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Abstract— This paper considers the problem of estimating the 

Fourier transform of continuous-time signals from N nonuniformly 

collected observations. Here, we introduce a new class of Hybrid 

Stratified sampling scheme in conjunction with a suitable estimator, 

which can provide the rate of convergence of order 𝟏/𝑵(𝟐𝑲+𝟑) in the 

mean-square sense, for signals with 𝑲 + 𝟏 continuous derivatives. 

Most importantly, it is shown that this rate is not only faster, but also 

uniform and independent of the analysed frequency (unlike) 

compared with other existing random-sampling-based techniques. 

In this paper, we establish the statistical properties of the proposed 

approach and illustrate its performance analytically as well as 

numerically.  

Keywords—Fourier transform, random sampling, stratified 

sampling, convergence rate 

I. INTRODUCTION  

Fourier Transform (FT) calculations from samples of a real-

valued signal is a fundamental task that appears in various areas 

of science: astronomy, seismology, biomedical sciences, NMR 

spectroscopy, dynamics, image analysis, optics, to name a few. 

This task is typically straightforward when an adequate number 

of samples of the processed signal can be uniformly collected 

at sufficiently high rates. However, the FT calculation problem 

becomes significantly more challenging when these sampling 

conditions cannot be met. Scientists, engineers and 

mathematicians have investigated this problem from various 

start points, with diverse objectives, using different approaches. 

Nonetheless, all these methods intrinsically aim to minimise the 

number of the signal samples without undermining the FT 

calculation accuracy in order to, for example, ease calculations, 

accelerate the data acquisition procedure and reduce the 

associated hardware requirements. One of the low-complexity 

approaches to FT calculation using a relatively reduced number 

of samples belong to a paradigm dubbed Digital Alias-Free 

Signal Processing (DASP) [1-10]; it entails capturing and 

processing random non-equidistant signal samples. In general, 

DASP approaches offer the means to mitigate the effect of the 

aliasing phenomenon which can have detrimental impact on the 

accuracy of the classical uniform-sampling FT estimation when 

the sampling conditions are not fulfilled. For example, this 

capability has been effectively utilized for wideband spectrum 

sensing or surveillance at notably low sampling rates [11-15]. 

Nevertheless, the main limitation of the FT estimation 

techniques based on random sampling is their slow 

convergence rate regardless of the smoothness of the signal [8, 

9]. For instance, the basic method, known as total random 

(ToRa) sampling estimation [7], converges in the mean-square 

sense at the rate of 1/𝑁, where 𝑁 is the number of collected 

samples. The development of stratified sampling (StSa) and 

antithetical stratified (AntSt) sampling FT estimators in [16] 

and [17] have shown to provide considerable potential, 

delivering expedited convergence rates of 1/𝑁3  and 1/𝑁5 , 

respectively, for sufficiently smooth signals. However, these 

fast rates are pointwise convergence rates and are not realized 

as the assessed frequencies increase, unless the number of 

samples 𝑁 is excessively large. This limitation can undermine 

the key benefits of DASP-based estimators, namely employing 

a reduced number of data samples. Additionally, the uniform 

convergence rate of these estimators, i.e. for all frequencies, is 

only 1/𝑁 [5]. In [18, 19], a class of first-order hybrid stratified 

(HySt) estimator that has a uniform convergence rate of  1/𝑁5 

was introduced. In this paper, we present a new class of hybrid 

stratified estimation of order 𝐾, referred to henceforth by K-

HySt. Most importantly, it provides a uniform convergence rate 

of 1/𝑁(2𝐾+3) for signals with 𝐾 + 1 continuous derivatives.  
Due to space limitations, we focus here on describing the 

key elements of the proposed novel technique. The theories and 

expressions that are believed to be essential to the user for 

applying it are given. In Section II, the problem is formulated 

and the notations used throughout this paper are defined. In 

Section III, we briefly summarise the existing random sampling 

FT estimation schemes and their key characteristics. In Section 

IV, we describe and briefly analyse the introduced approach, 

establishing some of its statistical properties. A numerical 

example is shown in Section V to demonstrate K-HySt superior 

performance and illustrate the analytical observations in 

Sections III and IV. It is noted that proofs of all the theorems 

stated in this paper will be detailed in a full companion journal 

paper, where additional relevant statistical properties are 

analytically determined and numerically verified.    

