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This approach Bingham free-surface interaction withpaper presents purely Lagrangiana for the 3D simulation of uids and their deformable solid structures.
In the the is the Particle Element theproposed strategy,numerical uid handled using Finite Method (PFEM) to tackle issues resulting changesfrom extreme of
geometry, techniquesuch as asmesh free-surfacedistortion and evolution. Additionally, the Papanastasiou model is employed a regularization to overcome the
computational diculties associated with classical Bingham hypoelasticthe model. the is theThe solid structure, on other hand, represented by constitutive model
and andsimulated (FEM). uidusing Methodthe conventional Finite Element The coupling between the the is calledstructure achieved approach,via a monolithic
Unied correctness proposedformulation. Several tonumerical presentedexamples are illustrate the and the therobustness of formulation, in 2D inand 3D. Special
attention to computational regularization resultsis devoted the the theanalysis of convergence behavior of proposed framework, eectthe of the on the numerical
and detailed and data that andthe 3D eects. Moreover, comparisons between the simulated results experimental are performed so the concerned problems results
can benchmarks.serve as

1. Introduction

This forwork a three-dimensionalpresents (3D) numerical method
the simulation and withof free-surface Bingham uids their interaction
elastic structures.

The most studiedBingham model [8] is one of the and used non-
Newtonian law simulation[2]. has beenIt so-far applied to the of a
wide range engineering debrisof problems, such as ows [42,57,68],
landslides , avalanches ,[16,61] snow [9,18] mud ows [36,39] and
fresh thecement testsslump [14]. The attractiveness of Binghammodel
lies simplicity generality.in its and Indeed, the Bingham be-material
haves under whereas, whenlike solida a threshold stress value, the
yield to uid. tostress exceeded,is it starts ow as a Owing this fea-
ture, the Bingham model is very popular for simulating uid solutions
with solid/rigid particle suspension. Nevertheless, the single-phase ap-
proximation materials onlyof multi-phase is reasonable under certain
conditions, segregationfor example a macroscopicwhen phase is not
produced [30,34,53]. From the computational point of view, the main
drawbacks are associated piecewiseof the Bingham law with its relation
between indeterminatethe the thedeviatoric stress and strain rate, and
value of ofstress stressunder the yield limit. Notably, the use the more
general modelHerschel-Bulkley [25] does not help to avoid this com-
putational diculty. regularizedFor this reason, a Bingham model has
been used in this work. In the last decades, several regularized Bing-
ham methods beenhave proposed, such as the augmented Lagrangian
approach [18,21,56], ,the biviscous model [18] and the regularization
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strategies Bercovierproposed by and Engelman [7] and Papanastasiou
[52]. The modelPapanastasiou succeeds in regularizing the Bingham
model with good accuracy, when appropriate values of the regulariza-
tion parameter are methodused. theAlthough suers from some nu-
merical ill-conditioninginconveniences ( .e.g the of the systemlinear
[62] and the the theincapability of reproducing quiescent state when
uid ofis isat rest [45]), the Papanastasiou model still one the most
used methods, dueregularization to the easiness of its implementation
in uid dynamic Papanastasiou appliedsolvers. The model has been to a
wide range engineering problemsof successfully, e.g. .in [1,14,43,44,64]
These useconsiderations have themotivated of this regularized method
in the present study.

In particular, model implementedthe Papanastasiou has been into a
three-dimensional Element(3D) Particle Finite Method (PFEM) frame-
work dynamics . Thefor free-surface uid [49] numerical simulation
of uid ofa free-surface is complex because the continuous evolution
of its ofboundaries. In case using solvingan Eulerian strategy, this
must capablebe bycomplemented a techniquespecic of tracking the
uid orfree-surface step, Levelat each analysis such as Set method [9]
Volume LagrangianOf OnFluid (VOF) .[37] the contrary, strategies,
computing updating continuouslyat the material andpoints their po-
sitions, detect automatically the the Nevertheless,free-surface of uid.
a Lagrangian mesh cannot solve large deformation processes [72] be-
cause of the mesh there threedistortion. Generally, are possible ways
to toovercome inconvenience:this avoid the use of a computational
mesh, remesh.to hybrid touse an Eulerian/Lagrangian strategy, or
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The Smoothed-Particle Hydrodynamics (SPH) [38] belongs to the rst
category. See [26,40,54,63] for the application of this mesh-less method
to landslides otherand mud ows simulations. On the hand, both the
Material Point (MPM) andMethod [66] the thePFEM2 t[4] in second
class. xed meshThese approaches use an Eulerian for computation,
while a particles tracking deform-cloud of Largangian allows for the
ing MPM andcomputational domain. For applications of the PFEM2 to
landslide ,simulations refer to [3,55] and [5] respectively. Finally, the
PFEM [50] adopts latter tothe strategy, that is regenerate completely
the mesh reaches thresholdwhen it a prearranged of distortion. The
PFEM pasthas been already applied in the for simulationthe of nat-
ural hazards free-surfaceinvolving geophysical uids, see for example
[15,32].

The strategy, whichPFEM is based on an ecient remeshing allows
to throughoutdispose a elementgood nite mesh the theduration of
computation, bodieseven when highly deforming are addi-involved. In
tion, the thePFEM remeshing strategy allows to detect contact between
uid ofand Thissolid domains. is paramount importance for solving
uid-structure problems.interaction (FSI) In this work, the FSI solution
is obtained monolithic formulationthrough a strategy, called Unied
[23] [28]. The method is derived by the original algorithm presented in .
The idea Unied solidsmain of the formulation is to compute uids and
according Updated Velocity-Pressureto the same Lagrangian implicit
solver. However, while the the remesheduid ofparts domain are with
the the the mesh thePFEM, structural parts maintain same for all du-
ration and withof the analysis are solved the standard Finite Element
Method (FEM). to introductionThis is done avoid the of interpolation
errors theinto solid variables computation.historical

To the the the therebest of authors’ knowledge, in literature are
very few interactingsolvers free-surfacefor non-Newtonian uids with
deformable are tacklingstructures, even lessand those capable of 3D
geometries. MethodIn [33], the Lattice–Boltzmann (LBM) [65] is used
to simulate against walls.the impact geophysicalof ows rigid An hy-
brid Discrete Element (DEM)-LBM-FEM has been employedMethod in
[35] to debris exible permeablereproduce the ow impact over a and
barrier. A problem has beensimilar analyzed in [46] with an Arbitrary
Lagrangian-Eulerian (ALE) softwareformulation and the nite element
LS-DYNA. impact a over aFinally, in [31] and [17] the of debris ow
ring barriernet metallic and highly obstacles,sti elastic respectively,
has been studied generalnumerically. This lack of numerical formula-
tions pooris accompanied by an even more literature experimentalof
tests analyzing non-Newtonianthe impact of uids deformableover bar-
riers.

