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ABSTRACT

This paper presents a purely Lagrangian approach for the 3D simulation of Bingham free-surface fluids and their interaction with deformable solid structures.
In the proposed numerical strategy, the fluid is handled using the Particle Finite Element Method (PFEM) to tackle the issues resulting from extreme changes of
geometry, such as mesh distortion and free-surface evolution. Additionally, the Papanastasiou model is employed as a regularization technique to overcome the
computational difficulties associated with the classical Bingham model. The solid structure, on the other hand, is represented by the hypoelastic constitutive model
and simulated using the conventional Finite Element Method (FEM). The coupling between the fluid and the structure is achieved via a monolithic approach, called
Unified formulation. Several numerical examples are presented to illustrate the correctness and the robustness of the proposed formulation, in 2D and in 3D. Special
attention is devoted to the analysis of the convergence behavior of the proposed computational framework, the effect of the regularization on the numerical results
and the 3D effects. Moreover, detailed comparisons between the simulated results and experimental data are performed so that the concerned problems and results

can serve as benchmarks.

1. Introduction

This work presents a three-dimensional (3D) numerical method for
the simulation of free-surface Bingham fluids and their interaction with
elastic structures.

The Bingham model [8] is one of the most studied and used non-
Newtonian law [2]. It has so-far been applied to the simulation of a
wide range of engineering problems, such as debris flows [42,57,68],
landslides [16,61], snow avalanches [9,18], mud flows [36,39] and
fresh cement slump tests [14]. The attractiveness of the Bingham model
lies in its simplicity and generality. Indeed, the Bingham material be-
haves like a solid under a threshold stress value, whereas, when the
yield stress is exceeded, it starts to flow as a fluid. Owing to this fea-
ture, the Bingham model is very popular for simulating fluid solutions
with solid/rigid particle suspension. Nevertheless, the single-phase ap-
proximation of multi-phase materials is reasonable only under certain
conditions, for example when a macroscopic phase segregation is not
produced [30,34,53]. From the computational point of view, the main
drawbacks of the Bingham law are associated with its piecewise relation
between the deviatoric stress and the strain rate, and the indeterminate
value of stress under the yield stress limit. Notably, the use of the more
general Herschel-Bulkley model [25] does not help to avoid this com-
putational difficulty. For this reason, a regularized Bingham model has
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strategies proposed by Bercovier and Engelman [7] and Papanastasiou
[52]. The Papanastasiou model succeeds in regularizing the Bingham
model with good accuracy, when appropriate values of the regulariza-
tion parameter are used. Although the method suffers from some nu-
merical inconveniences (e.g. the ill-conditioning of the linear system
[62] and the incapability of reproducing the quiescent state when the
fluid is at rest [45]), the Papanastasiou model is still one of the most
used regularization methods, due to the easiness of its implementation
in fluid dynamic solvers. The Papanastasiou model has been applied to a
wide range of engineering problems successfully, e.g. in [1,14,43,44,64].
These considerations have motivated the use of this regularized method
in the present study.

In particular, the Papanastasiou model has been implemented into a
three-dimensional (3D) Particle Finite Element Method (PFEM) frame-
work for free-surface fluid dynamics [49]. The numerical simulation
of a free-surface fluid is complex because of the continuous evolution
of its boundaries. In case of using an Eulerian solving strategy, this
must be complemented by a specific technique capable of tracking the
fluid free-surface at each analysis step, such as Level Set method [9] or
Volume Of Fluid (VOF) [37]. On the contrary, Lagrangian strategies,
computing at the material points and updating continuously their po-
sitions, detect automatically the free-surface of the fluid. Nevertheless,
a Lagrangian mesh cannot solve large deformation processes [72] be-
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The Smoothed-Particle Hydrodynamics (SPH) [38] belongs to the first
category. See [26,40,54,63] for the application of this mesh-less method
to landslides and mud flows simulations. On the other hand, both the
Material Point Method (MPM) [66] and the PFEM2 [4] fit in the second
class. These approaches use an Eulerian fixed mesh for computation,
while a cloud of Largangian particles allows for tracking the deform-
ing computational domain. For applications of the MPM and PFEM2 to
landslide simulations refer to [3,55] and [5], respectively. Finally, the
PFEM [50] adopts the latter strategy, that is to regenerate completely
the mesh when it reaches a prearranged threshold of distortion. The
PFEM has been already applied in the past for the simulation of nat-
ural hazards involving geophysical free-surface fluids, see for example
[15,32].

The PFEM is based on an efficient remeshing strategy, which allows
to dispose a good finite element mesh throughout the duration of the
computation, even when highly deforming bodies are involved. In addi-
tion, the PFEM remeshing strategy allows to detect the contact between
fluid and solid domains. This is of paramount importance for solving
fluid-structure interaction (FSI) problems. In this work, the FSI solution
is obtained through a monolithic strategy, called Unified formulation
[23]. The method is derived by the original algorithm presented in [28].
The main idea of the Unified formulation is to compute fluids and solids
according to the same Updated Lagrangian Velocity-Pressure implicit
solver. However, while the fluid parts of the domain are remeshed with
the PFEM, the structural parts maintain the same mesh for all the du-
ration of the analysis and are solved with the standard Finite Element
Method (FEM). This is done to avoid the introduction of interpolation
errors into the solid historical variables computation.

To the best of the authors’ knowledge, in the literature there are
very few solvers for non-Newtonian free-surface fluids interacting with
deformable structures, and even less are those capable of tackling 3D
geometries. In [33], the Lattice-Boltzmann Method (LBM) [65] is used
to simulate the impact of geophysical flows against rigid walls. An hy-
brid Discrete Element Method (DEM)-LBM-FEM has been employed in
[35] to reproduce the debris flow impact over a flexible and permeable
barrier. A similar problem has been analyzed in [46] with an Arbitrary
Lagrangian-Eulerian (ALE) formulation and the finite element software
LS-DYNA. Finally, in [31] and [17] the impact of a debris flow over a
ring net metallic barrier and highly stiff elastic obstacles, respectively,
has been studied numerically. This general lack of numerical formula-
tions is accompanied by an even more poor literature of experimental
tests analyzing the impact of non-Newtonian fluids over deformable bar-
riers.