II. PROBLEM FORMULATION   

The Fourier transform of a real-valued, finite-energy, 

deterministic, continuous-time signal 𝑥(𝑡) is given by: 

𝑋(𝑓) =̂ ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡d𝑡

∞

−∞

.                                    (1) 
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The signal however can only be observed over a finite-length 

window 𝒯 . The objective in practice is then to estimate the 

following Fourier transform: 

𝑋𝒯(𝑓) =̂ ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡d𝑡

𝒯

.                               (2) 

In classical signal processing, the integral in (2) is often 

approximated using a summation based on uniformly 

distributed samples of the signal. This approximation can 

severely suffer from errors induced by the spectrum aliases if 

the sampling rate is insufficiently high to ensure that these 

aliases are distance enough from one another. On the other 

hand, we recall that a DASP-based FT calculation from a 

randomly selected samples can overcome this requirement. 

However, DASP approaches also introduce errors, albeit of a 

different nature, which we quantify below in terms of the FT 

mean-square estimation error. Whilst the latter error typically 

converges to zero with increasing 𝑁  values, the aim of the 

proposed method is to minimise it for an available set of 𝑁 

signal samples. We note that decreasing the number of samples 

is equivalent to decreasing the sampling density in view of the 

fact that the observation interval is fixed. Table 1 lists the 

notations used in this paper.   

TABLE 1. NOTATIONS 

𝑥(𝑡) Analysed continuous-time signal 

𝑋𝒯(𝑓) Targeted Fourier transform of 𝑥(𝑡)  

𝒯 A finite-duration observation window  

𝐻 Length of 𝒯  

𝑁 Number of processed samples 

�̂�𝑁(𝑓), FT estimates from 𝑁 samples 

𝒯𝑙 The 𝑙𝑡ℎ stratum given  

𝒯𝑙,𝑚 The 𝑚𝑡ℎstratum of the 𝑙𝑡ℎsubset 

𝜏𝑙  Random sampling instant in 𝒯𝑙 

𝜏𝑙,𝑚 Random sampling instant in 𝒯𝑙,𝑚 

𝜏𝑛  The 𝑛𝑡ℎ  random sampling instant 

𝐿𝑁 Number of strata 

𝐾 Order of Hybrid Estimation 

𝐿𝑁,𝐾 
Number of subsets of 𝐾 adjacent 

stratum 

∆𝑙 Length of  𝒯𝑙 

∆𝑙,𝑚 Length of  𝒯𝑙,𝑚 

𝑡𝑙 or 𝑡𝑙,𝑚 Edges of strata 

𝒟𝑙 The 𝑙𝑡ℎ subset of 𝐾 adjacent strata 

ℎ(𝑡) Stratifying function 

III. BACKGROUND: RANDOM SAMPLING FOURIER 

TRANSFORM ESTIMATION SCHEMES 

Each of the aforementioned total random, stratified 

sampling, and antithetical stratified sampling FT estimation 

approaches comprises a sampling scheme and a corresponding 

estimator. To approximate the integral in (2) and obtain an 

estimate of 𝑋𝒯(𝑓)  using 𝑁  signal samples, the estimators of 

these three techniques, in general, follow the summation of the 

form: 

�̂�𝑁(𝑓) = ∑ 𝑥(𝜏𝑛)
𝑁

𝑛=1
𝑒−𝑗2𝜋𝑓𝜏𝑛  𝐴𝑛  ,                   (3) 

where {𝐴𝑛}𝑛=1
𝑁  components are constants that depend on the 

sampling scheme and ensure the unbiased nature of the 

estimator with respect to 𝑋𝒯(𝑓). Starting with ToRa [7], the 

sampling instants are independent, identically distributed (IID) 

random variables with a chosen probability density function 

(PDF) that takes strictly positive values within the observation 

window and zero elsewhere. From [7], the rate of decay of the 

ToRa mean-square FT estimation error is of order 𝑁−1.  

