
An Open Resource-Oriented Architecture for

Decentralized Cyber Physical Systems

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor in Philosophy by

Yuji Dong

Supervisor: Dr. Kaiyu Wan

Co-Supervisor: Prof. Yong Yue, Dr. Dominik Wojtczak

June 2018

Abstract

Cyber Physical Systems (CPS) are complex hybrid systems integrating physics-based and
digital worlds. Compared to the Internet of Things (IoT), CPS applications often have
many complex physical behaviours, which makes the solutions monolithic and complex; thus
making the developed CPS applications difficult to reuse. Furthermore, the classical isolated
model-based design can be complicated when developing decentralised CPS applications.
To lower the entry-barrier for developing the CPS applications, this thesis proposes an Open
Resource-Oriented Architecture (OROA) to build the infrastructures to develop further
varied CPS applications. Stakeholders, like developers, can exploit the advantages from
the infrastructures for some features like low entry barrier, scalability and interoperability.
This work is inspired by the REST (REpresentational State Transfer) architectural style,
which is the network-based software architecture designed for the web.

In recent years, the REST architectural style is also widely used in IoT applications since
many of these have similar requirements as web applications. However, REST architectural
style has many limitations when dealing with physical environments, because most current
IoT applications are data-centric without complex physical behaviours. To meet these
challenges, we discussed lacking design principles and features in the REST architectural
style to develop the CPS applications such as abstracting ability, uncertainty handling and
access control. We proposed a solution for each design principle, and eventually used the
resource concept and Semantic Web technologies to accommodate all the requirements
and implement the Rinfra framework to build the infrastructures for decentralised CPS
applications. To cooperate with the designed RInfra (Resource Infrastructure), Constrained
Application Protocol (CoAP) was extended to support context-adaptation.

Scenarios in the smart transport and smart building have been presented as case studies
to explain how the proposed architecture works and how it can benefit the decentralised
CPS applications in heterogeneity, extensibility, interoperation and adaptation.

i

ii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my primary supervisor Dr. Kaiyu
Wan for her continuous support in my PhD research and guidance throughout my journey. I
would also like to extend my thanks to my co-supervisors Prof. Yong Yue and Dr. Dominik
Wojtczak for all their support.

I wish to thank my fellow labmates for their stimulating input, the sleepless nights when
working together to meet deadlines and for the joyous times we have shared in the last four
years.

Finally, I am eternally grateful to my dear parents; Mrs. Lafang Jiang and Mr. Jiagen
Dong for their unconditional love, support and patience throughout my life and education.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents vii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Research Objectives . 5

1.3 Contributions . 6

1.4 Organization . 9

2 Related Works 10

2.1 Backgrounds . 10

2.2 Models and Methods for CPS . 11

2.3 Software Architecture for Decentralised CPS 14

2.4 Resource Oriented Architecture for Internet of Things 16

3 Open Resource-Oriented Architecture Overview 18

3.1 REST Architectural Style . 18

3.2 Issues of Applying REST in the Decentralised CPS Applications 21

3.3 Design Principles of Extending REST for Decentralised CPS 22

3.3.1 Resource as the Core Concept . 24

3.3.2 Structural Abstract - Resource Abstracting 25

3.3.3 Behavioural Abstract - Feedback-based Adaptive Service-Oriented
Paradigm . 26

3.3.4 Uncertainty Handling - Reputation Framework 28

v

3.3.5 Usage Policies - Context-State-Aware Access Control 32

3.4 Summary . 33

4 Behavioural Abstract 36

4.1 Introduction . 36

4.2 Related Works . 37

4.3 Motivation . 38

4.3.1 Issue of System States Verification 38

4.3.2 Issue of Physical Behaviours Implementation 39

4.4 Feedback-based Adaptive Service-Oriented Paradigm 40

4.5 Extending REST for the IoT based on FASOP 43

4.6 Implementation . 44

4.7 Case Studies . 45

4.7.1 Turn on/off a Lamp in the Smart Home 46

4.7.2 Brake an AutoDriving Car . 46

4.8 Conclusion . 47

5 Behavioral Abstract Support from Protocol 48

5.1 Introduction . 48

5.2 Real-time Context-Adaptation in the CoAP 49

5.2.1 Motivation . 49

5.2.2 Requirements . 51

5.2.3 Context-Adaptation Messaging Model 52

5.2.4 The Adaptation Option . 55

5.2.5 Real-time Support . 57

5.2.6 Security Support . 59

5.3 Implementation . 60

5.4 Conclusion . 61

6 Uncertainty Handling 63

6.1 Introduction . 63

6.2 Related Works . 65

6.3 Semantic-based Reputation Framework . 66

6.3.1 Semantic Match . 68

6.3.2 Data Fusion . 71

6.3.3 Belief Updating . 74

6.3.4 Fault Detection . 76

6.4 Implementation . 76

6.5 Evaluation . 80

6.6 Conclusion . 83

vi

7 Access Control 87
7.1 Introduction . 87
7.2 Related Works . 88
7.3 Motivation . 89
7.4 Context-States-Aware Access Control . 91

7.4.1 Context-States-Aware Access Control Model 91
7.4.2 Context-States-Aware Model Ontology 93
7.4.3 Context-States-Aware Policy Model 95

7.5 System Architecture . 96
7.6 Implementation . 97
7.7 Conclusion . 98

8 Implementation and Case Study 101
8.1 Resource Ontology in Rinfra . 102
8.2 RInfra - Infrastructure Unit . 105
8.3 Cross-domain Applications Development . 105
8.4 Case Studies . 106

8.4.1 Smart Transport Scenarios . 106
8.4.2 Smart Building Scenarios . 115

9 Conclusion 121
9.1 Summary . 121
9.2 Future Work . 122

References 124

vii

List of Figures

1.1 The Differences between CPS, IoT and Decentralised CPS 2

1.2 The Resource Layer to Support the CPS Applications 6

3.1 The Overview of OROA . 23

3.2 An Example of a xxxCar Abstracted from Many Lower Level Resources . . 26

3.3 The Petri Net Behavioural Model for an Actuating Service 27

3.4 The Sequence Diagram for Calling a Actuating Service 28

3.5 The Semantic Match to Construct the Consistence Check 30

3.6 The Hybrid Localisation Solution as a Semantic Match Example 31

3.7 The Conceptual Context-States-Aware Access Control Model 33

4.1 The Model and Design with RESTful Interface to Turn On/Off a Lamp . . 39

4.2 The Model for Braking Service . 40

4.3 The Petri Net Behavioural Model for an Actuating Service 42

4.4 The Sequence Diagram for Calling an Actuating Service 43

4.5 The Basic Class Diagram of the two Interfaces with FASOP 45

4.6 The Implementation Sample of Using FASOP to Turn On a Lamp 46

5.1 To Apply the Feedback Loop in the Basic Request-Response Model for
Real-time Context-Adaptation . 52

5.2 The Illustration of the Basic Context-Adaptation Messaging Model without
Proxy . 54

5.3 The Illustration of the Context-Adaptation Messaging Model in Observing
Resources without Proxy . 55

5.4 The Illustration of the Basic Context-Adaptation Messaging Model with Proxy 56

5.5 The Illustration of the Context-Adaptation Messaging Model in Observing
Resources with Proxy . 57

5.6 The Time-Aware Messaging Sequence of the Basic Context-Adaptation
Messaging Model . 58

6.1 The Uncertainty of the Devices fitting Gaussian Distribution 67

viii

6.2 The Visualised Semantic-based Reputation Framework Concept 69

6.3 The Hybrid Localization Solution as a Semantic Match Example 70

6.4 The Semantic Match to construct a Directed Graph 71

6.5 The Data Fusion Process in the Resource ru at the Moment tp 73

6.6 The Data Structure in the Resource . 79

6.7 The Normal Running Mode without PI Control 81

(a) Data Fusion . 81

(b) Belief Updating . 81

6.8 The Normal Running Mode with PI Control 82

(a) Data Fusion . 82

(b) Belief Updating . 82

6.9 The Permanent Fault in the Component2 is Detected 83

(a) Data Fusion . 83

(b) Belief Updating . 83

6.10 The Normal Running Mode with PI Control and the High l 84

(a) Data Fusion . 84

(b) Belief Updating . 84

6.11 The Permanent Fault in the Component2 Causes Wrong Data Fusion . . . 85

(a) Data Fusion . 85

(b) Belief Updating . 85

7.1 The Conceptual Context-States-Aware Access Control Model 91

7.2 A Sample Ontology of the CSAAC Model 94

7.3 The CSAAC Architecture . 96

8.1 The Cross-domain Applications Based on All the Resource Infrastructures . 102

8.2 The Resource Model Implementation to Build the Infrastructure Layer . . . 103

8.3 The Resource Ontology in the OROA . 104

8.4 The Scenario of Using the OROA for Smart Transport 107

8.5 The Car Built from Raspberry Pi . 108

8.6 The Car’s Resource Registry . 109

8.7 The Street’s Resource Registry . 110

8.8 The Street Resources Change via Resource Register/De-Register from a Car 110

8.9 The Temporal Semantic-based Reputation Network 111

8.10 The Sequence Diagram to Turn On the Street Lamps 112

8.11 The Sequence Diagram for Smart Lighting Services 113

8.12 The Sequence Diagram to Remote Control the Car 115

8.13 The Scenario of using the OROA for Smart Building 116

8.14 The Sequence Diagram to Turn On a Light in the Building 117

8.15 The Sequence Diagram to Turn On an Air-conditioner to a Given Tempera-
ture with OROA . 118

ix

8.16 The Temporal Reputation Network When the Robot is Cleaning the Room 119
8.17 How to Construct the Temporal Reputation Framework in the Smart Building120

x

List of Tables

3.1 The Intended Changes from REST architectural style 35

4.1 The Single Operation Format in an Actuating Service 43

5.1 The Adaptation Option . 55
5.2 The required QoS for Real-time . 62

6.1 The Example of RESTful Web Services in the Framework 77

7.1 Some Reasoning Rules Examples in SWRL 100

xi

xii

Chapter 1. Introduction 1

Chapter 1

Introduction

Cyber Physical Systems (CPS) are designed to integrate physical components with com-

putations constructed in the large distributed network. They are playing increasingly

important roles in a broad range of industries such as energy, infrastructure, healthcare,

manufacturing and military [135]. Differing from other similar concepts like Internet of

Things (IoT) or Ubiquitous Computing, the concept of CPS is more fundamental about

the interSection rather than union of the physical and the cyber worlds. This is because

CPS need to combine engineering models and methods from different, older disciplines

with the newly developed software and network based on computation. Generally speaking,

the concept of CPS is similar yet more complicated compared to IoT. CPS have more

fundamental concerns with integrating cyber and physical sides, therefore they usually

contain more complex behaviours with control technologies compared to IoT applications.

IoT applications are usually networks that can interconnect ordinary physical objects

with identified addresses based on the traditional information carriers including internet

and telecommunication networks. The interconnection and addresses are not necessarily

required for CPS though [168]. CPS and IoT are similar, however, they have the different

concerns.

Decentralised CPS are from the decentralised vision of CPS where networking plays

a central role in the system. In Figure 1.1, the relationships between IoT, CPS and

decentralised CPS are shown. We can consider the decentralised CPS as the complicated

version of the IoT systems with control technologies involved. Smart Grid is one of the

typical decentralised CPS using distributed sensing and control technologies to build future

energy systems [85]. The decentralised CPS application is not only a type of CPS, it

2

Cyber Physical Systems

Decentralised Cyber Physical Systems

Internet of Things

Figure 1.1: The Differences between CPS, IoT and Decentralised CPS

also stands for a different perspective of treating the CPS. Because the network can be

easily reused by different applications, the decentralised CPS can easily reuse the tools and

resources attached to the network infrastructures.

1.1 Motivation

According to the definition of CPS, computation, networking and physical processes are

three essential parts. To combine them together, the general idea is to use one field as the

core aspect and integrate the other two. For example, cyberising the physical world is to

wrap software abstractions around physical subsystems. Physicalising the cyber world can

endow software and network components with abstractions and interfaces that represent

their dynamics in time. Following this kind of strategy, many different approaches are

proposed for the design, development and deployment of the CPS from different perspectives.

To deal with the complexity in developing CPS, model-based design [41] plays an essential

role in modelling the behaviours for further development and analysis in recent years.

However, the model-based CPS design is also a general approach which includes different

modelling paradigms like the differential equations in the control theory or imperative

programs in the computer science theory. The modelling process is very powerful and

flexible with its paradigms and abstracting levels, while the relative solutions are not easy

Chapter 1. Introduction 3

to be reused in other different applications. Especially in the decentralised CPS, where

the networking plays an important role, modelling different behaviours is challenging and

hardly reused because of the lack of a more unified approach. Because there are thousands

of requirements involving many factors and dynamic participation of multiple stakeholders

for complex decentralised CPS, existing approaches are not able to elicit, communicate,

and maintain all of them.

