A note on the convergence of renewal and regenerative processes to a Brownian bridge

Serguei Foss Takis Konstantopoulos

12 August 2007

Abstract

The standard functional central limit theorem for a renewal process with finite mean and variance, results in a Brownian motion limit. This note shows how to obtain a Brownian bridge process by a direct procedure that does not involve conditioning. Several examples are also considered.

Keywords and phrases. Renewal process, Brownian Bridge, Functional Central Limit Theorem, Weak Convergence

AMS 2000 subject classifications. Primary 60F17; secondary 60K05,60G50

1 The basic theorem

In proving convergence results for a stochastic ordered graph on the integers [2], we noticed that one can obtain a Donsker-like theorem for Brownian bridge in a somewhat non-standard manner. The result appears to be new. As it may be of potential interest in some related areas (statistics, large deviations), we summarise it in this short note.

Consider a (possibly delayed) renewal process on $[0,\infty)$ with renewal epochs

$$0 < R_1 < R_2 < \cdots$$

We assume that $\{R_{n+1} - R_n\}_{n \ge 1}$ are i.i.d. with mean μ and variance σ^2 , both finite. Let

$$A_t := \#\{n \ge 1 : R_n \le t\}$$

be the associated counting process. The standard functional central limit theorem for a renewal process, see, e.g., [1], states that the sequence of processes ξ_1, ξ_2, \ldots , where

$$\xi_n(t) := \frac{A_{nt} - \mu^{-1}nt}{\sqrt{n}}, \quad t \ge 0,$$

converges weakly, as $n \to \infty$, to $\mu^{-3/2} \sigma W$, where W is a standard Brownian motion on $[0, \infty)$. Weak convergence (denoted by \Rightarrow below) means weak convergence of probability

measures on the space $D[0,\infty)$ of functions which are right continuous with left limits, equipped with the usual Skorokhod topology (see, e.g., [3], [7]).

A standard Brownian bridge [3, p. 84] W^0 is defined, in distribution, as a standard Brownian motion W on [0, 1], conditional on $W_1 = 0$, i.e. as the weak limit of the sequence of probability measures

$$P(W \in \cdot \mid 0 \le W_1 \le 1/n), \quad n \in \mathbb{N},$$

as $n \to \infty$. Often, when Brownian bridge is obtained as a limit by a functional central limit theorem, there is an *explicit* underlying conditioning that takes place. One first proves convergence to a Brownian motion and uses conditioning to prove convergence to a Brownian bridge. Brownian bridges appear in limits of urn processes, and also in limits of empirical distributions [3, Thm. 13.1].

In this note we remark that it is possible to obtain a Brownian bridge from a renewal process, without the use of conditioning.

Theorem 1. Define, for u > 0,

$$\eta_u(t) := \frac{R_{[tA_u]} - tu}{\sqrt{u}}, \quad 0 \le t \le 1.$$

Considering η_u as a random element of D[0,1] (equipped with the topology of uniform convergence on compacta), we have

$$\eta_u \Rightarrow \mu^{-1/2} \sigma W^0, \quad as \ u \to \infty,$$

where W^0 is a standard Brownian bridge.

Here, [x] denotes the largest integer not exceeding the real number x. We remark that R_{A_u} is "close" to u, in the sense that $R_{A_u} \leq u < R_{1+A_u}$. In fact, the difference $u - R_{A_u}$ (known as the age of the renewal process) is a tight family (over $u \geq 0$) of random variables. In the above theorem, we just introduce another parameter, t, and measure the difference between tu and $R_{[tA_u]}$. When t = 0 or 1, this difference is "negligible" with respect to any power of u. When t is between 0 and 1, then the difference is of the "order of \sqrt{u} " in the sense that when divided by \sqrt{u} it converges to a normal random variable. Jointly, over all $t \in [0, 1]$, we have convergence to a Brownian bridge, and this is what we show next.