For the StSa sampling technique, the observation interval 𝒯
 

is divided into N non-overlapping subintervals, according to a 

PDF-like function ℎ(𝑡).  Each of the sampling instants in 

{𝜏𝑛}𝑛=1
𝑁  is selected randomly and independently as per a 

uniform PDF whose value is non-zero within the corresponding 

subinterval and zero elsewhere. The rate of convergence of the 

StSa estimates cannot be determined for a finite number of N, 

i.e. from the exact expression of the variance of the StSa 

estimator. As an alternative, it is standard in statistical 

estimation to determine the rate of convergence from an 

asymptotic expression of the variance as N tends towards 

infinity. An asymptotic expression of the variance of the StSa 

estimates was determined in [16] where it is illustrated that the 

mean-square FT estimation error converges to zero at the rate 

of 𝑁−3 for signals with first-order continuous derivative.  

For the AntSt sampling scheme and in order to collect N 

samples, the window 𝒯  is divided into 𝑁/2 subintervals and 

then two sampling instants are selected inside each subinterval. 

The first sampling instant is randomly chosen in the same way 

as in StSa scheme, whereas the second sampling point is the 

symmetrical reflection of the first one around the centre point 

of their time subinterval. Thus, each random sampling instant 

𝜏𝑛  
is accompanied by another sampling instant at 2𝑐𝑛 − 𝜏𝑛 , 

where 
nc  is the centre point of the n-th time subinterval. The 

mean-square FT estimation error for the AntSt approach 

asymptotically converges to zero at the rate of 𝑁−5 for signals 

with second order continuous derivatives [17].   

Nonetheless, it was shown in [18, 19] that the convergence 

rates of the above approaches are pointwise. In fact, the uniform 

convergence rates of StSa and AnSt FT estimation is no faster 

than and exactly equal to 𝑁−1 . Hence, the StSa and AnSt 

techniques are characterized by a slow uniform convergence 

rates compared with their stated faster pointwise convergence 

rates, i.e. 𝑁−3 and 𝑁−5. Whereas, the pointwise and uniform 



convergence rates for ToRa are the same (this also applies to K-

HySt as will be seen in the next section).  

The main consequence of the slow uniform convergence 

rate of the FT estimation errors of the two stratification based 

approaches StSa and AntSt is that they show distinctively 

different behavior for different assessed frequencies. More 

specifically, the estimation errors at individual frequencies 

converge slowly (at the rate of 𝑁−1 ) when 𝑁  is relatively 

small). Once 𝑁 passes a certain threshold, this rate accelerates 

to 𝑁−3 and 𝑁−5, respectively. These thresholds depend on the  

frequency at which the FT is estimated. The higher the 

frequency the more samples are required to initiate the faster 

convergence. Therefore, when analysing frequency ranges that 

are relatively wide compared with the sampling density, StSa 

and AnSt schemes show similar performance with no gains over 

the basic ToRa method. 

Thereby, developing the proposed K-HySt approach is 

motivated by the need to construct a consistently accurate FT 

estimator, i.e. regardless of the considered frequency, that uses 

a low sampling density, e.g. when exploring wide frequency 

ranges. It involves no additional substantial computational cost 

compared with other efficient DASP-based estimators.  

IV.  K-ORDER HYBRID STRATIFIED ESTIMATION 

For the introduced K-HySt scheme, the observation window 

𝒯  is divided into 𝐿𝑁 non-overlapping subintervals. The 

partitions are defined in two steps according to the PDF-like 

function denoted by ℎ(𝑡), which is separated from 0 by ℎ𝑚𝑖𝑛 . 