This work aims to fill the vacuum in this important field, by present-
ing a robust and accurate numerical framework for computing the inter-
action between Bingham free-surface fluids and elastic structures, and
by proposing some easy-to-reproduce numerical tests for benchmark-
ing 2D and 3D FSI solvers applied to the same field. In order to show
the applicability of the formulation to real engineering problems, the
numerical examples have been solved considering the actual 3D geome-
tries of the laboratory tests. The numerical analyses include the simula-
tion of two fresh concrete slump tests, the study of a bentonite solution
flow over an inclined plane with/without the impact of a falling object,
and a series of dam break against an highly deformable structure ana-
lyzed for different values of the yield stress. The numerical results have
been compared to those obtained either by laboratory tests or by other
numerical formulations. The numerical examples are also used to test
several crucial issues of the computational method, such as the mesh
and the non-linear convergence and the effect of the stabilization pa-
rameter on the numerical results. A special attention has been deserved
to the analysis of the 3D effects and to the validity of the plane strain
assumption.

The structure of the article is the following. Section 2 is dedicated
to the governing equations of the problem and the used constitutive
laws. Then, in Section 3 the essential features of the PFEM are recalled
and in Section 4 the FSI solution scheme is described. Section 5 is
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devoted to the numerical simulations and their validation. Finally, in
Section 6 the conclusions of the work are summarized.

2. Governing equations

The governing equations of the problem consist of the balance of
linear momentum and the mass conservation. Considering an Updated
Lagrangian framework, these equations read respectively as

pp-V-6-b=0 in Qx(0,0 W

%p—V»v=0 in Qx(0,1 2
where p is the density of the material, v is the velocity vector, o is the
Cauchy stress tensor, b is the body force per unit of volume, « is the
material bulk modulus and p is the pressure. Finally, Q denotes the up-
dated/deformed computational domain, and t is the time. Note that the
pressure is defined as positive in tensile state.

The mass balance equation (Eq. (2)) is here solved in the quasi-
incompressible form, as originally proposed in [28,60]. In order to re-
cover the standard Navier-Stokes problem, an infinite material bulk
modulus should be considered, resulting in the fully-incompressible
form of the mass balance equation (\/ - v = 0).

The governing equations are complemented by the following bound-
ary conditions

v;—v!=0 onT,
i

Gijnj—tf=0 onT, 3)
where v and ¢/ are the velocities and tractions prescribed at the Dirich-

let (")) and Neumann (I",) boundaries, respectively, and n is the normal
vector.

2.1. Constitutive laws

For incompressible materials, it is useful to split the Cauchy stress
tensor into its deviatoric and volumetric parts as follows
c=1+pl (C))

where 7 is the deviatoric part and 1 is the second order identity tensor.
For a steady unidimensional shear, the deviatoric stress of a Bingham
fluid is defined as

+ it f >

Tyy =T — or |7, > 7

xy 0T H 0,)/ xy 0

ov,

o =0 for |z, | <7 5)

where 7 is the shear yield stress and y is the dynamic viscosity.

In this work, a regularized Bingham law, namely the Papanastasiou
model [52], is used in order to overcome the computational difficul-
ties arisen by the non-smooth law described in Eq.(5). According to the
Papanastasiou 3D model, the deviatoric stresses are computed as

T=2

T ;
A+ i(l—e*mlﬂ)]d (©)
71
where m is the regularization parameter, d is the deformation rate tensor
defined as
1
d= 5<Vu+(vv)r) %)

and |y| is the equivalent strain rate computed from the deformation rate
tensor d as

1
[71=(2d : d)2 ®

From a comparison between Egs. (5) and (6), it arises that the Papanas-
tasiou model, unlike the Bingham law, is not capable of reproducing the
rigid behavior. As a consequence, the fluid flow, although it can reach
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an almost static state, it cannot stop completely. However, the fluid may
reach such small velocities that it can be considered at rest from an en-
gineering perspective, as it will be shown in Section 5. In this sense, the
regularization parameter has a key role for the approximation of the
Bingham curve for small values of the shear strain rate. As it is shown
in Fig. 1, the higher is m, the better is the approximation of the rigid
behavior of the original Bingham model. The effect of the regulariza-
tion parameter on the numerical results will be analyzed and shown in
a couple of problems studied in Section 5. Note thatm has the dimension
of the time. However, for simplicity, in the following the dimension of
m will be omitted.

It is remarkable that the Papanastasiou regularized law can describe
both Newtonian and non-Newtonian behaviors. For example, the New-
tonian law (¢ = 2ud + p1) is obtained if a null shear yield stress is con-
sidered in Eq. (6).

For the solid parts of the computational domain, an hypoelastic law
is used. Considering the Jaumann measure, the rate of the Cauchy stress
tensor 6V is computed from the deformation rate tensor as [6]

oV =cY:d ©)

where the fourth-order tensor ¢V is the Jaumann tangent moduli
which, for an isotropic material, is defined as

eV =xk1®1+2 Gl (10)

where G is the shear modulus and I’ is a fourth-order tensor computed
as

1’:1_;_1@;1 an

with I being the fourth-order symmetric identity tensor.
The rate of Cauchy stress ¢V is then integrated in time according to
the scheme described in [24] to obtain the Cauchy stress of the solid.

2.2. Discretized problem

The governing equations of the problem, Egs. (1) and (2), are dis-
cretized in the standard finite element fashion. Applying a Galerkin
isoparametric discretization of the four nodal unknowns of the prob-
lem, i.e. three components of nodal velocities & and the nodal pressure
p, the semi-discretized form of Egs. (1) and (2) at the time instant ¢"+!
reads

Mpl_-)n+1 +K'—}n+] _Fn+] =0 (12)

M " -0t =0 13)

where M|, is the mass matrix, K is the stiffness-type matrix that contains
the constitutive information, and F is the external force vector. The ma-
trix M, has the same structure as M, however it depends on the bulk
modulus rather than the density, and Q is the discretized divergence
operator.