This work aims to ll the vacuum in this important eld, by present-
ing and fora robust accurate numerical framework computing the inter-
action Binghambetween free-surface structures,uids elasticand and
by proposing numericalsome easy-to-reproduce tests for benchmark-
ing and2D 3D FSI Insolvers eld.applied sameto the order to show
the the theapplicability of formulation to real engineering problems,
numerical geome-examples been consideringhave solved the actual 3D
tries numerical analysesof the tests.laboratory The include the simula-
tion of oftwo fresh tests, theconcrete slump study a bentonite solution
ow ofover impactan inclined plane with/without the a falling object,
and a highlyseries of dam break against an deformable structure ana-
lyzed The resultsfor dierent values of the yield stress. numerical have
been compared either otherto those obtained by laboratory tests or by
numerical numerical are toformulations. The examples also used test
several crucial issues method,of the computational such as the mesh
and and stabilizationthe convergencenon-linear the theeect of pa-
rameter numericalon the results. A special has beenattention deserved
to to planethe the eectsanalysis of 3D and the thevalidity of strain
assumption.

The structure of the article is the following. Section 2 is dedicated
to governing constitutivethe equations of the theproblem and used
laws. Then, essentialin Section 3 the features of the PFEM are recalled
and in is isSection 4 the schemeFSI solution described. Section 5

devoted to numericalthe simulations validation. Finally,and their in
Section 6 the theconclusions of work summarized.are

2. Governing equations

The problemgoverning equations of the consist of the balance of
linear andmomentum the mass conservation. Considering an Updated
Lagrangian framework, readthese equations respectively as

𝜌�̇� 𝝈 𝒃−▽ ⋅ − = 𝟎 in Ω × (0, 𝑡) (1)

1

𝜅
�̇� −▽ ⋅ 𝒗 = 0 in Ω × (0, 𝑡) (2)

where vector,𝜌 is isthe thedensity of material, 𝒗 the velocity 𝝈 is the
Cauchy the thestress tensor, 𝒃 is body volume,force per unit of 𝜅 is
material andbulk modulus p is the pressure. theFinally, Ω denotes up-
dated/deformed computational domain, time. thatand t is the Note the
pressure is indened as positive tensile state.

The mass ( )balance equation Eq. (2) is here solved in the quasi-
incompressible .form, as originally proposed in [28,60] In order to re-
cover standardthe Navier-Stokes problem, an innite material bulk
modulus should resulting fully-incompressiblebe considered, in the
form of the mass (balance equation ▽ ⋅ 𝒗 = 0).

The complementedgoverning equations are by the following bound-
ary conditions

𝑣𝑖 − 𝑣
𝑝

𝑖
= 0 Γon 𝑣

𝜎𝑖𝑗𝑛𝑗 − 𝑡
𝑝

𝑖
= 0 Γon 𝑡 (3)

where 𝑣𝑝
𝑖
and 𝑡

𝑝

𝑖
are velocities tractionsthe and prescribed Dirich-at the

let (Γv) (and Neumann Γt) boundaries, respectively, and n is the normal
vector.

2.1. Constitutive laws

For incompressible materials, it is useful to split the Cauchy stress
tensor into deviatoric volumetricits and parts as follows

𝝈 𝝉= + 𝑝𝟏 (4)

where part second order tensor.𝝉 is the deviatoric and 1 is the identity
For unidimensional deviatoric Binghama steady shear, the stress of a

uid is dened as

𝜏𝑥𝑦 = 𝜏0 + 𝜇
𝜕𝑣𝑥

𝜕𝑦
for 𝜏𝑥𝑦

 ≥ 𝜏0

𝜕𝑣𝑥

𝜕𝑦
= 0 for 𝜏𝑥𝑦

 < 𝜏0 (5)

where 𝜏0 is isthe shear yield stress and 𝜇 the dynamic viscosity.
In this Bingham namely Papanastasiouwork, regularizeda law, the

model to dicul-[52], is used in order overcome the computational
ties non-smooth toarisen by the law described in Eq.(5). According the
Papanastasiou deviatoric3D model, the stresses are computed as

𝝉 = 2


𝜇 +

𝜏0

�̇�

1 − 𝑒−𝑚 �̇� 


𝒅 (6)

wherem is isthe regularization parameter, d the deformation rate tensor
dened as

𝒅 =
1

2


▽𝒗 +


▽𝒗

𝑇 
(7)

and �̇� is the equivalent strain rate computed from the deformation rate
tensor d as

�̇� = (2 ∶𝒅 𝒅 )
1
2 (8)

From comparison between Papanas-a Eqs. (5) (6)and , arisesit that the
tasiou model, unlike Bingham not capablethe law, is of reproducing the
rigid behavior. As uid ow,a consequence, the although it can reach
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an almost cannot stopstatic state, it completely. However, the uid may
reach such restsmall velocities that it can consideredbe at from an en-
gineering perspective, as it inwill be shown Section 5. In this sense, the
regularization approximationparameter rolehas a key for the of the
Bingham straincurve for small values of the shear rate. shownAs it is
in is isFig. 1, the higher m, the better the theapproximation of rigid
behavior Binghamof the original model. regulariza-The eect of the
tion on beparameter the numerical results will analyzed and shown in
a couple studied . hasof problems in Section 5 Note thatm the dimension
of ofthe the thetime. However, for simplicity, in following dimension
m will be omitted.

It is remarkable regularizedthat Papanastasiouthe law can describe
both Newtonian and New-non-Newtonian Forbehaviors. example, the
tonian law obtained( )𝝈 𝒅= 2𝜇 + 𝑝𝟏 is if isa null shear yield stress con-
sidered in Eq. (6).

For solid computational domain,the parts of the an hypoelastic law
is used. the the the CauchyConsidering Jaumannmeasure, rate of stress
tensor 𝝈▽ is computed from the deformation rate tensor as [6]

𝝈▽ = 𝒄▽𝐽 ∶ 𝒅 (9)

where fourth-orderthe tensor c▽J is the Jaumann tangent moduli
which, for an asisotropic material, is dened

𝒄▽𝐽 = +2𝜅 ⊗𝟏 𝟏 𝐺𝐈′ (10)

where shear fourth-orderG is the modulus and I′ ais tensor computed
as

𝐈 ′ = −𝐈
1

3
𝟏 𝟏⊗ (11)

with I being the fourth-order tensor.symmetric identity
The rate of Cauchy stress 𝝈▽ is inthen integrated time according to

the scheme the Cauchy thedescribed in [24] to obtain stress of solid.

2.2. Discretized problem

The ,governing equations of the problem, Eqs. (1) and (2) are dis-
cretized standardin the nite element afashion. Applying Galerkin
isoparametric discretization nodal prob-of the four unknowns of the
lem, i.e. three components of nodal velocities �̄� and the nodal pressure
�̄�, 𝑡the semi-discretized form of Eqs. (1) and (2) at the time instant 𝑛+1

reads

𝑴𝜌
̇̄𝒗
𝑛+1

+𝑲�̄�𝑛+1 − 𝑭 𝑛+1 = 𝟎 (12)

𝑴𝜅
̇̄𝒑
𝑛+1

−𝑸�̄�𝑛+1 = 𝟎 (13)

whereM𝜌 is isthe mass matrix, K the stiness-type matrix that contains
the the vector.constitutive information, and F is external force The ma-
trix M𝜅 has the same structure as M𝜌 however it depends on the bulk
modulus thanrather the the divergencedensity, and Q is discretized
operator.