The difficulty has already affected the development of the CPS markets. To lower the

entry barrier for the CPS and thus to fully explore the demands, we propose to build

a general infrastructure layer for the CPS from the networking perspective to reuse the

different designs and developments of the CPS. Our approach is not only about the detailed

technologies, but also about changing the perspective from either control-based CPS or

software-based CPS to network-based CPS.

For the three different aspects - physical process, computation and networking in

the CPS, existing approaches are mostly either from the control-based perspective for

physicalising the cyber world or from the software-based perspective for cyberising the

physical world. From the software-based perspective, an early illustration wraps the

physical measurements of a sensor network in the database abstraction in [121] and with the

development of computation ability and artificial intelligence, cyberising the physical world

becomes a trend in many research fields especially for the heterogeneous environments.

“Physicalising the cyber world”, is to endow software and network components with explicit

Temporal Semantics based on control theory. To support Temporal Semantics, different

programming languages like Equation-based Object Oriented Programming [31] and tools

like PTIDES (Programming Temporally-Integrated Distributed Embedded Systems) [40]

are proposed. Compared to the control-based and software-based perspectives, the network-

based perspective can provide a more unified infrastructure foundation to the decentralised

CPS regardless of their different functionalities. Thus different CPS applications can

reuse the network and related tools. Since we intend to build the general infrastructure

layer to support higher level CPS applications, the network-based perspective is a better

choice. Furthermore, the design and development of CPS from a network-based perspective

particularly fits the requirements of decentralised CPS.

Among all the existing network-based applications, architecture styles like data-flow style

[7] and peer-to-peer style [161], the REST (REpresentational State Transfer) architecture

style is one of the most successful architectures designed for the web. It satisfies the

requirements including low entry barrier, extensibility, distributed hypermedia, anarchic

4

scalability and independent deployment [58]. Ever since the publication of REST, this

architecture has inspired a great deal of research and technological practices. It is also used

to guide web technologies. For example, the RESTful web service is a strong competitor for

SOAP/WS-* solution [143]. The REST architectural style also contributes to the field of

IoT (Internet of Things), due to its advantages such as low entry barrier, decentralisation,

scalability, robustness and easy deployment [65]. [66] has an experiment based on a

programming exercise and feedback received from a group of sixty-nine computer science

students who learned about RESTful and WS-* Web service, and implemented mobile phone

applications that accessed sensor data from different sensor nodes using both approaches in

teams. This result indicates that REST stands out as the favourite service technology in

the context of the conducted study from the evaluation of the developers’ preferences. In

addition, the REST architectural style and its web implementations are widely used in many

practices of IoT such as Intelligent Buildings [43], Smart Homes [97], Smart Grids [128]

and Smart Cities [140]. Among the thirty-nine available IoT platforms that are surveyed

in [129], only seven platforms do not have REST API.

Because of the similarity between the IoT and CPS, researchers also intend to use the

REST architectural style in the CPS applications. However, the original REST architecture

style is not sufficient for most of the complex CPS applications. Even though some RESTful

approaches like the solutions in [117] or [150] are used in the CPS, they cannot be used to

represent complex behaviours, because the advantages of REST architectural style conflict

with some CPS fundamental requirements. In [52] the author explains the limitations of

using REST-based Architecture to control a robot. For example, the unified interface and

stateless interaction provide lower entry barrier and higher scalability. However, describing

or implementing some complex behaviours especially related to the physical environment

becomes very difficult, because only very limited simple operations like GET or POST

are provided. The CPS usually integrate the continuous and discrete variables, and are

compounded by the uncertainty in the physical environment. Furthermore, CPS should

support possible autonomy and cooperation, therefore it is highly demanded that CPS

should ensure safety, security, and reliability, which are not achieved in the REST style.

In this thesis, we extend the REST architecture style and propose the Open Resource-

Oriented Architecture (OROA). Based on the OROA, we develop the RInfra (Resource

Infrastructure) framework as a prototype to build the general resource infrastructure layer

for the decentralised CPS from the network-based perspective to reuse the different designs

and developments of the CPS applications.

Chapter 1. Introduction 5

1.2 Research Objectives

If the infrastructure layer is successfully built, the different CPS can be treated as different

applications based on the infrastructure resources and configured with the appropriate

mechanisms. Therefore, the infrastructures can be reused by different stakeholders to lower

the entry barrier and inspire creativity. The general concept is illustrated in Figure 1.2.

In particular, the resources are the meta-data to describe all the system components and

therefore CPS can be developed, configured and maintained dynamically based on the

resources.

Imagine a world where the general infrastructure resources are openly provided, just

like the World Wide Web (WWW) today supporting the informational infrastructure

resources. Here the general infrastructure resources can be any usable items such as

heaters, self-driving cars, road lamps, delivery robots and rescue robots. Furthermore, the

stakeholders can also reuse the resources to develop some further cross-domain decentralised

CPS applications and provide more complex services. For example, the self-driving cars

can be cooperated with other software services to provide the taxi service. The firemen

can construct a temporal application with some rescue robots to rescue the people in the

fire scenes. The decentralised CPS applications have a great potential, while we need the

general infrastructural supports to explore people’s creativity and high-level applications.

For the above scenes, the existing infrastructural supports from the web are not sufficient,

especially due to the limitations of the REST architectural style. However, the REST

architectural style still has its own advantages for providing the infrastructure resources.

Furthermore, keeping compatible with the web technologies can be significantly helpful

to popularise the software architecture and related technologies. This is because many

softwares and services can be reused and many people are already well-trained in the REST

architectural style.

The proposed Open Resource-Oriented Architecture is compatible with the REST

architectural style as much as possible. To accommodate the different engineering require-

ments from the decentralised CPS applications, we first use some concepts in the REST

architecture style. Then, based on the requirements in the decentralised CPS, especially for

the continuous physical behaviour modelling, the uncertainty in the physical environment,

and the access control issues, we design the OROA to build the resource infrastructure

layer. The cross-domain CPS applications can be built based on the OROA with some

specific services and configurations.

6

Figure 1.2: The Resource Layer to Support the CPS Applications

The whole OROA is also divided into several parts and each part is a separate approach

for the IoT applications which are considered as the simplified decentralised CPS, therefore

each part of the OROA can also be separately used in the IoT applications for different

purposes such as system states estimation and fault detection. In the end, the integration of

all features of OROA together can be used as a comprehensive solution for the decentralised

CPS applications.

1.3 Contributions

In this Section, we outline the main contributions of the thesis towards developing the

decentralised CPS applications:

1. Propose the Feedback-based Adaptive Service-Oriented Paradigm (FASOP) for the

Behaviour Abstraction in Chapter 4.

For the Behaviour Abstraction, we first express the issues of using the REST archi-

tectural style in the IoT applications, such as system states verification and physical

behaviours implementation. Then we propose a Feedback-based Adaptive Service-

Oriented Paradigm (FASOP) to solve these problems. The paradigm is intended to

enhance the Behaviour Abstraction ability at a high abstract level, which can also be

used in other environments.

2. Extend the Constrained Application Protocol (CoAP) to implement the FASOP for

the Behaviour Abstraction in Chapter 5.

Chapter 1. Introduction 7

The FASOP is an abstract behaviour model which can be used in different ways.

To fully apply the FASOP to the REST architectural style, we extend the CoAP

to support real-time context adaptation for complex physical behaviour abstraction.

The extended protocol includes four essential aspects: messaging model, message

option, QoS and security.

3. Propose the semantic-based reputation framework for the Uncertainty Handling in

Chapter 6.

For Uncertainty Handling, the primary concern is to keep compatible with the original

REST architectural style and web technologies. A significant difference between

the web resources and the resources built in the Internet of Things, is that the

entities mapped from the web resources can be guaranteed to be mostly correct

while the resources built in the Internet of Things are not because the changing

physical environments, unreliable devices and unreliable networks lead to much more

uncertainty. To let the proposed OROA and the developed RInfra solve this problem,

we propose to design the loosely-coupled reputation framework based on the semantic

match, thus the different nodes in the large decentralised CPS applications can match

together to construct new resource nodes to monitor each other. The constructed

networks can use data fusion to provide more accurate results, and also self-adaptively

detect any running fault in the applications.

4. Propose the Context-States-Aware Access Control for the Usage Policies in Chapter

7.

The final required feature is the Complex Usage Policies, which is a much more critical

aspect in the CPS than the web. It is not only because the CPS applications are usually

more safety-critical, but also because the scenarios in the CPS applications usually

require more complex usage policies. For the particular requirements of providing the

complex usage policies in the decentralised CPS applications, we propose a hybrid

access control mechanism - Context-States-Aware Access Control, which combines

different access control mechanism to satisfy the requirements of the decentralised

CPS applications.

5. Seamlessly integrate the four different solutions together based on the Semantic

Web technologies and implement the RInfra (Resource Infrastructure) framework in

Chapter 8.

8

The solution and implementation of the Open Resource-Oriented Architecture for the

decentralised CPS needs to include all proposed solutions for the missing functionalities,

and we use the Semantic Web technologies to combine all of them. The RInfra is

developed as the single software node in the decentralised CPS, and it is based on

the Jena framework. Any RInfra deployed in the decentralised CPS applications is

a resource registry which stores all the related metadata. Based on the metadata

provided by the RInfra and the provided mechanisms, the nodes can operate the

appropriately registered and delegated resources in the particular RInfra. With many

decentralised deployed RInfras, we can build the complex infrastructure resource

layer, and more high-level CPS applications can be developed based on the registered

resources.

The above contributions have been published or submitted for publication as academic

papers:

Submitted for publication:

• Yuji Dong, Kaiyu Wan, Yong Yue, Xin Huang and Shiyao Zhang, “Open Resource-

Oriented Architecture for the Decentralized Cyber Physical Systems

• Yuji Dong, Kaiyu Wan, Yong Yue and Xin Huang, “Support Context-Adaptation in

the Constrained Application Protocol (CoAP) : Chapter 5

Accepted or published:

• Yuji Dong and Kaiyu Wan, “Semantic-based Reputation Framework for the Internet

of Things, Journal of Universal Computer Science, 2018 [46] : Chapter 6

• Yuji Dong, Kaiyu Wan, Xin Huang, and Yong Yue, “Contexts-States-Aware Access

Control for Internet of Things, International Conference on Computer Supported

Cooperative Work in Design, May 9-11, 2018, Nanjing, China [47] : Chapter 7

• Yuji Dong and Kaiyu Wan, “Reputation-based Framework with Semantic Match for

the Internet of Things”, The International Conference on Recent Advancements in

Computing, IoT and Computer Engineering Technology, 2017 [45] : Chapter 6

• Yuji Dong, Kaiyu Wan, and Yong Yue, “A Feedback-based Adaptive Service-Oriented

Paradigm for the Internet of Things, International Conference on Service-Oriented

Chapter 1. Introduction 9

Computing (ICSOC), Workshop (ISyCC 2017), Malaga, Nov 13-17, 2017 [50] : Chapter

4

Some papers are also published as the early work in the field of resource-centric service-

oriented architecture for CPS:

• Kaiyu Wan, Yuji Dong, Qian Chang, and Tengfei Qian. “Applying a dynamic resource

supply model in a smart grid.” Algorithms 7, no. 3 (2014): 471-491. [184]

• Yuji Dong, Kaiyu Wan, and Yong Yue. “A Dynamic Resource Supply Model towards

Cyber Physical System (CPS).” In Computer, Consumer and Control (IS3C), 2014

International Symposium on, pp. 183-186. IEEE, 2014. [48]

• Kaiyu Wan, Vangalur Alagar, and Yuji Dong. “Specifying Resource-Centric Services

in Cyber Physical Systems.” Transactions on Engineering Technologies. Springer,

Dordrecht, 2014. [183]

• Yuji Dong, Kaiyu Wan, and Yong Yue. “Unified Dynamic Resource Supply Model to

Support Cyber Physical System.” In Proceedings of the International MultiConference

of Engineers and Computer Scientists, vol. 2. 2014. [49]

1.4 Organization

The rest of the thesis is organised as follows. Chapter 2 describes the background of

CPS and related works in the literature. The overview of the proposed architecture is

explained in Chapter 3. From Chapter 4 to Chapter 7, the four approaches for the issues

from applying REST in the CPS are proposed, including behavioural abstract support

from the paradigm, behavioural abstract support from protocol, uncertainty handling and

access control. Chapter 8 then explains the overall implementation based on Semantic Web

technology and gives the case studies with OROA. Chapter 9 concludes the thesis and

discusses the future works.

Chapter 2

Related Works

2.1 Backgrounds

The term “Cyber Physical Systems” emerged around 2006 when it was coined by Helen

Gill at the National Science Foundation in the United States. Unlike more traditional

embedded systems, a full-fledged CPS is typically designed as a network of interacting

elements with physical input and output instead of as stand-alone devices. It is generally

treated as a concept to integrate computer science, software engineering, control theory

and networking together to support scientific foundation for future complex systems in the

diverse fields like aerospace, automotive, chemical processes, civil infrastructure, energy,

health-care, manufacturing, transportation, entertainment, and consumer appliances.

