
based versions of 𝑥𝑥(𝑡𝑡) with the proposed FIR filter above, and 
compare the FTs of the filtered output signals with that of 
𝑦𝑦𝑢𝑢(𝑖𝑖𝑇𝑇𝑠𝑠). Note that 𝑦𝑦𝑢𝑢(𝑖𝑖𝑇𝑇𝑠𝑠) is just the discrete form of the 
windowed convolution signal 𝑦𝑦𝑇𝑇(𝑡𝑡),  

𝑦𝑦𝑇𝑇(𝑡𝑡) = ∫ 𝑥𝑥(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏𝑇𝑇
0 . (2) 

Fig. 2 shows an example of how those nonuniformly 
sampled versions of 𝑥𝑥(𝑡𝑡) are taken. More specifically, it 
introduces modified versions of ToRa, StSa and AnSt, where 
the sample time instants are accurately aligned with specific 
points on the uniform grid. The grid time instants are 
interpreted at 𝑡𝑡𝑖𝑖 = 𝑖𝑖𝑇𝑇𝑠𝑠, 𝑖𝑖 = 0, 1, 2, … ,𝑁𝑁𝑢𝑢. Whereas the signal 
NUS points themselves occur at time instants 𝑡𝑡𝑘𝑘 = 𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠, with   

 
Fig. 2. Four-sample example of modified ToRa, StSa and AnSt random 
sampling techniques, where each signal sample exactly matches one of the 
uniform time grid instants. 

𝑘𝑘 = 0, 1, 2, … ,  𝑁𝑁𝑟𝑟 − 1, and 𝑁𝑁𝑟𝑟 is the number of random 
sampling points. Note that the arbitrary integers 𝑛𝑛𝑘𝑘 ∈ {0,𝑁𝑁𝑢𝑢}, 
and they depend on the selected random sampling technique. 

B. Filter Convolution Based on Simple Rectangle Rule 
For modified ToRa random sampling scheme and [0,𝑇𝑇] 
observation time window, we are considering a total of  𝑁𝑁𝑟𝑟  
i.i.d. arbitrary samples of a grid-based discrete-time input 
signal 𝑥𝑥𝛥𝛥(𝑡𝑡𝑘𝑘). The probability density function (PDF) of 𝑡𝑡𝑘𝑘 is 
𝑝𝑝𝑡𝑡𝑘𝑘(𝑡𝑡𝑘𝑘) = 1 𝑁𝑁𝑟𝑟⁄  for 𝑡𝑡𝑘𝑘 ∈ {0, 1 𝑇𝑇𝑠𝑠⁄ , 2 𝑇𝑇𝑠𝑠⁄ , … ,𝑇𝑇} and zero 
elsewhere. So, the nonuniform filtered output discrete-time 
signal, 𝑦𝑦𝛥𝛥�𝑡𝑡𝑗𝑗�, using the dense uniform grid filter, ℎ(𝑖𝑖𝑇𝑇𝑠𝑠), is  

𝑦𝑦𝛥𝛥�𝑡𝑡𝑗𝑗� = ∑ 𝑥𝑥𝛥𝛥(𝑡𝑡𝑘𝑘) ℎ�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑘𝑘� 𝛥𝛥𝑡𝑡𝑘𝑘
𝑁𝑁𝑟𝑟−1
𝑘𝑘=0 , (3) 

where 𝑡𝑡𝑗𝑗 are unequally spaced time instants, but they are also 
integer multiples of 𝑇𝑇𝑠𝑠, i.e. 𝑡𝑡𝑗𝑗 = 𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠. Moreover, 𝛥𝛥𝑡𝑡𝑘𝑘 is the 
time difference between two consecutive samples, and so, 
𝛥𝛥𝑡𝑡𝑘𝑘 = 𝑛𝑛𝑘𝑘+1𝑇𝑇𝑠𝑠 − 𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑠𝑠𝛥𝛥𝑛𝑛𝑘𝑘, where 𝛥𝛥𝑛𝑛𝑘𝑘 = 𝑛𝑛𝑘𝑘+1 − 𝑛𝑛𝑘𝑘. So 