Fig. 1. Papanastasiou approximation val-of Bingham curve for three dierent
ues (of regularization parameter m 𝜏0 = =50𝑃 𝜇𝑎, 20𝑃𝑎 𝑠⋅ ).

Linear for bothshape usedfunctions are approximating the velocity
and withthe pressure elds. caseIn of dealing incompressible materials,
this not fulll Ladyzenskaja–Babuska–combination does the so-called
Brezzi (LBB) condition [10] and the problem needs to be stabilized.
In this Finitework, the so-called Increment (FIC)Calculus stabilization
strategy has been The[49] used. method modies the continuity equa-
tion ofin a consistent way to stabilize the problem. Details this method
can be found in [49].

The accelerations computednodal in Eq. (12) are according to the
implicit Newmark integration rule [6] as

̇̄𝒗
𝑛+1

=
2

Δ𝑡


�̄�𝑛+1 − �̄�𝑛


− ̇̄𝒗

𝑛
(14)

where Δt is the time increment.
The computedvariation on time of nodal pressures of Eq. (13) is as

̇̄𝒑
𝑛+1

=
�̄�𝑛+1 − �̄�

𝑛

Δ𝑡
(15)

The fully-discretizedstabilized and form of Eqs. (12) and (13) as well
as the scheme eachimplicit solution are reported in Appendix A. At
time obtainedstep the solution is by a two-step iterative process. More
specically increment(see also Fig. 2), the of the nodal velocities Δ�̄� is
rst resolved according . Then,to Eq. (12) after updating the kinematic
variables, nodalthe pressures �̄� are obtained from Eq. (13). Iterations
are fullledperformed criterionuntil the following convergence is for
both andthe velocity the pressure elds

𝑒𝑎 =
𝑎𝑖+1 − 𝑎𝑖


𝑎𝑖

< 0.0001 (16)

where ea is the theerror associated to variable a, and subindices refer
to the considered non-linear iteration.

3. PFEM Bases

The Element a strat-Particle Finite Method (PFEM) is Lagrangian
egy largesuitable for deformation originallyproblems. The PFEM was
proposed solve free-to Newtonian uid dynamics problems involving
surface last[29]. In the decade, the method tohas been applied a wide
range engineering meltingof problems, ,such as granular ows [69] of
polymers , uid-structure , interac-[51] interaction (FSI) [71] uid-soil
tion of[48] and Lagrangianlandslides . The[16,61] nature the PFEM
enables to capture accuratelythe computational domain regardless of
the theextreme deformation. Meanwhile, ecient algorithmremeshing

Fig. 2. Schematic generic step.representation iterativeof the solution of a time
The solution.subindex i represents the the implicititeration number of

3

Page 3 of 163D numerical simulation of free-surface Bingham fluids interacting with structures usi...

31/05/2018https://reader.elsevier.com/reader/sd/9F6B5AD0195256DA598C5B9A64E95BEC2D...



Fig. 3. Solution scheme generic remeshing.for a step with

ensures the mesh the thepreservation of quality for all duration of anal-
ysis.

Once the the FEMnodal are updated topositions according solu-
tion of(obtained qualityin inthis approach as shown Fig. 2), the the
Lagrangian discretization is checked. If the mesh reached dis-has a
tortion thanlevel higher an imposed discretizationthreshold, a new
is isbuilt. This done by applying serially the Delaunay Triangulation
(DT) [20] and the DT theAlpha . TheShape (AS) method [19] rebuilds
discretization high tessellation.ensuring an quality For example in 2D
meshes, the theit maximizes minimum and minimizesinner angle max-
imum of AS allowsone each the thetriangle. On other hand, method
for the the therecognition of physical boundaries of domain. The AS
method elemental simplexperforms an check for each of the mesh. In
particular, discretizationthe theelement is erased from if the following
condition notis veried

𝑅 < 𝛼ℎ (17)

where R is isthe thecircumradius of element, 𝛼 the scalar parameter
that gives to method lengthits name the and h is a characteristic of
the mesh. The Generally,typical value used for 𝛼 is around 1.25. in 3D
cases highera slightly value thisof the chosen.𝛼 parameter is In work,
for forthe 2D 1.25,problems to𝛼 has been set equal while the 3D ones
𝛼 . 𝛼= 1 35 has been a dissertationused. See [22] for about the role of
and for other details of the PFEM remeshing strategy.

4. PFEM-FEM solution scheme fluid-solid interactionfor

The elementscontinuous elimination of the nite produced by the
remeshing, more which histor-makes the PFEM suitable for problems in
ical variables notdo need stored levelto be at the element but on mesh
nodes. This explains model naturallywhy a Bingham can be employed
in it isa PFEM formulation. Note that still possible to use PFEMthe for
constitutive historical elementallaws ondepending variables [47,70].
However, thosein cases, procedure thea for variables mapping from
Gauss Gausspoints of the previous mesh to the points of the new one is

required, and this interpolation intomay introduce errors the numeri-
cal workscheme. These considerations motivated the use in this of the
standard FEM thefor solid solution.

In conclusion, uidsin this approach, and solids are solved mono-
lithically toaccording the schemesame implicit (see Section 2.2 and
Appendix A), updating nodalbut, after the positions for both the uid
and domainthe thesolid, only uid is remeshed. Fig. 3 represents
schematically this solution algorithm.

An of itsadmirable feature the restsPFEM remeshing with auto-
matic of uiddetection the thecontact interface between and the solid
domains. During the procedure, the DTremeshing is performed over a
cloud formedof points by uid butnot only all the nodes, also those
belonging to to deformablethe rigid walls and the solids contours, as
shown .in Fig. 4b With the following application of the AS method, the
new contact elements (elements sharingthat are uid and solid nodes)
are identied ). are(Fig. 4c In this study, the contact elements computed
as uid elements.

It is important note that guaran-to the PFEM remeshing strategy
tees nodes (seethat, at the interface, uid and solid are overlapped
Fig. 4c). conforming algorithmThis mesh facilitates solution,the FSI
in itmonolithic foras staggered becauseapproaches, prevents from the
implementation mapping from oneof a strategy transferto information
material monolithicto the other. theFor example, in proposed approach
it is only solidneeded properlyto assemble the uid and elemental con-
tributions into the linear forsystem, as a standard FEM.

Fig. 4 also PFEM remeshingshows drawbacksone of the main of the
procedure. the the mesh,In fact, after creation of new new elements may
be may beincluded in the computational domain, while others erased.
This induces changes and,articial local of uidthe geometry globally,
a mass conservation. problemlack of Although this is an endemic of
the erased, thePFEM and it cannot be completely it aects marginally
numerical suciently nesimulation if a mesh used, thereis and also
exist eectssome techniques able to limit its [22].