Let 𝒟𝑙 , 𝑙 = 1, … , 𝐿𝑁,𝐾 , be the subsets of 𝐾  adjacent strata, 

where 𝐿𝑁,𝐾 =  𝐿𝑁/𝐾 . The margins of each subset are first 

defined by: 

∫ ℎ(𝑡)d𝑡

𝑡𝑙

0

= 𝐻
𝑙

𝐿𝑁,𝐾

,   𝑙 = 0, … , 𝐿𝑁,𝐾 .                       (4) 

The margins of the strata within a subset are obtained through  

𝑡𝑙,𝑚 = 𝑡𝑙 +
𝑚

𝐾
∆𝑙 , 𝑚 = 0,1, … , 𝐾.                        (5) 

The K-HySt sampling points are collected at the partitions 

of the strata and one sampling point is randomly selected within 

each stratum, as per a uniform PDF. Subsequently, the number 

of samples are given by: 𝑁 = 2𝐿𝑁,𝑘𝐾 + 1 . To avoid 

introducing new notation, the stratum [𝑡𝑙,𝑚−1, 𝑡𝑙,𝑚] is denoted 

by 𝒯𝑙,𝑚  with length ∆𝑙,𝑚= 𝑡𝑙,𝑚−1 − 𝑡𝑙,𝑚 , and the randomly 

selected time instant within by 𝜏𝑙,𝑚 . For a more compact 

presentation of the expressions, let 

𝜆(𝑡, 𝑓) = 𝑒−𝑗2𝜋𝑓𝑡  .                                  (6) 

The K-HySt estimator is consequently given by 

�̂�𝑁(𝑓) = ∑ ∑ 𝐼𝑙,𝑚(𝑓) ,                                       (7)

𝐾

𝑚=1

𝐿𝑁,𝐾

𝑙=1

 

where  

𝐼𝑙,𝑚(𝑓) =

∆𝑙,𝑚𝑥(𝜏𝑙,𝑚)𝜆(𝜏𝑙,𝑚, 𝑓)+∑ 𝑥(𝑡𝑙,𝑘)𝐾
𝑘=0 ∫ 𝛾𝑙,𝑘(𝑡)𝜆(𝑡, 𝑓)𝑑𝑡

𝒯𝑙,𝑚
 

             − ∑ ∆𝑙,𝑚𝑥(𝑡𝑙,𝑘)𝐾
𝑘=0 𝛾𝑙,𝑘(𝜏𝑙,𝑚) 𝜆(𝜏𝑙,𝑚, 𝑓),                      (8)  

and  

𝛾𝑙,𝑘(𝑡) =̂ ∏
𝑡−𝑡𝑙,𝑔

𝑡𝑙,𝑘−𝑡𝑙,𝑔
.0≤𝑔≤𝐾

𝑔≠𝑘

                           (9)  

This can be shown to lead the following three key theorems: 

Theorem 1: The K-HySt estimator (7) is an unbiased estimator 

of the windowed FT in (2): 

𝐸{�̂�𝑁(𝑓)} = 𝑋𝒯(𝑓).                       (10) 

Theorem 2: If the signal 𝑥(𝑡)  has continuous 𝐾 + 1 

derivatives, the K-HySt estimator converges uniformly to 

𝑋𝒯(𝑓) at least at the rate of 𝑁−(2𝐾+3): 

     Var{�̂�𝑁(𝑓)} < 

                 0.5𝑁−(2𝐾+3) ([𝐶𝐾 +
𝐾! 𝐾

4
] [

3𝐻

ℎ𝑚𝑖𝑛

]

𝐾+2
𝑥𝑘+1,𝑚𝑎𝑥

(𝐾 + 1)!
)

2

, 

where 𝑥𝐾+1,𝑚𝑎𝑥 =̂ sup
𝑡∈𝒯

|𝑥(𝐾+1)(𝑡)| , 𝑥(𝑘)(𝑡)  denotes the 𝑘𝑡ℎ 

derivatives of 𝑥(𝑡), and 𝐶𝐾 = ∑ |𝐶𝐾,𝑚|𝐾
𝑚=1   is a constant that 

can be obtained from Table 2 for a few 𝐾 values.  

