
D. Fisman, S. Jacobs (Eds.): Sixth Workshop on Synthesis (SYNT 2017)
EPTCS 260, 2017, pp. 4–22, doi:10.4204/EPTCS.260.4

CTL∗ Synthesis via LTL Synthesis

Roderick Bloem1, Sven Schewe2, Ayrat Khalimov1

1 Graz University of Technology, Austria
2 University of Liverpool, UK

∗

We reduce synthesis for CTL∗ properties to synthesis for LTL. In the context of model checking
this is impossible — CTL∗ is more expressive than LTL. Yet, in synthesis we have knowledge of the
system structure and we can add new outputs. These outputs can be used to encode witnesses of the
satisfaction of CTL∗ subformulas directly into the system. This way, we construct an LTL formula,
over old and new outputs and original inputs, which is realisable if, and only if, the original CTL∗

formula is realisable. The CTL∗-via-LTL synthesis approach preserves the problem complexity,
although it might increase the minimal system size. We implemented the reduction, and evaluated
the CTL∗-via-LTL synthesiser on several examples.

1 Introduction

In reactive synthesis we automatically construct a system from a given specification in some temporal
logic. The problem was introduced by Church for Monadic Second Order Logic [4]. Later Pnueli in-
troduced Linear Temporal Logic (LTL) [15] and together with Rosner proved 2EXPTIME-completeness
of the reactive synthesis problem for LTL [16]. In parallel, Emerson and Clarke introduced Compu-
tation Tree Logic (CTL) [5], and later Emerson and Halpern introduce Computation Tree Star Logic
(CTL∗) [6] that subsumes both CTL and LTL. Kupferman and Vardi showed [12] that the synthesis
problem for CTL∗ is 2EXPTIME-complete.

Intuitively, LTL allows one to reason about infinite computations. The logic has temporal operators,
e.g., G (always) and F (eventually), and allows one to state properties like “every request is eventually
granted” (G(r→ Fg)). A system satisfies a given LTL property if all its computations satisfy it.

In contrast, CTL and CTL∗ reason about computation trees, usually derived by unfolding the system.
The logics have—in addition to temporal operators—path quantifiers: A (on all paths) and E (there exists
a path). CTL forbids arbitrary nesting of path quantifiers and temporal operators: they must interleave.
E.g., AGg (“on all paths we always grant”) is a CTL formula, but AGFg (“on all paths we infinitely often
grant”) is not a CTL formula. CTL∗ lifts this limitation.

The expressive powers of CTL and LTL are incomparable: there are systems indistinguishable by
CTL but distiniguishable by LTL, and vice versa. One important property inexpressible in LTL is the
resettability property: “there is always a way to reach the ‘reset’ state” (AGEFreset).

There was a time when CTL and LTL competed for “best logic for model checking” [20]. Nowadays
most model checkers use LTL. LTL is also prevalent in reactive synthesis. SYNTCOMP [9]—the reactive
synthesis competetion with the goal to popularise reactive synthesis—has two distinct tracks, and both
use LTL as their specification language.

Yet LTL leaves the designer without structural properties. One solution is to develop general CTL∗

synthesisers like the one in [10]. Another solution is to transform the CTL∗ synthesis problem into
the form understandable to LTL synthesisers, i.e., to reduce CTL∗ synthesis to LTL synthesis. Such a

∗The authors-order was decided by tossing the coin.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/161101905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.260.4

R. Bloem, S. Schewe, A. Khalimov 5

reduction would automatically transfer performance advances in LTL synthesisers to a CTL∗ synthesiser.
This paper shows one such reduction.

Our reduction of CTL∗ synthesis to LTL synthesis works as follows.
First, recall how the standard CTL∗ model checking works [2]. The verifier introduces a proposi-

tion for every state subformula—formulas starting with an A or an E path quantifier—of a given CTL∗

formula. Then the verifier annotates system states with these propositions, in the bottom up fashion,
starting with propositions that describe subformulas over original propositions (system inputs and out-
puts) only. Therefore the system satisfies the CTL∗ formula iff the initial system state is annotated with
the proposition describing the whole CTL∗ formula (assuming that the CTL∗ formula starts with A or E).

Now let us look into CTL∗ synthesis. The synthesiser has the flexibility to choose the system struc-
ture, as long as it satisfies a given specification. We introduce new propositions—outputs that later can
be hidden from the user—for state subformulas of the CTL∗ formula, just like in the model checking case
above. We also introduce additional propositions for existentially quantified subformulas—to encode the
witnesses of their satisfaction. Such propositions describe the directions (inputs) the system should take
to satisfy existentially quantified path formulas. The requirement that new propositions indeed denote
the truth of the subformulas can be stated in LTL. For example, for a state subformula Aϕ , we intro-
duce proposition pAϕ , and require G

[
pAϕ → ϕ ′

]
, where ϕ ′ is ϕ with state subformulas substituted by

the propositions. For an existential subformula Eϕ , we introduce proposition pEϕ and require, roughly,
G
[
pEϕ → ((GdpEϕ

)→ ϕ ′)
]
, which states: if the proposition pEϕ holds, then the path along directions

encoded by dpEϕ
satisfies ϕ ′ (where ϕ ′ as before). We wrote “roughly”, because there can be several dif-

ferent witnesses for the same existential subformula starting at different system states: they may meet in
the same system state, but depart afterwards—then, to able to depart from the meeting state, each witness
should have its own direction d. We show that, for each existential subformula, a number ≈ 2|ΦCTL∗ | of
witnesses is sufficient, where ΦCTL∗ is a given CTL∗ formula. This makes the LTL formula exponential
in the size of the CTL∗ formula, but the special—conjunctive—nature of the LTL formula ensures that
the synthesis complexity is 2EXPTIME wrt. |ΦCTL∗ |.

Our reduction is “if and only if”, and it preserves the synthesis complexity. However, it may increase
the size of the system, and is not very well suited to establish unrealisability. Of course, to show that the
CTL∗ formula is unrealisable, one could reduce CTL∗ synthesis to LTL synthesis, then reduce the LTL
synthesis problem to solving parity games, and derive the unrealisability from there1. But the standard
approach for unrealisability checking—by synthesising the dualised LTL specification—does not seem
to be practical, since the automaton for the negated LTL formula explodes in size.

Finally, we have implemented2 the converter from CTL∗ into LTL, and evaluated CTL∗-via-LTL
synthesis approach, using two LTL synthesisers and CTL∗ synthesiser [10], on several examples. The
experimental results show that such an approach works very well—outperforming the specialised CTL∗

synthesiser [10]—when the number of CTL∗-specific formulas is small.
The paper structure is as follows. Section 2 defines Büchi and co-Büchi word automata, tree au-

tomata, CTL∗ with inputs, Moore systems, computation trees, and other useful notions. Section 3 con-
tains the main contribution: it describes the reduction. In Section 4 we briefly discuss checking unrealis-
ability of CTL∗ specifications. Section 5 describes the experimental setup, specifications, solvers used,
and synthesis timings. We conclude in Section 6.

1Reducing LTL synthesis to solving parity games is practical, as SYNTCOMP’17 [9] showed: such synthesiser ltlsynt
was among the fastest.

2Available at https://github.com/5nizza/party-elli, branch “cav17”

https://github.com/5nizza/party-elli

6 CTL∗ Synthesis via LTL Synthesis

2 Definitions

Notation: B = {true, false} is the set of Boolean values, N is the set of natural numbers (excluding 0),
[i, j] for integers i≤ j is the set {i, ..., j}, [k] is [1,k] for k ∈ N. By default, we use natural numbers.