) M,.H‘"“.‘A’r
&0

%,y [Pa]

Papanastasiou, m=1000 -

Papanastasiou, m=100
Papanastasiou, m=10 o
Bingham

0.4 06 08 1 1.2 1.4
av, fay[s7]

Fig. 1. Papanastasiou approximation of Bingham curve for three different val-
ues of regularization parameter m (z, = 50Pa, y = 20Pa - 5).
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Linear shape functions are used for approximating both the velocity
and the pressure fields. In case of dealing with incompressible materials,
this combination does not fulfill the so-called Ladyzenskaja—Babuska—
Brezzi (LBB) condition [10] and the problem needs to be stabilized.
In this work, the so-called Finite Increment Calculus (FIC) stabilization
strategy [49] has been used. The method modifies the continuity equa-
tion in a consistent way to stabilize the problem. Details of this method
can be found in [49].

The nodal accelerations in Eq. (12) are computed according to the
implicit Newmark integration rule [6] as

7l = é(i/“’l ") " (14)
where At is the time increment.

The variation on time of nodal pressures of Eq. (13) is computed as
vl _ P =D
= (15)
The stabilized and fully-discretized form of Egs. (12) and (13) as well
as the implicit solution scheme are reported in Appendix A. At each
time step the solution is obtained by a two-step iterative process. More
specifically (see also Fig. 2), the increment of the nodal velocities Av is
first resolved according to Eq. (12). Then, after updating the kinematic
variables, the nodal pressures p are obtained from Eq. (13). Iterations
are performed until the following convergence criterion is fulfilled for
both the velocity and the pressure fields

a_ ||a,+] - a,||
flail
where e? is the error associated to variable a, and the subindices refer
to the considered non-linear iteration.

< 0.0001 (16)

3. PFEM Bases

The Particle Finite Element Method (PFEM) is a Lagrangian strat-
egy suitable for large deformation problems. The PFEM was originally
proposed to solve Newtonian fluid dynamics problems involving free-
surface [29]. In the last decade, the method has been applied to a wide
range of engineering problems, such as granular flows [69], melting of
polymers [51], fluid-structure interaction (FSI) [71], fluid-soil interac-
tion [48] and landslides [16,61]. The Lagrangian nature of the PFEM
enables to capture the computational domain accurately regardless of
the extreme deformation. Meanwhile, the efficient remeshing algorithm

—)[Solve momentum equations Eq.(12) for Aﬁé_,_l]

1

Update the nodal velocities ;.1 = @; + A

[Solve mass balance equations Eq.(13) for ﬁ,+1]

1

Update the nodal pressures g,

d

Convergence

NO, i=i+INcheck Eq.(16)

JOK

Update mesh nodes postition

Fig. 2. Schematic representation of the iterative solution of a generic time step.
The subindex i represents the iteration number of the implicit solution.
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Monolithic solution of algorithm of Figure 2 J
|

PFEM remeshing

\

Fig. 3. Solution scheme for a generic step with remeshing.

ensures the preservation of mesh quality for all the duration of the anal-
ysis.

Once the nodal positions are updated according to the FEM solu-
tion (obtained in this approach as shown in Fig. 2), the quality of the
Lagrangian discretization is checked. If the mesh has reached a dis-
tortion level higher than an imposed threshold, a new discretization
is built. This is done by applying serially the Delaunay Triangulation
(DT) [20] and the Alpha Shape (AS) method [19]. The DT rebuilds the
discretization ensuring an high quality tessellation. For example in 2D
meshes, it maximizes the minimum inner angle and minimizes the max-
imum one of each triangle. On the other hand, the AS method allows
for the recognition of the physical boundaries of the domain. The AS
method performs an elemental check for each simplex of the mesh. In
particular, the element is erased from the discretization if the following
condition is not verified

R <ah a7

where R is the circumradius of the element, a is the scalar parameter
that gives its name to the method and h is a characteristic length of
the mesh. The typical value used for « is around 1.25. Generally, in 3D
cases a slightly higher value of the « parameter is chosen. In this work,
for the 2D problems « has been set equal to 1.25, while for the 3D ones
a = 1.35 has been used. See [22] for a dissertation about the role of «
and for other details of the PFEM remeshing strategy.

4. PFEM-FEM solution scheme for fluid-solid interaction

The continuous elimination of the finite elements produced by the
remeshing, makes the PFEM more suitable for problems in which histor-
ical variables do not need to be stored at the element level but on mesh
nodes. This explains why a Bingham model can be naturally employed
in a PFEM formulation. Note that it is still possible to use the PFEM for
constitutive laws depending on historical elemental variables [47,70].
However, in those cases, a procedure for variables mapping from the
Gauss points of the previous mesh to the Gauss points of the new one is

(a) Mesh after computation

) fluid node

(b) Mesh after DT

# solid node
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required, and this may introduce interpolation errors into the numeri-
cal scheme. These considerations motivated the use in this work of the
standard FEM for the solid solution.

In conclusion, in this approach, fluids and solids are solved mono-
lithically according to the same implicit scheme (see Section 2.2 and
Appendix A), but, after updating the nodal positions for both the fluid
and the solid, only the fluid domain is remeshed. Fig. 3 represents
schematically this solution algorithm.

An admirable feature of the PFEM remeshing rests with its auto-
matic detection of the contact interface between the fluid and the solid
domains. During the remeshing procedure, the DT is performed over a
cloud of points formed by not only all the fluid nodes, but also those
belonging to the rigid walls and to the deformable solids contours, as
shown in Fig. 4b. With the following application of the AS method, the
new contact elements (elements that are sharing fluid and solid nodes)
are identified (Fig. 4¢). In this study, the contact elements are computed
as fluid elements.

It is important to note that the PFEM remeshing strategy guaran-
tees that, at the interface, fluid and solid nodes are overlapped (see
Fig. 4c). This conforming mesh algorithm facilitates the FSI solution,
in monolithic as for staggered approaches, because it prevents from the
implementation of a mapping strategy to transfer information from one
material to the other. For example, in the proposed monolithic approach
it is only needed to assemble properly the fluid and solid elemental con-
tributions into the linear system, as for a standard FEM.

Fig. 4 also shows one of the main drawbacks of the PFEM remeshing
procedure. In fact, after the creation of the new mesh, new elements may
be included in the computational domain, while others may be erased.
This induces artificial local changes of the fluid geometry and, globally,
a lack of mass conservation. Although this is an endemic problem of
the PFEM and it cannot be completely erased, it affects marginally the
numerical simulation if a sufficiently fine mesh is used, and there also
exist some techniques able to limit its effects [22].

