
From Conjunctive Queries to Instance Queries in Ontology-Mediated Querying

Cristina Feier1, Carsten Lutz1, Frank Wolter2
1 University of Bremen, Germany

2 University of Liverpool, UK
feier@uni-bremen.de, clu@uni-bremen.de, wolter@liverpool.ac.uk

Abstract
We consider ontology-mediated queries (OMQs)
based on expressive description logics of the ALC
family and (unions) of conjunctive queries, study-
ing the rewritability into OMQs based on instance
queries (IQs). Our results include exact character-
izations of when such a rewriting is possible and
tight complexity bounds for deciding rewritability.
We also give a tight complexity bound for the re-
lated problem of deciding whether a given MMSNP
sentence is equivalent to a CSP.

1 Introduction
An ontology-mediated query (OMQ) is a database-style
query enriched with an ontology that contains domain knowl-
edge, aiming to deliver more complete answers [Calvanese et
al., 2009; Bienvenu et al., 2014; Bienvenu and Ortiz, 2015].
In OMQs, ontologies are often formulated in a description
logic (DL) and query languages of interest include conjunc-
tive queries (CQs), unions of conjunctive queries (UCQs),
and instance queries (IQs). While CQs and UCQs are widely
known query languages that play a fundamental role also in
database systems and theory, IQs are more closely linked
to DLs. In fact, an IQ takes the form C(x) with C a con-
cept formulated in the DL that is also used for the ontology,
and thus the expressive power of IQs depends on the ontol-
ogy language. OMQs based on (U)CQs are more powerful
than OMQs based on IQs as the latter only serve to return all
objects from the data that are instances of a given class.

It is easy to see that IQs can express tree-shaped CQs with
a single answer variable as well as unions thereof. In fact,
this observation has been used in many technical construc-
tions in the area, see for example [Calvanese et al., 1998;
Glimm et al., 2008; Lutz, 2008; Eiter et al., 2012a]. In-
triguingly, though, it was observed by Zolin [2007] that tree-
shaped CQs are not the limit of IQ-rewritability when we
have an expressive DL such as ALC or ALCI at our dis-
posal. For example, the CQ r(x, x), which asks to return all
objects from the data that are involved in a reflexive r-loop,
can be rewritten into the equivalent ALC-IQ P → ∃r.P (x).
Here, P behaves like a monadic second-order variable due to
the open-world assumption made for OMQs: we are free to
interpret P in any possible way and when making P true at

an object we are forced to make also ∃r.P true if and only if
the object is involved in a reflexive r-loop. It is an interest-
ing question, raised in [Zolin, 2007; Kikot and Zolin, 2013;
Kikot et al., 2013], to precisely characterize the class of CQs
that are rewritable into IQs. An important step into this di-
rection has been made by Kikot and Zolin [2013] who iden-
tify a large class of CQs that are rewritable into IQs: a CQ is
rewritable into anALCI-IQ if it is connected and every cycle
passes through the (only) answer variable; for rewritability
into an ALC-IQ, one additionally requires that all variables
are reachable from the answer variable in a directed sense.
It remained open whether these classes are depleting, that is,
whether they capture all CQs that are IQ-rewritable.

There are two additional motivations to study the stated
question. The first one comes from concerns about the prac-
tical implementation of OMQs. When the ontology is for-
mulated in a more inexpressive ‘Horn DL’, OMQ evalua-
tion is possible in PTIME data complexity and a host of
techniques for practically efficient OMQ evaluation is avail-
able, see for example [Pérez-Urbina et al., 2010; Eiter et
al., 2012b; Trivela et al., 2015; Lutz et al., 2009]. In the
case of expressive DLs such as ALC and ALCI , OMQ
evaluation is CONP-complete in data complexity and effi-
cient implementation is much more challenging. In partic-
ular, there are hardly any systems that fully support such
OMQs when the actual queries are (U)CQs. In contrast,
the evaluation of OMQs based on (expressive DLs and)
IQs is supported by several systems such as Pellet, Her-
mit, and PAGOdA [Sirin et al., 2007; Glimm et al., 2014;
Zhou et al., 2015]. For this reason, rewriting (U)CQs into IQs
has been advocated in [Zolin, 2007; Kikot and Zolin, 2013;
Kikot et al., 2013] as an approach towards efficient OMQ
evaluation with expressive DLs and (U)CQs. The experi-
ments and optimizations reported in [Kikot et al., 2013] show
the potential (and challenges) of this approach.

The second motivation stems from the connection between
OMQs and constraint satisfaction problems (CSPs) [Bien-
venu et al., 2014; Lutz and Wolter, 2017]. Let (L,Q) de-
note the class of OMQs based on ontologies formulated in
the DL L and the query language Q. It was observed in [Bi-
envenu et al., 2014] that (ALCI, IQ) is closely related to the
complement of CSPs while (ALCI,UCQ) is closely related
to the complement of the logical generalization MMSNP of
CSP; we further remark that MMSNP is a notational variant

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1810

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/161101917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the complement of (Boolean) monadic disjunctive Data-
log. Thus, characterizing OMQs from (ALCI,UCQ) that are
rewritable into (ALCI, IQ) is related to characterizing MM-
SNP sentences that are equivalent to a CSP, and we also study
the latter problem. In fact, the main differences to the OMQ
case are that unary queries are replaced with Boolean ones
and that predicates can have unrestricted arity.

