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Abstract—This paper presents a novel framework for 

integration of vision and tactile sensing by localizing tactile 

readings in a visual object map. Intuitively, there are some 

correspondences, e.g., prominent features, between visual and 

tactile object identification. To apply it in robotics, we propose 

to localize tactile readings in visual images by sharing same sets 

of feature descriptors through two sensing modalities. It is then 

treated as a probabilistic estimation problem solved in a 

framework of recursive Bayesian filtering. Feature-based 

measurement model and Gaussian based motion model are thus 

built. In our tests, a tactile array sensor is utilized to generate 

tactile images during interaction with objects and the results 

have proven the feasibility of our proposed framework. 

I. INTRODUCTION 

Eyes and hands are both capable assistants for us humans 
and they two always coordinate to fulfil complex tasks, e.g., 
grasping, exploration and object recognition, etc. 
Accordingly, vision and the tactile sensations of hands are 
synthesized during our perception of the ambient world. When 
we intend to grasp and/or manipulate objects with our hands, 
we tend to fixate on a target to have a glance at it first with our 
eyes to get some key features, i.e., corners, edges, curves, 
textures and key points. While once we grasp it, these distinct 
features become unobservable because vision is occluded by 
the hand. Therefore, vision becomes no more sufficient, 
especially when manipulated objects are smaller than the 
hand. In these cases, touch sensation of our finger pads or the 
palm can assist us to make up this information loss: 
corresponding features are sensed in the tactile modality; 
positions and poses of objects in our hands can therefore be 
inferred. By tracking and matching these clues through vision 
and tactual sensation, our hands can be adapted swiftly and 
perform grasps flexibly. Similarly, during exploration in 
unknown environments, eyes direct the movement of hands to 
targets in general situations whereas conversely fingers act as 
"eyes" to perceive object properties in dark situations or when 
we fumble in narrow places. Furthermore, for object 
recognition, eyes provide initial information of the object, e.g., 
its size and general shape, while tactile discrimination 
supplements these features with texture and more detailed 
shape. From all these examples, it can be noted that prominent 
features serve as a bridge between the vision and tactile 
sensing, making the hand movements consequent. 
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Fig. 1. Left: Experimental setup, which consists of a webcam (not shown here) 
and a tactile sensor attached to a manipulator. The test object is selected as a 
3D print gecko model. Right: Localization flow to localize the tactile reading 
in the visual map/image of the object. 

The aforementioned mechanisms have been partly proved 
in neuroscience and psychophysics. Thanks to the functional 
Magnetic Resonance Imaging (fMRI), researchers have found 
that certain regions of human brain cortex are shared by both 
visually and haptically originated representations of objects. 
Zangaladze et al. [1] confirmed the truth that visual cortical 
processing is involved in normal tactile perception, i.e., 
discrimination of orientations in this case. Amedi et al. [2] 
gathered evidence that indicates vision and touch indeed share 
the same shape representations in the cortex, which bounds 
vision and tactile modalities together to generate a coherent 
percept. Though the exact level of bimodal shape 
representation (basic features level or holistic object shape 
level) in cortex still has not been revealed until now, it can be 
concluded that visual and haptic inputs share certain 
processing of object representations in our brain. To employ 
this idea in robotics, we propose to use same feature 
descriptors in both vision and tactile sensing to localize the 
tactile features in visual images. Fig. 1 depicts our 
experimental system: a webcam (not shown in the figure) and 
a tactile sensor are utilized to obtain visual and tactile images 
of objects respectively; a Phantom Omni haptic device to 
which the tactile sensor is attached is employed to acquire the 
positions of the tactile sensor. The remaining paper is 
organized as follows. The related research is reviewed in 
Section II, including current methods to fuse vision and tactile 
sensing, the state-of-art in shape recognition based on tactile 
images and robotic localization methods. The approach to 
localize tactile readings in visual images is introduced in 
Section III. A set of experiments are carried out to evaluate our 
method, as described Section IV. Finally, the paper is 
concluded in the last section. 