In this paper we consider finite systems and automata.

2.1 Moore Systems

A (Moore) system M is a tuple (I,O,T, t0,τ,out) where I and O are disjoint sets of input and output
variables, T is the set of states, t0 ∈ T is the initial state, τ : T ×2I→ T is a transition function, out : T →
2O is the output function that labels each state with a set of output variables. Note that systems have no
dead ends and have a transition for every input. We write t io→ t ′ when t ′ = τ(t, i) and out(t) = o.

For the rest of the section, fix a system M = (I,O,T, t0,τ,out).
A system path is a sequence t1t2... ∈ T ω such that, for every i, there is e ∈ 2I with τ(ti,e) = ti+1. An

input-labeled system path is a sequence (t1,e1)(t2,e2)... ∈ (T ×2I)ω where τ(ti,ei) = ti+1 for every i. A
system trace starting from t1 ∈ T is a sequence (o1∪ e1)(o2∪ e2)... ∈ (2I ∪2O)ω , for which there exists
an input-labeled system path (t1,e1)(t2,e2)... and oi = out(ti) for every i. Note that, since systems are
Moore, the output oi cannot “react” to input ei. I.e., the outputs are “delayed” with respect to inputs.

2.2 Trees

A (infinite) tree is a tuple (D,L,V ⊆ D∗, l : V → L), where

• D is the set of directions,

• L is the set of node labels,

• V is the set of nodes satisfying: (i) ε ∈ V is called the root (the empty sequence), (ii) V is closed
under prefix operation (i.e., every node is connected to the root), (iii) for every n ∈ V there exists
d ∈ D such that n ·d ∈V (i.e., there are no leafs),

• l is the nodes labeling function.

A tree (D,L,V, l) is exhaustive iff V = D∗.
A tree path is a sequence n1n2... ∈V ω , such that, for every i, there is d ∈ D and ni+1 = ni ·d.
In contexts where I and O are inputs and outputs, we call an exhaustive tree (D = 2I,L = 2O,V =

D∗, l : V → 2O) a computation tree. We omit D and L when they are clear from the context. E.g. we can
write (V = (2I)∗, l : V → 2O) instead of (2I,2O,V = (2I)∗, l : V → 2O).

With every system M = (I,O,T, t0,τ,out) we associate the computation tree (D,L,V, l) such that, for
every n ∈ V : l(n) = out(τ(t0,n)), where τ(t0,n) is the state, in which the system, starting in the initial
state t0, ends after reading the input word n. We call such a tree a system computation tree.

A computation tree is regular iff it is a system computation tree for some system.

2.3 CTL∗ with Inputs (release PNF) and LTL

For this section, fix two disjoint sets: inputs I and outputs O. Below we define CTL∗ with inputs (in
release positive normal form). The definition differentiates inputs and outputs (see Remark 1).

Syntax of CTL∗ with inputs. State formulas have the grammar:

Φ = true | false | o | ¬o |Φ∧Φ |Φ∨Φ | Aϕ | Eϕ

R. Bloem, S. Schewe, A. Khalimov 7

where o ∈ O and ϕ is a path formula. Path formulas are defined by the grammar:

ϕ = Φ | i | ¬i | ϕ ∧ϕ | ϕ ∨ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ,

where i ∈ I. The temporal operators G and F are defined as usual.
The above grammar describes the CTL∗ formulas in positive normal form. The general CTL∗ formula

(in which negations can appear anywhere) can be converted into the formula of this form with no size
blowup, using equivalence ¬(aUb)≡ ¬aR¬b.

Semantics of CTL∗ with inputs. We define the semantics of CTL∗ with respect to a computation tree
(V, l). The definition is very similar to the standard one [2], except for a few cases involving inputs
(marked with “+”).

Let n ∈V and o ∈ O. Then:

• n 6|= Φ iff n |= Φ does not hold

• n |= true and n 6|= false

• n |= o iff o ∈ l(n), n |= ¬o iff o 6∈ l(n)

• n |= Φ1∧Φ2 iff n |= Φ1 and n |= Φ2. Similarly for Φ1∨Φ2.

+ n |=Aϕ iff for all tree paths π starting from n: π |= ϕ . For Eϕ , replace “for all” with “there exists”.

Let π = n1n2... ∈ V ω be a tree path, i ∈ I, and n2 = n1 · e where e ∈ 2I . For k ∈ N, define π[k:] =
nknk+1..., i.e., the suffix of π starting in nk. Then:

• π |= Φ iff n1 |= Φ

+ π |= i iff i ∈ e, π |= ¬i iff i 6∈ e. Note how inputs are shifted wrt. outputs.

• π |= ϕ1∧ϕ2 iff π |= ϕ1 and π |= ϕ2. Similarly for ϕ1∨ϕ2.

• π |= Xϕ iff π[2:] |= ϕ

• π |= ϕ1 Uϕ2 iff ∃l ∈ N : (π[l:] |= ϕ2∧∀m ∈ [1, l−1] : π[m:] |= ϕ1)

• π |= ϕ1 Rϕ2 iff (∀l ∈ N : π[l:] |= ϕ2)∨ (∃l ∈ N : π[l:] |= ϕ1∧∀m ∈ [1, l] : π[m:] |= ϕ2)

A computation tree (V, l) satisfies a CTL∗ state formula Φ, written (V, l) |= Φ, iff the root node
satisfies it. A system M satisfies a CTL∗ state formula Φ, written M |= Φ, iff its computation tree satisfies
it.

Remark 1 (Subtleties). Note that (V, l) |= i∧o is not defined, since i∧o is not a state formula. Let r ∈ I
and g ∈ O. By the semantics, Er ≡ true and E¬r ≡ true, while Eg ≡ g and E¬g ≡ ¬g. This are the
consequences of how we group inputs with outputs.

LTL. The syntax of LTL formula (in general form) is:

φ = true | false | p | ¬p | φ ∧φ | ¬φ | φ Uφ | Xφ ,

where p ∈ I ∪O. Temporal operators G and F are defined as usual. The semantics is standard (see e.g.
[2]), and can be derived from that of CTL∗ assuming that π |= ¬φ iff π 6|= φ . A computation tree (V, l)
satisfies an LTL formula φ , written (V, l) |= φ , iff all tree paths starting in the root satisfy it. A system
satisfies an LTL formula iff its computation tree satisfies it.

8 CTL∗ Synthesis via LTL Synthesis

2.4 Word Automata

A word automaton A is a tuple (Σ,Q,q0,δ ,acc) where Σ is an alphabet, Q is a set of states, q0 ∈Q is the
initial state, δ : Q×Σ→ 2Q r{ /0} is a transition relation, acc : Qω → B is a path acceptance condition.
Note that word automata have no dead ends and have a transition for every letter of the alphabet. A word
automaton is deterministic when |δ (q,σ)|= 1 for every (q,σ) ∈ Q×Σ.

For the rest of this section, fix word automaton A = (Σ,Q,q0,δ ,acc) with Σ = 2I∪O.
A path in automaton A is a sequence q1q2... ∈ Qω such that there exists ai ∈ Σ for every i such that

(qi,ai,qi+1) ∈ δ (qi). A word a1a2... ∈ Σω generates a path π = q1 . . . iff for every i: (qi,ai,qi+1) ∈ δ . A
path π is accepted iff acc(π) holds.