CPS is quite related to the currently popular terms such as the Internet of Things (IoT),

Industry 4.0, Machine-to-Machine (M2M), Web of Things (WoT), and Fog computing. All

of these reflect a vision of a technology that profoundly connects the physical world with

the information world although they are from different perspectives. The concept of IoT is

about connecting different “Things” from the Internet. Compared to WoT, IoT is based

on the Communication Layer, while the WoT is based on the Application Layer. Industry

4.0 is focused on the manufacturing systems though. M2M wants to provide the direct

connections between different things rather than Internet or Web. Fog computing is highly

related to the communication equipment.

Compared to the above terms, the CPS is more fundamental because it is trying to fuse

software engineering, control theory and networking theory to create a new foundation. In

other words, CPS is about the interSection of all these theories, not the union.

10

Chapter 2. Related Works 11

2.2 Models and Methods for CPS

Modelling plays a central role in all the scientific and engineering fields, and it can provide

the appropriate abstraction to simplify problems. However, the CPS applications usually

contain physical processes which require the models and paradigms from the control theory.

For example, when a helicopter is flying, the control of its motion in space needs models

like Newtonian Mechanics and closed-loop control. The modelling and abstracting methods

from computer science and control theory are different, and sometimes even conflicting.

The limitations and issues have been pointed out by Lee in [112] and he also claims

the requirements of rebuilding computing and networking abstractions to realise the full

potential of CPS. In order to seamlessly integrate computing, networking and physical

processes, many different fundamental models and related methods are proposed from

different perspectives.

In the CPS, because of the involved physical behaviours, the classical computation

models are not able to correctly express the effect of timing. From the higher abstracting

level, the theoretical formalisms include different models changing from classical Finite-State

Machine [101], Petri Net [145], Process Algebra [19] to some time-sensitive models like

Hybrid Automata [76], Timed Automata [6], Timed Petri Net [186], and Real-Time Process

Algebra [9], thus the computation models can be more expressive for complex physical

behaviours.

From the lower abstracting level, the design and development of CPS can use different

models such as the Agent Model [137], Event Model [172], Actor Model [4], Component

Model [59] and Service Model [178] depending on the specific requirements.

With the agent model, Sztipanovits presents a theory of composition for the heteroge-

neous systems [170]. The approach is a passivity-based design inspired by the control theory

to decouple stability from timing uncertainties caused by networking and computation. The

robustness advantage is exploited in the design of a networked multi-agent system. Since the

agent model can provide the autonomous and intelligent decision-making ability, it is usually

used for self-organisation, self-adaptation to solve heterogeneity or dependencies in CPS.

In [118], Lin presents a multi-agent model for CPS, where the sensor network can provide

information about the physical processes as the cyberinfrastructure to support semantic

capabilities. The multi-agent model can provide meaningful semantics to support the

static structure and dynamic behaviour of the CPS applications. To build efficient energy

management system in the building structures, [205] uses a multi-agent decision-making

12

control methodology for the energy optimisation in electrical, heating, and cooling energy

zones. For manufacturing systems, [203] utilises a smart machine agent combined with

the self-organising model and self-adaptive model to improve the reconfigurability and

responsiveness of a Cyber Physical System designed for manufacturing shop floor.

The event model is another powerful model where different properties can be easily

attached, thus it is also widely used in the CPS. In [172], the temporal and spatial properties

of events are explored, and a layered Spatio-temporal Event Model is developed as a function

of attribute-based, temporal, and spatial event condition for CPS. It helps to relieve the

heterogeneity of CPS with the formal temporal and spatial analysis. In [173], the model is

richer as a concept Lattice-based Event Model with more theoretical support for the CPS

designs. In this model, a CPS event is uniformly described by the event type with its internal

attributes and external attributes. Based on a CPS concept lattice, the CPS event can be

composed of a set of event composition rules. This approach illustrates some advantages

from the event model such as flexibility, QoS support, and complexity. The concept

lattice-based event model uses the traditional first-order logic to specify rules compositions,

however, using first-order logic may cause inconsistency in rules compositions. To solve

these problems, an adaptive discrete event model is proposed in [194] to overcome possible

inherent inconsistencies in composing rules by using discrete event calculus. Furthermore,

the abnormal events are defined to provide the adaptation in the CPS to handle unexpected

events.

The actor model is a useful abstraction for concurrent programming with message

passing, especially in the distributed and heterogeneous systems. In the CPS applications,

the actor model is also used for the heterogeneity and complexity of the developments.

By focusing on the interactions between diverse models to reduce the difference between

different models to achieve a well-defined composition, the actor semantics [114] is expressed

as the abstract semantics to handle many heterogeneous models. By adopting a service-

oriented computing approach with the actor model, the middleware services can improve

the portability and enable the creation of heterogeneous CPS applications [127]. The actor

model can improve programmability of the complex CPS applications. In [10], a coordinated

actor-based approach is proposed to build a reusable and scalable model for self-adaptive

CPS applications. The MAPE-K feedback loop is extended with the interactions between

the actors to handle the unexpected changes with predicting behaviours of the model.

SenseWeb [63] offers a platform for people to share their sensory readings using a Web

service to transmit data onto a central server based on a centralised repository. In this

Chapter 2. Related Works 13

approach, devices are considered as passive actors which are only able to push data.

The component model has been widely used in the traditional computer systems, and it

can provide higher abstraction than the object model in the object-oriented programming

languages. To compose the components using different paradigms and tools from a unified

modelling framework, an integration language and its component-based design is presented

in [108]. So components can be compatible with models from different tools, formalisms,

and paradigms. For the dynamic adaptation in the CPS, µ-Kevoree, which is a component

model based on “models@run.time” for micro-controllers, is designed to push dynamicity

and elasticity concerns into resource-constrained devices for reconfiguration [59]. In [138], a

component model called F6COM is designed explicitly for CPS applications operating in

the highly dynamic, resource-constrained, and uncertain environment, and it is developed

in the context of a cluster of fractionated spacecraft. For better comprehensive support to

design and develop complex CPS, the OpenMETA toolchain is described in [171], and it

can build the new integration layer to support the model integration, the tool integration

and the design process integration.

The service model becomes increasingly popular now, especially in the web applications,

because of its loosely-coupled intrinsic nature. To fit in the special requirements from CPS,

a context-sensitive resource-explicit service model [81] is designed, and the corresponding

composition formalisms are developed to help automate the composition process under

real-time constraints as well as under various physical resource constraints. However, it is

still challenging to compose the services provided from both the cyber and physical entities

together to achieve specific goals, therefore a Physical-Entity (PE) service-oriented model

[80] including the concepts of PE-ontology and PE-SOA specification, is designed to solve

the problem. The composition process is expressed as a two-level compositional reasoning

approach from both the abstract level and physical level. For better service discovery,

selection and composition, a PT-SOA (Physical Things - Service Oriented Architecture)

model is proposed in [207] with resource specifications based on the extended OWL-S where

the advantages of ontology are explored more.

The above approaches are at a high abstract level which is more like engineering

methodology abstraction. In this thesis, our approach is from a software architecture

perspective which is a lower abstract level with more constraints and detailed paradigms.

14

2.3 Software Architecture for Decentralised CPS

Software architecture is an essential abstraction in the design and construction of any

complex software systems as a guide to organise the system elements such as the components,

connectors and data with specific constraints in their relationships to achieve the desired set

of architectural properties. For CPS, especially decentralised CPS, many different software

architectures are proposed for the special challenges.

The multi-agent technology has its advantages in the decentralised decision-making and

control, therefore the Agent-Oriented Architecture is proposed in the decentralised CPS for

the self-organisation and self-adaptation from smart decentralised controls. In [179], an

architectural approach based on the technology of multi-agent systems is proposed to imple-

ment Cyber Physical Production System. The application demonstrator called myJoghurt

is built and realised in cooperation with several different German research institutes. The

Agent-Oriented Architecture is mostly used in the manufacturing CPS like in [25], [116],

[187] and [18]. Most of the Agent-Oriented Architectures used in the manufacturing CPS

are for self-organisation and self-adaptation based on the decentralised decision making

because the multi-agent model can be easily integrated with artificial intelligence. Another

CPS field which widely uses agent-oriented architecture, is the intelligent energy system,

especially the smart grid. In [199] and [200], the agent-oriented architecture for smart

automation is proposed for industrial practical automation architecture specific to the

power-system automation. In [98], [205] and [84], the multi-agent approach is used in the

smart building for building energy and comfort management where the agent model is

mainly used for resource optimisation based on the decentralised decision making.

From the perspective of component-based software architectures, many different software

architectures which are defined as a set of system components, connectors and constraints,

are proposed for CPS. In [152], the Acme ADL [61], which has strong specification support

for flexible software architectures, is extended by adding additional elements and rules

for CPS. With the support from the new tool, i.e., AcmeStudio, the implementation of

the CPS architectural style includes the behavioral annotations from either Finite State

Processes (FSP) or Linear Hybrid Automata (LHA), while the Labeled Transition System

Analyzer (LTSA) and Polyhedral Hybrid Automata Verifier (PHAVer) can be respectively

used for behavior analysis. For the dynamic behaviours responding to and influencing

the environment, the Distributed Emergent Ensembles of Components (DEECo) [23] is

proposed to replace typical system configuration with dynamic component assemblies

Chapter 2. Related Works 15

defined by the predicate-based membership. To explore the runtime dynamic from DEECo

[23], a strengthening architecture of smart CPS is proposed with the SOFA NG component

model [24] which is extended from SOFA 2 and DEECo. The architecture focuses on the

dynamic by modelling the CPS as runtime product-lines and utilising the benefits of explicit

architectures of hierarchical components to the design of smart CPS. However, the physical

continuities are abstracted away in the SOFA NG component model, so it is difficult to

verify the systems’ physical behaviours. To fit the continuous physical behaviours, formal

architectural abstractions of hybrid programs and formulas are built to analyse hybrid

programs at the component level in [158]. Based on the formal architectural abstractions,

some verifications are applied and analysed in the CPS. For example, the local safety in

the system components can be verified individually and composed together to construct

the whole system to satisfy a global contract in [133]. The rich architectural description

is used in [157] to analyse the dependency loops and resolve such loops. For some other

concerns in the CPS, in [151] a multi-view architecture framework is proposed to capture

various aspects of the systems design to support heterogeneity. Different models are treated

as views of the system structure, and the consistency among different views are guaranteed

by structural and semantic mappings to enable system-level verification in a hierarchical

and compositional manner.

With the development of cloud computing, many software architectures coping with

cloud are designed for CPS. In [181], a multi-layer cloud-assisted context-aware architecture

is proposed with two crucial service components, vehicular social networks and context-

aware vehicular security. In [74], the approach for vehicular Cyber Physical Systems is

more focused on data with cloud services. For manufacturing CPS, cloud computing plays

an important role that even brings a concept of cloud manufacturing [191]. Therefore, there

are plenty of different solutions [176, 188, 79].

Service Oriented Architecture (SOA) has been a widely used approach in the CPS

because the service model can provide the appropriate abstraction to coordinate both the

computational and physical parts of a system. Via QoS (Quality-of-Service), the limitation

from the resource-constraint embedded devices can also be controlled. In [105], a three-tier

SOA consisting of Environment Tier, Control Tier, and Service Tier, is proposed with

cloud computing. The physical components and services are monitored in the Control Tier

to support dynamic composition to ensure service adaptability. In general, most of the

service-oriented CPS contain three layers of the access layer, service layer and application

layer and many approaches have generic functional designs in SOA for CPS [92, 119, 91].

16

However, since the CPS is a concept consisting of a set of different fields and different types

of CPS usually have different requirements, many different SOA approaches have their own

domain-specific designs for the related CPS. For manufacturing CPS applications, an agile

automation architecture is proposed in [208] based on SOA for CPS to support dynamical

changes of the manufacturing equipment and the automation software with low effort. As

a more mature solution, [175] proposes a framework, i.e., new IT-driven service-oriented

smart manufacturing with different service-based technologies, to achieve the concept of

“Manufacturing-as-a-Service”. For smart transport, a set of different SOA solutions are

designed for different functionalities such as accident management [115], vehicle-to-cloud

for driving assistant [96] and integrating to mobile cloud [180, 120].

Resource Oriented Architecture (ROA) could be somehow categorised in the Service

Oriented Architecture, whereas the difference is that ROA is usually based on the Web

compared to SOA. To utilise the existing infrastructures and technologies at most, the

architecture proposed in this thesis is a type of Resource-Oriented Architecture, and some

related works are discussed in the next Section.