Proof. Consider, for u > 0,

$$y_u(t) := \frac{R_{[tu]} - \mu tu}{\sqrt{u}}, \quad t \ge 0.$$

From Donsker's theorem [3] for the random walk $\{R_n\}$ we have that $y_u \Rightarrow \sigma W$, where W is a standard Brownian motion. Define also, for u > 0,

$$\varphi_u(t) := \frac{tA_u}{u}$$

From the law of large numbers for the renewal process, $A_u/u \to \mu^{-1}$, a.s., as $u \to \infty$. Hence, φ_u converges a.s. (and weakly) to the deterministic process $\{\mu^{-1}t\}$. Since composition is a continuous function [3] we have that

$$\{(y_u \circ \varphi_u)(t)\} \Rightarrow \{\sigma W_{\mu^{-1}t}\} \stackrel{d}{=} \{\mu^{-1/2} \sigma W_t\}.$$
(1)

We also have

$$(y_u \circ \varphi_u)(t) = \frac{R_{[tA_u]} - \mu t A_u}{\sqrt{u}}$$

and so

$$\eta_u(t) = (y_u \circ \varphi_u)(t) + \mu t \frac{A_u - \mu^{-1}u}{\sqrt{u}}$$
$$= (y_u \circ \varphi_u)(t) - t(y_u \circ \varphi_u)(1) - t \frac{u - R_{A_u}}{\sqrt{u}}.$$
(2)

Observe now that $\{u - R_{A_u}, u \ge 0\}$ is a tight family. Indeed, from standard renewal theory (see, e.g., [1]), if R_1 has a non-lattice distribution, then $u - R_{A_u}$ converges weakly as $u \to \infty$. And if R_1 has a lattice distribution with span h, then a similar convergence takes places for $nh - R_{A_{nh}}$ as $n \to \infty$. Since, for all $u \ge 0$, $0 \le u - R_{A_u} \le ([u/h] + 1)h - R_{A_{[u/h]}}$, the family $\{u - R_{A_u}, u \ge 0\}$ is tight even in the lattice case. Tightness implies that the last term of (2) converges to 0 in probability. From the convergence stated in (1) and the decomposition (2), we have that

$$\{\eta_u(t)\}_{0 \le t \le 1} \Rightarrow \mu^{-1/2} \sigma\{W_t - tW_1\}_{0 \le t \le 1}.$$

It is well known [4] that a standard Brownian bridge W^0 can be represented as $W_t^0 = W_t - tW_1$, and so the process above is the limit we were looking for.

2 Extensions, discussion, and examples

Here is a different version that, perhaps, makes Theorem 1 clearer: Suppose that M is a regenerative random measure on $[0, \infty)$. That is, there is some renewal process with points $T_0 < T_1 < T_2 < \cdots$ such that the random measures obtained by restricting M onto $[T_n, T_{n+1}), n = 0, 1, 2, \ldots$, are i.i.d. Suppose that

$$\mu := E(T_2 - T_1), \quad \operatorname{var}(T_2 - T_1) < \infty,$$

$$\alpha := EM([T_1, T_2)), \quad 0 < \operatorname{var} M([T_1, T_2)) < \infty.$$

Define the random distribution function of M by

$$S(t) = M((0, t]), \quad u \ge 0.$$

By the law of large numbers, $S(t)/t \to \mu^{-1}\alpha$, a.s. as $t \to \infty$. Consider the generalised inverse

$$S^{-1}(u) := \inf\{t \ge 0 : S(t) > u\}, \quad u \ge 0.$$

Then, in some naive sense, S^{-1} composed with S is "approximately" the identity function, but what can we say about the composition of S^{-1} with a fraction tS of S where 0 < t < 1? The law of large numbers tells us that, almost surely,

$$\frac{S(tS^{-1}(u))}{u} \xrightarrow[u \to \infty]{} t.$$

An extension of the previous theorem quantifies the deviation:

Theorem 2. As $u \to \infty$, the sequence of processes η_u where

$$\eta_u(t) := \frac{S(tS^{-1}(u)) - tu}{\sqrt{u}}, \quad 0 \le t \le 1,$$

converges weakly to a Brownian bridge.

The proof of this is analogous to the previous one, so it is omitted. Observe that the "tying down" of the Brownian motion occurs naturally at t = 0 and t = 1.

The Brownian bridge has a scaling constant depending on the parameters of the process S.