We define two acceptance conditions. Let π ∈ Qω , Inf(π) be the elements of Q appearing in π

infinitely often, and F ⊆ Q. Then:
• Büchi acceptance: acc(π) holds iff Inf(π)∩F 6= /0.

• co-Büchi acceptance: acc(π) holds iff Inf(π)∩F = /0.
We distinguish two types of word automata: universal and non-deterministic ones. A nondetermin-

istic word automaton A accepts a word from Σω iff there exists an accepted path generated by the word
that starts in an initial state. Universal word automata require all such paths to be accepted.
Abbreviations. NBW means nondeterministic Büchi automaton, and UCW means universal co-Büchi
automaton.

2.5 Synthesis Problem

The CTL∗ synthesis problem is:
Given: the set of inputs I, the set of outputs O, CTL∗ formula Φ

Return: a computation tree satisfying Φ, otherwise “unrealisable”
The inputs to the problem are called a specification. A specification is realisable if the answer is a
tree, and then the tree is called a model of the specification. Similarly we can define the LTL synthesis
problem.

It is known [12, 16] that the CTL∗ and LTL synthesis problems are 2EXPTIME-complete, and any
realisable specification has a regular computation tree model.

2.6 Tree Automata

This paper can be understood without complete understanding of alternating tree automata, but since
they are mentioned in several places, we define them here. Namely, below we define alternating hesitant
tree automata [13], which describe CTL∗ formulas, similarly to how NBWs describe LTL formulas. The
difference is due to the mix of E and A path quantifiers—hesitant tree automata have an acceptance
condition that mixes Büchi and co-Büchi acceptance conditions and certain structural properties.

We start with a general case of alternating tree automata and then define alternating hesitant tree
automata.

For a finite set S, let B+(S) denote the set of all positive Boolean formulas over elements of S.

Alternating Tree Automata

An alternating tree automaton is a tuple (Σ,D,Q,q0,δ ,acc), where Σ is the set of node propositions, D
is the set of directions, q0 ⊆ Q is the initial state, δ : Q×Σ→B+(D×Q) is the transition relation, and

R. Bloem, S. Schewe, A. Khalimov 9

acc is an acceptance condition acc : Qω → B. Note that δ (q,σ) 6= false for every (q,σ) ∈ Q×Σ, i.e.,
there is always a transition. Tree automata consume exhaustive trees like (D,L = Σ,V = D∗, l : V → Σ)
and produce run-trees.

Fix two disjoint sets, inputs I and outputs O.
Run-tree of an alternating tree automaton (Σ = 2O,D = 2I,Q,q0,δ ,acc) on a computation tree (V =

(2I)∗, l : V → 2O) is a tree with directions 2I×Q, labels V ×Q, nodes V ′ ⊆ (2I×Q)∗, labeling function
l′ such that

• l′(ε) = (ε,q0),

• if v ∈V ′ with l′(v) = (n,q), then:
there exists {(d1,q1), ...,(dk,qk)} that satisfies δ (q, l(n)) and n · (di,qi) ∈V ′ for every i ∈ [1,k].

Intuitively, we run the alternating tree automaton on the computation tree:

(1) We mark the root node of the computation tree with the automaton initial state q0. We say that
initially, in the node ε , there is only one copy of the automaton and it has state q0.

(2) We read the label l(n) of the current node n of the computation tree and consult the transition
function δ (q, l(n)). The latter gives a set of conjuncts of atoms of the form (d′,q′) ∈ D×Q. We
nondeterministically choose one such conjunction {(d1,q1), ...,(dk,qk)} and send a copy of the
alternating automaton into each direction ei in the state qi. Note that we can send up to |Q| copies
of the automaton into one direction (but into different automaton states). That is why a run-tree
defined above has directions 2I×Q rather than 2I .

(3) We repeat step (2) for every copy of the automaton. As a result we get a run-tree: the tree labeled
with nodes of the computation tree and states of the automaton.

A run-tree is accepting iff every run-tree path starting from the root is accepting. A run-tree path
v1v2... is accepting iff acc(q1q2...) holds (acc is defined later), where qi for every i ∈ N is the automaton
state part of l′(vi).

An alternating tree automaton A = (Σ = 2O,D = 2I,Q,q0,δ ,acc) accepts a computation tree (V =
(2I)∗, l : V → 2O), written (V, l) |= A, iff the automaton has an accepting run-tree on that computation
tree. An alternating tree automaton is non-empty iff there exists a computation tree accepted by it.

Similarly, a Moore system M = (I,O,T, t0,τ,out) is accepted by the alternating tree automaton A =
(Σ = 2O,D = 2I,Q,q0,δ ,acc), written M |= A, iff (V, l) |= A, where (V = (2I)∗, l : V → 2O) is the system
computation tree.

Different variations of acceptance conditions are defined the same way as for word automata.
We can define nondeterministic and universal tree automata in a way similar to word automata.

Alternating Hesitant Tree Automata (AHT)

An alternating hesitant tree automaton (AHT) is an alternating tree automaton (Σ,D,Q,q0,δ ,acc) with
the following acceptance condition and structural restrictions. The restrictions reflect the fact that AHTs
are tailored for CTL∗ formulas.

• Q can be partitioned into QN
1 , . . . ,Q

N
kN

, QU
1 , . . . ,Q

U
kU

, where superscript N means nondeterministic
and U means universal. Let QN =

⋃
QN

i and QU =
⋃

QU
i . (Intuitively, nondeterministic state sets

describe E-quantified subformulas of the CTL∗ formula, while universal — A-quantified subfor-
mulas.)

10 CTL∗ Synthesis via LTL Synthesis

• There is a partial order on {QN
1 , . . . ,Q

N
kN
,QU

1 , . . . ,Q
U
kU
}. (Intuitively, this is because state subformu-

las can be ordered according to their relative nesting.)

• The transition function δ satisfies: for every q ∈ Q, a ∈ Σ

– if q ∈ QN
i , then: δ (q,a) contains only disjunctively related1 elements of QN

i ; every element
of δ (q,a) outside of QN

i belongs to a lower set;
– if q ∈ QU

i , then: δ (q,a) contains only conjunctively related1 elements of QU
i ; every element

of δ (q,a) outside of QU
i belongs to a lower set.

Finally, acc : Qω → B of AHTs is defined by a set Acc ⊆ Q: acc(π) holds for π = q1q2... ∈ Qω iff
one of the following holds.

• The sequence π is trapped in some QU
i and Inf(π)∩ (Acc∩QU) = /0 (co-Büchi acceptance).

• The sequence π is trapped in some QN
i and Inf(π)∩ (Acc∩QN) 6= /0 (Büchi acceptance).

An example of an alternating hesitant tree automaton is in Figure 1.

3 Converting CTL∗ to LTL for Synthesis

In this section, we describe how and why we can reduce CTL∗ synthesis to LTL synthesis. First, we recall
the standard approach to CTL∗ synthesis, then describe, step by step, the reduction and the correctness
argument, and then discuss some properties of the reduction.

LTL Encoding

Let us first look at standard automata based algorithms for CTL∗ synthesis [12]. When synthesising a
system that realizes a CTL∗ specification, we normally

• Turn the CTL∗ formula into an alternating hesitant tree automaton A.