𝑦𝑦𝛥𝛥�𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠� = ∑ 𝑥𝑥𝛥𝛥(𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠) ℎ(𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠 − 𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠) 𝛥𝛥𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠
𝑁𝑁𝑟𝑟−1
𝑘𝑘=0 . (4) 

Note that 𝛥𝛥𝑛𝑛𝑘𝑘 has the same PDF as 𝑡𝑡𝑘𝑘, i.e. 1 𝑁𝑁𝑟𝑟⁄ . Hence, 
the summand in (4) is a product of  𝑁𝑁𝑟𝑟 components that all are 
random variables and have the same PDF. Therefore, the 
expected value of the estimator in (4) can be calculated by 
adding up the individual expected values of all components of 
the summation. For each component, we have 
𝐸𝐸�𝑦𝑦𝛥𝛥𝑐𝑐�𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠�� = 𝐸𝐸�𝑥𝑥𝛥𝛥(𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠) ℎ(𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠 − 𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠) 𝛥𝛥𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠� (5a) 

= ∫ 𝑥𝑥𝛥𝛥(𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠) ℎ(𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠 − 𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠)𝑝𝑝𝑡𝑡𝑘𝑘(𝑡𝑡𝑘𝑘) 𝑑𝑑𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠
∞
−∞ . (5b) 

However, 𝑝𝑝𝑡𝑡𝑘𝑘(𝑡𝑡𝑘𝑘) equals 0 outside [0,𝑇𝑇], so (5b) becomes 
= 1

𝑁𝑁𝑟𝑟
∫ 𝑥𝑥𝛥𝛥(𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠) ℎ(𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠 − 𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠) 𝑑𝑑𝑛𝑛𝑘𝑘𝑇𝑇𝑠𝑠
𝑇𝑇
0 . (5c) 

𝐸𝐸�𝑦𝑦𝛥𝛥𝑐𝑐�𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠�� = 1
𝑁𝑁𝑟𝑟
𝑦𝑦𝑇𝑇(𝑡𝑡). (5d) 

For 𝑁𝑁𝑟𝑟 components of 𝑦𝑦𝛥𝛥𝑐𝑐�𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠�, the expectation is 
𝐸𝐸�𝑦𝑦𝛥𝛥�𝑛𝑛𝑗𝑗𝑇𝑇𝑠𝑠�� = 𝑁𝑁𝑟𝑟

1
𝑁𝑁𝑟𝑟
𝑦𝑦𝑇𝑇(𝑡𝑡) = 𝑦𝑦𝑇𝑇(𝑡𝑡), (5e) 

which means that the estimator in (4) is unbiased. Now the 
question arises about the quality of estimation, where the 
mean squared error (MSE) could be a good metric in this case, 
but since the estimator in (4) is unbiased, the MSE is the same 
as the variance. Thus, 
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2
. (6) 

Working out the calculations in (6), we find the variance as 
𝜎𝜎𝑁𝑁𝛥𝛥

2 = �𝑇𝑇E𝑁𝑁𝑇𝑇 − 𝑦𝑦𝑇𝑇2(𝑡𝑡)� 𝑁𝑁𝑟𝑟� , (7) 
where E𝑁𝑁𝑇𝑇 is the total energy of 𝑦𝑦𝑇𝑇  in the interval [0,𝑇𝑇]. This 
means that the quality of filtering estimation is proportional to 
𝑁𝑁𝑟𝑟−1 for ToRa, which coincides with the quality of FT 
estimation for ToRa in [12]. Same analyses can be carried out 
for the cases of StSa and AnSt, but will not be demonstrated 
here because of space limitation. 

