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Hierarchical Frameworks of Metal-Organic Cages with Axial 

Ferroelectric Anisotropy** 

Ashok Yadav,[a] Priyangi Kulkarni,[c] B. Praveenkumar,*[c] Alexander Steiner*[d] and Ramamoorthy 

Boomishankar*[a,b] 

**Dedicated to Prof. V. Chandrasekhar on the occasion of his 60th Birthday

Abstract: Designing molecular crystals with switchable dipoles for 

ferroelectric applications is challenging and often serendipitous. 

Herein, we show a systematic approach toward hierarchical 1D-, 2D- 

and 3D-frameworks that are assembled via successive linkage of 

metal-organic cages [Cu6(H2O)12(TPTA)8]
12+

 with chloride ions. Their 

ferroelectric properties are due to the displacement of channel-

bound nitrate counterions and solvated water molecules relative to 

the framework of cages. Ferroelectric measurements of crystals of 

discrete and 1D-frameworks assemblies showed axial ferroelectric 

anisotropy with high remnant polarization. Both, the reversible 

formation of cage-connected networks and the observation of 

ferroelectric anisotropic behaviour are rare among metal-ligand cage 

assemblies.  

Ferroelectric materials facilitate large switchable electric fields in 

low power consumption, non-volatile computing devices, field-

effect transistors, electrically controlled magnetic memories, 

micro-electro-mechanical systems and ferroelectric photovoltaic 

cells.[1] Ferroelectric systems based on organic, organic-

inorganic and metal-organic assemblies have gained attraction 

due to their simple synthetic protocols, tuneable structural 

properties and the amenability for low-temperature and low-cost 

fabrication.[2] Several organic ferroelectrics exhibit polar salt-like 

structures.[3] The structural aspects of their polarization 

mechanisms are often well-understood due to the availability of 

single crystals for X-ray analyses, which can also provide 

valuable information about axial anisotropies of polarization.[4] In 

contrast, the polarization of metal-ligand based networks is less 

well understood owing to the difficulty in growing regular defect-

free crystals.[5] Furthermore, their ferroelectric behaviour is often 

not associated with structure-phase transitions.[6] Known 

ferroelectric mechanisms in metal-organic assemblies in general 

involve ordering of the guests and solvates, distortions around 

the metal centers, motion and distortion of small counter anions 

or in some instances the rotational motion of the ligand scaffolds 

that bridge the metal ions.[7] In here we set out to explore the 

ferroelectric behaviour of a hierarchical family of metal-organic 

systems and systematically understand the role of symmetry, 

dimensionality and guest molecules on their polarization 

attributes. 

Recently, we described a crystalline assembly of cationic metal–

organic cages that showed prominent ferroelectric polarization, 

which originates from the toggling of nitrate anions and solvate 

molecules found in pockets between the cages.[7f] Here we show 

that the cationic cage [{Cu6(H2O)12}{TPTA}8]
12+ (TPTA = tris(3-

pyridylamino)thiophosphate) can be assembled into higher 

dimensional cage networks. Assemblies of 1D, 2D and 3D-

MOFs were obtained by controlled replacement of Cu-bound 

aqua ligands in the discrete (0D) cage with connecting chloride 

ions. Further, by using precise quantities of chloride ion 

acceptors such as AgNO3 or (nBu4N)NO3, these networks can be 

disassembled into the corresponding lower dimensional 

frameworks in a stepwise manner. The ferroelectric 

measurements on the crystals of the 0D and 1D assemblies 

show anisotropic response along the tetragonal a- and c-axes. 

Interestingly, these measurements show increased remnant 

polarization of the 1D over the 0D assembly. To the best of our 

knowledge, this is the first report of a reversible formation of 

hierarchical cage-connected frameworks with ferroelectric 

anisotropy in metal-ligand cage assemblies. 

 

Scheme 1. Schematic diagram for the formation of cage-connected 

frameworks. Transformations labelled ‘a’ and ‘b’ indicate assembly and 

disassembly processes, respectively. Black arrows show stepwise 

conversions; gray arrows cross-conversions. Bottom row: Images of the 

crystals of 1-4 under the microscope. 