The main aim of this paper is to study the rewritability of
OMQs from (L, (U)CQ) into OMQs from (L, IQ), consider-
ing as L the basic expressive DL ALC as well as extensions
ofALC with inverse roles, role hierarchies, the universal role,
and functional roles. We provide precise characterizations,
tight complexity bounds for deciding whether a given OMQ
is rewritable, and show how to construct the rewritten query
when it exists. In fact, we prove that the classes of CQs from
[Kikot and Zolin, 2013] are depleting, but we go significantly
beyond that: while [Zolin, 2007; Kikot and Zolin, 2013;
Kikot et al., 2013] aim to find IQ-rewritings that work for
any ontology, we consider the more fine-grained question
of rewriting into an IQ an OMQ (T ,Σ, q(x)) where T is a
DL TBox formalizing the ontology, Σ is an ABox signature,
and q(x) is the actual query. The ‘any ontology’ setup then
corresponds to the special case where T is empty and Σ is
full. However, gaving a non-empty TBox or a non-full ABox
signature results in additional (U)CQs to become rewritable.
While we admit modification of the TBox during rewriting,
it turns out that this is mostly unnecessary: only in some
rather special cases, a moderate extension of the TBox pays
off. All this requires non-trivial generalizations of the query
classes and IQ-constructions from [Kikot and Zolin, 2013].
Our completeness proofs involve techniques that stem from
the connection between OMQs and CSP such as a lemma
about ABoxes of high girth due to Feder and Vardi [1998].
The rewritings we construct are of polynomial size when we
work with the empty TBox, but can otherwise become expo-
nential in size.

Regarding IQ-rewritability as a decision problem, we show
NP-completeness for the case of the empty TBox. This
can be viewed as an underapproximation for the case with
non-empty TBox and ABox signature. With non-empty
TBoxes, complexities are higher. When the ABox signature
is full, we obtain 2EXPTIME-completeness for DLs with in-
verse roles and an EXPTIME lower bound and a CONEX-
PTIME upper bound for DLs without inverse roles. With
unrestricted ABox signature, the problem is 2NEXPTIME-
complete for DLs with inverse roles and NEXPTIME-hard
(and in 2NEXPTIME) for DLs without inverse roles. All
lower bounds hold for CQs and all upper bounds capture
UCQs. We also prove that it is 2NEXPTIME-complete to
decide whether a given MMSNP sentence is equivalent to a
CSP. This problem was known to be decidable [Madelaine
and Stewart, 2007], but the complexity was open.

We also consider ALCIF , the extension of ALCI with
functional roles, for which IQ-rewritability turns out to be un-
decidable and much harder to characterize. We give a rather
subtle characterization for the case of the empty TBox and
full ABox signature and show that the decision problem is
then decidable and NP-complete. Since it is not clear how to
apply CSP techniques, we use an approach based on ultrafil-

ters, starting from what was done forALC without functional
roles in [Kikot and Zolin, 2013].

Full proofs are in the appendix, available at http://www.
informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries
We use standard description logic notation and refer to
[Baader et al., 2017] for full details. In contrast to the stan-
dard DL literature, we carefully distinguish between the con-
cept language and the TBox language. We consider four con-
cept languages. Recall that ALC-concepts are formed ac-
cording to the syntax rule

C,D ::= A | ¬C | C uD | C tD | ∃r.C | ∀r.C
where A ranges over concept names and r over role names.
As usual, we use C → D as an abbreviation for ¬C t D.
ALCI-concepts additionally admit the use of inverse roles
r− in concept constructors ∃r−.C and ∀r−.C. With a role,
we mean a role name or an inverse role. ALCu-concepts ad-
ditionally admit the use of the universal role u in concept
constructors ∃u.C and ∀u.C. In ALCIu-concepts, both in-
verse roles and the universal role are admitted.

We now introduce several TBox languages. For L one of
the four concept languages introduced above, an L-TBox is
a finite set of concept inclusions C v D where C and D
are L concepts. So each concept language also serves as a
TBox language, but there are additional TBox languages of
interest. We include the letter H in the name of a TBox lan-
guage to indicate that role inclusions r v s are also admitted
in the TBox and likewise for the letter F and functionality
assertions func(r) where in both cases r, s are role names or
inverse roles in case that the concept language used admits
inverse roles. So it should be understood, for example, what
we mean with an ALCHIu-TBox and an ALCFI-TBox.
As usual, the semantics is defined in terms of interpretations,
which take the form I = (∆I , ·I) with ∆I a non-empty do-
main and ·I an interpretation function. An interpretation is a
model of a TBox T if it satisfies all inclusions and assertions
in T , defined in the usual way. We write T |= r v s if every
model of T also satisfies the role inclusion r v s.

An ABox is a set of concept assertions A(a) and role asser-
tions r(a, b) where A is a concept name, r a role name, and
a, b are individual names. We use ind(A) to denote the set of
all individual names that occur in A. An interpretation is a
model of an ABox A if it satisfies all concept and role asser-
tions inA, that is, a ∈ AI when A(a) is inA and (a, b) ∈ rI

when r(a, b) is in A. An ABox is consistent with a TBox T
if A and T have a common model. A signature Σ is a set of
concept and role names. We use sig(T ) to denote the set of
concept and role names that occur in the TBox T , and like-
wise for other syntactic objects such as ABoxes. A Σ-ABox
is an ABox A such that sig(A) ⊆ Σ.