2.4 Resource Oriented Architecture for Internet of Things

IoT is generally less complicated than CPS, so lots of lightweight solutions with lower entry

barrier are proposed. Dominique Guinard proposes a resource-oriented architecture for the

web of things based on the RESTful principles [65]. It makes many current web technologies

usable for the IoT applications and realises a lower entry barrier. Because of the advantages

from the REST architecture style designed for web, the resource-oriented architecture

becomes popular in many different solutions for the web of things. In [123, 122], the Resource-

Oriented Architecture is proposed to easily mash-up constrained application protocol (CoAP)

resources and virtualise the physical devices into their own digital virtualisation thus the

system can provide better inter-operation. To build ubiquitous WoT applications that work

in and across multiple environments, the author of [134] proposes a distributed resource

management architecture and implement the architecture to a WoT platform named uBox.

In [34], resource-oriented architecture is integrated with the multi-agent technology, and

the approach enables to design some applications from high-level abstractions.

The success of using web technologies in the Internet of Things also inspires people

of using the Semantic Web technologies. In [146], the author proposes an architecture

of Semantic Web of Things that makes the deployment and use of semantic applications

Chapter 2. Related Works 17

involving Internet-connected sensors via building, searching and reading web pages. Subse-

quently, more approaches with Semantic Web technologies are proposed in the Internet of

Things from different perspectives. The work in [95] focuses on the inter-operability for

Pervasive Computing and Internet of Things. In [110], the author presents a Linked Stream

Middleware to integrate time-dependent stream data into the Semantic Web Things. In

[70] a framework is built based on the Semantic Web technologies to explicitly describe

the meaning of sensor measurements to interpret sensor data and to combine domain

knowledges.

The Resource-Oriented Architecture is mostly used in the Internet of Things, or Web

of Things, not Cyber Physical System, because some of its architectural constraints are

conflicted with the CPS requirements. Figure 1.1 has already indicated the inclusive

relationship between the IoT, CPS and decentralised CPS. In the next Chapter, we will

discuss the limitations of the REST architectural style in the decentralised CPS and describe

the overview of the proposed OROA for the decentralised CPS. After the overview, some

crucial features of OROA are further explained in different Chapters respectively and in

each Chapter, the related works about the specific feature of OROA are given respectively.

Chapter 3

Open Resource-Oriented

Architecture Overview

The proposed Open Resource Oriented Architecture can be treated as an extension of

the REST Architectural Style for the decentralised CPS applications. In this Chapter,

we first introduce the REST Architectural Style with details and the related Resource

Oriented Architecture that is usually used in the Web of Things. Next, the limitations

of the classical Resource Oriented Architecture in the CPS are discussed, and then our

approach is described.

3.1 REST Architectural Style

The REST Architectural Style was first proposed in the Dr. Roy Fielding’s PhD thesis:

Architectural Styles and the Design of Network-based Software Architectures [58]. The

REST Architectural Style has been broadly used, as discussed in Chapter 1 and Chapter 2.

In order to apply the REST architectural style, several constraints should be followed in

the following ways;

Client-Server The Client-Server is the first constraint in the REST architectural style,

which can separate the user interface concerns from the data storage concerns. There-

fore the portability of the user interface is improved across multiple platforms and

the server component can be simplified for scalability improvement.

Stateless Communication must be stateless, which means each request from the client to

18

Chapter 3. Open Resource-Oriented Architecture Overview 19

the server must contain all of the necessary information to understand the request, thus

the requests cannot take advantage of any stored context on the server. This constraint

is intended to achieve the features such as visibility, reliability, and scalability.

Cache The cache constraint is used for network efficiency. That is, the data within a

response to a request is labelled as cacheable or non-cacheable implicitly or explicitly.

If a response is cacheable, then a client cache is assigned the right to reuse that

response data for the following equivalent requests. The advantage of adding cache

constraints is that they have the potential to partially or completely eliminate some

interactions, thus improve efficiency, scalability, and user-perceived performance by

reducing the average latency of a series of interactions. The trade-off, however, is

that a cache can decrease reliability if stale data within the cache differs significantly

from the data that would have been obtained had the request been sent directly to

the server.

Uniform Interface The central feature that distinguishes the REST architectural style

from other network-based styles is its emphasis on a uniform interface between

components. By applying the software engineering principle of generality to the

component interface, the overall system architecture is simplified and the visibility

of interactions is improved. Implementations are decoupled from the services they

provide, which encourages independent evolvability. In order to obtain a uniform

interface, multiple architectural constraints are needed to guide the behaviour of

components. REST is defined by four interface constraints: identification of resources;

manipulation of resources through representations; self-descriptive messages; and,

hypermedia as the engine of application state.

Layered System The layered system constraint is added to further improve behaviour

for Internet-scale requirements. The layered system style allows an architecture

to be composed of hierarchical layers by constraining component behaviours. For

example, each component cannot see beyond the immediate layer with which they

are interacting. By restricting knowledge of the system to a single layer, a bound is

placed on the overall system complexity, and substrate-independence is promoted.

Layers can be used to encapsulate legacy services and to protect new services from

legacy clients. The components can then be simplified by moving infrequently used

functionality to a shared intermediary. Intermediaries can also be used to improve

20

system scalability by enabling load balancing of services across multiple networks and

processors.

Code-On-Demand REST allows client functionality to be extended by downloading and

executing code in the form of applets or scripts. This simplifies clients by reducing

the number of features required to be pre-implemented. Allowing features to be

downloaded after deployment improves system extensibility. However, it also reduces

visibility, meaning this is only an optional constraint within REST.

The REST architectural style has also been used in many other systems other than the

web. In order to apply the REST in the Resource-Oriented Architecture for Web of Things,

the constraints of the REST are summarised as follows:

C1 Resource Identification The Web relies on Uniform Resource Identifiers (URI) to

identify resources, therefore, links to resources (C4) can be established using a

well-known identification scheme.

C2 Uniform Interface Resources should be available through a uniform interface with

well-defined interaction semantics, i.e., Hypertext Transfer Protocol (HTTP). HTTP

has a minimal set of methods with different semantics (safe, idempotent, and others),

which allows interactions to be effectively optimised. The vast majority of Web-facing

applications offer RESTful interfaces, while the back ends are implemented using

different interaction models (such as database systems), and the same approach can

be employed for the Web of Things.

C3 Self-Describing Messages Agreed-upon resource representation formats make it

much easier for a decentralised system of clients and servers to interact without the

need for individual negotiations. On the Web, media type support in HTTP and the

Hypertext Markup Language (HTML) allow peers to cooperate without individual

agreements. For machine-oriented services, media types such as the Extensible Markup

Language (XML) and JavaScript Object Notation (JSON) have gained widespread

support across services and client platforms. JSON is a lightweight alternative to

XML that is widely used in Web 2.0 applications and directly parsable to JavaScript

objects.

C4 Hypermedia Driving Application State Clients of RESTful services are supposed

to follow links they find in resources to interact with services. This allows clients to

Chapter 3. Open Resource-Oriented Architecture Overview 21

explore a service without the need for dedicated discovery formats. It also allows

clients to use standardised identifiers (C1) and a well-defined media type discovery

process (C3) for their exploration of services. This constraint must be backed by

well-defined resource representation (C3) methods in which they expose links that

can be followed.

C5 Stateless Interactions This requires requests from clients to be self-contained, in

the sense that all information to serve the request must be part of the request. HTTP

implements this constraint because it has no concept beyond the request/response

interaction pattern, however, there is no concept of HTTP sessions or transactions.

It is important to observe that there may be state involved in an interaction, either

in the form of state information embedded in the request (HTTP cookies), or in the

form of server-side state that is linked from within the request content (C3). Even

though these two patterns introduce states into the service, the interaction itself is

completely self-contained, that is, it does not depend on the context for interpretation

and is therefore stateless.

In HTTP, the uniform interface constraint (C2) has four principal operations, GET,

PUT, POST, and DELETE. This can be mapped rather naturally in the Web of Things:

GET is used to retrieve the representation of a resource, e.g., the current consumption of

an electricity sensor. PUT is used to update the state of an existing resource or to create a

resource by providing its identifier. For example, it can be used to turn a light on or off.

DELETE is used to remove a resource. For example, it can be used to delete a threshold

on a sensor or to shut down a device. Finally, POST is used to create a new resource, e.g.,

to create a new feed used to trace the location of a tagged object.

3.2 Issues of Applying REST in the Decentralised CPS Ap-

plications

Modelling, designing and developing CPS requires multi-level abstraction, which has only

limited support in the REST architectural style. The semantics of the URIs can explicitly

express the hierarchical structures of resources. However, it is difficult to provide the

complex composition and at the same time partially expose some interfaces of the resources

to the users. When REST only expresses the resources’ logical positions via hierarchical

URIs, if the decentralised CPS applications need to reuse many system components or

22

services in different situations, giving correct abstraction is not always possible. This is

because the same component may play different roles in different applications. Furthermore,

dynamic physical behaviours, like breaking a car or moving a robot, are rarely supported

by REST architectural style.

There is some uncertainty from physical devices and environments in CPS. For example,

the resources in the Web, based on REST, usually assume that the resources and the

mapped entities such as physical devices and software components can match correctly.

However, in the physical environment, the devices naturally have interferences. Therefore,

the resources mapping physical devices cannot always guarantee to produce the correct

values. Furthermore, the devices in the physical environment have high damage risk.

In addition, some physical devices cannot be shared by many different users simultane-

ously, which is different from the web applications. These always allow and require highly

concurrent visits. The REST architectural style does not have multiple policies to use the

resources, and it can cause security issues or even system bugs.

To summarise, the following shows three mainly required functionalities of CPS that

REST architectural style does not provide:

1. Stronger abstract ability from both the structural abstract and behaviour abstract.

2. Built-in mechanisms to handle uncertainty.

3. Built-in access control mechanisms.

To deal with the above issues, we adopt some concepts in the REST architectural style

with some extra features and supports to meet the CPS requirements. In Table 3.1, we list

four essential requirements that CPS systems must meet, the corresponding approaches

that REST architectural style have taken, and the approaches we provide with the details

discussed in the following Chapters.

3.3 Design Principles of Extending REST for Decentralised

CPS

Figure 3.1 illustrates the overview of the OROA. The Resource Registry stores all the

resources in an acyclic directed graph to describe both the mapped virtual objects and

mapped physical objects, and the format can be found at the Resource Template Library.

Chapter 3. Open Resource-Oriented Architecture Overview 23

The Reputation Evaluate Engine is used to integrate the reputation-based framework

in the resource registry to provide the uncertainty handling mechanisms in data fusion

and fault detection. The Authorization Management assists the token-based access

mechanism in providing accurate and secure policies to use the resources. The Resource

Discovery component is to provide the necessary functions in this architecture to look

up a specific resource, and the Reasoning Engine is to provide some self-management

mechanisms.

In the rest of this Section, we describe the design principles of the proposed OROA.

These design principles give the constraints in the architecture level to build the resource

infrastructure layer for further development.

Resource Registry

Resource
Template
Library

device device device

Resource
Discovery

Authorization
Management

Reputation
Evaluate
Engine

Interfaces

Agent

Figure 3.1: The Overview of OROA

24

3.3.1 Resource as the Core Concept

Resource Definition

The resource concept in our architecture is compatible with the abstraction in REST. A

resource R is a temporally varying membership function MR(t), which for time t maps to

a set of entities, or values, which are equivalent. The entities here can be virtual objects

or physical devices like pictures, sensors or even software components, and the mapping

resources can describe and address the mapped entities.

For any single resource, it has a unique identifier to address the resource. The solution

like URI (Uniform Resource Identifiers) for naming, addressing and identifying resources

has been developed for a long time [125]. A generic URI adopts the following form:

URI = scheme : [//host[: port]][/]path[?query][#fragment]

However, typical URIs on the Web are usually only used to express the resources on the Web,

but some physical devices which are not located on the web cannot use this representation.

For those physical devices not located on the web (e.g. some devices connect via ZigBee

network), we need to have a synchronisation mechanism to transfer the data. The users

can have two ways of accessing the physical devices. If the physical devices are located on

the web, we can use the URI to access the devices directly. Otherwise, the resources act

as proxies to synchronise all information between the physical devices and the mapping

resources. In this case, the system needs to support the required protocols (other than

HTTP) to build the connection between the resource registry and the physical devices.

Resource Representation

In the traditional Web, resources are represented in Hypertext Markup Language (HTML).

In the Internet of Things or decentralised Cyber Physical Systems, there are lots of different

data models such as web mash-ups based on Web 2.0 [67], linked open data [109] or sensor

data with domain knowledge [154].

In the OROA, the representation of resources are mixed with Web 2.0 technology such

as HTML, structured format like XML or JSON, and linked data model like ontology or

RDF[107] to accommodate different data models.

The use of XML is suggested to represent any simple resource document while using

JSON to represent more lightweight data from the resources. The HTML can be used to

Chapter 3. Open Resource-Oriented Architecture Overview 25

build the visualised platform to perform the operations on the resources. The linked data

type like RDF can express the structure and relationships of the resources for the resource

compositions.