IV. THE PROPOSED CS3NS INTERPOLATION RULE 
The convolution operation of the filter in (3) simply uses 

the Rectangle rule to estimate the filtered output signal, where 
the product 𝑥𝑥𝛥𝛥(𝑡𝑡𝑘𝑘) ℎ�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑘𝑘�, representing the amplitude of 
a function, is multiplied by a given time width 𝛥𝛥𝑡𝑡𝑘𝑘 and added 
accumulatively to calculate the total area under the curve 
(AUC) of the function within the specified interval. However, 
we can calculate the same area using other interpolation 
techniques. Hence, we propose here a grid-based nonuniform 
interpolation technique, where it is, up to our knowledge, not 
addressed in literature before. We call it composite Simpson 
3-nonuniform-sample (CS3NS) rule, named after the 
traditional composite Simpson’s 1/3 rule that is usually used 
in second-order polynomial interpolation of uniform samples. 

A. Estimated Area 
Suppose we have a continuous-time function, 𝑓𝑓(𝑡𝑡), and 

we need to estimate the area under 𝑓𝑓(𝑡𝑡) within the interval 
[0,𝑇𝑇] by interpolating specific number of nonuniformly 
spaced samples of it. Hence, we divide the whole interval 
[0,𝑇𝑇] into subintervals according to the number of sampling 
points. Every three consecutive samples constitute one 
subinterval, as shown in Fig. 3. Left and right samples 
(borders) of a given subinterval are shared with previous and 
next subintervals to form the composite rule and to calculate 
the total interpolated area from 0 to 𝑇𝑇. 

 
Fig. 3. One subinterval, [𝑡𝑡0, 𝑡𝑡2], of the proposed CS3NS rule. 

Starting with the first three nonuniform samples, at time 
instants 𝑡𝑡0 = 0, 𝑡𝑡1 and 𝑡𝑡2 (one subinterval), and recalling that 
time spacing between any two samples is integer multiple of 
𝑇𝑇𝑠𝑠, we introduce the integer numbers 𝑛𝑛1 and 𝑛𝑛2 as follows: 
𝑡𝑡1 − 𝑡𝑡0 = 𝑛𝑛1𝑇𝑇𝑠𝑠 and 𝑡𝑡2 − 𝑡𝑡1 = 𝑛𝑛2𝑇𝑇𝑠𝑠. Now, we estimate the 
subinterval area under 𝑓𝑓(𝑡𝑡) from 𝑡𝑡0 to 𝑡𝑡2 = (𝑛𝑛1 + 𝑛𝑛2)𝑇𝑇𝑠𝑠 by 
simply interpolating the three sample points 𝑓𝑓(𝑡𝑡0), 𝑓𝑓(𝑡𝑡1) and 
𝑓𝑓(𝑡𝑡2) using a second-order Lagrange polynomial 𝑃𝑃(𝑡𝑡) =

𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2, where 𝑎𝑎0, 𝑎𝑎1 and 𝑎𝑎2 are the polynomial 
coefficients. Doing the mathematical calculations, we find 

∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡0

≈ 𝑇𝑇𝑠𝑠(𝑛𝑛1+ 𝑛𝑛2)
6𝑛𝑛1𝑛𝑛2

[(2𝑛𝑛1𝑛𝑛2 −  𝑛𝑛22)𝑓𝑓(𝑡𝑡0) +
(𝑛𝑛1 +  𝑛𝑛2)2𝑓𝑓(𝑡𝑡1) + (2𝑛𝑛1𝑛𝑛2 −  𝑛𝑛12)𝑓𝑓(𝑡𝑡2)].  