II. RELATED WORK 

A. Integration of vision and tactile sensing 

In robotics, the attempts to fuse vision and touch to 
recognize and represent objects can be dated back to decades 
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ago. Most of the researchers only take tactile sensors as 
devices to verify contacts due to their low resolution. For 
instance, Allen [3] supplemented object surfaces created by 
3D vision with simple contact sensing to confirm object 
geometry profiles. However, due to low resolution of the 
tactile sensor, it was only used to verify specific features, i.e., 
holes, cavities, and obtain relational constraints of these 
features. Yeung et al. [4] also assisted vision with haptic 
exploration to determine 3D positional parameters in 
relatively structured environments, and tactile sensing 
performed a similar role. Recently, Ilonen et al. [5] proposed 
an optimal estimation method to learn object models during 
grasping via visual and tactile data by using iterative extended 
Kalman filter (EKF): visual features are first collected to 
create an initial hypothesis, then tactile readings are gradually 
added to refine the object model.  A similar work was carried 
out by Bjorkman et al. [6] but Gaussian process regression 
was utilized instead. However, in both of their work, tactile 
measurements were still used to test whether and how the 
robotic hand is in contact with the object. Some other 
researchers attempted to combine visual and haptic 
information to estimate the pose of an object [7]. However, to 
the best of our knowledge, there still has no work been done to 
take both visual and tactile readings as images and utilize the 
same descriptors to extract features through two modalities for 
object contact estimation. 

B. Tactile image based shape recognition 

Thanks to the increasing spatial resolution and 
spatiotemporal response in last few decades [8], tactile sensors 
have demonstrated the ability to serve as an “imaging” device. 
Schneider et al. [9] took tactile images as features directly to 
recognize objects in a framework of Bag-of-Words (BoW) 
originated from computer vision. In the same framework, 
Pezzementi et al. [10] took one step further: multiple kinds of 
features were extracted from tactile readings and their 
performances were compared. And they also proposed a 
mosaic method to synthesize local geometric surfaces 
obtained from tactile images to recover the object-level 
geometric shape using histogram and particle filters [11], in 
which the objects were a set of raised letters. Liu et al. [12] 
recognized objects by classifying local features through the 
covariance analysis of pressure values in tactile images. The 
authors also contributed a method to recognize contact shapes 
by using neural network [13]. In [14], moment analysis and 
principal component analysis were used to create 
low-dimensional features for tactile contact patterns. All of 
these works show the potential to integrate tactile readings 
with visual images. 

C. Robotic localization in a map 

The robotic localization problem has been known as 
simultaneous localization and mapping (SLAM) and many 
researchers have put their effort into it. Until now, most of the 
work has been done with visual inputs [15] whereas only a few 
researchers explored to localize the  robot with the tactile 
information and single tactile modality was used in their work 
[16]–[18]. A “haptic map” was created from the tactile 
measurements during the training and it is used to localize 
features (bump, snap and grommet in their case) embedded in 
flexible materials during robot manipulation [16]. Fox et 
al.[17] introduced the grid based SLAM to robotic navigation 

with biomimetic whisker sensors by deriving timing 
information from contacts and a given map about edges in a 
small arena. Li et al. proposed to localize tactile images with a 
height map via image registration to help localize objects in 
hand [18].  However, there is still no work present to 
demonstrate localizing tactile features in a visual map. 

Compared to the previous work, our contributions can be 
summarized as: 

1) A framework to localize tactile readings in visual 

images using recursive Bayesian filtering is proposed and 

verified. 

2) Feature descriptors of the same type are first 

extracted for both visual and tactile images. 

3) A novel approach is provided that is promising to 

facilitate robotic grasping and other manipulations in 

hand, by integrating visual and tactile information. 

Fig. 2. Robot object interaction for localization and the data flow. Left: 
prediction of the contact location in the visual map, with the red region as the 
most probable contact location. Right: control and measurement update. 

III. METHODOLOGY 

A.  Overview 

To perform the manipulations in hand consistently, it is 
important, but also tricky, to build up connections between the 
tactile and visual sensations as the robotic hands always 
occlude the vision. Thus it is aimed to find correspondences 
between vision and tactile sensing. The visual image of the 
object is treated as a map and it can be obtained prior to hand 
operations. As tactile exploration is carried out, the relative 
location of the robotic finger to the object, which cannot be 
sensed directly, is inferred in the light of the tactile 
measurements and the movements of the finger. Based on this 
pipeline, the problem is viewed as a matter of estimating the 
location of a robot in a map; thus a recursive Bayesian 
estimation process from the mobile robotics is employed. 
Following the notations in [19], the problem is restated as 
follows. To acquire the information about the location (state) 
xt of the tactile sensor in the world m (visual image) at each 
time step t, the tactile readings zt (sensor measurements) and 
movements of the tactile sensor ut in the 3D space (control 
actions) are collected to calculate the belief distributions  over 
possible locations (states). For simplicity, there are a set of 
assumptions: both the robot base coordinate and the object 
keep fixed during the exploration, which makes the map static; 
the tactile sensor possesses a planar surface and the sensing 
elements are evenly distributed, which enables it to act as a 
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tactile “camera”; the explored object has a surface with 
distinct 2D features in a plane, perpendicular to which the 
tactile sensor is as it interacts with the surface; and the 
exploration process is assumed to take place in a hidden 
Markov Model (HMM). 

