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A note on the convergence of renewal and

regenerative processes to a Brownian bridge

Serguei Foss Takis Konstantopoulos

12 August 2007

Abstract

The standard functional central limit theorem for a renewal process with finite mean
and variance, results in a Brownian motion limit. This note shows how to obtain a Brow-
nian bridge process by a direct procedure that does not involve conditioning. Several
examples are also considered.
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1 The basic theorem

In proving convergence results for a stochastic ordered graph on the integers [2], we noticed
that one can obtain a Donsker-like theorem for Brownian bridge in a somewhat non-standard
manner. The result appears to be new. As it may be of potential interest in some related
areas (statistics, large deviations), we summarise it in this short note.

Consider a (possibly delayed) renewal process on [0,∞) with renewal epochs

0 < R1 < R2 < · · · .

We assume that {Rn+1 −Rn}n≥1 are i.i.d. with mean µ and variance σ2, both finite. Let

At := #{n ≥ 1 : Rn ≤ t}

be the associated counting process. The standard functional central limit theorem for a
renewal process, see, e.g., [1], states that the sequence of processes ξ1, ξ2, . . ., where

ξn(t) :=
Ant − µ−1nt√

n
, t ≥ 0,

converges weakly, as n → ∞, to µ−3/2σW , where W is a standard Brownian motion on
[0,∞). Weak convergence (denoted by ⇒ below) means weak convergence of probability
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measures on the space D[0,∞) of functions which are right continuous with left limits,
equipped with the usual Skorokhod topology (see, e.g., [3], [7]).

A standard Brownian bridge [3, p. 84] W 0 is defined, in distribution, as a standard Brow-
nian motion W on [0, 1], conditional on W1 = 0, i.e. as the weak limit of the sequence of
probability measures

P (W ∈ · | 0 ≤ W1 ≤ 1/n), n ∈ N,

as n → ∞. Often, when Brownian bridge is obtained as a limit by a functional central
limit theorem, there is an explicit underlying conditioning that takes place. One first proves
convergence to a Brownian motion and uses conditioning to prove convergence to a Brownian
bridge. Brownian bridges appear in limits of urn processes, and also in limits of empirical
distributions [3, Thm. 13.1].

In this note we remark that it is possible to obtain a Brownian bridge from a renewal process,
without the use of conditioning.

Theorem 1. Define, for u > 0,

ηu(t) :=
R[tAu] − tu√

u
, 0 ≤ t ≤ 1.

Considering ηu as a random element of D[0, 1] (equipped with the topology of uniform con-
vergence on compacta), we have

ηu ⇒ µ−1/2σW 0, as u → ∞,

where W 0 is a standard Brownian bridge.

Here, [x] denotes the largest integer not exceeding the real number x. We remark that RAu

is “close” to u, in the sense that RAu ≤ u < R1+Au . In fact, the difference u−RAu (known
as the age of the renewal process) is a tight family (over u ≥ 0) of random variables. In the
above theorem, we just introduce another parameter, t, and measure the difference between
tu and R[tAu]. When t = 0 or 1, this difference is “negligible” with respect to any power of
u. When t is between 0 and 1, then the difference is of the “order of

√
u” in the sense that

when divided by
√
u it converges to a normal random variable. Jointly, over all t ∈ [0, 1],

we have convergence to a Brownian bridge, and this is what we show next.

Proof. Consider, for u > 0,

yu(t) :=
R[tu] − µtu√

u
, t ≥ 0.

From Donsker’s theorem [3] for the random walk {Rn} we have that yu ⇒ σW , where W is
a standard Brownian motion. Define also, for u > 0,

ϕu(t) :=
tAu

u
.

From the law of large numbers for the renewal process, Au/u → µ−1, a.s., as u → ∞. Hence,
ϕu converges a.s. (and weakly) to the deterministic process {µ−1t}. Since composition is a
continuous function [3] we have that

{(yu ◦ ϕu)(t)} ⇒ {σWµ−1t}
d
= {µ−1/2σWt}. (1)
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We also have

(yu ◦ ϕu)(t) =
R[tAu] − µtAu√

u
,

and so

ηu(t) = (yu ◦ ϕu)(t) + µt
Au − µ−1u√

u

= (yu ◦ ϕu)(t)− t(yu ◦ ϕu)(1) − t
u−RAu√

u
. (2)