3.3.2 Structural Abstract - Resource Abstracting

Not all resources have to map to real devices in CPS, and one resource may map to a set

of different entities, so the resources need an abstract mechanism to support meaningful

semantics between different related resources.

In some RESTful architectures for the Internet of Things, the resources representing

both physical objects and virtual objects are organised in a hierarchy structure [166], while

in some Semantic Web of Things, the applications are designed and developed with semantic

web technologies and the resources are organised in the acyclic directed graphs[190].

In our design, the resources are also organised in the acyclic directed graphs. However,

different from the Semantic Web of Things approach, our approach does not require full

semantic supports based on ontology. Most properties of the resources are not indicated

in the graphs but in the resource representation, so the graphs can be condensed, and

the barrier can be lower without full semantic supports. Fundamental constraints are

claimed here, however, in the implementation part we use the existing RDF standards and

technologies for convenience.

In the acyclic directed graph structure, any node is a resource and any directed edge

stands for a composition relationship. If a resource node does not point to any other

resources, it is mapped to a physical entity. That is, it is usually the connection between the

physical and cyber world and can be treated as an endpoint for the physical environment.

For example, a self-driving car may contain a camera, ultrasonic, radar, laser, steering,

braking, motors, GPS, etc. Any device in this car can be mapped to a resource to specify

the functions or non-functional features of this device. However, a camera, ultrasonic, radar

and laser may be grouped together to construct a sensor module which needs detailed

specification and maps to a software component in the system. The Figure 3.2 is an example

expressed with RDF. The usage of this kind of structural abstract is explained with more

details in Chapter 8.

With different abstract levels, the granularity of software components can be more

flexible. Any resource node can open its interface to reduce the traffic flow pressure from any

particular component in this system. Some technologies like machine-to-machine (M2M) [78]

26

Figure 3.2: An Example of a xxxCar Abstracted from Many Lower Level Resources

can also cooperate well with this design, and it makes the whole system extremely flexible

because it can always interact with other systems and environments at any abstract level.

3.3.3 Behavioural Abstract - Feedback-based Adaptive Service-Oriented

Paradigm

The REST architecture already shows many advantages by using a unified interface in the

software system to make the components’ interactions scalable and simplify the software

API development. However, compared to the hypermedia data, the physical environment

contains much more complex physical behaviours like braking a car or cleaning the floor,

which cannot be simply implemented by the original designed unified interface in the

Chapter 3. Open Resource-Oriented Architecture Overview 27

REST. To enhance the physical behaviour modelling ability via the unified interface in the

decentralised CPS applications, we define the Feedback-based Adaptive Service-Oriented

Paradigm (FASOP) as the guide to design the related API, software systems and protocols.

The detailed motivation examples are given in Chapter 4.

The FASOP is specially designed for a type of actuating objects which can make active

operations that may disturb the environments. Different from most virtual objects or

perceptive objects like sensors, the operations over the actuating objects usually need the

environmental feedback to adapt for the specific purposes based on control theory.

p1

t1

p2

p′1

t′1 p′2

t′2

p′3t′3

p′4

apply the
paradigm

from another
perceptive service

Figure 3.3: The Petri Net Behavioural Model for an Actuating Service

We use the Petri Net to describe the behavioural model for complex physical behaviours.

As shown in the left side of Figure 3.3, in the traditional REST interface, t1 is a transition

provided by the Actuating Objects and p1, p2 are pre-condition and post-conditions of

t1 respectively. From the process point of view, if the operation in t1 is a function

call < result : func(params..) >, then p1 is usually to match the function name func

and parameters (params..), and p2 is to check the return value result. However, if the

< result : func(params..) > has any action in physical environment, it is nearly impossible

to guarantee all the post-conditions from programming language level, because the post-

conditions of t1 may contain some physical affects.

To solve these problems, we construct a feedback-loop by requesting another resource

or external service to obtain the environment changing information. The importance of the

feedback-loop in the self-adaptive systems has already been discussed in [21].

The behavioural model of the FASOP is on the right side of Figure 3.3. The service

28

call at t1 is changed from < result : func(params..) > to < result : func(params..,

PS.funcPS, t) >, which contains another function funcPS from another service to detect

the changing environment and the latency time t is the waiting time to get the feedback

perceptions. In this way, the verification of post-conditions is more reasonable, since the

post-conditions with physical properties can be verified through the perceptions of the

physical environment. Then the place p′2 can verify whether the operation func is operated

successfully and place p′4 can eventually check if the operation func has desired behaviours

based on the perceptions. In Figure 3.4, a sequence diagram shows a process from the

implementation perspective.

observe(t)

env(context)

envChange

op(context,env(context),t)

result

sysComponent: actuation: perception:

Figure 3.4: The Sequence Diagram for Calling a Actuating Service

3.3.4 Uncertainty Handling - Reputation Framework

The physical environment brings a great deal of uncertainty in CPS, therefore, dealing with

the uncertainty and provide fault tolerance has been an issue in CPS. The most common

uncertainty is from the physical devices like sensors’ noise and other unpredictable faults due

to different reasons like device damages. In order to limit fault-propagation due to unreliable

components in the CPS architectures, Crenshaw et al. [36] propose a simplex reference

model containing of external context, domain model, machine and safety requirements. This

model has widely influenced all the fault tolerance models in CPS. However, this model is

a co-design solution taking both hardware and software into consideration simultaneously,

which is not suitable for our architecture. Furthermore, it cannot effectively use our multi-

level abstraction. On the other hand, compared to model-based mechanisms for uncertainty,

the data-driven approaches like reputation-based methods support a more common principle

Chapter 3. Open Resource-Oriented Architecture Overview 29

of looking for consistency among the data reading in the set without extra specific models

to provide self-adaptation and scalability. Since [60] used this approach in the Wireless

Sensor Network (WSN), the reputation-based mechanism has been used in many solutions.

However, the reputation-based framework is rarely used in the IoT or decentralised CPS.

This is because, compared to all similar functionality sensors in the WSN, the heterogeneity

in the decentralised CPS makes it difficult to check the consensus between different system

components and to evaluate each reputation.

In our architecture, since the resources are at the infrastructure layer and should run in

the long-term, the reputation-based framework is then able and suitable to be integrated into

the architecture. We use the Belief property in the resource registry to claim the accurate

possibility for each resource. In fact, the belief inaccuracy estimation was investigated in

[5] to drive architectural adaptation aiming to increase the dependability of the running

CPS systems. Moreover, our architecture can construct a directed graph to build the

structures to check consistency in the resource registry. Based on all the historical data and

appropriate algorithms, we can have the belief value in each physical resource to support

further development as part of the contracts. In the following subSections, three necessary

steps are briefly introduced to explain how to include the reputation-based framework in

the architecture. This Section only includes the structural description. More details are

covered in Chapter 6.

Semantic Match

The reputation-based uncertainty handling is one of the classical methods for data fusion

and fault detection in wireless sensor network. However, in the highly heterogeneous

systems, the system components have different data types, thus it is difficult to find the

meaningful consistency checking between different data in the decentralised CPS.

Via the resource registry with the directed graph structure, we can construct the

consistency checking structure based on the semantics from different system components.

A directed graph sample with six individual components and four resources is illustrated

in Figure 3.5. The system components which point to the same resource have the same

semantic, therefore they can compare the values for further data fusion and fault detection.

To give a formal description, any arrow aij from ci to rj indicates a functionality of the

30

c1

c2

c3 c4

r1

r2

r3

c5

c6

r4

Figure 3.5: The Semantic Match to Construct the Consistence Check

component ci as a sequence of data with variable time t

faij (t) = (~dci,rj ,t1 ,
~dci,rj ,t2 , ...,

~dci,rj ,tk) (3.1)

Where any ~dci,rj ,tp =< v1, v2, ..., vm > is a vector produced from component ci at time tp.

Any resource rµ has a unique URIrµ . At time tp, it receives α number of data from α

number of system components and the received data in resource rµ is expressed as a set of

~Drµ,tp :

~Drµ,tp = {~dc1,rµ,tp , ~dc2,rµ,tp , ..., ~dcα,rµ,tp} (3.2)

Generally, any system component ci can have several different functionalities mapped to

different conceptual resources. Each functionality can produce a vector of data ~dci,r,tp at time

tp and the data will be sent to the resource r. Further more, each system component ci has a

special property bci as the Belief of the component ci assigned from the matching resources.

Because every system component has its mapping resources, the mapping resources can

keep the Belief property updated. Essentially, the process of the Semantic Match is to add

some extra resource nodes in the resource registry and construct the specified framework to

check consistency between different components with the same functionality. To elaborate,

for example, the hybrid localisation solution [197] that the GPS positioning module, WiFi

Chapter 3. Open Resource-Oriented Architecture Overview 31

positioning module and Cellular positioning module can all map to a concept of the entity

location as three semantically equivalent components. This solution cannot only make the

localisation more accurate and reliable, but also make it possible to detect any abnormal

fault from these three modules as shown in the Figure 3.6. Because in the long-run, if

any module suddenly starts to give unbelievable drift values compared to the other two

modules, the module is considered to fail.

Entity_Location

GPS_Component

WiFi_Component

integrate

integrate

Cellular_Component integrate Entity_Location

GPS_Component

WiFi_Component

Cellular_Component

check

check

check

Figure 3.6: The Hybrid Localisation Solution as a Semantic Match Example

Data Fusion

After the Semantic Match, some resources that have different sources of data express the

same concept, therefore it is possible to integrate different data to achieve more accurate

and reliable data. There are many different approaches for the data fusion that can be

integrated into our architecture since we have real-time updated Belief property for each

source. This is a well-studied field, and some popular strategies including fuzzy set theory,

Bayesian theory and Dempster-Shafer theory [94] can all be used depending on the systems’

running contexts.

Belief Updating

Based on all the data produced from different components in the same Semantic Match,

the resource can update its Belief. We assume the following:

• If more resources think one component is correct, the component has a higher

reputation.

32

• If the data from different components are more consistent, these components are more

reliable than others and will get the higher reputation.

For any component c ∈ Cri , where Cri is the set of all semantic equivalent components

to resource ri, we have the Belief of this component c as:

bcri = ~(c, Cri) (3.3)

Where the ~(c, Cri) is a function to check the difference between the data from the

component c and other components in the Cri . The function will get a higher value if the

difference is less, and a lower value if the difference is more. The equation means that if

the component’s values are more close to other components’ which are semantic equivalent

to a resource, the component’s values are assumed to be more accurate.

If the component c matches to multiple resources and receives Belief updating from a

set of different resources Rc, the Belief of this component c is:

bc = g(BRc), BRc = {bcri |ri ∈ Rc} (3.4)

Where the g(BRc) is a function used to integrate different resources’ opinions and the

range is between 0 to 1. In general, this equation can be concluded as: if more resources

think one component is reliable, it is so.

Fault Detect

We have a threshold Belief value bthr. If any component’ belief value is lower than bthr, we

assume this component is failed.

3.3.5 Usage Policies - Context-State-Aware Access Control

Different from the resources on the web, some physical resources have more complex usage

policies. Take controlling a robot as an example; if two users try to control it at the same

time, the commands may conflict thus the behaviours are not predictable. Furthermore,

the commands for the actuators also cause more potential security issues, since dangerous

operations may be made. For example, if the access permission of the motors in a car is

misinformed, it may cause serious traffic accidents. Therefore the resource usage policies

management should be one of the core features of the proposed OROA.

Chapter 3. Open Resource-Oriented Architecture Overview 33

The proposed access control mechanism needs to have the following features since the

CPS applications are in the open environment:

1. The authorisation of accessing any resource.

2. The fine-grained access control options for some complex resource accessing policies.

3. The context-awareness in accessing resources to adapt to the dynamic changing open

environments.

4. To track all the resources’ states to avoid the conflicts between the non-shareable

objects like actuators.

To satisfy all the above requirements, we design the hybrid mechanism, i.e., Contexts-

States-Aware Access Control (CSAAC). The CSAAC is based on the Attribute-Based

Access Control to provide the fine-grained and flexible access control and with the extra

Context-States-Awareness to adapt to the dynamic changing open environments. Figure

3.7 illustrates the conceptual Context-States-Aware Access Control Model and the model

details are given in Chapter 7.

RolesContexts

States

Attributes

Policies

Subjects Resources

Behaviours

Figure 3.7: The Conceptual Context-States-Aware Access Control Model

3.4 Summary

In this Chapter, the overview of the proposed OROA is illustrated by briefly introducing

important features. From Chapter 4 to Chapter 7, the three most important features

34

in the OROA are explained respectively in detail. Each feature and related technologies

can be separately used in the IoT applications which can be treated as the simplified

decentralised CPS. On the other hand, because each individual feature in the OROA has its

own limitations of dealing with issues in the decentralised CPS, the term ‘CPS’ is not used in

the following Chapters. Instead, in each individual Chapter describing the separate feature

of the OROA, the IoT applications are used as the discussion scenarios. That being said,

the integration of all features of OROA together can be used as a comprehensive solution

for the decentralised CPS applications. In Chapter 8, we discuss the implementation of

OROA for the decentralised CPS applications and use case studies to illustrate that OROA

can be used for the decentralised CPS applications.