• We move from computation trees to annotated computation trees that move the (memoryless)
strategy of the verifier3 into the label of the computation tree. This allows for using the derived
universal co-Büchi tree automaton U , making the verifier deterministic: it does not make any
decisions, as they are now encoded into the system.

• We determinise U to a deterministic tree automaton D.

• We play an emptiness game for D.

• If the verifier wins, his winning strategy (after projection of the additional labels) defines a system,
if the spoiler wins, the specification is unrealisable.

We draw from this construction and use particular properties of the alternating hesitant tree automa-
ton A. Namely, A is not a general alternating tree automaton, but is an alternating hesitant tree automaton.
Such an automaton is built from a mix of nondeterministic Büchi and universal co-Büchi word automata,
called “existential word automata” and “universal word automata”. These universal and existential word
automata start at any system state [tree node] where a universally and existentially, respectively, quan-
tified subformula is marked as true in the annotated model [annotated computation tree]. We use the

1In a Boolean formula, atoms E are disjunctively [conjunctively] related iff the formula can be written into DNF [CNF] in
such a way that each cube [clause] has at most one element from E.

3Such a strategy maps, in each tree node, an automaton state to a next automaton state and direction.

R. Bloem, S. Schewe, A. Khalimov 11

q0 q1 q2 q3 q4
1 g g

g

¬g
1

(a) NBW for X(g∧X(g∧F¬g)), the alphabet Σ is {r,g}. Transitions to the non-final state sink are not shown.

q′0

pEX

(b) NBW for G(pEX), the alphabet Σ is {r,g, pEX}. The transition to the non-final state sink is omitted.

1 E

E g g ¬g

1

E E E
E

gE

q′0 q1 q2 q3 q4

(c) Alternating tree automaton for EGEX(g∧X(g∧F¬g)). The green color of the states indicate that they are
from the nondeterministic partition of the states (and thus double-circled states are from the Büchi acceptance
condition). The edges starting in the filled triangle are connected with ∧. Edge label E abbreviates the set of edges,
for each tree direction, connected with ∨. Thus, the transition from q′0 is ((q′0,r)∨ (q′0,¬r))∧ ((q1,r)∨ (q1,¬r)).
To get an alternating automaton for AGEX(...), replace in the self-loop edge of q′0 label E with A, and make the
state non-final (these also move the state into the universal partition of the states).

Figure 1: Word and tree automata.

term “existential word automata” to emphasise that the automaton is not only a non-deterministic word
automaton, but it is also used in the alternating tree automaton in a way, where the verifier can pick the
system [tree] path along which it has to accept.

Example 1 (Word and tree automata). Consider formula EGEX(g∧X(g∧F¬g)) where the propositions
consist of the single output g and the single input r. Figure 1 shows non-deterministic word automata for
the subformulas, and the alternating (actually, nondeterministic) tree automaton for the whole formula.
In what follows, we work mostly with word automata.

We are going to show, step by step, how and why we can reduce CTL∗-synthesis to LTL synthesis.
The steps are outlined in Figure 2.

Step A (the starting point). The verifier takes as input: a computation tree, universal and existential
word automata for CTL∗ subformulas, and the top-level proposition corresponding to the whole CTL∗

formula. It has to produce an accepting run tree (if the computation tree satisfies the formula).

Step B. Given a computation tree, the verifier maps each tree node to an (universal or existential word)
automaton state, and moves from a node according to the quantification of the automaton (either in all
tree directions or in one direction). The decision, in which tree direction to move and which automaton
state to pick for the successor node, constitutes the strategy of the verifier. Each time the verifier has to
move in several tree directions (this happens when the node is annotated with a universal word automaton
state), we spawn a new version of the verifier, for each tree direction and transition of the universal word
automaton.

The strategy of the verifier is a mapping of states of the existential word automata to a decision,
which consists of a tree direction (the continuation of the tree path along which the automaton shall
accept) and an automaton successor state transition. This is a mapping dec : Q→ 2I ×Q such that
dec(q) = (e,q′) implies that q′ ∈ δ

(
q,(l(n),e)

)
, where δ corresponds to the existential word automaton

12 CTL∗ Synthesis via LTL Synthesis

universal and existential
word automata

computation tree with labels
out O B(: →)

accepting
run tree

Verifier:
- chooses directions for
 existential automata
- resolves nondeterminism in
 existential automata
- annotates tree nodes with
 automata states

(a) The verifier takes a computation tree, universal and existential word automata, and the top-level proposition,
that together encode a given CTL∗ formula. It produces an accepting run tree (if the computation tree satisfies the
formula).

universal and existential
word automata

computation tree with labels
out O B p F B dec Q Q(: → , : → , : → ×I)

accepting
run tree

Verifier:
- annotates tree nodes with
 automata states

(b) We encode the verifier decisions into annotated computation trees, making the verifier deterministic. Figure 3b
shows such an annotated computation tree.

universal and existential
word automata

computation tree with labels
out O B p F B(: → , : → ,

 id Q k: →{1,…, },
 d k: {1,..., }→I succ Q Q, : →)

accepting
run tree

Verifier:
- annotates tree nodes with
 automata states

(c) The new annotation is a re-phrasing of the previous one. Figure 4 gives an example.

universal and existential
word automata

computation tree with labels
out O(: B → , v F:

exist
 k → {0,..., },

 d k: {1,..., }→I p,
univ

 F:
univ

B→)
accepting
run tree

Verifier:
- resolves nondeterminism in
 existential automata
- annotates tree nodes with
 automata states

(d) We keep directions in the annotation but remove next-states—now the verifier has to choose. Figure 5 gives an
example.

LTL formula
universal word automata()

computation tree with labels
out O B v F(: → , :

exist
k→{0,..., },

 d k: {1,..., }→I)
accepting
run tree

Verifier:
- annotates tree nodes with
 automata states

(e) Now the obligation of the verifier can be stated in LTL (or using universal co-Büchi word automata).

Figure 2: Steps in the proof of reduction of CTL∗ synthesis to LTL synthesis.

R. Bloem, S. Schewe, A. Khalimov 13

r

r̄r̄ r
ḡ gq0 7→(q1,r)

q′0 7→(q′0,r)
q0 7→(q1,r)
q′0 7→(q′0,r)

q3 7→(q4,r̄) q1 7→(q2,r)
q2 7→(q3,r̄)q4 7→(q4,r̄)

pEXpEX,pEG

(a) An annotated model satisfying EGEX(g∧X(g∧F¬g)). Near the nodes is the winning strategy of the verifier.

...
ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

q0 7→(q1,r)
q′0 7→(q′0,r)

q1 7→(q2,r)
q0 7→(q1,r)
q′0 7→(q′0,r)

q2 7→(q3,r)
q1 7→(q2,r)

q′0 7→(q′0,r)

q2 7→(q3,r̄)
q3 7→(q3,r̄)

q′0 7→(q′0,r)

q0 7→(q1,r)

q1 7→(q2,r)
q0 7→(q1,r)

pEX,pEG
pEX

pEX

pEX

(b) An annotated computation tree that satisfies EGEX(g∧X(g∧ F¬g)). Let proposition pEG correspond to
EG(pEX), and pEX—to EX(g∧X(g∧ F¬g)). A winning strategy for the verifier is depicted using dashed and
colored paths. The black dashed path witnesses pEG, the blue path witnesses pEX starting in the root node, the
pink path—pEX starting in the left child, and so on. The pink and blue paths share the tail. The annotation for
the verifier strategy is on the left side of nodes, and decisions for non mapped states are irrelevant. Note that this
particular annotated computation tree is not the unfolding of the annotated model above—here we postpone the
right-turn of the blue path in order to illustrate that paths can share the tail.