Observe now that {u−RAu , u ≥ 0} is a tight family. Indeed, from standard renewal theory
(see, e.g., [1]), if R1 has a non-lattice distribution, then u−RAu converges weakly as u → ∞.
And if R1 has a lattice distribution with span h, then a similar convergence takes places for
nh−RAnh

as n → ∞. Since, for all u ≥ 0, 0 ≤ u−RAu ≤ ([u/h] + 1)h−RA[u/h]
, the family

{u − RAu , u ≥ 0} is tight even in the lattice case. Tightness implies that the last term of
(2) converges to 0 in probability. From the convergence stated in (1) and the decomposition
(2), we have that

{ηu(t)}0≤t≤1 ⇒ µ−1/2σ{Wt − tW1}0≤t≤1.

It is well known [4] that a standard Brownian bridge W 0 can be represented as W 0
t =

Wt − tW1, and so the process above is the limit we were looking for.

2 Extensions, discussion, and examples

Here is a different version that, perhaps, makes Theorem 1 clearer: Suppose that M is
a regenerative random measure on [0,∞). That is, there is some renewal process with
points T0 < T1 < T2 < · · · such that the random measures obtained by restricting M onto
[Tn, Tn+1), n = 0, 1, 2, . . . , are i.i.d. Suppose that

µ := E(T2 − T1), var(T2 − T1) < ∞,

α := EM([T1, T2)), 0 < varM([T1, T2)) < ∞.

Define the random distribution function of M by

S(t) = M((0, t]), u ≥ 0.

By the law of large numbers, S(t)/t → µ−1α, a.s. as t → ∞. Consider the generalised
inverse

S−1(u) := inf{t ≥ 0 : S(t) > u}, u ≥ 0.

Then, in some naive sense, S−1 composed with S is “approximately” the identity function,
but what can we say about the composition of S−1 with a fraction tS of S where 0 < t < 1?
The law of large numbers tells us that, almost surely,

S(tS−1(u))

u
−−−→
u→∞

t.

An extension of the previous theorem quantifies the deviation:
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Theorem 2. As u → ∞, the sequence of processes ηu where

ηu(t) :=
S(tS−1(u))− tu√

u
, 0 ≤ t ≤ 1,

converges weakly to a Brownian bridge.

The proof of this is analogous to the previous one, so it is omitted. Observe that the “tying
down” of the Brownian motion occurs naturally at t = 0 and t = 1.

The Brownian bridge has a scaling constant depending on the parameters of the process S.

Note that the regenerative assumption is not crucial. All we need is to have a process
for which a Donsker theorem with a Brownian limit holds. This is then translatable to a
Brownian bridge limit.

If we interchange the roles of S and S−1 we still get a Brownian bridge but with different
constant. For instance, interchanging the roles of {Rn} and {Au} in Theorem 1 we obtain
that

η′n(t) :=
A(tRn)− tn√

n
, 0 ≤ t ≤ 1,

converges weakly, as n → ∞, to κW 0, where W 0 is a standard Brownian bridge and κ =
σµ−1.

2.1 An interpretation

To better understand the phenomenon, we cast the limit theorem as follows: We have a
random function S, composed with scaling functions

ρt : x 7→ tx

and composed again with the inverse function S−1 and we look at the asymptotic behaviour
of the family of random functions

S◦ρt◦S
−1 − ρt, 0 ≤ t ≤ 1, (3)

(or of S−1
◦ρt◦S), as a function of the parameter t. Thus, the time parameter of the Brownian

bridge obtained in the limit plays the role of a scaling factor. When t is 0 or 1, S◦ρt◦S
−1−ρt

is approximately zero (with respect to the normalising factor). This raises the following three
questions:
(i) How much “one-dimensional” is this phenomenon?
(ii) Can we replace the family ρt by a more general homotopy?
(iii) Are different kind of bridges possible to obtain?
With respect to the latter question, we could start with a regenerative process with finite
mean but infinite variance, one that belongs to the domain of attraction of, say, a self-similar
Lévy process.
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2.2 Four examples

EXAMPLE 1 The first is a simple example involving a standard Brownian motion W .
Let X denote the (strong) Markov process

Xt = (Wt − t)− min
0≤s≤t

(Ws − s), t ≥ 0, (4)

which is the reflection of the drifted Brownian motion {Wt − t}. This process in natural in
many areas of applied probability, e.g. in the diffusion approximation of a queue. We have
X0 = 0, Xt ≥ 0. The Brownian area process

S(t) =

∫ t

0
Xrdr (5)

is non-decreasing. Fix some u ≥ 0 and t ∈ [0, 1]. By continuity, there is a unique point
between 0 and u that splits the area S(u) into two parts with ratio t : (1 − t). Call this
point Hu(t). Specifically,

Hu(t) := min

{

v ≥ 0 : t

∫ v

0
Xrdr = (1− t)

∫ u

v
Xrdr

}

, 0 ≤ t ≤ 1.