Treatment of TPTA[7f,8] with Cu(NO3)2·3H2O in 3:2 ratio gave 1, 

which contains discrete cages (0D) of formula 

{[Cu6(H2O)12][TPTA]8}·(NO3)12·38H2O. Reactions of 1 with 

controlled quantities of NaCl in MeOH/H2O yielded hierarchical 
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assemblies via sequential replacement of the exo-cage Cu-

coordinated water molecules with chloride ions. Thus the 1:1 

reaction of 1 with NaCl gave the 1D-polymer  

[Cu6(H2O)10(TPTA)8Cl]·(NO3)11·28H2O, 2; a 1:3 ratio the 2D-

network [Cu6(H2O)7(TPTA)8Cl3]·(NO3)9·35H2O, 3 and a 1:6 ratio 

(or excess) the 3D-MOF [Cu6(H2O)6(TPTA)8Cl3]·(NO3)9·28H2O, 4 

(Scheme 1). Notably, direct reaction of TPTA, Cu(NO3)2·3H2O 

and NaCl (in various ratios) only leads to 1D-assembly 2. The 

structures of all compounds were determined by single crystal X-

ray diffraction (SCXRD), while the bulk phase purity was 

confirmed by powder X-ray diffraction (PXRD) (Supporting 

Information, Figures S1-S4). Treatment with chloride ion 

acceptors such as AgNO3 or (nBu4N)NO3 have resulted in the 

hierarchical disassembly of these frameworks in successive 

steps from 4 down to 1 (Scheme 1). Although there are a few 

accounts on the growth of cage assemblies to three dimensional 

metal organic frameworks, those reactions were not reported to 

be reversible and complete sets of intermediate frameworks 

could not be isolated.[9] However, in our case the intermediates 

were characterized by both SCXRD and bulk phase PXRD 

(Supporting Information, Figures S5-S8).  

 

Figure 1. (a) Octahedral core structure of 1 and (b) the coordination at the 

Cu(II) center. (c) View showing the connection of Cu
2+

 center with the TPTA 

ligand. (d) View of the cage connected 1D-framework in 2. 

The 0D material 1 crystallized in the tetragonal space group I4. It 

closely resembles the analogous Zn-derivative.[7f] Each TPTA 

ligand in the cationic [Cu6(H2O)12(TPTA)8]
12+ cage is connected 

to three Cu(II) centers via its pyridyl groups. In turn, the Cu(II) 

ions exhibit characteristic Jahn-Teller-distorted octahedral 

coordination with four equatorial Npyridyl contacts and two axial 

water molecules which is well-established in the design of metal-

organic cages.[10] The discrete cage is chiral octahedral (point 

group O); the Cu(II) ions occupy the C axes, while the TPTA 

ligands are centred on the C3 axes (Figure 1a-1c and Supporting 

Information Figure S9). The cages in 1 are chiral as all tripodal 

ligands are twisted with the same handedness (Supporting 

Information, Figures S10). 

The SCXRD analyses of 2, 3 and 4 corroborate the formation of 

hierarchical cage-connected assemblies. It shows that the exo-

cage Cu-bound water molecules have been sequentially 

replaced by chloride ions, which act as linear bridges between 

cages. There are chloride bridges at two opposite corners of the 

M6L8 octahedron in 2 (Figure 1d and Supporting Information, 

Figures S11)); at its four equatorial corners in 3 and at all six 

corners in 4. Non-bridging chloride ions have partially replaced 

the water molecules at the remaining two corners in 3. The 

endo-cage water ligands are unaffected by addition of chloride 

salt (Figures 2a-b and Supporting Information, Figures S12-S13). 

Similar discrete and connected cage assemblies were also 

obtained with other anions such as BF4
‒ and ClO4

‒ (Supporting 

Information, Figure S14). 

Crystals of 1, 2 and 3 exhibit tetrahedral lattices with space 

group symmetries I4 (1), I422 (2) and P4/nnc (3), while 4 gives a 

cubic lattice (space group P432). The topology of the cage 

network of 3 is a simple square grid (4-c uninodal sql net, Figure 

2c) considering the cage counts as a single node, while that of 4 

is a primitive cubic lattice (6-c uninodal pcu net, Figure 2d).[11] All 

four structures contain large solvent accessible voids, which are 

occupied by nitrate ions and water molecules.   

Remarkably, the handedness of cages is maintained across 

chloride bridges resulting in chiral networks (Supporting 

Information, Figures S15-18). A closer look at the crystal 

structures show that the propeller-shaped Cu(py)4 assemblies at 

either side of the Cu-Cl-Cu bridge effectively gear into each 

other in a staggered conformation. The van-der-Waals 

interactions between pyridyl groups of adjacent cages reinforce 

the linear arrangement of the Cu-Cl-Cu bridge (Figure S15, 

Supporting Information). A racemic bridge, on the other hand, 

would be unfavourable due to the mismatch of opposing shapes. 