5. Numerical examples

This section shows the application of the proposed numerical ap-
proach to several problems involving non-Newtonian fluids. First, the
dam break of Bingham fluids against an elastic barrier, is used to analyze
several crucial issues of the numerical formulation. Then, two concrete
slump tests are simulated in 3D and the numerical results are validated
with the experimental ones. Finally, the flow of a bentonite solution
over an inclined plane is studied in 2D as in 3D, also considering the
impact of a solid object.

5.1. Dam break impact against an elastic barrier

The dam break of a viscous fluid against a deformable membrane
is here studied for different values of yield stress in 2D as well as in
3D. The test is used to analyze some important aspects of the proposed
numerical approach, such as the mesh and the non-linear convergence,
the effect of the regularization parameter m on the numerical results,
and the 3D effect given by the lateral confinement. Furthermore, this

(e) Mesh after AS method

+ - +

* * +

- *

. .
 fixed node

Fig. 4. Representation of the PFEM scheme for detecting the contact with the solid boundaries.
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L=0.146m
h=0.080m
d=0.012m

I

Fig. 5. Dam break against an elastic barrier. Initial geometry.

2L

example aims to show the application of this Lagrangian strategy to an
unsteady flow regime and to propose numerical results as benchmarks
for 2D and 3D FSI analysis involving Bingham free-surface fluids. The
problem is a modification of the benchmark for FSI analysis proposed
in [27]. The problem is here analyzed without the vertical wall located
behind the elastic membrane and for a reduced duration of 0.5 s. During
this time period, the motion of the barrier is not affected by the wave
created by that vertical wall, so the results are comparable to the ones
of the benchmark [27]. These modifications have been done in order to
reduce the uncertainty of the numerical results. In fact, as shown in a
recent analysis of the benchmark problem [41], after 0.5 s the numerical
results start to diverge as a consequence of the fluid unsteadiness and the
different prediction of the first impact. This makes almost meaningless to
use the second part of the example for validation purposes. The authors
believe that the capability to reproduce accurately the first impact of
the fluid stream against the barrier is crucial to determine the efficiency
of the method.

The initial 2D geometry of the problem is given in Fig. 5.

Both 2D and 3D non-Newtonian problems have been studied for
three values of yield stress, namely 25 Pa, 50 Pa and 100 Pa. Also the
Newtonian case, corresponding to 7, = 0 Pa, has been analyzed for com-
parison purposes. The rest of material properties are the same as in [27].
The fluid and solid data are collected in Table 1. No-slip conditions have
been considered for the rigid walls.

5.1.1. Mesh convergence

The convergence analysis is performed for the 2D problem using
7, = 100 Pa. Six different mean mesh sizes h have been considered. Each
discretization has a different number of elements in the solid width. The
finest one (A = 0.002 m) has 24,376 fluid elements and 6 elements along
the membrane width. The coarsest one (2 = 0.012 m) is composed of 642
fluid elements and only one element in the solid width. The coarsest and
the finest meshes are shown in Fig. 6.

(a) h =0.012m

3D numerical simulation of free-surface Bingham fluids interacting with structures usi... Page 5 of 16

Table 1
Dam break against an elastic barrier. Fluid and solid data.

Fluid data Solid data
p [kg/m®] u [Pas] 7o [Pal p [kg/m®] E [MPa] vl
1000 0.001 0, 25, 50, 100 2500 1 0

Fig. 7a shows the evolution of the horizontal maximum displace-
ment of the cantilever obtained with the six tested discretizations. On
the other hand, the results plotted in Fig. 7b focus on the fluid dynamic
problem only and represent the evolution on time of the fluid front posi-
tion for the period preceding the impact against the deformable obstacle.

In Fig. 8a the maximum horizontal deflection of the membrane is
given as a function of the number of elements, while Fig. 8b plots the
percentage error, computed with respect to the solution obtained with
the finest mesh, as a function of the mesh size.

The graphs show clearly the convergence behavior of the numeri-
cal formulation. Furthermore, they show that while the fluid dynamic
problem could be solved with a relatively coarse mesh (the discretiza-
tion with 2 = 0.004 m approximates well the solution obtained with the
finest mesh), a much finer mesh is required to simulate accurately the
FSI. As shown in Fig. 8b, the deflection computed with 4 =0.004 m is
almost the 10% smaller than the one obtained with 4 = 0.002 m. Note
that, in the present conforming mesh approach, this affects the choice of
the fluid mesh size. In fact, in order to avoid topological inconveniences,
such as the overlapping of fluid and solid meshes or the penetration of
fluid particles into the solid domain, the fluid mesh close to the fluid-
solid interface must have a size similar to the solid one.

5.1.2. Non-linear convergence

It is well known that non-Newtonian models increase the non-
linearity of the Navier-Stokes problem. In this sense, it is important to
analyze the non-linear convergence of the proposed implicit strategy. In
order to have an overview of the convergence behavior of the numerical
method, the non-linear convergence is analyzed at four time instants (t
=0.05s,0.15 s, 0.3 5, 0.5 s), corresponding to different phases of the
dam break problem. The convergence analysis is performed for the same
problem analyzed before (z = 100 Pa and A = 0.002 m).

Fig. 9 collects the velocity and pressure errors computed using
Eq. (16). The graphs show that the convergence of the pressure field
is generally slower than the one of the velocity field. The worst conver-
gence is exhibited at t = 0.3 s (5 iterations for the velocity and 10 for
the pressure). This is due to the high non-linearity of the problem at this
stage. In particular, the fluid shows huge splashes and the solid obstacle
has just reached the maximum deflection. In all other cases, the iter-
ations are no higher than 6. This convergence behavior is reasonable,
considering the high non-linearity introduced by both the Papanasta-
siou model and the FSI, and it is close to the one shown by the same

(b) h = 0.002m

Fig. 6. Dam break impact against an elastic barrier (z, = 100 Pa). Coarsest and finest meshes used for the convergence study.
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Fig. 9. Dam break impact against an elastic barrier (z, = 100 Pa). Errors of velocity (a) and pressure (b) fields at the non-linear iterations at four time instants.

FIC-stabilized PFEM method to reach the convergence in Newtonian flu-
ids problems [49], where generally the convergence was reached after
5 iterations. This confirms the efficiency and generality of the proposed
stabilized method.