(8) 

For the case of 𝑛𝑛 subintervals with a total number of 𝑁𝑁𝑟𝑟 =
2𝑛𝑛 + 1 samples, and denoting by 𝑛𝑛𝑖𝑖1and 𝑛𝑛𝑖𝑖2 the integers 𝑛𝑛1 
and 𝑛𝑛2 for each subinterval respectively, we find that the total 
area of  𝑓𝑓(𝑡𝑡) from 0 to 𝑇𝑇 can be estimated as: 

∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0 ≈ 𝑇𝑇𝑠𝑠 ∑

(𝑛𝑛𝑖𝑖1+ 𝑛𝑛𝑖𝑖2)
6𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖2

�(2𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖2 −𝑛𝑛
𝑖𝑖=1

 𝑛𝑛𝑖𝑖22 )𝑓𝑓(𝑡𝑡2𝑖𝑖−2) + (𝑛𝑛𝑖𝑖1 + 𝑛𝑛𝑖𝑖2)2𝑓𝑓(𝑡𝑡2𝑖𝑖−1) + (2𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖2 −
 𝑛𝑛𝑖𝑖12)𝑓𝑓(𝑡𝑡2𝑖𝑖)�.  

(9) 

B. Estimation Error 
To find the estimation error for one subinterval, 𝐸𝐸𝐸𝐸S3NS, 

assuming that 𝑇𝑇𝑠𝑠 = ℎ for the sake of simplicity, we start with:  
𝐸𝐸𝐸𝐸S3NS = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡(𝑛𝑛1+ 𝑛𝑛2)ℎ

0 − ℎ(𝑛𝑛1+ 𝑛𝑛2)
6𝑛𝑛1𝑛𝑛2

[(2𝑛𝑛1𝑛𝑛2 −
 𝑛𝑛22)𝑓𝑓(𝑡𝑡0) + (𝑛𝑛1 +  𝑛𝑛2)2𝑓𝑓(𝑡𝑡1) + (2𝑛𝑛1𝑛𝑛2 −
 𝑛𝑛12)𝑓𝑓(𝑡𝑡2)].  

(10) 

Now, the Taylor Series expansion of 𝑓𝑓(𝑡𝑡), 𝑓𝑓(𝑡𝑡0), 𝑓𝑓(𝑡𝑡1) and 
𝑓𝑓(𝑡𝑡2) at 𝑡𝑡 = 𝑡𝑡1 = 𝑛𝑛1ℎ, is 

𝑓𝑓(𝑡𝑡) = 𝑓𝑓(𝑡𝑡1) + (𝑡𝑡 − 𝑛𝑛1ℎ)𝑓𝑓(1)(𝑡𝑡1) + 1
2

(𝑡𝑡 −
𝑛𝑛1ℎ)2𝑓𝑓(2)(𝑡𝑡1) + 1

6
(𝑡𝑡 − 𝑛𝑛1ℎ)3𝑓𝑓(3)(𝑡𝑡1) + 1

24
(𝑡𝑡 −

𝑛𝑛1ℎ)4𝑓𝑓(4)(𝑡𝑡1) + 𝑂𝑂(𝑡𝑡 − 𝑛𝑛1ℎ)5.  
(11) 

𝑓𝑓(𝑡𝑡0) = 𝑓𝑓(𝑡𝑡1) − 𝑛𝑛1ℎ𝑓𝑓(1)(𝑡𝑡1) + 1
2

(𝑛𝑛1ℎ)2𝑓𝑓(2)(𝑡𝑡1) −
1
6

(𝑛𝑛1ℎ)3𝑓𝑓(3)(𝑡𝑡1) + 1
24

(𝑛𝑛1ℎ)4𝑓𝑓(4)(𝑡𝑡1) + 𝑂𝑂(𝑛𝑛1ℎ)5. 
(12) 

𝑓𝑓(𝑡𝑡1) = 𝑓𝑓(𝑡𝑡1). (13) 
𝑓𝑓(𝑡𝑡2) = 𝑓𝑓(𝑡𝑡1) + 𝑛𝑛2ℎ𝑓𝑓(1)(𝑡𝑡1) + 1

2
(𝑛𝑛2ℎ)2𝑓𝑓(2)(𝑡𝑡1) +

1
6

(𝑛𝑛2ℎ)3𝑓𝑓(3)(𝑡𝑡1) + 1
24

(𝑛𝑛2ℎ)4𝑓𝑓(4)(𝑡𝑡1) + 𝑂𝑂(𝑛𝑛2ℎ)5. 
(14) 