Chapter 3. Open Resource-Oriented Architecture Overview 35

T
a
b

le
3.

1:
T

h
e

In
te

n
d

ed
C

h
an

ge
s

fr
om

R
E

S
T

ar
ch

it
ec

tu
ra

l
st

y
le

T
h

e
E

ss
en

ti
a
l

F
ea

tu
re

s
T

h
e

ap
p

ro
ac

h
es

th
at

T
h

e
ap

p
ro

a
ch

es
th

at
C

P
S

sh
o
u

ld
su

p
p

or
t

R
E

S
T

h
as

ta
ke

n
in

o
u

r
d

es
ig

n

S
tr

u
ct

u
ra

l
A

b
st

ra
ct

H
ie

ra
rc

h
ic

al
S

tr
u

ct
u

re
D

ir
ec

te
d

G
ra

p
h

S
tr

u
ct

u
re

(R
D

F
im

p
le

m
en

ta
ti

on
)

B
eh

av
io

u
ra

l
A

b
st

ra
ct

U
n

ifi
ed

In
te

rf
ac

e
F

ee
d

b
ac

k
-b

as
ed

C
o
n
te

x
t-

A
d

ap
ti

v
e

P
a
ra

d
ig

m
(C

h
a
p

te
r

4)

B
eh

av
io

u
ra

l
A

b
st

ra
ct

C
oA

P
R

ea
l-

T
im

e
C

on
te

x
t-

A
d

a
p

ti
ve

C
o
A

P
(C

h
a
p

te
r

5)

U
n

ce
rt

ai
n
ty

H
an

d
li

n
g

N
on

e
R

ep
u

ta
ti

on
-b

a
se

d
F

ra
m

ew
or

k
(C

h
a
p

te
r

6)

A
cc

es
s

C
on

tr
ol

N
on

e
C

on
te

x
ts

-S
ta

te
s-

A
w

a
re

A
cc

es
s

C
o
n
tr

o
l

(C
h

a
p

te
r

7)

Chapter 4

Behavioural Abstract

4.1 Introduction

IoT is envisioned to integrate the physical world into computer-based systems. Recently,

with the advanced technology development on sensors, networking and data processing etc.

IoT has illustrated a great potential in various fields [64]. However, even after decades of

research on system aspects of the IoT, developing IoT based systems is still facing many

challenges at high-level system requirements like scalability, inter-operability and fault

tolerance [132]. Moreover, most current IoT applications are coping with data collecting

and processing issues without involving many complex physical behaviours. This is due

to current IoT solutions and usage scenarios still being very limited in modelling complex

behaviours in continuously changing physical environment.

Context adaptation plays an important role in continuously changing physical environ-

ment. In recent years, because of the rapid development of mobile computing and big data,

there are plenty of context-sensitive data in the IoT systems, therefore the context-awareness

in IoT draws a lot of research attention. For example, there are many investigations on

context-awareness in models [192], architectures [32] and middlewares [28]. On the other

hand, adaptation is more challenging than context-awareness. It is usually solved by

constructing the feedback loop [21] at different abstracting levels like architectures [27],

behaviour models [26] and frameworks [163].

REST (Representational State Transfer) is a widely used architecture style and also

popular in the IoT fields because of its low entry barrier and scalability merits. However,

the REST architecture style was particularly designed for distributed hypermedia systems,

36

Chapter 4. Behavioural Abstract 37

and it sometimes does not fit the IoT requirements. In particular, it is difficult for REST

to support complex operations and high-level abstraction, while in the IoT systems, the

physical behaviours usually need complex behaviour models which REST cannot provide.

Therefore two main issues arise, i.e., system states verification and physical behaviour

implementation, which we will discuss in more details in Section 4.3.

To address the above issues, we propose the Feedback-based Adaptive Service-Oriented

Paradigm (FASOP) which can be applied at the programming language level to support

context adaptation in the IoT systems. Furthermore, the FASOP can be used to add more

constraints to use the REST style in the IoT systems to overcome these two limitations,

i.e., system states verification and physical behaviour implementation.

The rest of the Chapter is organised as follows. Section 4.2 compares FASOP with

some existing works. Section 4.3 explains the motivation of the proposed approach. Then

the definition and description of the FASOP is presented in Section 4.4. In Section 4.5,

the FASOP is applied in the REST as an extra constraint. Section 4.6 illustrates a simple

implementation of the FASOP. In addition, the two issues discussed earlier in Section 4.3

are solved with the FASOP in Section 4.7. The conclusion and future work are given in

Section 4.8.

4.2 Related Works

There are many pieces of research on the development of the IoT systems to support context-

awareness and adaptation. In [165], a platform is developed as ContextServ to simplify

the development of context-aware Web services using high-level modelling language. In

[22], a design for adaptation approach is proposed to support the development, deployment

and execution of systems in dynamic environments by exploiting service refinement and

re-configuration techniques. In [163], the MAPE-K feedback loop is used to support a

synchronisation and adaptation mechanism for the real-world process as a process-based

framework. It uses a different perspective from combining processes’ virtual world with

real-world effects to build self-adaptive IoT systems. This work can achieve a high level of

autonomy and resilience against failures for physical world process. In [37], the authors

provide the methodology of using a model-based service-oriented architecture with service

composition to support self-adaptation. The work is solid and also provides fault tolerance

mechanism. In [26], the service adaptation is achieved using service composition for

automatic reconfiguration based on the rich interface specifications. Following this idea,

38

they used the Discrete-Time Markov Chains in a language to describe the impact of

adaptation tactics and the assumption about the environment.

Our approach is a paradigm that can be used in the current service-based technologies,

especially for those technologies using REST style. However, because of the special

constraints of the REST style, the REST style services are not suitable for context-

adaptation in the IoT system. Compared to others’ work, we use a different perspective of

designing, i.e., FASOP, to support context-adaptation in service development, especially for

the service development with REST style which rarely supported the context-adaptation.

Furthermore, we prove that this paradigm can overcome the two issues in using REST style

services in the IoT systems in Section 4.7.

4.3 Motivation

Using REST architecture style in the IoT systems may cause two problems in the system

states verification and physical behaviours implementation. Below, two examples explain

them respectively.

4.3.1 Issue of System States Verification

To address the issue of system state verification, below is a scenario in the Smart Home to

explain how the REST style may cause a wrong system states verification.

The scenario is to turn on/off a lamp in a room. Assume there is a controller for a lamp

in the room, and it has two operations switchOn and switchOff. The typical model and

design with the RESTful interface for this scenario can be shown in Figure 4.1. Based on

the HTTP standard, if the response status code is “200 OK”, the operation successes; and

if the response status code is “5xx”, the operation fails with the error at the service side.

However, the problem is that even if the response of the status code “200 OK” is

obtained, the whole operation cannot guarantee to be successful. The returned “200 OK”

only means the controller has been successfully triggered, but the lamp may still be off for

some unknown reasons, for example, due to the network problem, the returned status code

cannot reflect the real situation.

These kind of problems can be fixed by other fault tolerance mechanisms in the

middleware, however, it makes the solution more complex with extra requirements on

techniques and tools. Especially because some methodologies may break the constraints

Chapter 4. Behavioural Abstract 39

On

Off

switchOn switchOff

Function: switchOff()
URI: /room1/controller1/switchOff
Method: POST

Function: switchOn()
URI: /room1/controller1/switchOn
Method: POST

Figure 4.1: The Model and Design with RESTful Interface to Turn On/Off a Lamp

in the REST style, these solutions make it more difficult to model the system states and

behaviours.

This is one of our motivations to provide a paradigm with the feedback mechanism for

better system states verification in the IoT systems, so the services developed in the IoT

systems, especially in REST style, can be more accurate and reliable.

4.3.2 Issue of Physical Behaviours Implementation

The second issue related to physical behaviours implementation is a big problem for

developing REST style services in the IoT systems. More specifically, any implementation

of continuous physical behaviours with REST style services can be difficult, because the

REST style services have limited operations (GET, POST, PUT, DELETE) that cannot

fully match the continuously changing physical behaviours. Below, we use a scenario of

braking a car to explain the limitation.

Assume we need a braking service, which can brake a car based on current conditions

and decisions. This scenario cannot be modelled by a simple state machine. The dynamic

physical behaviours of the car can be expressed as follows:

ṡ =
ds

dt
= v, v̇ =

dv

dt
= a (4.1)

Where s represents the passage within time t with the velocity v, and a is the acceleration.

40

sa av

as

Figure 4.2: The Model for Braking Service

From the REST style services development point of view, we need the GET methods

for three variables, s, v and a first, and a POST method to call the brake service with

parameters a and v and the expected passing distance s.

However, it is impossible to ignore all disturbances and uncertainties in the physical

environments, so calling a simple brake service with parameters a and v and the expected

passing distance s may cause unpredictable effects, that is, the real passing distance s′ is far

from s. Furthermore, it is very difficult to map the physical braking device to the braking

service because quantitatively describing the action is hard. To overcome the limitations of

the open-loop controller, the control theory introduces feedback and a closed-loop controller

that can use feedback to control states and outputs of a dynamic system. The Figure 4.2

indicates the physical behaviour. However, the traditional REST style services cannot

perfectly implement this model.

The paradigm proposed in this Chapter can also be used to enhance the functionalities

of the REST to support more complex operations in the physical world in a natural way,

because it fits the mathematical form of calculus.

4.4 Feedback-based Adaptive Service-Oriented Paradigm

In the SOA based IoT systems, we distinguish three types of different services, i.e., Virtual

Service, Perceptive Service and Actuating Service. The three types are evaluated by the

interactive patterns from the service providers to the physical environment.

Virtual Service Most of the traditional software services are virtual services with no

interaction with the physical environment. Even in IoT systems like smart home, for

example, most of the services are still virtual services which can store temperature

data or convert temperature from one unit to another.

Chapter 4. Behavioural Abstract 41

Perceptive Service Perceptive services are usually provided by sensors and responsible

for detecting the physical environment. The perception that is provided by the

perceptive service can be temperature, pressure or vision etc.

Actuating Service Actuating Services are expressed as services executing real actions in

the physical environment. For example, in the smart home, turning on/off a light or

air condition are actuating services.

An interface I of a service SP , denoted by Is is defined by a signature and a behavioural

model. In the IoT, for any given Actuating Service, its interface Iac can be specified by

context, signature and behavioral model. Context defines information depending on service

requesters and service environment. Signature corresponds to operation profiles provided

by the actuating service. Behavioral model is represented by Petri nets to describe the

adaptive pattern.

Definition 4.4.1 (Context). We define the context as a typed relation [182]. Let DIM

denote the set of all possible dimensions, and U denote the set of all possible tags. A

context c is a finite relation {(d, x) | d ∈ DIM ∧ x ∈ U}. The degree of the context c is

| dom c |. The empty relation corresponds to Null context. The degree of Null context is 0.

We formalize context as a relation, set of ordered pairs of (d, x) where d is a dimension and

x is a tag value.

Definition 4.4.2 (Signature). A Signature is a set of operation profiles. An operation

profile is the description of an operation containing the name of an operation, with its

argument types and its return type. For the actuating service interface Iac, its signature

is defined by a tuple < Oas, Ops,Γ >, where Oas is a set of operation profiles provided by

the actuating service and Ops is a set of dependent operation profiles provided by other

perceptive services. Γ is a set of functions Γ : Oas → Ops. For any single operation profile

oas ∈ Oas, it has a set of callable operations from other perceptive services Ops′ ⊆ Ops and

Ops′ 6= ∅. For the operation profile oas, it has the function γ : oas → Ops′ , Ops′ 6= ∅, and it

is obvious γ ∈ Γ.

Definition 4.4.3 (Behavioral model). The behaviour in the service can be modelled as a

Petri net SN =< P, T, F, i, o >, where P and T are disjoint sets of places and transitions.

Places represent states that contain tokens with multiple attributes, and transitions represent

activities that can be guarded; transitions are fired when all the tokens in the corresponding

input places arrive. Places and transitions are connected through arcs.

42

p1

t1

p2

p′1

t′1 p′2

t′2

p′3t′3

p′4

apply the
paradigm

from another
perceptive service

Figure 4.3: The Petri Net Behavioural Model for an Actuating Service

Definition 4.4.4 (Service Interface). A service interface is a tuple < CP, S,B >, where:

CP is a context profile, and S is a signature with its corresponding behaviour model B.