A conjunctive query (CQ) is of the form q(x) =
∃yϕ(x,y), where x and y are tuples of variables and ϕ(x,y)
is a conjunction of atoms of the form A(x) or r(x, y) with A
a concept name, r a role name, and x, y ∈ x ∪ y. We call
x the answer variables of q(x) and y quantified variables.
For purposes of uniformity, we use r−(x, y) as an alterna-
tive notation to denote an atom r(y, x) in a CQ. In fact, when

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1811



speaking about an atom r(x, y) in a CQ q(x), we generally
also include the case that r = s− and s(y, x) is the actual
atom in q(x), unless explicitly noted otherwise. Every CQ
q(x) = ∃yϕ(x,y) gives raise to a directed graph Gq whose
nodes are the elements of x ∪ y and that contains an edge
from x to y if ϕ(x,y) contains an atom r(x, y). The cor-
responding undirected graph is denoted Gu

q (it might contain
self loops). We can thus use standard terminology from graph
theory to CQs, saying for example that a CQ is connected. A
homomorphism from q(x) to an interpretation I is a function
h : x∪y→ ∆I such that h(x) ∈ AI for every atom A(x) of
q(x) and (h(x), h(y)) ∈ rI for every atom r(x, y) of q(x).
We write I |= q(a) and call a an answer to q(x) on I if there
is a homomorphism from q(x) to I with h(x) = a.

A union of conjunctive queries (UCQ) q(x) is a disjunction
of one or more CQs that all have the same answer variables x.
We say that a UCQ is connected if every CQ in it is. The
arity of a (U)CQ is the number of answer variables in it. For
L ∈ {ALC,ALCI,ALCu,ALCIu}, an L-instance query
(L-IQ) takes the form C(x) where C is an L concept and x a
variable. We write I |= C(a) if a ∈ CI . All instance queries
have arity 1.

An ontology-mediated query (OMQ) takes the form Q =
(T ,Σ, q(x)) with T a TBox, Σ ⊆ sig(T ) ∪ sig(q) an ABox
signature, and q(x) a query.1 The arity of Q is the arity of
q(x) and Q is Boolean if it has arity zero. When Σ is sig(T )∪
sig(q), then for brevity we denote it with Σfull and speak of the
full ABox signature. LetA be a Σ-ABox. A tuple a ∈ ind(A)
is an answer to Q on A if I |= q(a) for all models I of
A and T . We say that Q is empty if for all Σ-ABoxes A,
there is no answer to Q on A. Let Q1, Q2 be OMQs, Qi =
(Ti,Σ, qi(x)) for i ∈ {1, 2}. Then Q1 is contained in Q2,
written Q1 ⊆ Q2, if for all Σ-ABoxesA, every answer to Q1

on A is also an answer to Q2 on A. Further, Q1 and Q2 are
equivalent, written Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.

We use (L,Q) to refer to the OMQ language in which the
TBox is formulated in the language L and where the actual
queries are from the language Q, such as in (ALCF ,UCQ).
For brevity, we generally write (L, IQ) instead of (L,L′-IQ)
when L′ is the concept language underlying the TBox
language L, so for example (ALCHI, IQ) is short for
(ALCHI,ALCI-IQ).
Definition 1. Let (L,Q) be an OMQ language. An OMQ
Q = (T ,Σ, q(x)) is (L,Q)-rewritable if there is an OMQ Q′

from (L,Q) such that the answers to Q and to Q′ are identical
on any Σ-ABox that is consistent with T . In this case, we say
that Q is rewritable into Q′ and call Q′ a rewriting of Q.

Let (L,Q) be an OMQ-language. IQ-rewritability in
(L,Q) is the problem to decide whether a given (unary) OMQ
Q = (T ,Σ, q(x)) from (L,Q) is (L, IQ)-rewritable; for
brevity, we simply speak of IQ-rewritability of Q when this is
the case. The following examples show that IQ-rewritability
of Q depends on several factors. All claims made are sanc-
tioned by results established in this paper.
Example 2. (1) IQ-rewritability depends on the topology
of the actual query. Let q1(x) = r(x, x). The OMQ

1The requirement Σ ⊆ sig(T )∪sig(q) is harmless since symbols
in the ABox that are not from sig(T )∪ sig(q) do not affect answers.

(∅,Σfull, q1(x)) is rewritable into the OMQ (∅,Σfull, C(x))
from (ALC, IQ) where C is P → ∃r.P. In contrast, let
q2(x) = ∃y s(x, y) ∧ r(y, y). The OMQ (∅,Σfull, q2(x)) is
not rewritable into an OMQ from (ALCI, IQ).

(2) If we are not allowed to extend the TBox, IQ-
rewritability depends on whether or not inverse roles are
available. Let Σ = {r, s} and q(x) = ∃y r(y, x) ∧ s(y, x).
The OMQ Q = (∅,Σ, q(x)) is rewritable into the OMQ
(∅,Σ, C(x)) from (ALCI, IQ) where C is P → ∃r−.∃s.P.
Q is also rewritable into the OMQ (T ,Σ, C ′(x)) from
(ALC, IQ) where T = {∃s.P v ∀r.P ′}, and C is P → P ′,
but it is not rewritable into any OMQ (T ,Σ, C ′′(x)) from
(ALC, IQ) with T = ∅.