Note that the regenerative assumption is not crucial. All we need is to have a process for which a Donsker theorem with a Brownian limit holds. This is then translatable to a Brownian bridge limit.

If we interchange the roles of S and S^{-1} we still get a Brownian bridge but with different constant. For instance, interchanging the roles of $\{R_n\}$ and $\{A_u\}$ in Theorem 1 we obtain that

$$\eta'_n(t) := \frac{A(tR_n) - tn}{\sqrt{n}}, \quad 0 \le t \le 1,$$

converges weakly, as $n \to \infty$, to κW^0 , where W^0 is a standard Brownian bridge and $\kappa = \sigma \mu^{-1}$.

2.1 An interpretation

To better understand the phenomenon, we cast the limit theorem as follows: We have a random function S, composed with scaling functions

$$\rho_t: x \mapsto tx$$

and composed again with the inverse function S^{-1} and we look at the asymptotic behaviour of the family of random functions

$$S \circ \rho_t \circ S^{-1} - \rho_t, \quad 0 \le t \le 1, \tag{3}$$

(or of $S^{-1} \circ \rho_t \circ S$), as a function of the parameter t. Thus, the time parameter of the Brownian bridge obtained in the limit plays the role of a scaling factor. When t is 0 or 1, $S \circ \rho_t \circ S^{-1} - \rho_t$ is approximately zero (with respect to the normalising factor). This raises the following three questions:

(i) How much "one-dimensional" is this phenomenon?

(ii) Can we replace the family ρ_t by a more general homotopy?

(iii) Are different kind of bridges possible to obtain?

With respect to the latter question, we could start with a regenerative process with finite mean but infinite variance, one that belongs to the domain of attraction of, say, a self-similar Lévy process.

2.2 Four examples

EXAMPLE 1 The first is a simple example involving a standard Brownian motion W. Let X denote the (strong) Markov process

$$X_t = (W_t - t) - \min_{0 \le s \le t} (W_s - s), \quad t \ge 0,$$
(4)

which is the reflection of the drifted Brownian motion $\{W_t - t\}$. This process in natural in many areas of applied probability, e.g. in the diffusion approximation of a queue. We have $X_0 = 0, X_t \ge 0$. The Brownian area process

$$S(t) = \int_0^t X_r dr \tag{5}$$

is non-decreasing. Fix some $u \ge 0$ and $t \in [0, 1]$. By continuity, there is a unique point between 0 and u that splits the area S(u) into two parts with ratio t : (1 - t). Call this point $H_u(t)$. Specifically,

$$H_u(t) := \min\left\{ v \ge 0 : t \int_0^v X_r dr = (1-t) \int_v^u X_r dr \right\}, \quad 0 \le t \le 1.$$

We then claim that

$$\eta_u(t) := \frac{H_u(t) - tu}{\sqrt{u}}, \quad 0 \le t \le 1,$$

converges weakly to a Brownian bridge as $u \to \infty$. To see this, observe that

$$S^{-1}(x) = \min\{v \ge 0 : S(v) = x\},\$$

and hence

$$S^{-1}(tS(u)) = \min\{v \ge 0 : S(v) = tS(u) \\ = \min\{v \ge 0 : S(v) = t(S(v) + S(u) - S(v))\} \\ = \min\{v \ge 0 : (1 - t)S(v) = t(S(u) - S(v))\} = H_u(1 - t).$$

Apply Theorem 2 to get the result. (Notice that $\eta_u(1-t)$ also converges to a Brownian bridge.)

EXAMPLE 2 Same as Example 1, but with W being a *zero-mean* Lévy process. The Brownian bridge in Example 1 was obtained not from the fact that W was Brownian, but from the regenerative structure of S. It is this that allows us to replace W by a more general, say a Lévy process, as long as we maintain the finite variance assumptions. The latter hold once we add a strictly negative drift to a zero-mean Lévy process W, reflect it, precisely as in (4), and integrate just as in (5). Whereas W may be discontinuous, S is continuous and the conclusion remains the same.

EXAMPLE 3 The third example is an application of the above in proving a limit theorem for a random digraph. We consider a random directed graph $G_n = (V_n, E_n)$ on the set of vertices $V_n := \{1, \ldots, n\}$ by letting the set of edges E_n contain the pair (i, j), i < j, with probability p, independently from pair to pair. This is a directed version of the (nowadays) so-called Erdős-Rényi graph.