Note that the non-linear convergence has also effects on the mass
preservation properties of the numerical strategy. In this specific case,
the overall mass variation after 0.5 s is 1.196% of the initial mass. In
particular, the non-linear computation produces an increment of mass
equal to 1.734%, whereas the remeshing procedure induces a loss of
0.538%. This can be considered a small value for such an unsteady and
non-linear problem. Furthermore, this magnitude of mass variation is
analogous to the one shown in [49] for Newtonian fluids analysis. This
is a further confirmation of the validity of the FIC-stabilized Lagrangian
formulation for treating also non-Newtonian fluids.

5.1.3. Effect of regularization parameter m
As already explained in Section 2.1 and illustrated in Fig. 1, the Pa-
panastasiou’s regularization parameter m affects the accuracy of the ap-

https://reader.elsevier.com/reader/sd/9F6B5SAD(0195256DA598C5B9A64E95BEC2D...

m=01 «

0.05 -1 o
= =100 x
= 004 m=1000 =
=
L
E  oo3
O
o
2 oo
T
X oot
B2

0 -

0 01 02 03 0.4 05

t[s]

Fig. 10. Dam break impact against an elastic barrier (r, = 100 Pa). Evolution on
time of the horizontal deflection of the elastic barrier obtained for four different
values of the Papanastasiou’s regularization parameter m.
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Fig. 11. Dam break impact against an elastic barrier (7, = 100 Pa). Yielded elements are plotted with black color. Results for m = 1 and m = 1000.

(a) t=0.259

(b) t=0.4s

(c) t =0.5s

Fig. 12. Dam break impact against a rigid barrier (r, = 100 Pa, m = 1000).

proximation of the Bingham curve. In particular, higher values of m are
needed to approximate well the rigid behavior. However, the parameter
m also affects the quality of the algebraic system. In fact, if a big reg-
ularization parameter is used, large values of viscosity are introduced
into the linear system and this may deteriorate its conditioning. Hence,
m cannot be chosen as large as desired. With the aim of analyzing the
effect of the regularization parameter on the numerical results, the dam
break problem is solved with four different values of m, spanning from
0.1 to 1000. Fig. 10 collects the results obtained with the four tested
values of m.

The graph shows that the solutions obtained with m = 100 and m =
1000 are almost identical, while some discrepancies are exhibited for m =
0.1. However, it is worth to note that the effect of m depends highly on
the numerical test taken in consideration. In this specific test, the fluid
is suffering from large strain rates during the whole analysis and this

https://reader.elsevier.com/reader/sd/9F6B5SAD(0195256DA598C5B9A64E95BEC2D...

explains the reduced effect of the regularization parameter. Indeed, the
role of mis crucial for fluids close to the state of rest or, more generally,
when the shear rate is small, as in the example that will be analyzed in
Section 5.3.

The regularization parameter m also affects the demarcation between
the yielded and un-yielded zones. For smaller values of m, an higher
strain rate is required to reach the yield value z,. This is confirmed by
the results plotted in Fig. 11 that show the yielded elements (drawn in
black) obtained for m = 1 and m = 1000 at four time instants.

As expected, the yielded regions obtained with m =1 are smaller
than the ones obtained with m = 1000. Despite that, globally, the differ-
ences between the two analyses are reduced.

To show the potential of the proposed formulation to design pro-
tection barriers, the problem is also solved considering the obstacle as
rigid. In Fig. 12 three snapshots of the simulation are given.
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Fig. 13. Dam break impact against a elastic barrier (mesh size h = 0.002 m).
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four values of 7.
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Fig. 14. Dam break against an elastic barrier (r, = 0 Pa, 2 = 0.002 m). Evolution
on time of the maximum horizontal displacement of the barrier. Comparison to
Walhorn et al. [27], Idelsohn et al. [28] and Meduri et al. [41].

By comparing Fig. 12 and the left column of Fig. 11, it arises that
with the rigid barrier the stream arises an higher altitude and a reduced
horizontal runout than the case with flexible membrane. Concerning the
yielded elements, a similar pattern is obtained.

5.1.4. Effect of 7

The finest mesh has been used for testing the effect of the yield stress
7 on the numerical results. In Fig. 13 the horizontal deflection of the
elastic cantilever obtained for four values of 7 is plotted. The results
show that higher values of 7, delay the collision of the fluid stream
against the elastic object and reduce its inertial force. As a consequence,
the maximum horizontal displacement of the cantilever also reduces for
increasing values of 7.

The case of 7, = 0 Pa corresponds to the Newtonian problem already
analyzed in [23]. In Fig. 14, the time evolution of the horizontal dis-
placement of the top of the elastic membrane obtained with 4 = 0.002 m
is compared to the results presented in [27,28,41].

The 2D results show a good agreement to those in the literature, con-
firming the efficiency of the Unified formulation for solving FSI prob-
lems.

5.1.5. 3D lateral effects

In order to analyze the effect of lateral containment on the dam break
evolution, the problem is solved in 3D considering the channel width
equal to the height of the obstacle (0.8 m). No-slip conditions are con-
sidered for all the rigid walls. The same mean mesh size A = 0.003 m
(4 elements along the elastic membrane width) has been used for the
2D and the 3D simulations, leading to 11,050 triangular finite elements
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Fig. 15. Dam break against an elastic barrier (mesh size 2 = 0.003 m). Evolution
on time of the horizontal displacement at the top of the barrier for three different
values of yield stress. 2D and 3D results.

for the 2D problem and 801,597 tetrahedra for the 3D case. Fig. 15 col-
lects the results of the 2D and 3D non-Newtonian problems obtained for
three different values of the yield stress, namely 7, = 25, 50, 100 Pa.

The results show that, differently from the 3D example that will be
presented in Section 5.3, the plane strain hypothesis is not valid for
this non-Newtonian problem. The lateral containment reduces the ve-
locity of the fluid flow and, consequently, its impact force against the
solid membrane is reduced. As shown in the graphs of Fig. 15, the dis-
crepancy between the 2D and 3D results grows by increasing the yield
stress.