(3) IQ-rewritability depends on the TBox. Let q(x) =
∃x1∃y1∃y2∃z A(x) ∧ r(x, x1) ∧ r(x1, y1) ∧ r(x1, y2) ∧
r(y1, z) ∧ r(y2, z) ∧ B1(y1) ∧ B2(y2). The OMQ
(∅,Σfull, q(x)) is not rewritable into an OMQ from
(ALCI, IQ). Let T = {A v ∃r.∃r.(B1 u B2 u
∃r.>)}. The OMQ (T ,Σfull, q(x)) is rewritable into the
OMQ (T ,Σfull, A(x)) from (ALC, IQ).

(4) IQ-rewritability depends on the ABox signature. Let
q(x) be the CQ from (3) without the atom A(x) and let T be
as in (3). The OMQ (T ,Σfull, q(x)) is not rewritable into
an OMQ from (ALCI, IQ). Let Σ = {A}. The OMQ
(T ,Σ, q(x)) is rewritable into the OMQ (T ,Σ, A(x)) from
(ALC, IQ).

Note that we are allowed to completely rewrite the TBox
when constructing IQ-rewritings, which might seem ques-
tionable from a practical perspective. Fortunately, though, it
turns out the TBox can always be left untouched or, in some
rare cases, only needs to be slightly extended. Also note that
an alternative definition of IQ-rewritability obtained by drop-
ping the restriction to ABoxes consistent with T in Defini-
tion 1. All results obtained in this paper hold under both def-
initions. We comment on this throughout the paper and refer
to the alternative version as unrestricted IQ-rewritability.

3 Characterizations
We aim to provide characterizations of OMQs that are IQ-
rewritable. On the one hand, these characterizations clarify
which OMQs are IQ-rewritable and which are not. On the
other hand, they form the basis for deciding IQ-rewritability.
We first concentrate on the case of DLs (and IQs) with inverse
roles and then move on to DLs without inverse roles. In the
final part of this section, we consider the case where the TBox
is empty, both with and without inverse roles.

3.1 The Case With Inverse Roles
To state the characterization, we need some preliminar-
ies. Let q(x) be a CQ. A cycle in q(x) is a sequence of
non-identical atoms r0(x0, x1), . . . , rn−1(xn−1, xn) in q(x),
n ≥ 1, where2

1. r0, . . . , rn−1 are (potentially inverse) roles,

2. xi 6= xj for 0 ≤ i < j < n, and x0 = xn.

2We require the atoms be non-identical to prevent r(x0, x1),
r−(x1, x0) from being a cycle (both atoms are identical).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1812



The length of this cycle is n. We say that q(x) is x-acyclic
if every cycle in it passes through x and use qcon(x) to de-
note the result of restricting q(x) to those atoms that only use
variables reachable in Gu

q from x. Both notions are lifted to
UCQs by applying them to every CQ in the UCQ. A con-
traction of q(x) is a CQ obtained from q(x) by zero or more
variable identifications, where the identification of x with any
other variable yields x.

Let T be an ALCHIu-TBox and q(x) a UCQ. We use
qacyc(x) to denote the UCQ that consists of all x-acyclic CQs
obtained by starting with a contraction of a CQ from q(x) and
then replacing zero or more atoms r(y, z) with s(y, z) when
T |= s v r. We write qconacyc(x) to denote (qacyc)

con(x).

Theorem 3. Let L ∈ {ALCI,ALCHI} and let Q =
(T ,Σ, q(x)) be a unary OMQ from (L,UCQ) that is non-
empty. Then the following are equivalent:

1. Q is IQ-rewritable, that is, it is rewritable into an OMQ
Q′ = (T ′,Σ, C(x)) from (L, IQ);

2. Q is rewritable into an OMQ Q′ = (T ,Σ, C(x))
from (L, IQ);

3. Q ≡ (T ,Σ, qconacyc(x)).

When L is replaced with Lu, then the same equivalences hold
except that qconacyc is replaced with qacyc.

Note that Theorem 3 excludes empty OMQs, but these
are trivially IQ-rewritable. It implies that, in the considered
cases, it is never necessary to modify the TBox when con-
structing an IQ-rewriting. Further, it emerges from the proof
that it is never necessary to introduce fresh role names in
the rewriting (while fresh concept names are crucial). Theo-
rem 3 also applies to unrestricted IQ-rewritability (where also
ABoxes are admitted that are inconsistent with the TBox from
the OMQ): unrestricted IQ-rewritability trivially implies IQ-
rewritability and the converse is an easy consequence of the
fact that every OMQ that is IQ-rewritable has an IQ-rewriting
based on the same TBox.

We now give some ideas about the proof of Theorem 3.
The most interesting implication is “1 ⇒ 3”. A central step
is to show that if Q = (T ,Σ, q(x)) is IQ-rewritable into an
OMQ Q′, then Q ⊆ Qacyc := (T ,Σ, qacyc(x)), that is, when
A |= Q(a) for some Σ-ABox A, then A |= Qacyc(a). To
this end, we first construct from A a Σ-ABox Ag of high
girth (that is, without small cycles) in a way such that (a) Ag

homomorphically maps to A and (b) from A |= Q′(a) it fol-
lows that Ag |= Q′(a), thus Ag |= Q(a). Due to the high
girth of Ag and exploiting (a variation of the) tree model
property for ALCHI , we can then show that Ag |= Q(a)
implies Ag |= Qacyc(a). Because of (a), it follows that
A |= Qacyc(a). In the direction “3 ⇒ 2”, we construct ac-
tual rewritings, based on the following lemma, an extension
of a result of Kikot and Zolin [Kikot and Zolin, 2013] with
TBoxes and ABox signatures (and UCQs instead of CQs).