5. Numerical examples

This section shows the application of the proposed numerical ap-
proach severalto problems involving uids.non-Newtonian First, the
dam break uids elastic toof Bingham against an barrier, is used analyze
several concretecrucial issues Then,of the numerical formulation. two
slump are simulated numerical are validatedtests in 3D and the results
with the theexperimental ones. Finally, ow of a bentonite solution
over studied consideringan inclined plane is in 2D as in 3D, also the
impact object.of a solid

5.1. Dam break impact against an elastic barrier

The dam a viscous abreak of uid against deformable membrane
is in inhere studied for dierent values of yield stress 2D as aswell
3D. analyze some importantThe test is used to aspects proposedof the
numerical approach, such as the mesh and the non-linear convergence,
the the theeect of regularization parameter m on numerical results,
and the the3D eect given by lateral connement. Furthermore, this

Fig. 4. Representation withof the PFEM thescheme detectingfor contact the solid boundaries.
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Fig. 5. Dam anbreak against elastic barrier. Initial geometry.

example show strategyaims to the application of this Lagrangian to an
unsteady ow regime and to numericalpropose results benchmarksas
for and2D 3D FSI analysis Binghaminvolving free-surface uids. The
problem a benchmarkis modication of the for FSI analysis proposed
in is[27]. The problem here analyzed locatedwithout the vertical wall
behind elastic membrane Duringthe and for a reduced duration of 0.5 s.
this not wavetime period, the themotion of barrier is aected by the
created by that vertical resultswall, so the are comparable to the ones
of the havebenchmark These[27]. modications been done in order to
reduce Inthe theuncertainty of numerical results. fact, as shown ain
recent the theanalysis of benchmark problem , s[41] after 0.5 numerical
results a unsteadinessstart to diverge as consequence of the uid and the
dierent prediction impact. almost meaningless toof the rst This makes
use second part purposes.the of the example for validation The authors
believe to impactthat capabilitythe reproduce theaccurately rst of
the the theuid stream against barrier tois crucial determine eciency
of the method.

The geometry problem .initial 2D of the is given in Fig. 5
Both non-Newtonian2D 3Dand problems have been studied for

three thevalues yieldof stress, namely Pa25 50Pa, and 100 Pa. Also
Newtonian case, corresponding to 𝜏0 = 0 Pa, has been analyzed for com-
parison arepurposes. The propertiesrest of material the same as in [27].
The .uid and solid data are collected in Table 1 No-slip conditions have
been considered for the rigid walls.

5.1.1. Mesh convergence
The performed problemconvergence analysis is for the 2D using

𝜏0 = 100 Pa. sizes beenSix dierent mean mesh h have considered. Each
discretization numberhas a dierent of elements Thein the solid width.
nest one (ℎ .= 0 002 m) has elements 6 elements24,376 uid and along
the coarsestmembrane width. The one (ℎ .= 0 012 m) composedis of 642
uid elements element width. Theand only one in the solid coarsest and
the meshesnest are shown .in Fig. 6

Table 1
Dam anbreak against elastic barrier. Fluid and solid data.

Fluid data dataSolid

𝜌 [ /kg m3] [ · ]𝜇 Pa s 𝜏0 [ ] [ /Pa 𝜌 kg m3] [ ]E MPa 𝜈 [-]
1000 0, 25, 50, 100 25000.001 1 0

Fig. 7a shows the evolution of the horizontal maximum displace-
ment sixof the thecantilever obtained with tested discretizations. On
the the theother hand, results plotted in Fig. 7b focus on uid dynamic
problem only and represent the evolution on time of the uid front posi-
tion for the preceding the theperiod impact against deformable obstacle.

In Fig. 8a the themaximum horizontal deection of membrane is
given number plotsas a function of the of elements, while Fig. 8b the
percentage computederror, with respect to the solution obtained with
the mesh, the meshnest as a function of size.

The showgraphs clearly the convergence behavior of the numeri-
cal Furthermore,formulation. they theshow that while uid dynamic
problem a discretiza-could be solved with relatively coarse mesh (the
tion with obtained withℎ = 0.004 m approximates well the solution the
nest mesh), a much ner required accuratelymesh is to simulate the
FSI. As shown , deection computed min Fig. 8b the with ℎ .= 0 004 is
almost smallerthe 10% than onethe obtained with ℎ = 0.002 m. Note
that, conformingin the present mesh theapproach, aectsthis choice of
the meshuid size. inconveniences,In fact, in order to avoid topological
such as the meshes theoverlapping of uid and solid or penetration of
uid uidparticles into the solid domain, the mesh theclose to uid-
solid solidinterface must size tohave a similar the one.

5.1.2. Non-linear convergence
It is well that non-Newtonianknown models non-increase the

linearity this importantof the Navier–Stokes problem. In sense, it is to
analyze non-linearthe convergence proposedof the implicit strategy. In
order have the convergence theto an overview of behavior of numerical
method, the non-linear convergence is analyzed at four time instants (t
= 0.05 s, 0.15 s, 0.3 s, 0.5 s), corresponding to dierent phases of the
dam The performedbreak problem. convergence analysis is for the same
problem before ( manalyzed 𝜏 = 100 Pa and ℎ .= 0 002 ).

Fig. 9 collects the pressure errorsvelocity and computed using
Eq. (16). The showgraphs that the convergence of the pressure eld
is generally Theslower than the one of the velocity eld. worst conver-
gence is exhibited (5 velocityat t = 0.3 s iterations for the and for10
the the thepressure). dueThis is to high non-linearity of problem at this
stage. showsIn particular, the uid huge splashes and the solid obstacle
has just deection. otherreached the maximum In all cases, the iter-
ations Thisare no higher than 6. convergence behavior is reasonable,
considering introducedthe high non-linearity by both the Papanasta-
siou and andmodel the FSI, it is close to the theone shown by same

Fig. 6. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). Coarsest and nest meshes used for the convergence study.
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Fig. 7. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). Evolution on time of the cantilever horizontal displacement ( (a), and uid front b).

Fig. 8. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). ( ) solid ( )a Maximum deection obtained with the six dierent meshes. b Percentage error computed
with to meshrespect the nest solution.

Fig. 9. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). Errors of velocity ( ) ( )a and pressure b elds at the non-linear iterations at four time instants.

FIC-stabilized method toPFEM reach the convergence in Newtonian u-
ids problems [49], generallywhere the convergence was reached after
5 conrmsiterations. This the eciency and generality of the proposed
stabilized method.

Note that non-linearthe convergence thehas also eects on mass
preservation properties strategy.of the numerical In this specic case,
the theoverall mass variation after 0.5 s is 1.196% of initial mass. In
particular, the non-linear computation produces an increment massof
equal to 1.734%, whereas induces athe remeshing procedure loss of
0.538%. This for andcan consideredbe a small value such an unsteady
non-linear this magnitudeproblem. Furthermore, of mass variation is
analogous for Newtonian Thisto the one shown in [49] uids analysis.
is a further conrmation of the validity of the FIC-stabilized Lagrangian
formulation for treating also non-Newtonian uids.