Fig. 2 depicts the tactile sensor-object interaction for 
localization. As the tactile sensor explores the object surface, 
tactile images are acquired from each interaction and its 
positons in the world coordinates can also be obtained from 
forward kinematics of the robot. However, due to corruption 
by noise of the measurements or unmodeled exogenous effects, 
the relative location of the tactile sensor in the object map 
cannot be calculated in a deterministic form. Thus a recursive 
filtering process is taken to compute its belief distributions 
over possible locations in the object map based on the 
measurements and control data, which results into two steps 
shown in Table 1. The input for calculating the belief bel(xt) at 
time t is the belief bel(xt-1) at time t-1, new control action ut and 
new measurement zt. The control update is first carried out to 

get the belief 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) , only incorporating the control ut. 

𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) is obtained by the integral (sum in discrete case) of 
the product of the prior 𝑏𝑒𝑙(𝑥𝑡−1) and the probability that the 
control 𝑢𝑡  induces a transition from 𝑥𝑡−1  to 𝑥𝑡 . Then the 
measurement zt is involved to calculate the final belief 
𝑏𝑒𝑙(𝑥𝑡) , which is called measurement update. The belief 

𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) from last step is multiplied by probability that the 
measurement 𝑧𝑡  may have been observed for each 
hypothetical posterior state 𝑥𝑡 . As the resulting product is 
generally not a probability, the result is normalized to be 
integrated to 1, with the normalization constant η. Besides, to 
calculate the posterior belief recursively, an initial belief 
𝑏𝑒𝑙(𝑥0) at time t=0 is required as the boundary condition. In 
our case, we assume there is no knowledge acquired before the 
exploration; therefore, the probabilities are evenly distributed 
for all the locations in the object map. 

B. Motion model 

As described in [19], there are two probabilistic motion 
models p(xt | ut, xt-1): one is acquired from the velocity data 
whereas the other is derived from odometer information. In 
our case, the localization device takes a role of odometer: the 
world coordinates of the center of the tactile sensor at each 
point are recorded and thus the travelled distance and turned 
angle at each time step can be computed. And the state 
transition distribution is modeled by a locally-weighted 
Gaussian distribution defined with respect to the nearest k 
states (k=8 in our case) to xt, measured in Euclidean distance. 

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)~𝜨(𝒙𝒕; 𝒙𝒕, ∑ 𝑥𝑡), 

where 𝜨(𝒙; 𝝁, Σ)  denotes the Gaussian probability density 

function over x with mean 𝜇, and covariance Σ. 

Fig. 3. Motion model in the image map. The motion of the tactile sensor is 

noisy, modeled in Gaussian distribution. In the estimation of state xt-1, the 
brighter the pixel is, the more probability is assigned to that the sensor moves 

to this location at time t. 

C.  Feature-based measurement models 

The normalized cross correlation method is first attempted 
to calculate the distance between each tactile image and each 
sliding window in the visual image. However, due to its poor 
performance, we turned to use more advanced and richer 
feature descriptors to compute the distance. The detailed 
measurement model is described as follows. 

There are already multiple feature descriptors created to 
represent visual images as discussed in  [20]. However, there 
are still no feature descriptors tested by both visual and tactile 
images. Taking the invariance to translation and rotation into 
consideration, it is proposed to adapt the widely used Scale 
Invariant Feature Transform (SIFT) descriptors [21] in 
computer vision to both scenarios. To simplify the problem, it 
is assumed that the transformation between the visual images 
and objects is already known, which means that the real 
dimension and shape of the object can be recovered from the 
image. It is a reasonable assumption as the development of 
depth sensor cameras and consequent processing already 
makes it a reality. For tactile sensing, the real dimension and 
shape of the interacted object can be mapped to the tactile 
sensor directly; thus there is no transformation needed for 
tactile images. In classic SIFT algorithms, key points, e.g., 
corners, are first detected and a multitude of distinctive 
features can be obtained in one image due to affluent 
information. However, there is scant information and much 
less such features can be extracted from each tactile image. 
Based on these ground truths, the procedures of scale-space 
pyramids and key point localization are removed as in [22]. 
And to make it more robust, each tactile image is segmented 
into three overlapped sub-images of the same size and one 
SIFT descriptor is extracted from each sub-image, taking 
sub-image centers as “key points”. More details can be found 
in our previous work [23]. Different from classic SIFT 
descriptors with a dimension of 128, descriptors of 32 
elements are obtained instead in our case by reducing 
sampling areas from a 4×4 grid to a 2×2 grid, to minimize the 
computation time. However, there is no significant 
performance deterioration observed in our experiments, 
compared with the classic 128-element SIFT descriptors.  