Figure 3: Annotated model and computation tree.

to which q belongs, and l(n) ∈ 2O is a label of the current tree node4. Thus, the strategy is memoryless
wrt. the history of automata states. Note that strategies are defined per-node-basis, i.e., they may be
different for different nodes.

We call a model, in which every state is additionally annotated with a verifier strategy, an annotated
model. Similarly, an annotated computation tree is a computation tree in which every node is addition-
ally annotated with a verifier strategy. Thus, in both cases, every system state [node] is labeled with:
(i) original propositional labeling out : O→ B, (ii) propositional labeling for universal and existential
subformulas F = Funiv ∪̇Fexist, p : F → B, and (iii) decision labeling dec : Q→ 2I ×Q where Q are the
states of all existential automata.

Example 2. Figure 3 shows an annotated model and computation tree.

Step C. The verifier strategy (encoded in the annotated computation tree) encodes both, the words on
which the nondeterministic automata are interpreted and witnesses of acceptance (accepting automata
paths on those words). For the encoding in LTL that we will later use, it is enough to map out the
automaton word, and replace the witnesses by what it actually means: that the automaton word satisfies
the respective path formula.

Example 3. In Figure 3b, the verifier strategy in the root node maps out the word (ḡ, pEX,r)(ḡ, pEX, r̄)ω

4The verifier, when in the tree node or system state, moves according to this strategy.

14 CTL∗ Synthesis via LTL Synthesis

on which the NBW in Figure 1b is run, and the witness of acceptance (q′0)
ω . The blue path encodes the

word (ḡ,r)(g,r)(g,r)(g, r̄)(ḡ, r̄)ω and the witness q0q1q2q3q3qω
4 for the NBW in Figure 1a. In total, we

can see 5 tree paths that are mapped out by the annotated computation tree.

To map out the word, we look at the set of tree paths that are mapped out in an annotated computation
tree and define equivalence classes on them. Two tree paths are equivalent if they share a tail (or,
equivalently, if one is the tail of the other).

There is a simple sufficient condition for two mapped out tree paths to be equivalent: if they pass
through the same node of the annotated computation tree in the same automaton state, then they have the
same future, and are therefore equivalent. 5

Example 4. In Figure 3b the blue and pink paths are equivalent, since they share the tail. The sufficient
condition fires in the top node, where the tree paths meet in automaton state q3

The sufficient condition implies that we cannot have more non-equivalent tree paths passing through
a tree node than there are states in all existential word automata; let us call this number k. For each tree
node, we assign unique numbers from {1, ...,k} to equivalence classes, and thus any two non-equivalent
tree paths that go through the same tree node have different numbers. As this is an intermediate step in
our translation, we are wasteful with the labeling:

(1) we map existential word automata states to numbers (IDs) using a label id : Q→ {1, . . . ,k}, we
choose the direction d : {1, . . . ,k}→ 2I to take, and choose the successor state, succ : Q→Q, such
that succ(q) ∈ δ

(
q,
(
l(n),d(id(q))

))
, where l(n) is the label of the current node n, and

(2) we maintain the same state ID along the chosen direction: id(q) = id(succ(q)).
Note that (1) alone can be viewed as a re-phrasing of the labeling dec that we had before on page

11. The requirement (2) is satisfiable, because a tree path maintains its equivalence class. Therefore any
annotated computation tree can be re-labeled! This step is shown in Figure 2c, the labels are: (out : O→
B, p : F → B, id : Q→{1, . . . ,k},d : {1, . . . ,k}→ 2I,succ : Q→ Q).

Example 5. A re-labeled computation tree is in Figure 4.

Step D. In the new annotation with labels (out, p, id,d,succ), labeling d alone maps out the tree path
for each ID. The remainder of the information is mainly there to establish that the corresponding word
is accepted by the respective word automaton (equivalently: satisfies the respective path formula). If we
use only d, then the only missing information is where the path starts and which path formula it belongs
to—the information originally encoded by p.

We address these two points by using numbered computation trees. Recall that the annotated compu-
tation trees have a propositional labeling p : F→ B that labels nodes with subformulas. In the numbered
computation trees, we replace p for existential subformulas Fexist ⊆ F by labeling v : Fexist→{0, ...,k},
where, for an existentially quantified formula Eϕ ∈ Fexist and a tree node n:
• vEϕ(n) = 0 encodes that no claim that Eϕ holds is made (similar to the proposition pEϕ being

“false” in the annotated tree), whereas

• a value vEϕ(n) ∈ {1, ...,k} is interpreted similarly to the proposition pEϕ being “true”, but also
requires that a witness for Eϕ is encoded on the tree path that starts in n and follows directions
dvEϕ (n).

5The condition is sufficient but not necessary. Recall that each mapped out tree path corresponds to at least one copy of the
verifier that ensures the path is accepting. When two verifiers go along the same tree path, it can be annotated with different
automata states (for example, corresponding to different automata). Then such paths do not satisfy the sufficient condition,
although they are trivially equivalent.

R. Bloem, S. Schewe, A. Khalimov 15

...
ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

q0 7→(1,q1),17→r

q1 7→(1,q2),17→r
q0 7→(1,q1)

q2 7→(1,q3),17→r
q1 7→(1,q2)

q2 7→(1,q3)
q3 7→(1,q3),17→r̄

q0 7→(2,q1),27→r

q1 7→(2,q2),27→r
q0 7→(3,q1),37→r

q′0 7→(4,q′0),47→r

q′0 7→(4,q′0),47→r

q′0 7→(4,q′0),47→r

q′0 7→(4,q′0),47→r

pEX,pEG

pEX

pEX

pEX

Figure 4: A re-labeled computation tree. Notation “q0 7→ (1,q1)” means id(q0) = 1 and succ(q0) = q1,
and “1 7→ r” means d maps 1 to {r}. Since the blue and pink paths are equivalent, the label id maps the
corresponding automata states in the nodes to the same number, 1. The IDs of the green and yellow paths
differ implying that they are not equivalent and hence do not share the tail (their tails cannot be seen in
the figure).

...
ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

17→r
47→r

vEX=1,vEG=4

47→r
17→r

vEX=1

47→r
vEX=2

17→r
27→r

47→r
vEX=3

17→r̄
27→r
37→r

Figure 5: Numbered computation tree with redundant annotations removed.

Example 6. The tree in Figure 4 becomes a numbered computation tree if we replace the propositional
labels pEX and pEG with ID numbers as follows. The root node has vEX = 1 and vEG = 4, the left child
has vEX = 1, the left-left child has vEX = 2, the left-left-left child has vEX = 3. Note that id(q0) = vEX and
id(q′0) = vEG whenever those vs are non-zero. The nodes outside of the dashed path have vEX = vEG = 0,
meaning that no claims about satisfaction of the path formulas has to be witnessed there.

Initially, we use ID labeling v in addition with (out, id,d,succ, puniv), where puniv is a restriction of
p on Funiv, and then there is no relevant change in the way the (deterministic) verifier works. I.e., a
numbered computation tree can be turned into annotated computation tree, and vice versa, such that the
numbered tree is accepted iff the annotated tree is accepted.