Theorem 2 demonstrates that the K-HySt estimator provides a 

frequency-independent upper bound on the Fourier transform 

estimation errors that decays to zero at the rate 𝑁−(2𝐾+3), or 

faster. The achieved accelerated convergence transpires 

simultaneously across all frequencies, unlike StSa and AnSt. 

Theorem 3: Assume that the function 𝑥(𝑡)  has 𝐾 + 1 

continuous derivatives then   

lim
𝑁→∞

𝑁2𝐾+3Var{�̂�𝑁(𝑓)} = 𝜎𝐾−𝐻𝑦𝑆𝑡,𝑙𝑖𝑚
2  ,              (11) 

where, 

𝜎𝐾−𝐻𝑦𝑆𝑡,𝑙𝑖𝑚
2 =̂

𝐷𝐾(2𝐻)2𝐾+3

[(𝐾 + 1)!]2𝐾2𝐾+4
∫

[𝑥(𝐾+1)(𝑡)]
2

ℎ2𝐾+3(𝑡)𝒯

𝑑𝑡.        (12) 

where, 

𝐷𝐾 = ∑ 𝐷𝐾,𝑚
𝐾
𝑚=1   is a constant that depends only on the order 

𝐾 , where 𝐷𝐾,𝑚 =̂ 𝐺𝐾,𝑚 − 𝐶𝐾,𝑚
2 . The values of the constants 

𝐺𝐾,𝑚 can be obtained from Table 2 for a few 𝐾 values.   



TABLE 2. 𝐶𝐾,𝑚 AND 𝐺𝐾,𝑚 CONSTANTS 

𝐾 = 1 𝐶1,1 = −1/6 𝐺1,1 = 1/30 

𝐾 = 2 𝐶2,1 = −𝐶2,2 = 1/4 𝐺1,2 = 𝐺2,2 = 8/105 

𝐾 = 3 
𝐶3,1 = 𝐶3,3 = −19/30 

        𝐶3,2 = 11/30 

𝐺3,1 = 𝐺3,3 = 313/630 

𝐺3,2 = 103/630 

𝐾 = 4 
𝐶4,1 = −𝐶4,4 = 9/4 

𝐶4,3 = −𝐶4,2 = 11/12 
𝐺4,1 = 𝐺4,4 = 4408/693 

𝐺4,2 = 𝐺4,3 = 712/693 
 

In summary, the above results have the following implications: 

1- Estimation quality is measured by the mean square error: 

𝐸𝑟𝑟𝑁(𝑓) =̂ E {|�̂�𝑁(𝑓) − 𝑋𝒯(𝑓)|
2

} 

where �̂�𝑁(𝑓) denotes the FT estimates constructed from 

𝑁  samples of the signal 𝑥(𝑡). For unbiased estimators, 

𝐸𝑟𝑟𝑁(𝑓) and the variance Var{�̂�𝑁(𝑓)} are identical.  

2- The rate of convergence of K-HySt is exactly 1/𝑁2𝐾+3, 

for signals with 𝐾 + 1 continuous derivatives as per 

lim
𝑁→∞

𝑁2𝐾+3 E {|�̂�𝑁(𝑓) − 𝑋𝒯(𝑓)|
2

} = 𝜎𝐾−𝐻𝑦𝑆𝑡,𝑙𝑖𝑚
2  

3- Theorem 3 shows that the asymptotic constant is not a 

function of the analysed frequency 𝑓, as opposed to the 

asymptotic constants of the StSa and AntSt estimators in 

[16], [17]. The asymptotic expression in equation (12) can 

help practitioners to anticipate (determine in advance) the 

estimation error and decide accordingly on 𝐾 and 𝑁. 

4- The relation between the number of collected samples 𝑁 

and the FT estimation error for K-HySt is hardly affected 

by the analysed frequency at which the FT is estimated. 