The same approach is also applied to the visual images, 
extracting three SIFT descriptors from each sub-image. A 
sliding window with a size of the tactile image is carried out to 
get the matching probability for each pixel. As shown in Fig. 
4, three SIFT descriptors fi,j,m are obtained from the region 
starting with the pixel pi,j. And the distance between this 
sub-image and the tactile image zt at time t is gained by 
calculating the Euclidean distances between these three 

     𝑏𝑒𝑙(𝑥𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) 

Algorithm Bayes_filter(bel(xt-1), ut, zt): 

for all xt do 

     𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 

endfor 

return bel(𝑥𝑡) 

 

Table 1 The Bayesian filtering framework 

𝑥𝑡 

𝑥𝑡−1 



  

descriptors and features ft,n extracted from the tactile reading zt 

as in (1). 

          d(𝑝𝑖,𝑗 , 𝑧𝑡) = ∑ ∑ ∑ (𝑓𝑖,𝑗,𝑚
𝑘 − 𝑓𝑡,n

𝑘 )32
𝑘=1

3
𝑛=1

3
𝑚=1  (1) 

The probability 𝑝(𝑧𝑡|𝑥𝑖,𝑗,𝑡)  that the measurements zt at 

time step t can be induced at state xi,j is calculated in (2). The 
parameter 𝜂′ is the normalization factor, similar to the one in 
the Table 1.  The posterior probability 𝑏𝑒𝑙(𝑥𝑡) can thus be 
obtained. 

                        𝑝(𝑧𝑡|𝑥𝑖,𝑗,𝑡) =
𝜂′

𝑑(𝑝𝑖,𝑗,𝑧𝑡)
  (2)  

Fig. 4. Feature matching between visual and tactile images. (a) A sliding 
window (marked with red rectangle outline) in the visual image, with a start 

point marked red. (b) Tactile image zt at time t.  

IV. EXPERIMENTS AND RESULTS 

A. Experimental setup 

The experimental setup comprises three parts: a webcam, a 
tactile sensor and a Phantom Omni device. The image from 
the webcam is resampled into a resolution of 120×120. The 
resistive tactile array sensor is from Weiss Robotics and it 
consists of 84 sensing elements evenly distributed in 14 rows 
and 6 columns. It has a size of 51 mm × 24 mm as a whole and 
3.4 mm square for each cell. The sensor is covered by elastic 
rubber foam to conduct the externally applied force. The 
Phantom Omni device serves as a robotic manipulator, to 
which the tactile sensor is attached. And the position of the 
stylus tip is obtained by the forward kinematics based on the 
robot base frame, which is taken as the position of the tactile 
sensor center. 

To test our algorithm, objects with distinct features in a 
plane are first used in elementary experiments. As a first trial, 
we took a pair of scissors as our experimental object. The good 
localization performance proves the feasibility of our method, 
but due to the limited space, the results are not present here. A 
3D printed gecko model with more features is utilized to 
further test our algorithm, illustrated in Fig. 1. The gecko has a 
2D shape that protrudes from the base 4mm. The tactile sensor 
is controlled to press it at multiple steps to follow the surface 
of the gecko. During each interaction the sensor plane is kept 
normal to the surface of the gecko. 

The raw readings are preprocessed in two steps: 1). if in a 
tactile image the maximum value is lower than the specific 
threshold or the sum of all elements is smaller than a 
predefined decision value, it is considered as collected 
unintentionally and deleted. 2). the readings are then 
normalized to the maximum value of each tactile image, 
hence, falling into [0, 1]. The tactile images are resized to the 

scale of the visual image, 42×18 in our case. As described in 
Section III C, three descriptors are extracted from one tactile 
image, with a sample sub-patch size of 18 and a grid spacing 
of 9. A sliding window is used to match the segmented 
sub-images with the input tactile readings and the obtained 
probability is assigned to the starting pixel of each sub-image. 
But the use of this method brings a significant computational 
burden, therefore, parallel processing is employed to boost the 
calculation: a set of the sub-images are taken to compute their 
distances to the input tactile image at the same time. 