Now we observe that labeling id and succ are used only to witness that each word mapped out by d
is accepted by respective existential word automata. I.e., id and succ make the verifier deterministic. Let
us remove id and succ from the labeling. We call such trees lean-numbered computation trees; they have
labeling (out : O→ B,v : Fexist→{0, ...,k},d : {1, ...,k}→ 2I, puniv : Funiv→ B). This makes the verifier
nondeterministic. We still have the property: every accepting annotated computation tree can be turned
into an accepting lean-numbered computation tree, and vice versa. This step is shown in Figure 2d; an

16 CTL∗ Synthesis via LTL Synthesis

example of a lean-numbered computation tree is in Figure 5.
Step E (the final step). We show how labeling (out,v,d, puniv) allows for using LTL formulas instead of
directly using automata for the acceptance check. The encoding into LTL is as follows.
• For each existentially quantified formula Eϕ , we introduce the following LTL formula (recall that

vEϕ = 0 encodes that we do not claim that Eϕ holds in the current tree node, and vEϕ 6= 0 means
that Eϕ does hold and ϕ holds if we follow vEϕ -numbered directions):∧

j∈{1,...,k}
G
[
vEϕ = j →

(
Gd j→ ϕ

′)], (1)

where ϕ ′ is obtained from ϕ by replacing the subformulas of the form Eψ by vEψ 6= 0 and the
subformulas of the form Aψ by pAψ .

• For each subformula of the form Aϕ , we simply take

G
[

pAϕ → ϕ
′
]
, (2)

where ϕ ′ is obtained from ϕ as before.

• Finally, the overall LTL formula is the conjunction

Φ
′∧

∧
Eϕ∈Fexist

Eq.1 ∧
∧

Aϕ∈Funiv

Eq.2 (3)

where the Boolean formula Φ′ is obtained by replacing in the original CTL∗ formula every Eϕ by
vEϕ 6= 0 and every Aϕ by pAϕ .

Example 7. Let I = {r}, O = {g}. Consider the CTL formula

EG¬g∧AGEF¬g∧EFg.

The sum of states of individual NBWs is 5 (assuming the natural translations), so we introduce integer
propositions vEFḡ, vEGḡ, vEFg, ranging over {0, ...,5}, and five Boolean propositions d1, ..., d5; we also
introduce Boolean proposition pAG(vEFḡ 6=0). The LTL formula is:

vEGḡ 6= 0∧ pAG(vEFḡ 6=0)∧ vEFg 6= 0 ∧

G
[

pAG(vEFḡ 6=0)→ G(vEFḡ 6= 0)
]
∧

∧
j∈{1...5}

G

vEFḡ = j → (Gd j→ F¬g)

vEGḡ = j → (Gd j→ G¬g)

vEFg = j → (Gd j→ Fg)

Figure 6 shows a model satisfying the LTL specification.

Note that we can avoid introducing propositions for universally quantified subformulas Funiv: when-
ever you see such a proposition in ϕ ′ in Eq. 1 or in Φ′ in Eq. 3, replace it with subformula ϕ ′′ which it
describes.

The whole discussion leads us to the theorem.
Theorem 1. Let I be the set of inputs and O be the set of outputs, and ΦLTL be derived from a given
ΦCTL∗ as described above. Then:

ΦCTL∗ is realisable ⇔ ΦLTL is realisable.

R. Bloem, S. Schewe, A. Khalimov 17

¬gvEFḡ = vEGḡ = 2,d2 = ¬r
vEFg = 3,d3 = r t0

g vEFḡ = 2,d2 = r
vEGḡ = vEFg = 0t1

r

r

¬r¬r

Figure 6: A Moore machine for Example 7. The witness for EG¬g is: vEGḡ(t0) = 2, we move along
d2 = ¬r looping in t0, thus the witness is (t0)ω . The witness for EFg: since vEFg(t0) = 3, we move
along d3 = r from t0 to t1, where d3 is not restricted, so let d3 = ¬r and then the witness is t0(t1)ω . The
satisfaction of AGEF¬g means that every state has vEFḡ 6= 0, which is true. In t0 we have ¬g, so EF¬g
is satisfied; for t1 we have vEFḡ(t1) = 2 hence we move t1

r→ t0 and EF¬g is also satisfied.

Complexity

The translated LTL formula ΦLTL, due to Eq. 1, in the worst case, can be exponentially larger than
ΦCTL∗ , |ΦLTL| = 2Θ(|ΦCTL∗ |). Yet, the upper bound on the size of UCWΦLTL is 2Θ(|ΦCTL∗ |) rather than
2Θ(|ΦLTL|) = 22Θ(|ΦCTL∗ |) , because:

• the size of the UCW is additive in the size of the UCWs of the individual conjuncts, and

• each conjunct UCW has almost the same size as a UCW of the corresponding subformula, since,
for every LTL formula ϕ , |UCWG[p→(Gd→ϕ)]|= |UCWϕ |+1.6

Determinising UCWΦLTL gives a parity game with up to 22Θ(|ΦCTL∗ |) states and 2Θ(|ΦCTL∗ |) priorities [19, 14,
18]. The recent quasipolynomial algorithm [3] for solving parity games has a particular case for n states
and log(n) many priorities, where the time cost is polynomial in the number of game states. This gives
us O(22|ΦCTL∗ |)-time solution to the derived LTL synthesis problem. The lower bound comes from the
2EXPTIME-completeness of the CTL∗ synthesis problem [17].

Theorem 2. Our solution to the CTL∗ synthesis problem via the reduction to LTL synthesis is 2EXPTIME-
complete.

Minimality

Although the reduction to LTL synthesis preserves the complexity class, it does not preserve the min-
imality of the models. Consider an existentially quantified formula Eϕ . A system path satisfying the
formula may pass through the same system state more than once and exit it in different directions.7 Our
encoding forbids that.8 I.e., in any system satisfying the derived LTL formula, a system path mapped out
by an ID has a unique outgoing direction from every visited state. As a consequence, such systems are
less concise. This is illustrated in the following example.

Example 8 (Non-minimality). Let I = {r}, O = {g}, and consider the CTL∗ formula

EX(g∧X(g∧F¬g))

6To see this, recall that we can get UCWψ by treating NBW¬ψ as a UCW, and notice that |NBWF[p∧Gd∧¬ϕ]|= |NBW¬ϕ |+1.
7E.g., in Figure 3a the system path t0t1t1(t0)ω , satisfying EX(g∧X(g∧F¬g)), double-visits state t1 and exits it first in

direction r and then in ¬r, where t0 is the system state on the left and t1 is on the right.
8Recall that with Eϕ we associate a number vEϕ , such that whenever in a system state vEϕ is non-zero, then the path mapped

out by vEϕ -numbered directions satisfies the path formula ϕ . Therefore whenever vEϕ -numbered path visits a system state, it
exits it in the same direction dvEϕ

.

18 CTL∗ Synthesis via LTL Synthesis

¬g

v = 1
d1 = ¬r

t0

g d1 = r
t1

gt2 d1 = r

¬r

¬r

r
1

r

Figure 7: A smallest Moore machine satisfying the LTL formula from Example 8.