5.1.3. Effect of regularization parameter m
As Pa-already ,explained in Section 2.1 and illustrated in Fig. 1 the

panastasiou’s regularization ap-parameter m aects the accuracy theof

Fig. 10. Dam anbreak impact against elastic barrier (𝜏 0 = 100 Pa). Evolution on
time dierentof ofthe horizontal deection the elastic barrier obtained for four
values regularizationof the Papanastasiou’s parameter m.
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Fig. 11. Dam anbreak impact against elastic barrier (𝜏0 = = 1 =100 Pa). Yielded elements are plotted with black color. Results for 𝑚 and 𝑚 1000.

Fig. 12. Dam break rigidimpact against a barrier (𝜏0 = =100 Pa, 𝑚 1000).

proximation Binghamof the curve. In particular, values arehigher of m
needed However,to approximate behavior.well the rigid the parameter
m also aects the quality of the algebraic system. In fact, if a reg-big
ularization parameter large values areis used, of viscosity introduced
into this conditioning.the systemlinear and may itsdeteriorate Hence,
m cannot be chosen as large as desired. With the aim of analyzing the
eect of onthe regularization parameter the thenumerical results, dam
break values spanningproblem is solved with four dierent of m, from
0.1 to 1000. Fig. 10 collects testedthe theresults obtained with four
values of m.

The showsgraph that the solutions obtained with 𝑚 = 100 and 𝑚 =

1000 are almost identical, are exhibitedwhile some discrepancies for𝑚 =

0 1. . highlyHowever, it is worth to note that the eect of m depends on
the test thenumerical taken consideration.in In this specic test, uid
is suering rates duringfrom large strain the whole analysis and this

explains the reduced the theeect of regularization parameter. Indeed,
role uids to stateof m is crucial for close the of rest or, more generally,
when shearthe rate small, analyzedis as in the example that will be in
Section 5.3.

The regularization parameterm also aects the demarcation between
the yielded un-yielded ,and zones. For smaller values of m an higher
strain valuerate to yieldis required reach the 𝜏0 . This is conrmed by
the theresults showplotted in Fig. 11 that yielded elements (drawn in
black) instants.obtained for and four time𝑚 = 1 𝑚 = 1000 at

As expected, the yielded regions obtained with 𝑚 = 1 are smaller
than globally,the ones obtained with 𝑚 = 1000. Despite that, the dier-
ences thebetween two analyses are reduced.

To show designthe potential of the proposed formulation to pro-
tection obstaclebarriers, also solvedthe problem is considering the as
rigid. In Fig. 12 three snapshots of the simulation are given.
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Fig. 13. Dam break impact against elastic barriera (mesh size ℎ . 𝑚= 0 002 ).
Evolution on of oftime the displacementmaximum horizontal the barrier for
four values of 𝜏 0 .

Fig. 14. Dam anbreak against elastic barrier (𝜏 0 = 0 = 0Pa, ℎ .002 m). Evolution
on of oftime the displacementmaximum horizontal the barrier. Comparison to
Walhorn et al. [27], Idelsohn et al. [28] and Meduri et al. [41].

By andcomparing Fig. 12 the left column of Fig. 11, arisesit that
with rigid andthe barrier altitudethe stream arises an higher a reduced
horizontal runout than the case thewith exible membrane. Concerning
yielded elements, a patternsimilar is obtained.

5.1.4. Effect of 𝜏 0
The has beennest mesh used for testing the eect of the yield stress

𝜏 0 on ofthe thenumerical results. In Fig. 13 horizontal deection the
elastic valuescantilever obtained for four of 𝜏0 is plotted. The results
show that higher values of 𝜏 0 delay streamthe collision of the uid
against inertialthe elastic object and reduce its force. consequence,As a
the the reducesmaximum horizontal displacement of cantilever also for
increasing values of 𝜏 0.

The case of 𝜏0 = 0 Pa corresponds to the Newtonian problem already
analyzed in [23]. ,In Fig. 14 the time evolution of the horizontal dis-
placement of the top of the elastic membrane obtained with ℎ . 𝑚 = 0 002

is incompared resultsto the presented [27,28,41].
The results show a agreement2D good to those in the literature, con-

rming solving prob-the theeciency of Unied formulation for FSI
lems.

5.1.5. 3D lateral effects
In eectorder to analyze the of onlateral containment the dam break

evolution, widththe theproblem consideringis solved in 3D channel
equal m). No-slipto obstaclethe theheight of (0.8 conditions are con-
sidered the meshfor all rigid meanwalls. sameThe size ℎ = 0.003 m
(4 elastic membraneelements along the width) has been used for the
2D 3D 11,050and the simulations, leading to triangular nite elements

Fig. 15. Dam anbreak against elastic barrier (mesh size mℎ .= 0 003 ). Evolution
on of oftime the displacement thehorizontal at top the threebarrier for dierent
values of yield stress. 2D and 3D results.

for and forthe 2D problem 801,597 tetrahedra the case.3D Fig. 15 col-
lects the theresults of 2D 3Dand non-Newtonian problems obtained for
three thedierent values of yield stress, namely 𝜏0 = 25, 50, 100 Pa.

The results show dierently examplethat, from the 3D that will be
presented in isSection 5.3, hypothesisthe plane strain not valid for
this non-Newtonian problem. lateral containmentThe reduces the ve-
locity of uid ow itsthe and, consequently, impact force against the
solid membrane is inreduced. As shown the graphs of Fig. 15, the dis-
crepancy the thebetween 2D 3Dand results increasinggrows by yield
stress.

In Fig. 16, resultsthe 3D for 𝜏0 = 100 Pa are given for three time
instants. are plotted com-The velocity contours over the uid and solid
putational domains.

8

Page 8 of 163D numerical simulation of free-surface Bingham fluids interacting with structures usi...

31/05/2018https://reader.elsevier.com/reader/sd/9F6B5AD0195256DA598C5B9A64E95BEC2D...



Fig. 16. Dam anbreak against elastic barrier (𝜏 0 = 100 Pa). 3D results at three
time instants. Pictures locatedin left-hand thecolumn show section yz at 𝑥 = 

0 m = .148 . sectionPictures in right-hand column refer to the xy located at 𝑥
0 m.04 .

The picturestransversal cut at x=0.148m, represented in the left of
Fig. 16, shows clearly the resistance exerted by the lateral containment
on uid ofthe motion. Consequently, deectionthe the 3D elastic mem-
brane is reduced the reached theand horizontal distance by uid stream
is also limited.

5.2. Fresh contrete testsslump

The a experimentslump test is standard laboratory used to deter-
mine the fresh concrete. testso-called workability of The consists of
lling evolutiona conical container with concrete and measuring the of
its ofshape after the removal the test ends therigid container. The when
fresh reaches these tests, theconcrete a state.static In values of interest
are slump formerthe and the the concrete.spread of The is the dier-
ence between latterthe the theinitial and nal uid height, whereas is
the dierence the the thebetween initial and nal diameter measured at
base .of the cone [58] Two standard and widely used slump tests, such
as the so-called Abrams [11] and mini cone [12] tests, are analyzed in
this section. The geometryinitial of the slump is illustrated in Fig. 17.