Lemma 4. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHIu,UCQ). Then

1. if q(x) is x-acyclic and connected, then Q is rewritable
into an OMQ (T ,Σ, C(x)) with C(x) anALCI-IQ and

2. if q(x) is x-acyclic, then Q is rewritable into an OMQ
(T ,Σ, C(x)) with C(x) an ALCIu-IQ.

The size of the IQs C(x) is polynomial in the size of q(x).

We give the construction of the ALCI-IQ q′(x) in Point 1
of Lemma 4. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHIu,UCQ) with q(x) x-acyclic and connected. To
construct q′(x), we first construct for each CQ p(x) in q(x)
an ELI-concept Cp, that is, an ALCI-concept that uses only
the constructors u, ∃r.C, and ∃r−.C. In fact, since p(x) is x-
acyclic and connected, we can repeatedly choose and remove
atoms of the form r(x, y) that occur in a cycle in p(x) and will
eventually end up with a tree-shaped CQ p′(x).3 Here, tree-
shaped means that the undirected graph Gu

p′ is a tree and that
there are no multi-edges, that is, if r(y, z) is an atom, then
there is no atom s(y, z) with s 6= r. Next, extend p′(x) to
obtain another tree-shaped CQ p′′(x) by taking a fresh con-
cept name P /∈ Σ, and adding r(x′, y) and P (x′) for each
removed atom r(x, y), x′ a fresh variable. We can now view
p′′(x) as an ELI-concept Cp in the obvious way. The desired
ALCI-IQ q′(x) is (P → t

p(x) a CQ in q(x)
Cp)(x).

3.2 The Case Without Inverse Roles
We consider OMQs whose TBoxes are formulated in a DL L
that does not admit inverse roles. Note that inverse roles are
then also not admitted in the IQ used in the rewriting. We
first observe that this has less impact than one might expect:
inverse roles in the IQ-rewriting can be eliminated and in fact
Points 1 and 3 from Theorem 3 are still equivalent. However,
there is also a crucial difference: unless the universal role is
present, the elimination of inverse roles requires an extension
of the TBox and thus the equivalence of Points 1 and 2 of
Theorem 3 fails. In fact, this is illustrated by Point (2) of Ex-
ample 2. We thus additionally characterize IQ-rewritability
without modifying the TBox. We also show that, with the
universal role, it is not necessary to extend the TBox.

We start with some preliminaries. An extended conjunc-
tive query (eCQ) is a CQ that also admits atoms of the form
C(x), C a (potentially compound) concept, and UeCQs and
extended ABoxes (eABoxes) are defined analogously. The se-
mantics is defined in the expected way. Every eCQ q(x) gives
rise to an eABoxAq by viewing the variables in q(x) as indi-
vidual names and the atoms as assertions.

Let q(x) be an eCQ. We use dreach(q) to denote the set of
all variables reachable from x in the directed graph Gq and
say that q(x) is x-accessible if dreach(q) contains all vari-
ables. For V a set of variables from q(x) that includes x,
q(x)|V denotes the restriction of q(x) to the atoms that use
only variables from V .

Let T be an ALC-TBox. An eCQ p(x) is a T -decoration
of a CQ q(x) if

1. p(x) is obtained from q(x) by adding, for each y ∈
dreach(q) and each subconcept C of T , the atom C(y)
or the atom ¬C(y);

2. the eABox Ap is consistent with T .

3Note that x is the answer variable and recall that we might have
r = s− and thus also choose atoms s(y, x).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1813



For a UCQ q(x), we use qdeco(x) to denote the UeCQ that
consists of all eCQs p(x)|dreach(p)(x), where p(x) is a T -
decoration of a CQ from q(x). We write qdecoacyc (x) to denote
(qacyc)

deco(x). We now give the results announced above.
Theorem 5. Let L ∈ {ALC,ALCH} and let Q =
(T ,Σ, q(x)) be a unary OMQ from (L,UCQ) that is non-
empty. Then the following are equivalent:

1. Q is rewritable into an OMQ from (L, IQ);
2. Q is rewritable into an OMQ (T ∪ T ′,Σ, C(x)) from

(L, IQ);
3. Q is rewritable into an OMQ from (LI, IQ);

If Σ = Σfull, then the following are equivalent:
4. Q is rewritable into an OMQ Q′ = (T ,Σfull, C(x)) from

(L, IQ);
5. Q ≡ (T ,Σfull, q

deco
acyc (x)).

If, furthermore, L is replaced with Lu and LI with LIu, then
Conditions 1 to 3 are further equivalent to:

6. Q is rewritable into an OMQ Q′ = (T ,Σ, C(x)) from
(Lu, IQ).

Characterizing IQ-rewritability in the case where L ∈
{ALC,ALCH}, the TBox (is non-empty and) cannot be ex-
tended, and Σ 6= Σfull remains an open problem.