The NBW automaton for the path formula has 5 states (Figure 1a), so we introduce integer proposition v
ranging over {0, ...,5} and Boolean propositions d1, d2, d3, d4, d5. The LTL formula is

v 6= 0 ∧
∧

j∈{1...5}
G
[
v = j → (Gd j→ X(g∧X(g∧F¬g)))

]
A smallest system for this LTL formula is in Figure 7. It is of size is 3, while a smallest system for the
original CTL∗ formula is of size 2 (Figure 3a).

Bounded reduction

While we have realisability equivalence for sufficiently large k, k is a parameter, where much smaller
k might suffice. In the spirit of bounded synthesis, it is possible to use smaller parameters in the hope
of finding a model. These models might be of interest in that they guarantee a limited entanglement
of different tree paths, as they cap the number of tails of tree paths that go through the same node of a
computation tree. Such models are therefore simple in some formal sense, and this sense is independent
of the representation by an automaton. (As opposed to a lower bound of a sufficiently high number k, for
which we have explicitly used the representation by an automaton.)

4 Checking Unrealisability of CTL∗

How does a witness of unrealisability for CTL∗ look like? I.e., when a formula is unrealisable, is there
an “environment model”, like in the LTL case, which disproves any system model?

The LTL formula and the annotation shed light on this: the model for the dualised case is a strategy
to choose original inputs (depending on the history of v, d, p, and original outputs), such that any path
in the resulting tree violates the original LTL formula. I.e., the spoiler strategy is a tree, whose nodes are
labeled with original inputs, and whose directions are defined by v, d, p, and original outputs.

Example 9. Consider an unrealisable CTL∗ specification: AGg∧EFX¬g, inputs {r}, outputs {g}. After
reduction to LTL we get specification: inputs {r}, outputs {g, pAGg,vEFXḡ,d1,d2}, and the LTL formula
is

pAGg∧ vEFXḡ 6= 0∧G
[
pAGg→ Gg

]
∧
∧

j∈{1,2}
G
[
(vEFXḡ = j∧Gd j)→ FX¬g

]
.

The dual specification is: the system type is Mealy, new inputs {g, pAGg,vEFXḡ,d1,d2}, new outputs {r},

R. Bloem, S. Schewe, A. Khalimov 19

and the LTL formula is the negated original LTL:

pAGg∧ vEFXḡ 6= 0∧G
[
pAGg→ Gg

]
→

∨
j∈{1,2}

F
[
(vEFXḡ = j∧Gd j)∧GXg

]
.

This dual specification is realisable, and it exhibits e.g. the following witness of unrealisability: the
output r follows d1 or d2 depending on input vEFXḡ. (The new system needs two states. State 1 describes
“I’ve seen vEFXḡ ∈ {0,1} and I output r equal to d1”; from state 1 we irrevocably go into state 2 once
vEFXḡ = 2 and make r equal to d2).

Although our encoding allows for checking unrealisability of CTL∗ (via dualising the converted
LTL specification), this approach suffers from a very high complexity. Recall that the LTL formula can
become exponential in the size of a CTL∗ formula, which could only be handled, because it became a
big conjunction with sufficiently small conjuncts. After negating, it becomes a large disjunction, which
makes the corresponding UCW doubly exponential in the size of the initial CTL∗ specification (vs. single
exponential for the non-negated case). This seems—there may be a more clever analysis of the formula
structure—to make the unrealisability check via reduction to LTL cost three exponents in the worst case
(vs. 2EXP by the standard approach).

What one could try is to let the new system player in the dualised game choose a number of dis-
junctive formulas to follow, and allow it to revoke the choice finitely many times. This is conservative:
if following m different disjuncts in the dualised formula is enough to win, then the new system wins.
Also, parts of the disjunction might work well (“delta-debugging”); this could then be handled precisely.

5 Experiments

We implemented the CTL∗ to LTL converter ctl_to_ltl.py inside PARTY [11]. PARTY also has two
implementations of the bounded synthesis approach [8], one encodes the problem into SMT and another
reduces the problem to safety games. Also, PARTY has a CTL∗ synthesiser [10] based on the bounded
synthesis idea that encodes the problem into SMT. In this section we compare those three solvers, where
the first two solvers take LTL formulas produced by our converter. All logs and the code are available
in repository https://github.com/5nizza/party-elli, the branch “cav17”. The results are in Table 1,
let us analyse them.
Specifications. We created realisable arbiter-like CTL∗ specifications. The number after the specification
name indicates the number of clients. All specifications have LTL properties in the spirit of “every request
must eventually be granted” and the mutual exclusion of the grants. Also:

• “res arbiter” has the resettability property AGEFG(
∧

i¬gi);

• “loop arbiter” in addition has the looping property
∧

iEFGgi;

• “postp arbiter” has the CTL∗ property
∧

iAGEF(¬gi∧ ri∧X(¬gi∧ ri∧X¬gi));

• “prio arbiter” prioritizes requests from one client (this is expressed in LTL), and has the resetta-
bility property;

• “user arbiter” contains only existential properties that specify different sequences of requests and
grants.

LTL formula and automata sizes. LTL formula increases ≈ |Q| times when k increases from 1 to |Q|,
just as described by Eq. 1. But this increase does not incur the exponential blow up of the UCWs: they
also increase only ≈ |Q| times.

https://github.com/5nizza/party-elli

20 CTL∗ Synthesis via LTL Synthesis

Table 1: Comparison of different synthesis approaches for CTL∗ specifications. All specifications are
realisable. |CTL∗| is the size of the non-reduced AST of the CTL∗ formula, |LTL| — similarly, but
it has two numbers: when the parameter k is set to 1 (k is the number of witness IDs), and when k
is the upper bound (the number of existential states). |AHT | is the sum of the number of automata
states for all subformulas. |UCW | is the number of states in the UCW of the translated LTL formula:
we show two numbers, when k is set to 1 and when it is the upper bound. Timings are in seconds,
the timeout is 3 hours (denoted “to”). “Time CTL∗” is the synthesis time and [model size] required for
CTL∗ synthesizer star.py, “time LTL(SMT)” — for synthesizer elli.py which implements the original
bounded synthesis for LTL via SMT [8], “time LTL(game)” — for synthesizer kid.py which implements
the original bounded synthesis for LTL via reduction to safety games [8]. Both “time LTL” columns have
two numbers: when k is set to the minimal value for which the LTL is realisable, and when k is set to
the upper bound. The subscript near the number indicates the value of k: e.g. to8 means the timeout
on all values of k from 1 to |Q| = 8; to12(3) means there was the timeout for k = |Q| = 12 and the last
non-timeout was for k = 3; 201 means 20 seconds and the minimal k is 1. The running commands were:
“elli.py --incr spec”, “star.py --incr spec”, “kid.py spec”.

|CTL∗| |LTL|
(k1:k|Q|)

|AHT| |UCW|
(k1:k|Q|)

time
CTL∗

time
LTL(SMT)
(kmin:k|Q|)

time
LTL(game)
(kmin:k|Q|)

res arbiter3 65 78 : 127 9 7 : 9 25 [5] 401 : 2602 71 : 202
res arbiter4 97 109 : 168 10 8 : 10 7380 [7] to1 301 : 602
loop arbiter2 49 105 : 682 12 11 : 41 2 [4] 203 : 1316 183 : to6(5)
loop arbiter3 80 183 : 1607 15 14 : 70 6360 [7] to8 to8
postp arbiter3 113 177 : 2097 19 15 : 114 3 [4] 21 : 173512 201 : to12(3)
postp arbiter4 162 276 : 4484 24 19 : to 2920 [5] 681 : to16(5) 701 : to16(2)
prio arbiter2 82 92 : 141 13 14 : 16 60 [5] 141 : 192 91 : 172
prio arbiter3 117 125 : 184 15 16 : 18 to 43181 : to2 261 : 562
user arbiter1 99 190 : 4385 23 25 : to 3 [5] 18555 : to16 to16

Synthesis time. The game-based LTL synthesiser is the fastest in half of the cases, but struggles to find
a model when k is large. The LTL part of specifications “res arbiter” and “prio arbiter” is known to be
simpler for game-based synthesisers than for SMT-based ones—adding the simple resettability property
does not change this.
Model sizes. The reduction did not increase the model size in all the cases.