Instead composedof an homogeneous material, the fresh concrete is
by of uida suspension solid grains in a matrix. From the computational
point view, this possibilities,of opens two namely, computingeither it
as a consideringone-phase uid material, or modeling it the interaction
with the suspended the theparticles in uid. An overview regarding
dierent concretecomputational techniques for fresh modeling has been
made .in [59] In this work, the former approach is used. Furthermore,

Fig. 17. Initial cone shape for slump tests.

Table 2
Abram slump test. Geometrical and aterialm data.

Geometrical data dataMaterial

H0 [ ]m D0 [ ]m d0 [ ] [ /m 𝜌 kg m3] [ · ]𝜇 Pa s 𝜏0 [ ]Pa
0.3 0.2 0.1 2200 255 32

Fig. 18. Abram Velocityslump test. contours overplotted the deformed cong-
uration at three dierent time instants.

both withslump are null interactiontests modeled considering the the
container no-slip conditionsand for rigid planthe over which the fresh
concrete spreads. theThe regularization parameter m of Papanastasiou
model is set equal to 1000 in both cases.

5.2.1. Abram test
The generallyAbram slump test is used for fresh concrete rather than

cement pastes . The geometry[58] information and the material param-
eters providedare in Table 2.

The problem has been solved in 3D using tetrahedral meshes of three
dierent order convergentsizes in to verify the behavior of the method
and reliabilityto assess the of ofthe PFEM results the mesh.nest Specif-
ically, arethe mesh themean sizes used in simulations 0.015 0.01m, m
and m, and0.0075 corresponding to 15900, 54464, 129818 tetrahedra,
respectively.
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Fig. 19. Abram slump test. Pressure plottedcontours over the central section
at three dierent time instants.

Fig. 20. Abram slump test. Evolution on of ob-time the spreading diameter
tained three Experimentalfor dierent meshes. values from [14].

In Fig. 18 three therepresentative snapshots of simulation are pro-
vided. theThe velocity contours overare plotted deformed congura-
tion of uid 0.5 5.0the at the time instants t = s, t = s and t = 40 s.

As owsshown, the material immediately when the container is re-
moved, and the process proceedswhole in an asaxisymmetric manner
expected. theThe top surface rst owns maximum velocity shortly after
the decreases therelease ( which howeverFig. 18a), as spreading pro-
ceeds ( shows depositFig. 18b). Fig. 18c the of the fresh concrete at the
last instant numericalof the simulation ( stage,t=40 s). At this the ma-
terial times than onediameter almostis three larger the initial and the
material materialow is very close (theto stop velocity is smaller by
three orders the theof magnitude than velocity obtained at initial phase
of the test).

Fig. 19 shows contours sectionthe pressure of the XZ for the same
time instants considered in Fig. 18. The pictures show middlethat the
part of owthe always maximumpossesses the pressure thethroughout
whole slumping procedure.

The showsgraph of Fig. 20 the evolution on time of the spreading
diameter numericallyobtained with andthree meshesdierent exper-
imentally Althoughusing 4C-Rhometerthe [67], .as reported in [14]
there discrepancy theexists a certain with respect to experimental re-
sults, the even3D annumerical simulation shows acceptable agreement,

Table 3
Mini slump test.cone Geometrical and material data.

Geometrical data dataMaterial

H0 [ ]m D0 [ ]m d0 [ ] [ /m 𝜌 kg m3] [ · ]𝜇 Pa s 𝜏0 [ ]Pa
0.05 0.07 4.018 18.01820.1 2252

when coarse use. userelatively meshes are in This validates not only the
of buta multi-phasesingle-phase approach for modeling this material,
also PFEM developed study.the three-dimensional framework in this

It is inworth commenting smallabout the jumps shown the numer-
ical curves the theof Fig. 20. These are due to PFEM way of modeling
uid uid motionadvancement. With the PFEM, the front is determined
by of by ofthe creation a elementnew boundary and not the slip the
wall nodes produces(as andshown )in Fig. 4 this the non-smoothness
of ofthe curve.front evolution See [22] for a detailed analysis this and
other issues related remeshing, non-smoothnessto the PFEM such as the
of or uidthe free-surface the adherence/departure from/to the solid
boundaries.

5.2.2. Mini cone test
The generally determinemini cone slump test [12] is used to the

workability informationof cement pastes. Table 3 shows the regarding
the thegeometry and material properties.

A has beentotal of 105187 tetrahedra used for the PFEM solution.
Fig. 21 shows show morefour time instants of the 3D simulation. To
clearly the the thresholdstoppage of uid, a of 0.0005 ism/s imposed
to plotted nodalthe velocity contoursnorm in the thegures. If ve-
locity colornorm exceeds redthat limit, the is plotted. illustrated,As
the procedure theslumping is insimilar to that observed Abram test,
however, due cementto the reduced theviscosity of paste, the slump is
accelerated. In Fig. 22, the time evolution of the uid diameter of the
material and nalis plotted compared to the expected diameter accord-
ing m) and obtainedto the testexperimental [67] (D = 0.2249 to that
considering ( Thethe axisymmetric approximation in [14] D=0.220 m).
graph method toshows that the proposed computational is capable pre-
dict the thetotal spread of cement past accuracy.with a very good
The shows agraph also that, even if Papanastasiou formulation cannot
reproduce theexactly quiescent state, canone easily understand when
the the occurs, the thestoppage of uid ow at least for used value of
regularization thisparameter ).(𝑚 = 1000 In specic case, canit be as-
sumed a 5 releasingthat the uid reaches state of rest after around s the
of the container.

5.3. Flow a aof bentonite solution on slope

In [13] a experimental results aseries of for the ow of bentonite
solution thisover an inclined plan is reported. In work, two of these
laboratory tests have reproducedbeen and andcalled Case A Case B.
The schematic shown .illustration of the test is in Fig. 23

In [13] the bentonite solution has been characterized by two values
of apparent yield stress, the biggest one, 𝜏 l , for the loading process and
the smallest one, 𝜏u , time-independentfor the unloading process. In this
model, analyzedthe cases havetwo been separately. The experimental
results analyses.are thus expected to lay between the two limit Also
the case with meana value of yield stress (𝜏𝑚 = 0 5. 𝜏 + 0 5. 𝜏𝑙 ) has been
studied. usedThe has beenregularization parameter 𝑚 = 1000 in all the
analyses. In Table 4 the initial geometrical data and the material param-
eters are given for both tests.

Case CaseA and B have been studied for the three dierent values
of yield stress (𝜏u , 𝜏l and 𝜏m) and assuming plane strain conditions. In
addition, strainwith the the theaim of verifying validness of plane as-
sumption, the most viscous , has been studiedproblem, Case A also con-
sidering geometry experimentalthe actual 3D of the test (width of 0.34
m) for 𝜏m. beenIn all the cases, no-slip conditions have considered for
the rigid walls.
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Fig. 21. Mini slump test. results instants. plotted valuescone 3D for four time The contoursnodal velocity norm are over the deformed congurations. For higher
than reader0.0005 plotted. interpretation references legend,m/ ,s the red color is (For of the to colour in this gure the is referred the thisto web version of article.)