In the directions “3⇒ 2”, “5⇒ 4”, and “3⇒ 6”, we have
to construct IQ-rewritings. This is done by starting with the
rewriting from the proof of Lemma 4 and then modifying it
appropriately. As in the case of Theorem 3, it is straightfor-
ward to see that all results stated in Theorem 5 also apply to
unrestricted IQ-rewritability.

3.3 The Case of Empty TBoxes
We consider OMQs in which the TBox is empty as an im-
portant special case. Since it is then not interesting to have
an ABox signature, this corresponds to the rewritability of
(U)CQs intoL-instance queries, for some concept languageL
(and thus no OMQs are involved). The importance of this
case is due to the fact that it provides an ‘underapproxima-
tion’ of the IQ-rewritability of OMQs, while also being easier
to characterize and computationally simpler.

We say that an UCQ q(x) is L-IQ-rewritable if there is
an L-IQ q′(x) that is equivalent to q(x) in the sense that the
OMQs (∅,Σfull, q(x)) and (∅,Σfull, q

′(x)) are equivalent (and
in passing, we define the equivalence between two UCQs in
exactly the same way). The following proposition makes pre-
cise what we mean by underapproximation.
Proposition 6. Let L ∈ {ALC,ALCI,ALCu,ALCIu}.
If a UCQ q(x) is L-IQ-rewritable, then so is any OMQ
(T ,Σ, q(x)) from (LH,UCQ).

Proposition 6 is essentially a corollary of Theorem 7 below.
As illustrated by Case (3) of Example 2, its converse fails.

We now characterize IQ-rewritability in the case of the
empty TBox. A subquery of a CQ q(x) is a CQ q′(x) ob-
tained from q(x) by dropping atoms. A subquery of a UCQ
q(x) is a UCQ obtained by including as a CQ at most one
subquery of each CQ in q(x).

Theorem 7. Let q(x) be a UCQ. Then
1. q(x) is rewritable into an ALCI-IQ iff there is a sub-

query q′(x) of q(x) that is x-acyclic, connected, and
equivalent to q(x);

2. q(x) is rewritable into anALC-IQ iff there is a subquery
q′(x) of q(x) that is x-acyclic, x-accessible, and equiv-
alent to q(x).

When L-IQs are replaced with Lu-IQs, then the same equiv-
alences hold except that connectedness/x-accessibility is
dropped.

Note that Theorem 7 also characterizes rewritability of
CQs; the query q′(x) is then also a CQ rather than a UCQ.
This is in contrast to Theorems 3 and 5 where the queries
qconacyc(x) and qdecoacyc (x) are UCQs even when the query q(x)
from the OMQ that we start with is a CQ. Another crucial
difference is that qconacyc(x) and qdecoacyc (x) can be of size expo-
nential in the size of the original OMQ while the query q′(x)
in Theorem 7 is of size polynomial in the size of q(x).

4 Complexity
We determine the complexity of deciding IQ-rewritability in
various OMQ languages, based on the established characteri-
zations and starting with the case of empty TBoxes.
Theorem 8. For every Q ∈ {CQ,UCQ} and L ∈
{ALC,ALCI,ALCu,ALCIu}, it is NP-complete to decide
whether a given query from Q is L-IQ-rewritable.

The upper bound in Theorem 8 is by guessing the query
q′(x) from Theorem 7 and verifying that it satisfies the prop-
erties stated there. The lower bound is by a reduction from
3-colorability.

We next consider the case where TBoxes can be non-
empty, starting with the assumption that the ABox signature
is full since this results in (slightly) lower complexity.
Theorem 9. Let Q ∈ {CQ,UCQ}. For OMQs based on the
full ABox signature, IQ-rewritability is

1. EXPTIME-hard in (ALC,Q) and in CONEXPTIME in
(ALCH,Q) and

2. 2EXPTIME-complete in (ALCI,Q) and (ALCHI,Q).
The lower bounds are by reduction from OMQ evaluation

on ABoxes of the form {A(a)}, A a concept name, which
is EXPTIME-complete in (ALCH,CQ) and 2EXPTIME-
complete in (ALCHI,CQ) [Lutz, 2008]. The upper bounds
are derived from the OMQ containment checks suggested
by Condition 3 of Theorem 3 and Condition 4 of Theo-
rem 5. Since we work with the full ABox signature, the non-
emptiness condition from these theorems is void (there are
no empty OMQs) and OMQ containment is closely related to
OMQ evaluation, which allows us to derive upper bounds for
the former from the latter; in fact, these bounds are exactly
the ones stated in Theorem 9. We have to exercise some care,
for two reasons: first, we admit UCQs as the actual query and
thus the trivial reduction of OMQ containment to OMQ eval-
uation that is possible for CQs (which can be viewed as an
ABox) does not apply. And second, we aim for upper bounds
that exactly match the complexity of OMQ containment while

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1814



the UCQs qconacyc(x) and qdecoacyc (x) involved in the containment
checks are of exponential size. What rescues us is that each
of the CQs in these UCQs is only of polynomial size.

We finally consider the case where the ABox signature is
unrestricted.

Theorem 10. IQ-rewritability is

1. NEXPTIME-hard in (ALC,CQ) and

2. 2NEXPTIME-complete in all of (ALCI,CQ),
(ALCI,UCQ), (ALCHI,CQ), (ALCHI,UCQ).