Where 𝑓𝑓(𝑖𝑖)(𝑡𝑡1) is the 𝑖𝑖-th derivative of 𝑓𝑓(𝑡𝑡) at 𝑡𝑡 = 𝑡𝑡1. 
Substituting (11)-(14) into (10), and carrying out some 
mathematical manipulation, we get 

𝐸𝐸𝐸𝐸S3NS = ℎ4(𝑛𝑛1+ 𝑛𝑛2)3(𝑛𝑛1− 𝑛𝑛2)
72

𝑓𝑓(3)(𝑡𝑡1) −
ℎ5(𝑛𝑛1+ 𝑛𝑛2)3�4𝑛𝑛1

2− 7𝑛𝑛1𝑛𝑛2+ 4𝑛𝑛2
2�

720
𝑓𝑓(4)(𝑡𝑡1), 

(15) 

where a term of 𝑂𝑂�𝐹𝐹(𝑛𝑛16,𝑛𝑛26,ℎ6)� is neglected, since 𝐹𝐹(. ) 
is a function of fraction raised to the power of 6, which is very 
small compared to the other terms.  

The error in (15) can be greatly decreased by choosing 
𝑛𝑛1 =  𝑛𝑛2 (equally spaced samples), where it reduces to 

𝐸𝐸𝐸𝐸S3NS, 𝑛𝑛1= 𝑛𝑛2 = −𝑛𝑛15ℎ5

90
𝑓𝑓(4)(𝑡𝑡1). (16) 

This is exactly the same error of Simpson’s 1/3 rule as found 
in literature for uniform sampling case, but without 𝑛𝑛1, since 
𝑛𝑛1ℎ here is the same as ℎ in there, and both denote the spacing 
step between the uniform sampling points. 

Note that there is a trade-off in selecting 𝑛𝑛1 and 𝑛𝑛2, where 
equal numbers means uniform sampling, and so, aliasing will 
occur if sampling frequency is less than Nyquist/Landau rate. 
Whereas choosing 𝑛𝑛1 ≠ 𝑛𝑛2 means NUS, and this will mitigate 
aliasing effect, but also, will increase the error term 
accordingly. 

Now, we calculate the total composite error for 𝑛𝑛 
subintervals, 𝐸𝐸𝐸𝐸CS3NS, which can be found by 



𝐸𝐸𝐸𝐸CS3NS = ∑ ℎ4(𝑛𝑛𝑖𝑖1+ 𝑛𝑛𝑖𝑖2)3(𝑛𝑛𝑖𝑖1− 𝑛𝑛𝑖𝑖2)
72

𝑓𝑓(3)(𝑡𝑡2𝑖𝑖−1) −𝑛𝑛
𝑖𝑖=1

ℎ5(𝑛𝑛𝑖𝑖1+ 𝑛𝑛𝑖𝑖2)3�4𝑛𝑛𝑖𝑖1
2 − 7𝑛𝑛𝑖𝑖1𝑛𝑛𝑖𝑖2+ 4𝑛𝑛𝑖𝑖2

2 �
720

𝑓𝑓(4)(𝑡𝑡2𝑖𝑖−1). 
(17) 

Finally, Table I shows an example for applying the CS3NS 
technique practically to obtaining one sample of the filtered 
output discrete-time signal. 