While crystals of 1, 2 and 4 are chiral throughout, crystals of 3 

are centrosymmetric as neighbouring layers form opposite 

enantiomers. 

 

Figure 2. View of the cage connected (a) 2D- sheet in 3 and (b) the 3D-

network in 4. The underlying nets of 3, showing uni-nodal sql topology (c), and 

4, showing uni-nodal pcu topology (d). 
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The cage-connected solids mimic classic inorganic structure 

types: 2 is related to that of the linear F-bridged polymer BiF5 

(I4/m), 3 to the layered structure of SnF4 (I4/mmm), while 4 is 

analogous to the cubic ReO3 lattice (Pm-3m).[12] The lowest 

packing density is found for the 3D lattice of 4; its proportion of 

solvent accessible void volume is 54.1 %. In contrast, the 

layered lattice of 3 has the highest density with a void volume of 

31.5 %, while crystals of 1 and 2 show intermediate values 

(38.6 % for both). Fig. 3 illustrates the packing of the networks. 

While the chloride bridges are the primary connections that 

define the networks, there are additional short contacts between 

cages of separate networks in the crystal structures of 1, 2 and 3. 

These contacts are facilitated by a nitrate ion that links two 

tripodal TPTA units via hydrogen bonding. Every cage forms 

eight such interactions, which bring the separate networks into 

close contact. Hence, in the case of 3, the combination of four 

chloride bridges and eight nitrate contacts yields the densest 

structure of this series, displaying a near cubic close-packed 

arrangement. In contrast, the rigid 3D-network of 4 with its six, 

octahedrally arranged chloride bridges does not feature 

additional nitrate contacts. The result is a simple cubic packing, 

which leaves large void spaces. 

 

Figure 3. Illustration of the packing of the networks in crystals of 1 (0D, a) , 2 

(1D, b) , 3 (2D, c) and 4 (3D, d). Green spheres represent cage-centroids, 

orange spheres chloride bridges and yellow spheres terminal cage-vertices. 

Dashed lines show short distances between cages of other networks (< 10 Å 

when measured between cage-centroids), which are faciliated by hydrogen 

bonds across nitrate ions. 

The dimensionality of the network controls the degrees of 

freedom that enable the cages to rotate. While the rigid 2D and 

3D assemblies prohibit a deviation from a strict orthogonal 

alignment, the linear chain of 2 should, in principle, permit 

rotation around its main axis. Indeed, careful examination of the 

crystal structure of 2 reveals that the cages are rotationally 

disordered around the crystallographic 4-fold axis which runs 

along to Cu-Cl-Cu bridges. The rotation angle between the two 

domains refines to about 5° (Supporting Information, Fig. S11c) 

  

The diffuse character of nitrate ions within the channels of the 

rigid cage frameworks prompted us to investigate the 

ferroelectric properties of these crystals. The P-E loop 

measurements showed that the crystals of 1 and 2 (Supporting 

Information, Figures S19 and S20) exhibit axial anisotropy giving 

distinct polarization values along different axes. The loops [13] 

obtained in the direction of the a-axis gave higher remnant 

polarization (Pr) values of 20.46 µCcm-2 (for 1) and 28.90 µCcm-2 

(for 2) as compared to those obtained along the c-axis (2.0 

µCcm-2 for 1 and 8.58 µCcm-2 for 2)  at 1Hz (Fig. 4). The 

measurements performed at higher frequencies also gave good 

P-E loops along the a-axis with Pr values of 5.48 (at 3Hz) and 

3.0 µCcm-2 (at 5Hz) for 1 while the loops for 2 gave Pr values of 

8.75 (at 3Hz) and 5.26 µCcm-2 (at 5Hz) (Supporting Information, 

Figures S21 and S22). The lower coercive fields (Ec) of 1.04 (1) 

and 0.86 (2) kVcm-1, at 1Hz along a-axis suggest the swift 

switching of the polarizable domains in both of these crystals. 

Crystals of 4 gave a circular P-E loop which indicates its non-

ferroelectric behaviour (Supporting Information, Figure S23). 

Crystals of 3 were too small for ferroelectric measurements. 

 

Figure 4. Ferroelctric measurements of 1 (a, b) and 2 (c, d): The figures a and 

c show the loops along the a-axis and their corresponding fatigue data; b and 

d are the loops along the c-axis.  