The lower bound in Point 1 is by reduction from OMQ
emptiness in (ALC,CQ), which is NEXPTIME-complete
[Baader et al., 2016]. For the one in Point 2, we use a
reduction from OMQ containment, which is 2NEXPTIME-
complete in (ALCI,CQ) [Bourhis and Lutz, 2016]. The up-
per bounds are obtained by appropriate containment checks
as suggested by our characterizations, and we again have to
deal with UCQs with exponentially many CQs. Note that
Theorem 10 leaves open the complexity of IQ-rewritability
in (ALC,CQ), between NEXPTIME and 2NEXPTIME. The
same gap exists for OMQ containment [Bourhis and Lutz,
2016] as well as in the related problems of FO-rewritability
and Datalog-rewritability [Feier et al., 2017].

5 Functional Roles
We consider DLs with functional roles. A fundamental obser-
vation is that for the basic such DL ALCF , IQ-rewritability
is undecidable. This can be proved by a reduction from OMQ
emptiness in (ALCF , IQ) [Baader et al., 2016].

Theorem 11. In (ALCF ,CQ), IQ-rewritability is undecid-
able.

In the following, we show that decidability is regained in
the case where the TBox is empty (apart from functionality
assertions). This is challenging because functionality asser-
tions have a strong and subtle impact on rewritability. As
before, the only interesting ABox signature to be combined
with ‘empty’ TBoxes is the full ABox signature. We use F to
denote the TBox language in which TBoxes are sets of func-
tionality assertions and concentrate on rewriting into IQs that
may use inverse roles.

Example 12. Consider the CQ p(x) = ∃y(s(x, y) ∧ r(y, y))
from Point 1 of Example 2. Then Qs = (Ts,Σfull, p(x))
and Qr = (Tr,Σfull, p(x)) with Tw = {func(w)} for w ∈
{r, s} are both rewritable into an OMQ (Tw,Σfull, qw(x))
with qw(x) an ALCI-IQ. The rewritings are neither trivial
to find nor entirely easy to understand. In fact, for qs(x) we
can use ∀s.P → ∃s.(P → ∃r.P ). For qr(x), we introduce
three fresh concept names rather than a single one and use
them in a way inspired by graph colorings:

qr(x) = (∀s. t
1≤i≤3

Pi)→ (∃s.( u
1≤i≤3

(Pi → ∃r.Pi)).

Before giving a characterization of rewritable queries, we
introduce some preliminaries. Let q(x) be a CQ and T an
ALCIF -TBox. A sequence x0, . . . , xn of variables in q(x)
is a functional path in q(x) from x0 to xn w.r.t. T if for all i <
n there is a role r such that func(r) ∈ T and r(xi, xi+1) is in

q(x). We say that q(x) is f-acyclic w.r.t. T if for every cycle
r0(x0, x1), . . . , rn−1(xn−1, xn) in q(x), one of the following
holds:

• there is a functional path in q(x) from x to some xi;

• func(ri) ∈ T or func(r−i ) ∈ T for all i < n and there is
a functional path y0, . . . , ym in q(x) with x0 = y0 = ym
such that {x0, . . . , xn−1} ⊆ {y0, . . . , ym}.

We are now ready to state the characterization.

Theorem 13. An OMQ Q = (T ,Σfull, q(x)) from (F ,UCQ)
is rewritable into an OMQ from (F ,ALCI-IQ) iff there is a
subquery q′(x) of q(x) that is f-acyclic, connected, and equiv-
alent to q(x).

When ALCI-IQ is replaced with ALCIu-IQ, the same
equivalence holds except that connectedness is dropped.

The proof of Theorem 13 extends the ultrafilter construc-
tion from [Kikot and Zolin, 2013]. We remark that the
“if” direction in Theorem 13 even holds for OMQs Q =
(T ,Σ, q(x)) from (ALCIF ,UCQ). Thus, the case of the
‘empty’ TBox can again be seen as an underapproximation
of the general case. We further remark that T remains un-
changed in the construction of the IQ-rewritings and that the
constructed rewritings are of polynomial size.

Theorem 14. For OMQs from (F ,UCQ), rewritability into
(F ,ALCI-IQ) is NP-complete.

6 MMSNP and CSP
Recall from the introduction that the OMQ languages stud-
ied in this paper are closely related to CSPs and their logical
generalization MMSNP. In fact, the techniques used to estab-
lish the results in Sections 3 and 4 can be adapted to deter-
mine the complexity of deciding whether a given MMSNP
sentence is equivalent to a CSP. In a nutshell, we prove that
an MMSNP-sentence is equivalent to a CSP iff it is preserved
under disjoint union and equivalent to a generalized CSP (a
CSP with multiple templates), and that both properties can be
reduced to containment between MMSNP sentences which is
2NEXPTIME-complete [Bourhis and Lutz, 2016]. The latter
reduction involves constructing an MMSNP sentence ϕacyc

that is reminiscent of the query qacyc in Theorem 3. Full de-
tails are given in the appendix.

Theorem 15. It is 2NEXPTIME-complete to decide whether
a given MMSNP-sentence is equivalent to a CSP.