Fig. 22. Mini slump test.cone Time evolution of material diameter. Comparison
to expected according tothe nal diameter the experimental test [67].

As owin [13], the evolution has been studied according to two
dimensionless variables, frontthe dimensionless position x∗ and the di-
mensionless time t∗. computed,These variables are respectively, as

𝑥∗ = ∕𝑋 𝐻0 (18)

where X is isthe front wave location, which null at the initial time
instant, and

𝑡∗ = 𝑡

𝑔 𝐻∕ 0 (19)

where g=9.81 m/s2 is the gravity acceleration.

Fig. 23. Flow solutionof a bentonite over a slope. Initial geometry.

Table 4
Flow solutionof a bentonite over a slope. Geometrical and material data.

Geometrical data dataMaterial

L0 [ ]m H0 [ ] [m 𝜃 0] [ /𝜌 kg m3] [ · ]𝜇 Pa s 𝜏 − 𝜏𝑙 [ ]Pa
Case A 0.3024 0.0756 15 1085.1 0.635 21.1 - 165
Case B 0.2928 0.0732 15 1085.1 0.555 14 - 50

The dimensionless time evolution of the dimensionless front position
x∗ of Case A and andCase B is inplotted Fig. 24a Fig. 24b, respectively.

The show exceptiongraphs that, with the of the initial phase of the
ow of byCase B, experimental resultsthe are globally bounded the
two limit bycases given 𝜏0 = 𝜏𝑙 and 𝜏0 = 𝜏 . aFurthermore, very good
accordance between the 3D 2Dand results of Case A is obtained for

Fig. 24. Flow solutionof a bentonite over Evolutiona slope. on dimensionless time t∗ of the dimensionless front position x∗. Numerical results for 𝜏0 = 𝜏 , 𝜏 𝑙 , 𝜏𝑚
and experimental results.
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Fig. 25. Flow solutionof a bentonite over a slope. Case A, 3D simulation with 𝜏0 = 𝜏𝑚 . Velocity contours plotted over the uid ow.

Fig. 26. Flow solutionof a bentonite over congurationa slope. Final for the
3D simulation of Case A with 𝜏0 = 𝜏𝑚.

𝜏0 = 𝜏𝑚 . showsThis that the lateral boundaries are suciently far to not
aect centralthe theuid motion at zone of ow,the and the problem
can studied a highlybe with 2D model reducing the computational cost.

The resultsnumerical of the 3D analyses of Case A are plotted for
ve time instants in Fig. 25, vertical showsfrom the view, while Fig. 26
the the3D view of uid at 𝑡 = 0.5𝑠.

The eect of regularization parameter m is analyzed for the Case A
and 𝜏0 = 𝜏𝑚. beenThree dierent values of m have analyzed, namely 1,
100, 1000. In Fig. 27 the the threefree-surface position obtained for
analyses instantsat four time is plotted. The pictures show that the
solution obtained with 𝑚 = 100 and 𝑚 = 1000 are almost identical. On
the the theother hand, for 𝑚 = 1 uid spread sensibly largeris than
other 1 whereastwo cases. After s of analysis the uid is still owing,
it is practically stopped . showsfor 𝑚 = 100 and 𝑚 = 1000 This analysis
clearly shear rates,that, problemsin dominated by low the regulariza-
tion of ofparameter the Papanastasiou model is paramount importance
to model.reproduce the theaccurately rigid behavior of Bingham In
these cases, a ( recommendable.large value of m e.g. m≥ 100) is

5.4. Impact object bentoniteof a falling over a solution flow

The problem studied example (3D in the previous Case A with 𝜏0 =

𝜏𝑚) considering impact a densityis here analyzed the of solid block of
𝜌 = 200 Kg/m 3, modeled as an hypoleastic material (Young modulus
𝐸 = 107MPa and Poisson ).ratio 𝜈 = 0 The physical phenomena repro-
duced by may be of ofthis numerical simulation representative those
natural dynamic thishazards triggered by impacts. The purpose of ex-

Fig. 27. Flow solutionof a bentonite over contoursa slope. Fluid at four time
instants obtained for 𝑚 = 1, 100 1000, .

ample that computationalis to show the proposed framework capa-is
ble withof dealing complex The3D dynamic uid-solid interactions.
solid block parallelepipedhas a shape, heightwith the base m𝑑 .= 0 1 ,

ℎ . 𝑤 . , 𝑧 . ,= 0 05 m and width = 0 15m and is falling from an height = 0 2m
as represented in Fig. 28.

The composedinitial mesh used for the computation is by 172729
and and time12947 uid solid elements, respectively. Three instants of
the the3D simulation are illustrated showingin Fig. 29 by only central
vertical Thecut of the uid and solid domains. impact between the solid
block aroundand the occursuid ow at 𝑡∗ = 2 =(corresponding to t
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Fig. 28. Impact of a a geom-falling object over bentonite solution ow. Initial
etry.

Fig. 29. Impact of ofa afalling object over bentonite solution ow. Central cut
uid solid. uidand Velocity norm contours overplotted the conguration.

0.175 s). Fig. 29a shows impact induces a clearthat the shear band in
the suddenuid ow and a acceleration frontalat its part. This is also
conrmed by of onthe graph Fig. 30, which compares the evolution
time position obtained withof the front the uid analysis presented in
the previous problem.section, and this FSI

Fig. 31 gives two naldierent views of the conguration of the FSI
problem show more impactto clearly the eect of the solid on the ow.

6. Conclusions

This Lagrangian forwork aaims to present method the 3Dmodeling
of Fluid-Structure free-surfaceInteraction (FSI) problems with Bingham

Fig. 30. Impact of a afalling object over bentonite solution ow. Dimensionless
time t∗ evolution positionof the dimensionless front x∗.

uids. The Elementformulation uses the Particle Finite Method (PFEM)
to deal large deformations towith materials that fromsuer and detect
the the thecontact interface between uid and elastic structures. The
uid ofparts the domain are tocomputed according a Papanastasiou
model has been athat implemented into stabilized Velocity-Pressure
strategy , whereas solids model The[49] for an hypoelastic is used. FSI
problem Unied .is solved monolithically in the formulation spirit [23]

The beenaccuracy, versatility and robustness of the method have
shown by simulating several 2D and 3D problems involving dierent
types of uid ow regimes uid-solid interactions.and

First, a aseries of Bingham uid dam break against deformable mem-
brane has been considering a a geometry. Thestudied, both 2D and 3D
numerical totest has been used analyze nu-several crucial issues of the
merical formulation. behaviorFirst, the convergent with mesh rene-
ment problem.has been shown for both the uid dynamics and the FSI
Then, has been studiedthe non-linear convergence of the method for
the mesh. the pressurenest tested It has been shown that eld exhibits
a velocityslower convergence than the one. In the worst case, the pres-
sure reached the theconvergence is after 10 iterations, while, for rest of
cases, 6 resultsiterations are enough to converge. These are reasonable
considering problemthe high non-linearity of this FSI and prove the ef-
fectiveness proposedof the stabilized non-Newtonianmethod for uid
analysis. parameterThe eect of the regularization m has beenalso an-
alyzed. a certainIn this specic case, the eect ofm is limited, although
discrepancy theis shown with respect to yielded surface identication
obtained for formulationdierent robustnessvalues of m. The of the
has been consideringtested dierent values of the yield stress 𝜏0. As
expected, increasing 𝜏0, the uid impacts later the elastic barrier and
with a resultslower impact force. For null yield stress, the numerical
of bethe haveUnied formulation been shown to in accordance with
those available in the theliterature .[23] Finally eect of lateral con-
tainment samehas been studied by solving the problem in 2D and in
3D for dierent values yield planeof stress. It has been shown that the
strain solution obtainedhypothesis cannot be used to approximate the
with the considered Furthermore,3D geometry. it has been shown that
the discrepancy thebetween 2D 3Dand results increasinggrows by 𝜏0.