In Fig. 16, the 3D results for 7, = 100 Pa are given for three time
instants. The velocity contours are plotted over the fluid and solid com-
putational domains.
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Fig. 16. Dam break against an elastic barrier (z, = 100 Pa). 3D results at three
time instants. Pictures in left-hand column show the section yz located at x =
0.148 m. Pictures in right-hand column refer to the section xy located at x =
0.04 m.

The transversal cut at x=0.148 m, represented in the left pictures of
Fig. 16, shows clearly the resistance exerted by the lateral containment
on the fluid motion. Consequently, the deflection of the 3D elastic mem-
brane is reduced and the horizontal distance reached by the fluid stream
is also limited.

5.2. Fresh contrete slump tests

The slump test is a standard laboratory experiment used to deter-
mine the so-called workability of fresh concrete. The test consists of
filling a conical container with concrete and measuring the evolution of
its shape after the removal of the rigid container. The test ends when the
fresh concrete reaches a static state. In these tests, the values of interest
are the slump and the spread of the concrete. The former is the differ-
ence between the initial and the final fluid height, whereas the latter is
the difference between the initial and the final diameter measured at the
base of the cone [58]. Two standard and widely used slump tests, such
as the so-called Abrams [11] and mini cone [12] tests, are analyzed in
this section. The initial geometry of the slump is illustrated in Fig. 17.

Instead of an homogeneous material, the fresh concrete is composed
by a suspension of solid grains in a fluid matrix. From the computational
point of view, this opens two possibilities, namely, either computing it
as a one-phase fluid material, or modeling it considering the interaction
with the particles suspended in the fluid. An overview regarding the
different computational techniques for fresh concrete modeling has been
made in [59]. In this work, the former approach is used. Furthermore,
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Fig. 17. Initial cone shape for slump tests.

Table 2
Abram slump test. Geometrical and material data.

Geometrical data Material data

H, [m] D, [m] d, [m] p [kg/m®] u [Pa-s] 7o [Pal
0.3 0.2 0.1 2200 255 32
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Fig. 18. Abram slump test. Velocity contours plotted over the deformed config-
uration at three different time instants.

both slump tests are modeled considering null the interaction with the
container and no-slip conditions for the rigid plan over which the fresh
concrete spreads. The regularization parameter m of the Papanastasiou
model is set equal to 1000 in both cases.

5.2.1. Abram test

The Abram slump test is generally used for fresh concrete rather than
cement pastes [58]. The geometry information and the material param-
eters are provided in Table 2.

The problem has been solved in 3D using tetrahedral meshes of three
different sizes in order to verify the convergent behavior of the method
and to assess the reliability of the PFEM results of the finest mesh. Specif-
ically, the mean mesh sizes used in the simulations are 0.015m, 0.01 m
and 0.0075 m, corresponding to 15900, 54464, and 129818 tetrahedra,
respectively.
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Fig. 19. Abram slump test. Pressure contours plotted over the central section
at three different time instants.
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Fig. 20. Abram slump test. Evolution on time of the spreading diameter ob-
tained for three different meshes. Experimental values from [14].

In Fig. 18 three representative snapshots of the simulation are pro-
vided. The velocity contours are plotted over the deformed configura-
tion of the fluid at the time instants t = 0.5s,t=5.0 sand t =40 s.

As shown, the material flows immediately when the container is re-
moved, and the whole process proceeds in an axisymmetric manner as
expected. The top surface first owns the maximum velocity shortly after
the release (Fig. 18a), which however decreases as the spreading pro-
ceeds (Fig. 18b). Fig. 18c shows the deposit of the fresh concrete at the
last instant of the numerical simulation (=40 s). At this stage, the ma-
terial diameter is almost three times larger than the initial one and the
material flow is very close to stop (the material velocity is smaller by
three orders of magnitude than the velocity obtained at the initial phase
of the test).

Fig. 19 shows the pressure contours of the section XZ for the same
time instants considered in Fig. 18. The pictures show that the middle
part of the flow always possesses the maximum pressure throughout the
whole slumping procedure.

The graph of Fig. 20 shows the evolution on time of the spreading
diameter obtained numerically with three different meshes and exper-
imentally using the 4C-Rhometer [67], as reported in [14]. Although
there exists a certain discrepancy with respect to the experimental re-
sults, the 3D numerical simulation shows an acceptable agreement, even

3D numerical simulation of free-surface Bingham fluids interacting with structures ...
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Table 3
Mini cone slump test. Geometrical and material data.

Material data

p [kg/m3]
2252

Geometrical data

H, [m]
0.05

Dy [m]
0.1

do [m]
0.07

p [Pa-s]
4.018

7o [Pa]
18.0182

when relatively coarse meshes are in use. This validates not only the use
of a single-phase approach for modeling this multi-phase material, but
also the three-dimensional PFEM framework developed in this study.

It is worth commenting about the small jumps shown in the numer-
ical curves of Fig. 20. These are due to the PFEM way of modeling the
fluid advancement. With the PFEM, the fluid front motion is determined
by the creation of a new boundary element and not by the slip of the
wall nodes (as shown in Fig. 4) and this produces the non-smoothness
of the front evolution curve. See [22] for a detailed analysis of this and
other issues related to the PFEM remeshing, such as the non-smoothness
of the free-surface or the fluid adherence/departure from/to the solid
boundaries.

5.2.2. Mini cone test

The mini cone slump test [12] is generally used to determine the
workability of cement pastes. Table 3 shows the information regarding
the geometry and the material properties.

A total of 105187 tetrahedra has been used for the PFEM solution.
Fig. 21 shows four time instants of the 3D simulation. To show more
clearly the stoppage of the fluid, a threshold of 0.0005 m/s is imposed
to the velocity norm contours plotted in the figures. If the nodal ve-
locity norm exceeds that limit, the red color is plotted. As illustrated,
the slumping procedure is similar to that observed in the Abram test,
however, due to the reduced viscosity of the cement paste, the slump is
accelerated. In Fig. 22, the time evolution of the fluid diameter of the
material is plotted and compared to the expected final diameter accord-
ing to the experimental test [67] (D = 0.2249 m) and to that obtained
considering the axisymmetric approximation in [14] (D=0.220 m). The
graph shows that the proposed computational method is capable to pre-
dict the total spread of the cement past with a very good accuracy.
The graph also shows that, even if a Papanastasiou formulation cannot
reproduce exactly the quiescent state, one can easily understand when
the stoppage of the fluid flow occurs, at least for the used value of the
regularization parameter (m = 1000). In this specific case, it can be as-
sumed that the fluid reaches a state of rest after around 5 s the releasing
of the container.