7 Conclusion
We have made a leap forward in understanding the relation
between (U)CQs and IQs in ontology-mediated querying. In-
teresting open problems include a characterization of IQ-
rewritability for DLs with functional roles when the TBox
is non-empty and characterizations for DLs with transitive
roles. The remarks after Theorem 4 and 10 mention further
problems left open. In addition, it would be worthwhile to
continue the effort from [Kikot et al., 2013] to understand the
value of IQ-rewritings for the purposes of efficient practical
implementation.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1815



Acknowledgements
Cristina Feier and Carsten Lutz were supported by ERC Con-
solidator Grant 647289 CODA. Frank Wolter was supported
by EPSRC UK grant EP/M012646/1.

References
[Baader et al., 2016] Franz Baader, Meghyn Bienvenu,

Carsten Lutz, and Frank Wolter. Query and predicate
emptiness in ontology-based data access. J. Artif. Intell.
Res., 56:1–59, 2016.

[Baader et al., 2017] Franz Baader, Ian Horrocks, Carsten
Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-
dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Proc. of Reasoning
Web, volume 9203 of LNCS, pages 218–307. Springer,
2015.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive Datalog, CSP, and MM-
SNP. ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.

[Bourhis and Lutz, 2016] Pierre Bourhis and Carsten Lutz.
Containment in monadic disjunctive datalog, MMSNP,
and expressive description logics. In Proc. of KR, pages
207–216. AAAI Press, 2016.

[Calvanese et al., 1998] Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. On the decidability
of query containment under constraints. In Proc. of
PODS1998, pages 149–158. ACM Press, 1998.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati.
Ontologies and databases: The DL-Lite approach. In Proc.
of Reasoning Web 2009, volume 5689 of LNCS, pages
255–356. Springer, 2009.

[Eiter et al., 2012a] Thomas Eiter, Magdalena Ortiz, and
Mantas Simkus. Conjunctive query answering in the de-
scription logic SH using knots. J. Comput. Syst. Sci.,
78(1):47–85, 2012.

[Eiter et al., 2012b] Thomas Eiter, Magdalena Ortiz, Man-
tas Simkus, Trung-Kien Tran, and Guohui Xiao. Query
rewriting for Horn-SHIQ plus rules. In Proc. of AAAI.
AAAI Press, 2012.

[Feder and Vardi, 1998] Tomás Feder and Moshe Y. Vardi.
The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and
group theory. SIAM J. Comput., 28(1):57–104, 1998.

[Feier et al., 2017] Cristina Feier, Antti Kuusisto, and
Carsten Lutz. Rewritability in monadic disjunctive dat-
alog, MMSNP, and expressive description logics (invited
talk). In Proc. ICDT, volume 68 of LIPIcs, pages 1:1–
1:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

[Glimm et al., 2008] Birte Glimm, Carsten Lutz, Ian Hor-
rocks, and Ulrike Sattler. Conjunctive query answering for
the description logic SHIQ. J. Artif. Intell. Res., 31:157–
204, 2008.

[Glimm et al., 2014] Birte Glimm, Ian Horrocks, Boris
Motik, Giorgos Stoilos, and Zhe Wang. Hermit: An OWL
2 reasoner. J. of Autom. Reasoning, 53(3):245–269, 2014.

[Kikot and Zolin, 2013] Stanislav Kikot and Evgeny Zolin.
Modal definability of first-order formulas with free vari-
ables and query answering. J. Applied Logic, 11(2):190–
216, 2013.

[Kikot et al., 2013] Stanislav Kikot, Dmitry Tsarkov,
Michael Zakharyaschev, and Evgeny Zolin. Query
answering via modal definability with FaCT++: First
blood. In Proc. DL, volume 1014 of CEUR Workshop
Proceedings, pages 328–340. CEUR-WS.org, 2013.

[Lutz and Wolter, 2017] Carsten Lutz and Frank Wolter. The
data complexity of description logic ontologies. Logical
Methods in Computer Science, 13(4), 2017.

[Lutz et al., 2009] Carsten Lutz, David Toman, and Frank
Wolter. Conjunctive query answering in the description
logic EL using a relational database system. In Proc. IJ-
CAI, pages 2070–2075, 2009.

[Lutz, 2008] Carsten Lutz. The complexity of conjunc-
tive query answering in expressive description logics. In
Proc. of IJCAR, volume 5195 of LNCS, pages 179–193.
Springer, 2008.

[Madelaine and Stewart, 2007] Florent R. Madelaine and
Iain A. Stewart. Constraint satisfaction, logic and forbid-
den patterns. SIAM J. Comput., 37(1):132–163, 2007.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering
and rewriting under description logic constraints. JAL,
8(2):186–209, 2010.

[Sirin et al., 2007] Evren Sirin, Bijan Parsia,
Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem.,
5(2):51 – 53, 2007.

[Trivela et al., 2015] Despoina Trivela, Giorgos Stoilos,
Alexandros Chortaras, and Giorgos B. Stamou. Optimis-
ing resolution-based rewriting algorithms for OWL on-
tologies. J. Web Sem., 33:30–49, 2015.

[Zhou et al., 2015] Yujiao Zhou, Bernardo Cuenca Grau, Ya-
vor Nenov, Mark Kaminski, and Ian Horrocks. Pagoda:
Pay-as-you-go ontology query answering using a datalog
reasoner. J. Artif. Intell. Res., 54:309–367, 2015.

[Zolin, 2007] Evgeny Zolin. Modal logic applied to query
answering and the case for variable modalities. In Proc. of
DL, volume 250 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1816