Then, two standard fresh concrete slump tests, such as the Abram
and mini cone, have been studied considering their real 3D geometries.
A agreement experimental results hasgood between the numerical and
been The has beenobtained for both tests. Abram slump test also ana-
lyzed dierent tetrahedral convergenceusing meshes, theand behavior
of the veried.numerical results has been

In the thefollowing analysis, ow of a overbentonite solution an
inclined plane compositionshas been studied for two dierent uid and
initial geometries. takenThe beentwo tests have from [13], where the
minimum and maximum forvalues yield are givenof stress each exper-
imental Both situationstest. limit have been has been shownstudied. It

13
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Fig. 31. Impact of ofa a viewsfalling object over bentonite solution ow. Two the nal conguration.

that the theexperimental results are bounded by numerical results ob-
tained with two withthe limit ofvalues yield stress, the exception of
the the less case. therst instants of viscous Moreover, validity of plane
strain hypothesis has been most viscous problemassessed by solving the
with andthe 3D geometry by showing betweenthe accordance the 2D
and for3D solutions. As the the therst example, eect of regularization
parameter has been studied. In this case. that is characterized by lower
shear aectsrates than the previous one, the parameter m more the
numerical values parameterresults. For low of the regularization (e.g.
m< 100), the model cannot reproduce accurately the uid stoppage. On
the theother has been shownhand, for m≥100, it that state of rest can
be easily numericalrecognized from the results.

The has been studiedsame bentonite solution ow then under the
impact aof falling solid object. This situation can be considered repre-
sentative impactsof or bylandslides avalanches triggered the dynamic
of solid objects. The has demonstratedproposed numerical method to
be of bycapable dealing interactionwith such a complex reproducing
the sudden the theshear band and acceleration of uid ow byinduced
impact of the object.
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Appendix A. Fully linearized solution schemeform and

At each the thecomputational step, linear andmomentum (Eq. (1))
continuity equations(Eq. (2)) are iteratively nodalsolved for the incre-
ments enu-of velocity Theand the pressures, respectively. following
meration solutiondescribes the strategy a genericfor time step [𝑛𝑡; 𝑛+1𝑡]

of uidduration solidΔt (subscripts ’ ’ ’ ’s and f refer to and elements,
respectively)

1. At each non-linear iteration i:
2. Compute nodal velocitythe increments 𝚫�̄�:
(a) 𝑲 𝑖𝚫�̄� 𝑹= 𝑖(�̄�𝑖, �̄�𝑖 )

(b) where 𝑲𝑖 = 𝑲𝑚(�̄�𝑖, 𝒄𝑓,𝑠) + 𝑲𝜌(�̄�𝑖)

3. Update nodal velocities: 𝑛+1�̄�𝑖+1 = 𝑛+1�̄�𝑖+ 𝚫�̄�

4. Update nodal coordinates: 𝑛+1 �̄�𝑖+1 = 𝑛+1 �̄�𝑖 + �̄�(𝚫�̄�)

5. Compute nodalthe pressures �̄�𝑖+1: 𝑯�̄�𝑖+1 = 𝑭 𝑝(�̄�
𝑖+1, �̄�𝑖)

(a) where 𝑯 =


1

Δ𝑡
M1 +

1

Δ𝑡2
M2 + +𝐋 𝐌𝑏



(b) and 𝑭 𝑝 =
M1

Δ𝑡

𝑛 �̄� +
M2𝑓

Δ𝑡2


𝑛 �̄�+ 𝑛 ̄̇𝒑Δ𝑡


+𝐐𝑇 �̄�𝑖+1 + 𝒇 𝑝

6. Compute the Cauchy stresses: 𝝈 𝑖+1

7. Check the convergence:
Δ�̄�𝑖+1
𝑛�̄�

≤ 0.0001,
�̄�𝑖+1 − �̄�𝑖

𝑛�̄�
≤ 0.0001

8. If condition to6 fullled,is not return 1 .with 𝑖 𝑖← + 1

with

𝑅𝑖
𝐼𝑖

= ∫Ω

𝑁𝐼 𝜌𝑓,𝑠𝑁𝐽𝑑Ω ̄̇𝑣𝑖
𝐽 𝑖

+ ∫Ω

𝜕𝑁𝐼

𝜕𝑥 𝑗

𝜎 𝑖
𝑖𝑗
𝑑Ω − ∫Ω

𝑁𝐼
𝑛+1𝑏𝑖𝑑Ω

𝑲𝑚
𝐼𝐽

= ∫Ω

𝑩𝑇
𝐼
Δ𝑡𝒄𝑓,𝑠𝑩𝐽 𝑑 , Ω 𝑲

𝜌

𝐼𝐽
= 𝑰 ∫Ω

𝑁𝐼

2𝜌𝑓,𝑠

Δ𝑡
𝑁𝐽𝑑Ω

𝑀1𝐼𝐽 
= ∫Ω

1

𝜅𝑓,𝑠
𝑁𝐼𝑁𝐽𝑑 , 𝑀Ω 2𝐼𝐽 

=∫Ω

𝜏
𝜌𝑓

𝜅𝑓
𝑁𝐼𝑁𝐽𝑑 , 𝜏Ω =


8𝜇

ℎ2
+
2𝜌𝑓

𝛿

−1

𝐿𝐼𝐽 = ∫Ω

𝜏(∇∇∇𝑇𝑁𝐼 )∇∇∇𝑁𝐽 𝑑 , 𝑀Ω 𝑏𝐼𝐽 
= ∫Γ𝑡

2𝜏

ℎ𝑛

𝑁𝐼𝑁𝐽 𝑑 , Γ

Q𝐼𝐽 = ∫Ω

B𝑇
𝐼
m𝑁𝐽𝑑Ω

𝑓𝑝𝐼
= ∫Γ𝑡

𝜏𝑁𝐼


𝜌𝑓
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−

2
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(2𝜇𝑑𝑛 − 𝑡𝑛 )


𝑑Γ − ∫Ω

𝜏∇∇∇𝑇𝑁𝐼𝒃𝑑Ω

where NI are functions arethe linear shape and andh 𝛿 characteristic
distances , problems:in space and time [49] and for 3D

𝒄𝑓 =



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


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


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