We then claim that

ηu(t) :=
Hu(t)− tu√

u
, 0 ≤ t ≤ 1,

converges weakly to a Brownian bridge as u → ∞. To see this, observe that

S−1(x) = min{v ≥ 0 : S(v) = x},

and hence

S−1(tS(u)) = min{v ≥ 0 : S(v) = tS(u)

= min{v ≥ 0 : S(v) = t(S(v) + S(u)− S(v))}
= min{v ≥ 0 : (1− t)S(v) = t(S(u)− S(v))} = Hu(1− t).

Apply Theorem 2 to get the result. (Notice that ηu(1 − t) also converges to a Brownian
bridge.)

EXAMPLE 2 Same as Example 1, but with W being a zero-mean Lévy process. The
Brownian bridge in Example 1 was obtained not from the fact that W was Brownian, but
from the regenerative structure of S. It is this that allows us to replace W by a more general,
say a Lévy process, as long as we maintain the finite variance assumptions. The latter hold
once we add a strictly negative drift to a zero-mean Lévy process W , reflect it, precisely as
in (4), and integrate just as in (5). Whereas W may be discontinuous, S is continuous and
the conclusion remains the same.
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EXAMPLE 3 The third example is an application of the above in proving a limit theorem
for a random digraph. We consider a random directed graph Gn = (Vn, En) on the set of
vertices Vn := {1, . . . , n} by letting the set of edges En contain the pair (i, j), i < j, with
probability p, independently from pair to pair. This is a directed version of the (nowadays)
so-called Erdős-Rényi graph.

A path starting in i and ending in j is a sequence of vertices i0 = i, i1, . . . , in = j such that
(i, i1), . . . (in−1, j) are edges. Amongst all paths in Gn there is one with maximum length;
this length is denoted by Ln. Amongst all paths in Gn that end at a vertex j ∈ Vn there is
one with maximum length; this length is called weight of vertex j. We keep track of vertices
with a specific weight and let Sn(ℓ) be the number of vertices with weights at least ℓ. (Here
ℓ ranges between 0 and Ln.) So, for example, Sn(0) is the number of vertices in Vn that are
endpoints of no edge in En, and Sn(Ln) is the number of paths of maximal length in Gn.

Theorem 3.
Sn([tLn])− tn√

n
, 0 ≤ t ≤ 1,

converges, as n → ∞, weakly to a Brownian bridge.

The proof of this theorem can be found in [2, p. 453].

EXAMPLE 4 Here is an illustration, of the kind of phenomenon described around (3), in
Stochastic Geometry. We consider a Poisson point process1 N in R

d with intensity, say, 1;
that is, N is a random discrete subset of Rd such that the cardinalities of N∩B1, . . . , N ∩Bn

are independent random variables whenever B1, . . . , Bn are disjoint Borel sets, for any n ∈ N,
and the expectation of the cardinality of N ∩B equals the Lebesgue measure of B. For each
x in R

d we let π(x) be the point of N closest to x (there is a.s. a unique such point). For
each point z of N , we let σ(z) be the Voronoi cell [5, 6] associated to z:

σ(z) := {x ∈ R
d : ||x− z|| ≤ ||x− z′|| for all points z′ of N},

where || · || is the Euclidean norm on R
d. The Voronoi tessellation of Rd is the the tiling

of Rd by the Voronoi cells. If z is not a point of N we define σ(z) to be the Voronoi cell
containing z (again this cell is a.s. unique). The distance of a closed set A ⊂ R

d from a
point x ∈ R

d is
dist(A, x) = inf{||x − y|| : y ∈ A}.

Consider now the process
D(t, x) := dist(σ(tπ(x)), tx),

where t ∈ [0, 1] and x ∈ R
d. The claim is that

||x||−1/2 D(·, x) ⇒ |W 0|, as ||x|| → ∞,

|W 0| being the absolute value of a Brownian bridge.

1More general point processes can be allowed here.
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