TABLE I.  APPLICATION OF CS3NS 

Step 1 Step 2 Step 3 Step 4 Step 5 

Signal’s 𝑁𝑁𝑟𝑟 
nonuniform 
grid-based 
samples are 
acquired 

Multiply sample 
amplitudes with 
𝑁𝑁𝑟𝑟 time-matching 
filter samples 

Calculate 
AUC 
using (9) 

Shift 
input 
samples 
one step 

Repeat steps 
2, 3 and 4 till 
the end of 
shifted 
samples 

V. NUMERICAL RESULTS 
We have designed a Kaiser-windowed bandpass FIR filter 

based on uniform grid sampling, as shown in Fig. 4 below. 
The uniform time spacing of the samples of the filter, 𝑇𝑇𝑠𝑠, is  
0.25µs, i.e. 𝐹𝐹𝑠𝑠=4MHz.  All other settings of the FIR filter are: 
Fstop1=65kHz, Fpass1=69kHz, Fpass2=81kHz, Fstop2=85 
kHz, Bandwidth (BW)=15kHz and total number of samples 
(NF)= 3627. The input signal, 𝑥𝑥(𝑡𝑡), is a sum of five sinusoids 
with different frequencies: 13kHz, 69kHz, 75kHz, 81kHz and 
90kHz. The FT of this signal, 𝑋𝑋(𝑓𝑓), is shown in Fig. 5a. So, 
the total bandwidth of this bandlimited signal is 90kHz. We 
want to filter this signal by suppressing the out-of-band 
components, keeping only those ones within the filter 
bandwidth, i.e. 69kHz, 75kHz and 81kHz. Therefore, the 
actual bandwidth of the filtered output signal should be 
11kHz, in this case. 

 
Fig. 4. The proposed uniformly oversampled bandpass FIR filter 

Usually, an anti-aliasing analog filter is used before 
sampling the input signal to get rid of, or reduce to the least 
possible amount, any alias components that may foldback to 
the frequency range of consideration. Thanks to random 
sampling and filtering techniques, we can acquire the 
continuous-time input signal directly without using the analog 
filter, and attenuating the undesired alias frequency 
components dramatically. Actually, this is the powerful point 
of using nonuniform and random sampling approach, and 
hence the name, digital alias-free signal processing. 

Grid-based NUS of the input signal is, then, carried out 
using ToRa, StSa and AnSt schemes within an observation 
time window 𝑇𝑇=12ms. In our simulations, we have also 
included the results of the CS3NS interpolation technique 
based on sampling points selected same as StSa’s ones, since 
interpolating such points has shown better results than ToRa 
and AnSt for most of our simulations (not included here). 

Indeed, AnSt yields better results than StSa if the sampled 
signal is smooth, i.e. monotonically increasing or decreasing 
within each stratum (or sub-integral area), which is not usually 
the case when using sub-Nyquist NUS approach due to the 
scarcity of points across the observed time window. 
Otherwise, it has no big advantage over StSa. 

The FIR filter is used to filter the randomly sampled 
signal. For each single sampling technique and each specific 
number of NUS points, we have carried out 10 independent 
simulations to obtain averaged and smoothed results. Then, 
the FTs of the estimated filtered output signals are compared 
to the FT of the reference signal (densely and uniformly 
oversampled copy of the input signal filtered by the same FIR 
filter), 𝑌𝑌𝑢𝑢(𝑓𝑓), as shown in Fig. 5b. The FT spectra of the 
nonuniform filtered output signals are estimated by applying 
the same approach of random sampling technique used 
initially to obtain these filtered signals. This means adding a 
second layer of randomized signal processing: filtering and FT 
spectrum estimating. 

 
Fig. 5. Normalized single-sided FT spectra of uniform (a) input signal, 
𝑋𝑋(𝑓𝑓), and (b) filtered output signal, 𝑌𝑌𝑢𝑢(𝑓𝑓), which used as a reference. 