A path starting in *i* and ending in *j* is a sequence of vertices $i_0 = i, i_1, \ldots, i_n = j$ such that $(i, i_1), \ldots, (i_{n-1}, j)$ are edges. Amongst all paths in G_n there is one with maximum length; this length is denoted by L_n . Amongst all paths in G_n that end at a vertex $j \in V_n$ there is one with maximum length; this length is called *weight* of vertex *j*. We keep track of vertices with a specific weight and let $S_n(\ell)$ be the number of vertices with weights at least ℓ . (Here ℓ ranges between 0 and L_n .) So, for example, $S_n(0)$ is the number of vertices in V_n that are endpoints of no edge in E_n , and $S_n(L_n)$ is the number of paths of maximal length in G_n .

Theorem 3.

$$\frac{S_n([tL_n]) - tn}{\sqrt{n}}, \quad 0 \le t \le 1,$$

converges, as $n \to \infty$, weakly to a Brownian bridge.

The proof of this theorem can be found in [2, p. 453].

EXAMPLE 4 Here is an illustration, of the kind of phenomenon described around (3), in Stochastic Geometry. We consider a Poisson point process¹ N in \mathbb{R}^d with intensity, say, 1; that is, N is a random discrete subset of \mathbb{R}^d such that the cardinalities of $N \cap B_1, \ldots, N \cap B_n$ are independent random variables whenever B_1, \ldots, B_n are disjoint Borel sets, for any $n \in \mathbb{N}$, and the expectation of the cardinality of $N \cap B$ equals the Lebesgue measure of B. For each x in \mathbb{R}^d we let $\pi(x)$ be the point of N closest to x (there is a.s. a unique such point). For each point z of N, we let $\sigma(z)$ be the *Voronoi cell* [5, 6] associated to z:

$$\sigma(z) := \{ x \in \mathbb{R}^d : ||x - z|| \le ||x - z'|| \text{ for all points } z' \text{ of } N \},\$$

where $|| \cdot ||$ is the Euclidean norm on \mathbb{R}^d . The Voronoi tessellation of \mathbb{R}^d is the the tiling of \mathbb{R}^d by the Voronoi cells. If z is not a point of N we define $\sigma(z)$ to be the Voronoi cell containing z (again this cell is a.s. unique). The distance of a closed set $A \subset \mathbb{R}^d$ from a point $x \in \mathbb{R}^d$ is

$$dist(A, x) = inf\{||x - y|| : y \in A\}.$$

Consider now the process

$$D(t,x) := \operatorname{dist}(\sigma(t\pi(x)), tx),$$

where $t \in [0, 1]$ and $x \in \mathbb{R}^d$. The claim is that

$$||x||^{-1/2} D(\cdot, x) \Rightarrow |W^0|, \quad \text{as } ||x|| \to \infty,$$

 $|W^0|$ being the absolute value of a Brownian bridge.

¹More general point processes can be allowed here.

References

- [1] Asmussen, S. (2003) *Applied Probability and Queues*, 2nd. ed. Springer Verlag (to appear).
- [2] Foss, S. and Konstantopoulos, T. (2003) Extended renovation theory and limit theorems for stochastic ordered graphs. *Markov Processes and Related Fields* **9**, 413-468.
- [3] Billingsley, P. (1968) Convergence of Probability Measures, Wiley.
- [4] Revuz, D. and Yor, M. (1999) Continuous Martingales and Brownian Motion, 3rd. ed. Springer Verlag.
- [5] Schneider R. and Weil W. (2000) Stochastische Geometrie. Teubner.
- [6] Stoyan, D., Kendall, W.S. and Mecke, J. (1987) Stochastic Geometry and its Applications. Wiley.
- [7] Whitt, W. (2002) Stochastic-Process Limits. Springer Verlag.

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES MAXWELL INSTITUTE FOR MATHEMATICAL SCIENCES HERIOT-WATT UNIVERSITY, EDINBURGH EH14 4AS, U.K. foss@ma.hw.ac.uk, takis@ma.hw.ac.uk