6 Conclusion

We presented the reduction of CTL∗ synthesis problem to LTL synthesis problem. The reduction pre-
serves the worst-case complexity of the synthesis problem, although possibly at the cost of larger sys-
tems. The reduction allows the designer to write CTL∗ specifications even when she has only an LTL
synthesiser at hand. We experimentally showed—on the small set of specifications—that the reduction
is practical when the number of existentially quantified formulas is small.

We briefly discussed how to handle unrealisable CTL∗ specifications. Whether our suggestions are
practical on typical specifications—this is still an open question. A possible future direction is to develop
a similar reduction for logics like ATL* [1], and to look into the problem of satisfiability of CTL∗ [7].
Acknowledgements. This work was supported by the Austrian Science Fund (FWF) under the RiSE National
Research Network (S11406), and by the EPSRC through grant EP/M027287/1 (Energy Efficient Control). We
thank SYNT organisers for providing the opportunity to improve the paper, and reviewers for their patience.

R. Bloem, S. Schewe, A. Khalimov 21

References
[1] Rajeev Alur, Thomas Henzinger & Orna Kupferman (1997): Alternating-time Temporal Logic. In: Journal

of the ACM, IEEE Computer Society Press, pp. 100–109, doi:10.1007/3-540-49213-5 2.

[2] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. 26202649, MIT press Cambridge.

[3] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li & Frank Stephan (2017): Deciding parity
games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie & Valerie King, editors: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, ACM, pp. 252–263, doi:10.1145/3055399.3055409.

[4] Alonzo Church (1963): Logic, arithmetic, and automata. In: International Congress of Mathematicians
(Stockholm, 1962), Institute Mittag-Leffler, Djursholm, pp. 23–35, doi:10.2307/2270398.

[5] Edmund M Clarke & E Allen Emerson (1981): Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Workshop on Logic of Programs, Springer, pp. 52–71,
doi:10.1007/BFb0025774.

[6] E. Allen Emerson & Joseph Y. Halpern (1986): ‘Sometimes’ and ‘Not Never’ Revisited: On Branching versus
Linear Time Temporal Logic. J. ACM 33(1), pp. 151–178, doi:10.1145/4904.4999.

[7] E. Allen Emerson & A. Prasad Sistla (1984): Deciding full branching time logic. Information and Control
61(3), pp. 175 – 201, doi:10.1016/S0019-9958(84)80047-9.

[8] Bernd Finkbeiner & Sven Schewe (2013): Bounded synthesis. STTT 15(5-6), pp. 519–539,
doi:10.1007/s10009-012-0228-z.

[9] Swen Jacobs, Roderick Bloem, Romain Brenguier, Ayrat Khalimov, Felix Klein, Robert Könighofer, Jens
Kreber, Alexander Legg, Nina Narodytska, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan
Sankur, Martina Seidl, Leander Tentrup & Adam Walker (2016): The 3rd Reactive Synthesis Competition
(SYNTCOMP 2016): Benchmarks, Participants & Results. In Ruzica Piskac & Rayna Dimitrova, editors:
Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016., EPTCS
229, pp. 149–177, doi:10.4204/EPTCS.229.12.

[10] Ayrat Khalimov & Roderick Bloem (2017): Bounded Synthesis for Streett, Rabin, and CTL*, pp. 333–352.
Springer International Publishing, doi:10.1007/978-3-319-63390-9 18.

[11] Ayrat Khalimov, Swen Jacobs & Roderick Bloem (2013): PARTY parameterized synthesis of token rings. In:
Computer Aided Verification, Springer, pp. 928–933, doi:10.1007/978-3-642-39799-8 66.

[12] Orna Kupferman & Moshe Y. Vardi (1999): Church’s problem revisited. Bulletin of Symbolic Logic 5(2),
pp. 245–263, doi:10.1145/357084.357090.

[13] Orna Kupferman, Moshe Y. Vardi & Pierre Wolper (2000): An Automata-theoretic Approach to Branching-
time Model Checking. J. ACM 47(2), pp. 312–360, doi:10.1145/333979.333987.

[14] Nir Piterman (2007): From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata.
Logical Methods in Computer Science Volume 3, Issue 3, doi:10.1109/LICS.2006.28.

[15] Amir Pnueli (1977): The temporal logic of programs. In: Foundations of Computer Science, 1977., 18th
Annual Symposium on, IEEE, pp. 46–57, doi:10.1109/SFCS.1977.32.

[16] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: Conference Record of the
Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January
11-13, 1989, ACM Press, pp. 179–190, doi:10.1145/75277.75293.

[17] Roni Rosner (1992): Modular synthesis of reactive systems. Ph.D. thesis, PhD thesis, Weizmann Institute of
Science.

[18] Shmuel Safra (1988): On the Complexity of omega-Automata. In: 29th Annual Symposium on Foundations
of Computer Science, White Plains, New York, USA, 24-26 October 1988, IEEE Computer Society, pp.
319–327, doi:10.1109/SFCS.1988.21948.

http://dx.doi.org/10.1007/3-540-49213-5_2
http://dx.doi.org/10.1145/3055399.3055409
http://dx.doi.org/10.2307/2270398
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1016/S0019-9958(84)80047-9
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.4204/EPTCS.229.12
http://dx.doi.org/10.1007/978-3-319-63390-9_18
http://dx.doi.org/10.1007/978-3-642-39799-8_66
http://dx.doi.org/10.1145/357084.357090
http://dx.doi.org/10.1145/333979.333987
http://dx.doi.org/10.1109/LICS.2006.28
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.1109/SFCS.1988.21948

22 CTL∗ Synthesis via LTL Synthesis

[19] Sven Schewe (2009): Tighter Bounds for the Determinisation of Büchi Automata. In: Proceedings of the
Twelfth International Conference on Foundations of Software Science and Computation Structures (FoSSaCS
2009), 22–29 March, York, England, UK, Lecture Notes in Computer Science 5504, Springer-Verlag, pp.
167–181, doi:10.1007/978-3-642-00596-1 13.

[20] Moshe Y Vardi (2001): Branching vs. linear time: Final showdown. In: TACAS, 1, Springer, pp. 1–22,
doi:10.1007/3-540-45319-9 1.

http://dx.doi.org/10.1007/978-3-642-00596-1_13
http://dx.doi.org/10.1007/3-540-45319-9_1

	1 Introduction
	2 Definitions
	2.1 Moore Systems
	2.2 Trees
	2.3 CTL* with Inputs (release PNF) and LTL
	2.4 Word Automata
	2.5 Synthesis Problem
	2.6 Tree Automata

	3 Converting CTL* to LTL for Synthesis
	4 Checking Unrealisability of CTL*
	5 Experiments
	6 Conclusion