To compare the estimated FT spectrum of a given output 
signal, for example 𝑌𝑌𝑛𝑛(𝑓𝑓), with that of the reference signal, 
𝑌𝑌𝑢𝑢(𝑓𝑓) obtained using MATLAB’s built-in CONV and FFT 
functions, we calculate the NRMSE using this formula: 

NRMSE=
�∑ �𝑌𝑌𝑛𝑛�𝑓𝑓𝑖𝑖�−𝑌𝑌𝑢𝑢(𝑓𝑓𝑖𝑖)�

2𝐿𝐿
𝑖𝑖=1

𝐿𝐿

max (𝑌𝑌𝑢𝑢)−min (𝑌𝑌𝑢𝑢)
, 

(18) 

where 𝐿𝐿 is the number of FT frequency components within the 
range [Fstop1, Fstop2]. This range was selected since the FT 
of 𝑌𝑌𝑢𝑢(𝑓𝑓) is a priori known to be zero or so outside these filter 
stop bands, therefore, any statistical errors or small aliases that 
might appear outside this range are negligible. Moreover, we 
choose the normalization approach to guarantee scaling 
consistency over different sampling and interpolation schemes 
and simulation settings. 

The simulation results are depicted in Fig. 6, starting with 
only 200 NUS points (𝐹𝐹𝑠𝑠,𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁= 200/12ms≈16.67kHz  and 
ending with 8000 points (𝐹𝐹𝑠𝑠,𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁= 8000/12ms≈0.67MHz). 
We notice that, initially, StSa and AnSt yield less estimation 
errors than both ToRa and CS3NS. However, by increasing 
the number of points gradually we can clearly see that the 
convergence rate of CS3NS interpolation technique is much 
faster than all other sampling techniques. In addition, at a 
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specific number of points (>3200), CS3NS’s absolute 
NRMSE starts to get smaller than those for StSa and AnSt, as 
seen in Fig. 7. That is because the interpolation errors decrease 
dramatically with the increase of used sampling points, but of 
course, on the price of increasing the computational cost. 

It is worth noting that the original input signal bandwidth 
is 90kHz. So, if traditional uniform sampling techniques are 
to be used instead of nonuniform ones, then either a) we have 
to use an analog anti-aliasing filter, and then uniformly 
sampling the analog output by at least 24kHz, which is the 
Landau rate required for the 12kHz bandpass signal [69kHz, 
81kHz], or b) directly sampling the 90kHz-bandwidth signal 
with 180kHz Nyquist rate to avoid aliasing issues. However, 
it is possible to use NUS techniques, StSa for example, and 
get feasible results without even using the analog anti-aliasing 
filter beforehand. Fig. 8 shows the normalized single-sided 
estimated FT for the filtered output signal based on average 
NUS rate 𝐹𝐹𝑠𝑠,𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁= 20kHz, where the sinusoids within the 
bandpass frequency range are easily distinguishable. 

 
Fig. 6. NRMSE of the estimated FT spectra of the filtered outputs vs. 
number of used nonuniform samples. 

 
Fig. 7. CS3NS’s NRMSE gets smaller than others after 3.2k samples. 

 
Fig. 8. Estimated FT of the filtered output signal using 20kHz average 
sampling frequency StSa-based nonuniform sampling scheme. 

VI. CONCLUSION 
It has been shown that filtering irregularly sampled signals 

is possible even by using average sampling frequency less 
than the required Nyquist rate. The random samples are 

acquired based on several random sampling techniques, such 
as: ToRa, StSa and AnSt. Furthermore, a new interpolation-
based technique, CS3NS, has been proposed, where it is used 
as a numerical integration technique to calculate the area 
under the curve for both filter convolution and FT estimation. 
Apart from minor statistical errors, alias frequency 
components have been eliminated or reduced dramatically 
using an appropriate number of nonuniform samples and a 
given random sampling technique. This is illustrated by being 
able to detect output signal FT with  𝐹𝐹𝑠𝑠,𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁 ≪ 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 , which 
is can’t be accomplished by using uniform sampling. 

Finally, simulation results show that uniform convergence 
rate of the new CS3NS interpolation technique is faster than 
any other discussed ones, despite the fact that the absolute 
NRMSE values of CS3NS is larger for a small number of 
sampling points. But the uniform convergence rate is more 
crucial metric than the absolute error values in such cases. 
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