5.3. Flow of a bentonite solution on a slope

In [13] a series of experimental results for the flow of a bentonite
solution over an inclined plan is reported. In this work, two of these
laboratory tests have been reproduced and called Case A and Case B.
The schematic illustration of the test is shown in Fig. 23.

In [13] the bentonite solution has been characterized by two values
of apparent yield stress, the biggest one, 7;, for the loading process and
the smallest one, 7,,, for the unloading process. In this time-independent
model, the two cases have been analyzed separately. The experimental
results are thus expected to lay between the two limit analyses. Also
the case with a mean value of yield stress (z,, = 0.5t +0.57;) has been
studied. The regularization parameter m = 1000 has been used in all the
analyses. In Table 4 the initial geometrical data and the material param-
eters are given for both tests.

Case A and Case B have been studied for the three different values
of yield stress (r,, 7; and 7,,) and assuming plane strain conditions. In
addition, with the aim of verifying the validness of the plane strain as-
sumption, the most viscous problem, Case A, has been studied also con-
sidering the actual 3D geometry of the experimental test (width of 0.34
m) for 7, In all the cases, no-slip conditions have been considered for
the rigid walls.

Page 10 of 16
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(a) t=0.1s (b) t=20s

(c) t=5.0s (d) t=10s

Fig. 21. Mini cone slump test. 3D results for four time instants. The nodal velocity norm contours are plotted over the deformed configurations. For values higher
than 0.0005 m/s, the red color is plotted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Mini cone slump test. Time evolution of material diameter. Comparison

. . . 3 Geometrical data Material data
to the expected final diameter according to the experimental test [67].

Ly [m] H, [m] 01°] p [kg/m?] u [Pas) 7 -1 [Pa]

CaseA 03024  0.0756 15 1085.1 0.635 21.1- 165
As in [13], the flow evolution has been studied according to two CaseB 02928  0.0732 15 1085.1 0.555 14 - 50
dimensionless variables, the dimensionless front position x* and the di-
mensionless time t*. These variables are computed, respectively, as
x* =X/Hy (18) The dimensionless time evolution of the dimensionless front position
where X is the front wave location, which is null at the initial time x* of Case A and Case B is plotted in Fig. 24a and Fig. 24b, respectively.
instant, and The graphs show that, with the exception of the initial phase of the
flow of Case B, the experimental results are globally bounded by the
1" =1y/g/H, 19) ¢ imi i - -
wo limit cases given by 7, = 7; and 7, = v . Furthermore, a very good
where g=9.81 m/s? is the gravity acceleration. accordance between the 3D and 2D results of Case A is obtained for
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Fig. 24. Flow of a bentonite solution over a slope. Evolution on dimensionless time t* of the dimensionless front position x*. Numerical results for 7, =7, 7, T,
and experimental results.
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Fig. 25. Flow of a bentonite solution over a slope. Case A, 3D simulation with 7, = ,,. Velocity contours plotted over the fluid flow.
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Fig. 26. Flow of a bentonite solution over a slope. Final configuration for the
3D simulation of Case A with 7, = 1,

7y = 7,,. This shows that the lateral boundaries are sufficiently far to not
affect the fluid motion at the central zone of the flow, and the problem
can be studied with a 2D model reducing highly the computational cost.

The numerical results of the 3D analyses of Case A are plotted for
five time instants in Fig. 25, from the vertical view, while Fig. 26 shows
the 3D view of the fluid at 7 = 0.5s.

The effect of regularization parameter m is analyzed for the Case A
and 7, = 7,,. Three different values of m have been analyzed, namely 1,
100, 1000. In Fig. 27 the free-surface position obtained for the three
analyses at four time instants is plotted. The pictures show that the
solution obtained with m = 100 and m = 1000 are almost identical. On
the other hand, for m = 1 the fluid spread is sensibly larger than the
other two cases. After 1 s of analysis the fluid is still flowing, whereas
it is practically stopped for m = 100 and m = 1000. This analysis shows
clearly that, in problems dominated by low shear rates, the regulariza-
tion parameter of the Papanastasiou model is of paramount importance
to reproduce accurately the rigid behavior of the Bingham model. In
these cases, a large value of m (e.g m>100) is recommendable.

5.4. Impact of a falling object over a bentonite solution flow

The 3D problem studied in the previous example (Case A with 7=
7,,) is here analyzed considering the impact of a solid block of density
p = 200 Kg/m3, modeled as an hypoleastic material (Young modulus
E = 107 MPa and Poisson ratio v = 0). The physical phenomena repro-
duced by this numerical simulation may be representative of those of
natural hazards triggered by dynamic impacts. The purpose of this ex-
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Fig. 27. Flow of a bentonite solution over a slope. Fluid contours at four time
instants obtained for m = 1, 100, 1000.

ample is to show that the proposed computational framework is capa-
ble of dealing with complex 3D dynamic fluid-solid interactions. The
solid block has a parallelepiped shape, with the base d = 0.1 m, height
h =0.05 mand width w = 0.15 m, and is falling from an height z = 0.2 m,
as represented in Fig. 28.

The initial mesh used for the computation is composed by 172729
and 12947 fluid and solid elements, respectively. Three time instants of
the 3D simulation are illustrated in Fig. 29 by showing only the central
vertical cut of the fluid and solid domains. The impact between the solid
block and the fluid flow occurs at around r* =2 (corresponding to t =
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Fig. 28. Impact of a falling object over a bentonite solution flow. Initial geom-
etry.
(a) t=0.15s

() 1 =10.3s

(d) ¢ =0.5s

(e) t=0.7s

Fig. 29. Impact of a falling object over a bentonite solution flow. Central cut of
fluid and solid. Velocity norm contours plotted over the fluid configuration.

0.175 s). Fig. 29a shows that the impact induces a clear shear band in
the fluid flow and a sudden acceleration at its frontal part. This is also
confirmed by the graph of Fig. 30, which compares the evolution on
time of the front position obtained with the fluid analysis presented in
the previous section, and this FSI problem.

Fig. 31 gives two different views of the final configuration of the FSI
problem to show more clearly the effect of the solid impact on the flow.