The behavioural model of FASOP is represented as a Petri net to indicate the atomic

operations in Actuating Services. As shown in the left side of Figure 4.3, before applying the

paradigm, t1 is a transition provided by the Actuating Service and p1, p2 are pre-condition

and post-conditions of t1 respectively. From the process point of view, if the operation in

t1 is a function call < result : func(params...) >, then p1 is to map the function name

func and parameters (params...), and p2 is to check the return value result. However,

if the < result : func(params...) > has any action in physical environment, it is nearly

impossible to guarantee all post-conditions from the programming language level, because

the post-conditions of t1 may contain some physical effects that cannot be detected by the

Actuating Service itself.

In our approach, the proposed paradigm is a mechanism with a feedback mechanism

to solve this problem at the programming language level. Feedback control is a central

element of control theory, and the importance in self-adaptive systems has already been

discussed in [21].

Among the three types of the services in IoT, the feedback loop can be constructed by

Actuating Services and Perceptive Services. A service signature explicitly exposed by a

Actuating Service is a set of operations that need to declare reachable Perceptive Services

with specific operations. For a single operation profile, it is expressed as shown in Table 4.1.

Then, any service call to funcAS has to pass all required parameters including context

Chapter 4. Behavioural Abstract 43

observe(t)

env(context)

envChange

op(context,env(context),t)

result

sysComponent: actuation: perception:

Figure 4.4: The Sequence Diagram for Calling an Actuating Service

Table 4.1: The Single Operation Format in an Actuating Service

Operation Name funcAS

Parameters p1, p2, ..., pn
Available Operations PS1.op1, PS2.op1, PS2.op2, ..., PSi.opj

information and at least one extra service call as an available Perceptive Service. The

behavioural model is on the right side of the Figure 4.3. The service call at t1 is changed

from < result : func(params...) > to < result : func(params..., PS.funcPS, t) >, which

contains another function funcPS from another Perspective Service PS and the latency

time t which is the waiting time to get the feedback perceptions. In this way, the verification

for post-conditions is more reasonable, since the post-conditions with physical properties

can be verified through the perceptions of the physical environment by the Perceptive

Services. With this new paradigm, the place p′2 can verify whether the operation func is

operated successfully and place p′4 can eventually check if the operation func has desired

behaviours based on the perceptions. In Figure 4.4, a sequence diagram shows the detailed

processes from the implementation perspective.

4.5 Extending REST for the IoT based on FASOP

In [52], an example of using REST-based architecture server to control a robot is presented.

The author concludes that REST sometimes is inconvenient compared to other RPC style

web services because it does not have the functionalities like callback to support complex

44

modelling with the states. The key problem is that keeping all required information in a

single request to model physical behaviour while keeping stateless interactions is difficult. In

the physical environment, most of the continuously physical behaviours are modelled based

on differential equations, so it needs at least two states to express a continuous physical

behaviour. Therefore, at least two states in the response are needed to model the physical

behaviours in any single request. With the FASOP, any single service call to an Actuating

Service becomes a transaction, so all required information can be wrapped up to model

physical behaviours within one request. This paradigm can be simply converted to an extra

constraint for the REST, and the new constraint is expressed as follows:

• Any operation from the Actuating Services has to operate in a complete feedback

loop containing the perception to the physical environment and the response need to

have at least two states of the requested entity.

The high-level model we use for IoT systems is based on [99], which is defined as a tuple

RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, where R is a set of resources; I is a set of resource

identifiers; B ⊆ I is a finite set of root identifiers; η : I → R is a naming function, mapping

identifiers to resources. C is a set of client identifiers, and D is a set of data values, with

an equivalence relation ∼⊆ (D ×D); OPS is a finite set of methods; and RETS is a finite

set of return codes. The detailed model is similar to the model provided by [148], where

the only difference is for modelling services for actuators.

Resource identifiers are modelled as URIs, and represented as the following scheme:

URI = scheme : [//host[: port]][/]path[?query][#fragment]

The descriptions of a service can be obtained by sending a GET to a particular resource

via URI. Most of the service calls are at protocol level via message delivery, and the main

difference is on the Actuating Service calling. That is, the request to an Actuating Service

needs to contain at least one available Perspective Service operation.

4.6 Implementation

In this Section, we will use Java web service to express a simple implementation of this

paradigm.

Chapter 4. Behavioural Abstract 45

<<Interface>>

PerceptiveService

getPhysicalContext() : PhysicalContext
init() : void
stop() : void
run() : void

<<Interface>>

ActuatingService

getPhysicalContext() : PhysicalContext
addPerceptiveService(PerceptiveService) : void
containPerceptiveService(PerceptiveService) : boolean
removePerceptiveService(PerceptiveService) : void
getAllPerceptiveServices() : List<PerceptiveService>
init() : void
stop() : void
run() : void

Figure 4.5: The Basic Class Diagram of the two Interfaces with FASOP

Based on the former definition in Section 4.4, the services in the IoT systems are

concluded as: Virtual Service, Perceptive Service and Actuating Service. Since Virtual

Service is just normal web service, we only develop two extra interfaces: PerceptiveService

and ActuatingService. For simplicity, we assume all the services can remotely call another

service from a different device based on the RPC framework or the Actor model [3].

Figure 4.5 indicates a basic example of these two interfaces.

The main purpose of the interface design is to do type checking in the development. By

using annotation in Java, we can restrict the developer to include at least one PerceptiveSer-

vice as a parameter in any Actuating Service annotated by @WithFeedback. However, the

type checking at this level needs to call a method remotely. That is, if a developer wants to

use the JAX RS (Java API for RESTful Web Services)[71] standard to develop REST style

services, the parameters are all String type for the services mapped from the URI, thus the

developer cannot do type checking to confirm the PerceptiveService as a parameter. In this

case, the developer needs to check the PerceptiveService in the function of the service.

The implementation is only a lightweight version of the FASOP implementation, because

we need to extend the HTTP or CoAP (Constrained Application Protocol) to fully support

the FASOP, which is considered as a part of future work though.

4.7 Case Studies

In this Section, we use the two examples presented in Section 4.3 to illustrate the advantages

of the FASOP.

46

public class LampService implement ActuatingService{

@POST
@Path(/room1/controller1/switchOn/{perceptiveservice}\{time})
public String switchOn(@PathParam(perceptiveservice) String p,@PathParam(time) String time){

if(!PerceptiveServices.containskey(p)){
switchOn();
return No PerceptiveService Found, Switched On ;

} else { switchOn();
Thread.sleep(Integer.parseInt(time)*1000);
String state = PerceptiveServices.get(p).getResponse();
if(state.equals(On)){

return Switched On, Successfully ;
} else{ return Failed ; } } }

}

Figure 4.6: The Implementation Sample of Using FASOP to Turn On a Lamp

4.7.1 Turn on/off a Lamp in the Smart Home

For the scenario in the Smart Home to turn on/off a lamp in a room, the issue is that the

response status code cannot express the correct system status. To solve this problem, we

use the FASOP to modify the original approach and the changes are as follows:

Function: switchOn() → switchOn(PerspectiveService,t)

URI: /room1/controller1/switchOn

→ /room1/controller1/switchOn/?perceptiveservice=lightsensor&time=1s

Method: POST

The implementation details are expressed in Figure 4.6. In this implementation, the

successful status code correctly reflects a guaranteed successful confirmation.

4.7.2 Brake an AutoDriving Car

Compared to the traditional REST style development, the FASOP can help to transfer the

physical behaviour model to software development in a more natural way. Below we use

the example introduced in Section 4.3 to explain the transfer process.

Based on the Equation 4.1, in a very short time ∆t = t′ − t, we have the following form

of the equation:

ṡ =
ds

dt
=
s′ − s
t′ − t

= v, v̇ =
dv

dt
=
v′ − v
t′ − t

= a =
s′ − s

(t′ − t)2

Chapter 4. Behavioural Abstract 47

With the traditional REST style service development, it is very difficult to evaluate

and analyse acceleration quantitatively. However, the FASOP can fit the closed-feedback

model, thus the exact acceleration value can be easily evaluated via the distance and time.

Furthermore, we can continuously change the acceleration via braking physically, and all

effect can be evaluated through the service in real-time. The function of this braking service

can be as follows:

Function: braking(PerspectiveService,t)

URI: /car/brake/braking/?perceptiveservice=distancesensor&time=1ms

Method: POST

In any moment, with this braking service, we can also predict the future passing distance

sf during the time period tf . The prediction can be based on: s = v ∗ t − a∗t2
2 if the

acceleration remains the same.

4.8 Conclusion

The main reason why there are some issues caused by using the REST style services in the

IoT systems, as we described in Section 4.3 is that behaviour abstract ability is missing in

the REST style. To solve the problem, FASOP is proposed in this Chapter to provide the

context adaptation ability at a low level for service development, therefore the REST style

services can implement complex behaviour processes based on the context adaptation.

The implementation in this Chapter is a rather simplified version to use the current

web technologies. To fully implement the FASOP in the REST style, we develop a protocol

by extending the CoAP (Constrained Application Protocol) based on REST model which

will be introduced in Chapter 5.

Chapter 5

Behavioral Abstract Support from

Protocol

5.1 Introduction

In recent years, IoT has illustrated a great potential in various fields [64]. When connecting

IoT devices to the Internet, the IoT devices and services are expected to inter-operate

at the application layer. Inspired by the success of the World Wide Web, Guinard [65]

proposed the concept of Web of Things, which advocates using the REST (Representational

State Transfer) architectural style to design IoT applications and using the ubiquity of web

to interact with devices via HTTP. However, HTTP over TCP has problems in constrained

environments, particularly, with the small frame sizes and the lossy links of low-power

wireless communication, because it requires more resources to keep the connection. Instead

of adding the compression techniques to solve the problems, the IETF designed a new

web protocol from scratch: the Constrained Application Protocol (CoAP) [164]. CoAP

follows the style of REST, but is tailored to the requirements of low cost devices and

IoT application scenarios. It uses a compact binary format and runs over UDP or DTLS

(Datagram Transport Layer Security) when security mechanisms are enabled. The protocol

also enables multicast communication. At the top level, the request/response model enables

RESTful interaction through the well-known methods GET, PUT, POST, and DELETE

as well as response codes that are defined in accordance to the HTTP specification. CoAP

resources are addressable by URIs, and Internet Media Types are used to represent resource

states. RESTful caching and proxying enable network scalability.

48

Chapter 5. Behavioral Abstract Support from Protocol 49

However, the application layer protocol is responsible for the application level support,

where the RESTful API is not sufficient for all functional requirements of the IoT systems.

Thus the resource observe mechanism [73] is designed for many environment monitoring

scenes from the sensors as the publish-subscribe model.

Even though the resource observe mechanism can naturally cooperate with the function-

alities of the sensors, the CoAP has no support for the actuators from the context-adaptation

perspective. However, the Real-time Context-Adaptive support on the unreliable network

(like Internet-based network) is critical to implement complex physical behaviours in the

IoT systems. In this chapter, we will give some general models for the physical behaviour

modelling and related implementations from the Real-time Context-Adaptation perspective.

Different from other solutions, the support from the protocol level is more general than

other approaches, especially when the CoAP becomes one of the IoT standard protocols.

There is much work based on the CoAP from different perspectives such as the Security

[153], cooperation with the Cloud Computing [206], and the applications [103]. However,

the CoAP has no mechanism to support the Real-time Context-Adaptation, which limits

its capabilities in many complex IoT scenarios.

The rest of the chapter is organised as follows. Section 5.2 express our approach

to support the Real-time Context-Adaptation in the CoAP. Specifically, our approach

is illustrated in details from six aspects such as the motivation, requirements, context-

adaptation messaging model, context option, real-time support and security. Section 5.3

explains the basic implementation based on the existing library and Section 5.4 describes

the future work.

5.2 Real-time Context-Adaptation in the CoAP

5.2.1 Motivation

Scalability, extensibility and interoperability among heterogeneous things and their environ-

ments, are key requirements and challenges in the IoT systems. Since these requirements are

similar to the World Wide Web, which is one of the most successful distributed systems, the

Web of Things (WoT) concept is proposed to integrate the smart things into the Web (the

application layer) rather than the Internet (the network layer). To achieve the integration,

some common patterns used for the Web such as REST Architectural Style are applied

in the IoT applications [58]. HTTP (Hypertext Transfer Protocol) [57] is the classical

50

implementation of REST architectural style. However, the devices and the networks in the

IoT environments may be extremely constrained, thus the typical approaches based on the

HTTP protocol can be too heavy to support the IoT systems. Following the REST archi-

tectural style with tailored features for IoT applications and Machine-to-Machine (M2M)

scenarios with resource-constrained devices, the IETF Constrained RESTful Environments

(CoRE) working group, therefore, designed the CoAP [20].

However, the REST architectural style was mainly designed for the World Wide Web,

which satisfies many different requirements compared to the IoT applications. A typical

scene is an environment monitoring case when a client is interested in having a current

representing of a resource over a period. For example, a temperature sensor is used to

detect the abnormal temperature in the industrial environment. Instead of the active

roll polling requesting to get the information, it may be more preferable to let the sensor

notify the system when the temperature value is out of the normal range. The IETF

community, therefore, extends the CoAP with the Observing Resources mechanism based

on the Observe Design Pattern with which the targeted resource can be used to observe the

related environment and send the notification if the observations satisfy specific pre-defined

policies.