B. Results and analysis 

An example exploration process is illustrated in Fig. 5, 
taken from the right to the left and from the bottom to the top 
of the gecko. The process is divided into six steps thus results 
at seven locations are present, with the first column at the 
initial position. The tactile sensor stays at each location for a 
certain time and 20 readings are thus collected at each location. 
In the first row of Fig. 5, sample tactile images at each step are 
illustrated. It can be noticed that even though the resolution of 
the tactile images is still low, certain features can be observed 
in each image. The corresponding ground truth locations of 
the tactile sensor are shown in the second row. And the 
probabilities of the tactile sensor at different states are 
illustrated in the third row.  

Before the exploration process, the probabilities are evenly 
distributed over all the possible states (not shown in Fig. 5). 
However, once the exploration process starts, the sates 
occupied by the gecko show larger possibilities over the other 
states, as shown in the first probability map in the third row. 
But due to the inaccurate feature matching, it is hard to 
determine which part of the gecko being interacted. Along 
with the exploration process, the probabilities converge. Every 
time one new measurement is taken, the more certain the robot 
can determine the location of the pressed part. However, the 
movements of the tactile sensor deteriorate the tendency at the 
same time.  At the end of the exploration process, the robot can 
locate the tactile sensor in the gecko map with a large certainty. 
The localization performance is calculated by the difference 
between the estimated most probable location of the tactile 
sensor and the ground truth locations, as shown in Fig. 6. It 
can be noticed that the localization errors tend to decrease 
through the localization process. 

 

Fig. 6. Localization performance with respect to number (#) of steps of touch, 

and the localization errors are found to decrease through the whole process.  
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In total, 22 experiments are carried out in a similar manner, 
but the tactile sensor explores the gecko model in different 
exploration paths. In other words, the tactile sensor interacts 

the gecko at the same locations as the ground truths shown in 
the second row in Fig. 5, but in different orders. In most of 
them, a good localization performance has been achieved in 

Fig. 5. Sample localization process and results. First row: obtained tactile images at each step; Second row: corresponding ground truth locations of the tactile 
sensor (marked as red) in the visual map of the gecko. Last row: Corresponding probability distribution of locating the tactile sensor at different states.  
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Fig. 8. Number (#) of datasets with different steps to achieve good 
localization performance, it can be noted that the robot can mostly localize 

itself within 4 steps. 

 

Fig. 7. Number (#) of datasets with different localization errors, it can be 
noted that in most trials a good localization can be achieved within six steps. 

 



  

limited six steps and the robot can locate itself with an error of 
less than 5 mm. There are only two exceptions in which the 
robot locates itself with a large error through the whole 
process. The probable reason for how it happens is that the 
influence of large rotation and translation noises 
counterweighs the benefits of the new input tactile readings. 
The histogram distributions of datasets with different 
localization performance are illustrated in the Fig. 7. Among 
the datasets in which good performance can be achieved (the 
robot can locate itself within 6 steps), the number of steps to 
achieve satisfactory localization results is also counted, as 
shown in Fig. 8. It can be found that the robot can mostly 
localize itself within 4 steps. To conclude, the experimental 
results prove the feasibility of our proposed framework in 
localizing the tactile sensor in a visual object map. 

V. CONCLUSION AND FUTURE WORK 

This paper proposes a novel approach to integrate the 

vision and tactile sensing via localizing the tactile readings in 

the visual object image, which is viewed as a matter of 

locating a robot in a map. The recursive Bayesian filtering is 

employed to estimate the belief distributions over all the 

possible locations in the visual image. The movements of the 

tactile sensor are treated as odometer readings and the 

Gaussian noises are used to model the motion. In 

measurement update, revised SIFT descriptors are extracted 

from both the tactile and visual images and the belief 

distributions are updated by feature matching. The algorithm 

is tested by locating a moving tactile sensor in a visual object 

map and it is proved that the relative location can be inferred 

with a recursive filtering process. It provides a promising 

approach to facilitate robotic grasping and hand 

manipulations by integrating both visual and tactile 

information. 

Due to the early stage of this research, there are several 

directions for future work. In this paper, a Phantom Omni is 

used as a manipulator whereas its dimension constraints its 

movement space. Thus a robotic hand will be involved to test 

wider applications of our method. As the high computational 

SIFT descriptors are employed here, it cannot be applied to 

the swift manipulations in hand directly thus low dimensional 

descriptors can be attempted and used instead in future. 

Besides, the object is fixed in the robot base coordinate 

system in our case but in real scenarios objects are always 

translated and rotated by the hand. It induces more noises to 

the motion model, which is worth being further probed in 

future work. 
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