6. Conclusions

This work aims to present a Lagrangian method for the 3D modeling
of Fluid-Structure Interaction (FSI) problems with free-surface Bingham
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Fig. 30. Impact of a falling object over a bentonite solution flow. Dimensionless
time t* evolution of the dimensionless front position x*.

fluids. The formulation uses the Particle Finite Element Method (PFEM)
to deal with materials that suffer from large deformations and to detect
the contact interface between the fluid and the elastic structures. The
fluid parts of the domain are computed according to a Papanastasiou
model that has been implemented into a stabilized Velocity-Pressure
strategy [49], whereas for solids an hypoelastic model is used. The FSI
problem is solved monolithically in the Unified formulation spirit [23].

The accuracy, versatility and robustness of the method have been
shown by simulating several 2D and 3D problems involving different
types of fluid flow regimes and fluid-solid interactions.

First, a series of Bingham fluid dam break against a deformable mem-
brane has been studied, considering both a 2D and a 3D geometry. The
numerical test has been used to analyze several crucial issues of the nu-
merical formulation. First, the convergent behavior with mesh refine-
ment has been shown for both the fluid dynamics and the FSI problem.
Then, the non-linear convergence of the method has been studied for
the finest tested mesh. It has been shown that the pressure field exhibits
a slower convergence than the velocity one. In the worst case, the pres-
sure convergence is reached after 10 iterations, while, for the rest of the
cases, 6 iterations are enough to converge. These results are reasonable
considering the high non-linearity of this FSI problem and prove the ef-
fectiveness of the proposed stabilized method for non-Newtonian fluid
analysis. The effect of the regularization parameter m has also been an-
alyzed. In this specific case, the effect of m is limited, although a certain
discrepancy is shown with respect to the yielded surface identification
obtained for different values of m. The robustness of the formulation
has been tested considering different values of the yield stress 7. As
expected, increasing 7, the fluid impacts later the elastic barrier and
with a lower impact force. For null yield stress, the numerical results
of the Unified formulation have been shown to be in accordance with
those available in the literature [23]. Finally the effect of lateral con-
tainment has been studied by solving the same problem in 2D and in
3D for different values of yield stress. It has been shown that the plane
strain hypothesis cannot be used to approximate the solution obtained
with the considered 3D geometry. Furthermore, it has been shown that
the discrepancy between the 2D and 3D results grows by increasing 7.

Then, two standard fresh concrete slump tests, such as the Abram
and mini cone, have been studied considering their real 3D geometries.
A good agreement between the numerical and experimental results has
been obtained for both tests. The Abram slump test has been also ana-
lyzed using different tetrahedral meshes, and the convergence behavior
of the numerical results has been verified.

In the following analysis, the flow of a bentonite solution over an
inclined plane has been studied for two different fluid compositions and
initial geometries. The two tests have been taken from [13], where the
minimum and maximum values of yield stress are given for each exper-
imental test. Both limit situations have been studied. It has been shown
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Fig. 31. Impact of a falling object over a bentonite solution flow. Two views of the final configuration.

that the experimental results are bounded by the numerical results ob-
tained with the two limit values of yield stress, with the exception of
the first instants of the less viscous case. Moreover, the validity of plane
strain hypothesis has been assessed by solving the most viscous problem
with the 3D geometry and by showing the accordance between the 2D
and 3D solutions. As for the first example, the effect of the regularization
parameter has been studied. In this case. that is characterized by lower
shear rates than the previous one, the parameter m affects more the
numerical results. For low values of the regularization parameter (e.g.
m < 100), the model cannot reproduce accurately the fluid stoppage. On
the other hand, for m >100, it has been shown that the state of rest can
be easily recognized from the numerical results.

The same bentonite solution flow has been then studied under the
impact of a falling solid object. This situation can be considered repre-
sentative of landslides or avalanches triggered by the dynamic impacts
of solid objects. The proposed numerical method has demonstrated to
be capable of dealing with such a complex interaction by reproducing
the shear band and sudden acceleration of the fluid flow induced by the
impact of the object.
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Appendix A. Fully linearized form and solution scheme

At each computational step, the linear momentum (Eq. (1)) and the
continuity (Eq. (2)) equations are solved iteratively for the nodal incre-
ments of velocity and the pressures, respectively. The following enu-
meration describes the solution strategy for a generic time step ["#;"+!f]
of duration At (subscripts ’s’ and ’f refer to solid and fluid elements,
respectively)

1. At each non-linear iteration i:

2. Compute the nodal velocity increments Ad:
(a) K'Av =R\ (@', p')
(b) where K’ = K"(X, ¢ )+ K(x')

3. Update nodal velocities: "+'o'+! = "+1pi + Ap

. Update nodal coordinates: "t!x/+! = "% 4 a(AD)

5. Compute the nodal pressures p'*': Hp™*! = F, (&', p')
(a) where H = (éM1 + #Mz +L +Mb)

N

M - N
(b) and F, =S5+ 24 ("p+"pAr) + QT o1 + f,

At
6. Compute the Cauchy stresses: ¢'*!
A+ Sitl _ =i
7. Check the convergence: 1 o I < 0.0001, W < 0.0001

8. If condition 6 is not fulfilled, return to 1 with i « i+ 1.
with
, oN;
R, = / Nyps N, AQ Uy, +/ Ka;jdg - / N bdQ
Q Q 0x; Q

https://reader.elsevier.com/reader/sd/9F6B5SAD(0195256DA598C5B9A64E95BEC2D...

— [ BTaie, Byao. k°, =1 [ N, 2225 N, a0
= [B1cs BydQ, K, = 1—ar N
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p 8u 20
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Q Kfs Q Kr
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Q I hn

Qy =/B?mN,dQ
Q

= [ w2 _ 2 04 dr VTN, bdQ
fp,— I‘,T Iﬂfﬁ—h_n(ﬂn—tn) - QT I

where N; are the linear shape functions and h and § are characteristic
distances in space and time [49], and for 3D problems:

A

[+ 22 -2 -2 0 0 0
KA g -2 0 00 0
‘- K- - k42 0 0 0
0 0 0 L0 o0
0 0 0 £ 0
| 0 0 0 0 &
KS+% KS—% KS_!}_G o 0 O
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