The room temperature capacitance measurements on single 

crystals show higher dielectric constants along the tetragonal a-

axis which supports the existence of ferroelectric anisotropy in 

both 1 and 2 (Supporting Information, Table S2). The plots of 

current vs. applied voltage gave very low leakage currents along 

with peaks associated with the domain switching at the coercive 

fields, typical for ferroelectric materials (Supporting Information, 

Figures S24 and S25). Furthermore, cycling measurements on 1 

and 2 suggests them to be fatigue resistant, as they retain up to 

75% of the original Pr after 104 switching cycles (Figures 4b and 

4d). 

The temperature dependence of real part of dielectric permittivity 

(ε′) at various frequencies for 1-4 gave plots with broad anomaly 
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peaks in the range of 45-50 °C (Figure 5a, Supporting 

Information, S26-S41). The maximum ε′ values for 1, 2, 3, and 4 

corresponding to their peak maxima at 1 kHz were found to be 

98.22, 108.91, 67.68 and 60.84, respectively.  Figure 3b 

illustrates the variations in the ε′ values with respect to the 

dimensionality of the framework. Notably the higher ε′ values of 

1 and 2 over the other frameworks 3 and 4 supports the 

ferroelectric nature of 1 and 2. The broad nature of these 

anomaly peaks can be attributed to the motional dynamics of the 

loosely bound anions and solvate molecules within the pockets 

between the cages.[14] The dielectric maxima may be induced by 

the order-disorder like process of these H-bonded solvates and 

anions. Further, these anomaly peaks tend to take up relaxer-

like behaviour at higher temperatures due to desolvation which 

is well supported by TGA-DTA, VT-PXRD and FT-IR 

measurements (Supporting Information, Figure S42-S48).[7c] 

 

Figure 5. (a) Plots of the real part of dielectric permitivity vs. temperature. (b) 

Comparison of the dielectric peak maxima in 1-4 at 1 KHz. 

As stated above, the ferroelectric response in these materials is 

likely caused by the toggling of diffuse channel bound nitrate 

ions (Supporting Information, Figures S49-S53). These ions 

show complex disorder alongside lattice bound water molecules 

with which they form extended hydrogen bonded networks. The 

intrinsic cavities of the cages, on the other hand, are void of 

nitrate ions containing only water molecules. Compound 4 does 

not show any notable ferroelectric response possibly due to a 

lower mobility of nitrate ions. They form a spherical net with 

water molecules close to the cavity walls that may prevent 

toggling of ions (Supporting Information, Figure S54).  

To gain further insights into the anisotropic behaviour, we 

performed a sequence of experiments on the crystals of 2 where 

the P-E loops were recorded first along one tetragonal a-axis [1 

0 0] and then along the other crystallographically equivalent 

direction [0 1 0] and then again along [1 0 0]. Surprisingly, we 

observed a different response along the two directions. For 

some crystals the first and third readings are strong and the 

second one is low, while for other crystals the second one is 

high and the first and third readings are low (Supporting 

Information, Figure S55), which suggest that there could be 

some kind of long-range alignment of nitrate ions that is lower in 

symmetry than tetragonal and has existed prior to the 

measurements. However, we could not detect evidence of lower 

symmetry for nitrate ions in the X-ray structures since their 

contribution to the scattering of the crystal is too low to allow a 

reasonable refinement in a lower Laue class.The response 

along the c-axis [0 0 1], on the other hand, is consistently low 

(Supporting Information, Figure S56). 

In summary, we described a new protocol to assemble a 

discrete metal-organic cage to cage-connected 1D-, 2D- and 

3D-networks in a reversible fashion. Treatment of the parent 

cage assembly of 1 with stoichiometric amounts of chloride ions 

yields the hierarchical frameworks 2, 3 and 4 by sequentially 

replacing the outer-cage axial aqua ligands. Further, these 

frameworks undergo step-wise disassembly reactions upon 

treatment with AgNO3 or (nBu4N)NO3. The ferroelectric P-E 

hysteresis loop measurement on the crystals of 1 and 2 show 

axial anisotropic behaviour for both of them. High remnant 

polarization (Pr) values of 20.46 and 28.90 µCcm-2 were 

observed along the a-axis for 1 and 2, respectively, whereas a 

lower polarization values of 2.0 and 8.58 µCcm-2 were obtained 

for the respective crystals of 1 and 2 along the c-axis. 

Nevertheless, the tethering of cages into 1D arrangement led to 

a sizable increase in polarization. The origin of this anisotropic 

behaviour is due to the toggling of channel-bound nitrate ions 

with respect to the rigid cage-frameworks. These results promise 

new synthetic approaches towards metal-ligand assemblies with 

tunable ferroelectric properties. 
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