 

V. NUMERICAL ANALYSIS 

A numerical example is presented in this section to illustrate  

the superior performance of the K-HySt FT estimator, 

compared with the other DASP approaches, ToRa, StSa and 

AnSt. We consider a semi-synthetic signal, which constitutes a 

large number of sinusoidal components. The magnitude of its 

Fourier transform is depicted in Fig. 1 for the entire frequency 

range, Fig. 1(a), as well as around two particular components 

of interest, Fig. 1(b). This signal mimics accelerations 

measured by an accelerometer mounted to a wave sensor. The 

objective here is to apply a random sampling Fourier transform 

estimation to explore wide frequency ranges beyond the 

Nyquist sampling rate, in order to identify high frequency 

harmonics. The Fourier transform in the targeted high 

frequency range is highlighted in Fig. 1(b). The processed 

signal is observed over a window of length 10 seconds. For each 

of the three stratification-based techniques, we use ℎ(𝑡) = 1. 

This implies that all of the strata are of the same length. For 

ToRa, a uniform PDF across the observation window is used to 

generate the IID random sampling instants.   

The tackled challenging task in this example is to estimate  

FT for a wide frequency range using a low number of samples 

𝑁 = 80. With an observation window of length 10 seconds, the 

sampling density is 8 Hz. Such rate, if uniform sampling is 

employed, would only permit exploring a frequency range up 

to 4 Hz as per the Nyqyist criterion. To display the convergence 

rates of the FT estimates, we plot the mean-square estimation 

errors at selected frequency points versus the number of 

collected random samples. The mean-square estimation error is 

obtained by averaging the errors obtained from 5,000 

independent, Monte Carlo, simulations. 

In Figs. 2 and 3, we respectively show the mean-square error 

for ToRa, StSa, AnSt and 2-HySt methods against 𝑁  at 

frequencies 170 Hz and 402 Hz, where the harmonics in Fig. 

1(b) are located. They reveal that the fast convergence rates of 

the StSa and AntSa are not evident for this range of frequencies. 

Both estimators do not only exhibit similar performance, but 

also their accuracy is very close to that of the basic ToRa 

approach in [7]. The accelerated convergence rates of StSa and 

AntSa would only become visible when the number of collected 

samples 𝑁 is sufficiently large for the considered frequencies, 

in particular 𝑁 ≈ 10,000 for this case.  Whereas, the proposed 

2-HySt scheme delivers a notable improvement in performance 

compared with all the above DASP estimators. This clearly 

demonstrates that K-HySt scheme is not as frequency-sensitive 

as its stratification-based predecessors. To depict the 

acceleration in the convergence rates of StSa and AntSa, we are 

required to reduce the analysed frequency to as low as 3 Hz. 

The mean-square estimation error for this frequency is 

presented in Fig. 4. Overall, the numerical results in this section 

are consistent with the analytical results of Sections III and IV.      

 
     (a)  

 
(b)  

Fig. 1. Magnitude of the Fourier Transform of the considered signal. (a) Over 

the signal whole frequency range. (b) For a selected frequency range around the 

two sinusoidal components located at 170 Hz and 402 Hz. 



 

Fig. 2.    The mean-square estimation error at frequency point 170 Hz versus 
the number of samples. 

 

Fig. 3.    The mean-square estimation error at frequency point 402 Hz versus 

the number of samples. 

 

Fig. 4.    The mean-square estimation error versus the number of samples at 
frequency 3 Hz, where the standard stratification techniques exhibit an 

acceleration in their convergence rates.  

 

VI. CONCLUSIONS 

A generalisation of the hybrid-stratified-sampling method, 

i.e. K-HySt, to estimate the FT of a deterministic continuous-

time signal, at arbitrary frequencies, from a number of its 

samples is introduced. Its mean-square error can be shown to 

uniformly converge to zero at a rate of 1/𝑁2𝐾+3, enabling it to 

deliver  more accurate  estimates compared with its alias-free-

type predecessors. This paper serves to motivate further 

research into using the simple and low complexity alias-free 

sampling approach to calculate the signal Fourier transform 

form remarkably low number of samples. 
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