REST architectural style is network-centric [58], which means the basic operations

like GET, POST, PUT and DELETE are defined in the protocol level as the unified

interface. While this design principle supports the web’s scalability and interoperability, it

also constrains the request-response model and operations for the different web resources.

However, the request-response model with four basic operations is not sufficient for the

IoT applications’ requirements. Although the extended Observing Resources mechanism

provides the basic messaging model for most sensors, the actuators’ requirements from

using the CoAP cannot be satisfied.

If we want to use the actuators to support the continuous physical behaviours via

the CoAP, it would be nearly impossible because the CoAP does not support this kind

of operations in its unified interface. The CoAP can only be used as a communicating

protocol to support some simple operations for the actuators, because no messaging model

can precisely control the behaviours on the networks. Primarily, the current CoAP cannot

provide complex physical behaviours modelling or implementation, thus largely limits the

usage scenarios of the IoT applications.

To enrich the modelling ability and operations in the CoAP, we provide a real-time

context-adaptation mechanism, which can use some control theory to model the physical

Chapter 5. Behavioral Abstract Support from Protocol 51

behaviours over the networks.

The Real-time Context-Adaptation support in the protocol has many advantages

compared to other solutions, because the protocol is one of the necessary infrastructures for

the IoT applications and it can provide the general support without specific middlewares.

On the other side, because it provides the Real-time Context-Adaptation support at the

general infrastructure level, it is difficult to provide very general behaviour modelling

support. We will analyse the requirements in the following Section.

5.2.2 Requirements

The complex physical behaviours modellings and implementations over the unreliable

networks place greater demands on providing the Real-time Context-Adaptation mechanism.

Essentially the feedback loop in control theory needs to be adapted in the unreliable networks

and distributed devices via the application layer protocol. Regardless of many detailed

mechanisms, the most significant requirements for the Real-time Context-Adaptation in

the CoAP can be summarised as four aspects shown below:

Context-Adaptation Messaging Model The basic messaging models to support context-

adaptive behaviours;

Context-Adaptation Option The message format to define the Context-Adaptation

Option;

Real-time Support The real-time support and the consistency model for the distributed

devices to guarantee the time-sensitive behaviours over the networks;

Security Support The security support is naturally required, because the physical be-

haviours from the actuators usually affect the safety of the systems.

The critical finding in the [21] has already confirmed that in designing self-adaptive

systems, the feedback loops that control self-adaptation must become first-class entities. In

essence, we need to correctly apply the feedback mechanism in the CoAP from the control

theory perspective to support the real-time context adaptation. The Figure 5.1 uses Petri

Net to indicate the basic concept of applying the feedback loop in the basic request-response

model. More details about how to manage the devices from the CoAP are expressed in

the following Sections. Furthermore, the issues from the unreliable networks and possible

solutions are discussed below.

52

p1

t1

p2

p′1

t′1 p′2

t′2

p′3t′3

p′4

Figure 5.1: To Apply the Feedback Loop in the Basic Request-Response Model for Real-time
Context-Adaptation

To keep the advantages of REST architectural style, and the consistency between our

extended protocol and the original CoAP, we use all the existing basic messaging models

provided in the CoAP and extra mechanisms to extend its functionalities without changing

the original protocol and REST constraints. Since the whole Real-time Context Adaptation

mechanism in the CoAP is hugely complex, only some basic designs and proposals are

introduced with details in the following Sections.

5.2.3 Context-Adaptation Messaging Model

The main purpose of the Real-time Context Adaptation is to support the complex physical

behaviours modelling and development on the unreliable networks. Because scalability is

one of the key concerns in the IoT applications, based on the conclusion in the [38], the

decentralised control solution is preferable. The Context Adaptation Messaging Model is

extended from the original messaging models in the CoAP, therefore the feedback control

loops would not affect the scalability of the CoAP too much.

As a fully decentralised approach, the management of the decentralised feedback loops

is a complicated problem as the contexts and targets can always change. To enable the

basic request-response model to support context-adaptive behaviours, the requested targets

need to obtain all the required contexts information. Based on the existing messaging

models and mechanisms in the CoAP, we propose the following two patterns to locate and

retrieve the contexts information.

1. The requested message contains all the addresses of the required context information,

Chapter 5. Behavioral Abstract Support from Protocol 53

and the requested node will issue another request to the addresses of the context

information. The final response will include the requested behaviour and all the

changes of the related context information within the given time period.

2. The Resource Observe mechanism can make the pre-register between different IoT

nodes. If the requested node has already registered itself to several other nodes and

the requested message does not contain other addresses, the requested node will

send back the requested behaviour and the changes of the pre-registered context

information within the given time period.

Apart from the direct request-response process, the CoAP also provides the proxy

mechanism to let the proxy forward some messages. Since the proxy allows more flexible

and efficient ways to handle the messages [174], we also support the Context-Adaptation

Messaging Model with the proxies involved.

Messaging Model without Proxy

Figure 5.2 illustrates the basic Context-Adaptation Messaging Model extended from the

direct request-response model. To provide the reliable control, the context adaptive requests

are required to transfer with the reliable transmission, which means the message has to be

marked as Conformable (CON). When the actuator receives the requested context adaptive

message, it will issue another request to the specified sensor. Since the message is still

marked as the context adaptive request, the requested sensor will monitor the environments

within the given time period and respond to the requested actuator with the context

changing information. Then the actuator can combine the data together and send back to

the original client.

In Figure 5.3, the context adaptive request does not specify another node’s address and

the requested actuator has already Observe another sensor with the observe relationships

before this context adaptive request, so the actuator will wait for the given time period

and eventually respond with the possible changed context information. This form of the

Context-Adaptation Messaging Model can hide the details about the required sensor, if

the IoT applications do not want the client to know the sensor. However, it requires the

pre-register with Resource Observe, which may affect the scalability if the IoT applications

contain too many this kind of dependencies.

54

client actuator sensor
CON [0x7a10]

PUT /actuator?env=sensor&time=1000
Token: 0x1a
Context: 0

CON [0x7a11]
GET /sensor
Token: 0x1a

Context: 1000

ACK [0x7a10]
2.05 Content
Token: 0x1a

1000
/ms

ACK [0x7a11]

CON [0x9b23]
2.05 Content
Token: 0x1a
Context: 0

CON [0x9b24]
2.05 Content
Token: 0x1a
Context: 1

ACK [0x9b23]
ACK [0x9b24]

Figure 5.2: The Illustration of the Basic Context-Adaptation Messaging Model without
Proxy

Messaging Model with Proxy

The proxy can play an important role in real IoT applications, because the powerful devices

can be used to handle large amounts of computation and network pressure as the proxies.

Figure 5.4 illustrates an example of requesting a context adaptive message from a proxy.

Different from the other forwarding messages, if the Proxy detects a context adaptive

message, it will split the message into two messages and send two different requests to

the actuator and the sensor respectively. The proxy is responsible for managing the

Context-Adaptation Messaging Model and carries all the pressures of handling all the

coming requests from different nodes. In this case, it is just a normal original CoAP

message for the requested actuator.

In Figure 5.5, the message sequences are similar as the case in Figure 5.3. The difference

is that the proxy takes responsibility for managing the Context-Adaptation Messaging

Model, so the context adaptive message for the requested actuator is a normal original

request. The advantage of using a proxy to support the Context-Adaptation Messaging

Chapter 5. Behavioral Abstract Support from Protocol 55

client actuator sensorCON [0x3a10]
GET /sensor
Token: 0x1a

Observe: 0 (register)

500
/ms

ACK [0x3a10]

2.05 Content
Token: 0x1a
Observe: 43

CON [0x9b24]
PUT /actuator?time=500

Token: 0x2a
Context: 0

ACK [0x9b24]

2.05 Content
Token: 0x1a
Observe: 45

2.05 Content
Token: 0x1a
Observe: 44

CON [0x9b79]
2.05 CONTENT
Token: 0x2a
Context: 1

ACK [0x9b79]

Figure 5.3: The Illustration of the Context-Adaptation Messaging Model in Observing
Resources without Proxy

Model with Resource Observe mechanism is that the proxies are able to manage complex

dependencies as a centralised node to reduce the pressures for other resource-constrained

nodes.

5.2.4 The Adaptation Option

Similar as the Observe Option for Resource Observe mechanism, the Adaptation Option’s

format is defined in Table 5.1 where C stands for Critical, U stands for Unsafe, N stands

for No-Cache-Key and R stands for Repeatable. If it is included in a PUT request or in a

response message, the requested node knows it is a context adaptive message.

Table 5.1: The Adaptation Option

No. C U N R Name Format Length Default

0 x - Adaptation uint 0-8 B (none)

When the Adaptation Option is included in a PUT request with the value 0, it extends

56

client actuator sensorproxy

ACK [0x7a12]

CON [0x26b1]
2.05 Content
Token: 0x1a
Context: 0

CON [0x7a10]
PUT /actuator?env=sensor&time=1000

Token: 0x1a
Context: 0

ACK [0x7a10]
2.05 Content
Token: 0x1a

CON [0x23bb]
2.05 Content
Token: 0x1a
Context: 1

CON [0x7a11]
PUT /actuator
Token: 0x1a

ACK [0x7a11]

CON [0x7a12]
GET /Sensor
Token: 0x1a

Context: 1000

ACK [0x23bb]

1000
/ms

ACK [0x26b1]

Figure 5.4: The Illustration of the Basic Context-Adaptation Messaging Model with Proxy

the PUT method so it will parse the requested URI to detect if there is any required node’s

address. Then the requested node will check if itself is observing any valid resource. The

requested node handles the context adaptive message following the Context-Adaptation

Messaging Models described in Section 5.2.3. When the Adaptation Option is included

in a GET request with an option value which is not 0 or 1, it extends the GET method,

so it not only retrieves a current representation of the target resource, but also records

the representation of the target resource during the given time period based on the option

value.

The option value 1 is the exceptional value which is used to confirm the end of a context

adaptive request. If the response contains an Adaptation Option with the option value 1,

the receiving node knows that the response is from a context adaptive request and it can

do the further analysis and decision based on the response.

The Observe Option is not critical for processing the request. If the server is unwilling

or unable to support context adaptation, then the request falls back to a normal PUT

request, and the response does not include the Adaptation Option.

The Adaptation Option is not part of the Cache-Key: a cacheable response obtained

Chapter 5. Behavioral Abstract Support from Protocol 57

client actuator sensorproxy

ACK [0x3a10]

2.05 Content
Token: 0x1a
Observe: 23

CON [0x43bb]
PUT /actuator?time=500

Token: 0x2a
Context: 0

CON [0x3a10]
GET /sensor(T=CON)

Token: 0x1a
Observe: 0 (register)

CON [0x43bc]
PUT /actuator
Token: 0x3a

ACK [0x43bb]
ACK [0x43bc]

CON [0x71aa]
2.05 Content
Token: 0x2a
Context: 1

2.05 Content
Token: 0x1a
Observe: 25

2.05 Content
Token: 0x1a
Observe: 24 500

/ms

ACK [0x71aa]

Figure 5.5: The Illustration of the Context-Adaptation Messaging Model in Observing
Resources with Proxy

with an Adaptation Option in the request can be used to satisfy a request without an

Adaptation Option, and vice versa. When a stored response with an Adaptation Option

is used to satisfy a normal GET/PUT request, the option must be removed before the

response is returned.

To track the entire process of one Context Adaptation Messaging, the Token is used to

confirm if the transferred messages are contained in one context adaptive request.

5.2.5 Real-time Support

The former context-adaptive mechanism is already sufficient for some simple discrete

behaviours such as to turn on/off a controller for a lamp. However, for some complex

behaviours, we need the precise time to make accurate control via solving the related

physical models like differential equations.

The distributed control has been researched for decades, and different solutions are

proposed. Different from other distributed control systems, the devices and networks in the

IoT systems are usually unreliable. As an application layer protocol, the protocol needs to

58

overcome the uncertainty in the devices and networks to implement the physical behaviour

models and estimate the states, because the protocol cannot control the reliability on the

communication layer. To extend the protocol, we use the Quality-of-Service (QoS) at the

application layer to set the contracts with other protocols and applications.

To support real-time feature with QoS, there are two main concerns in our approach:

network latency and time consensus.

The network latency is an unavoidable effect if the IoT systems are running on the

Internet-based communication protocols. For most of the current IoT systems, the network

latency only affects the system performance, however, the network latency will affect the

system correctness if the real-time physical behaviours require being implemented because

the precise and reliable time for the physical models is needed [113]. To solve this problem,

we can firstly consider a case with the basic Context-Adaptation Messaging Model shown

in the Figure 5.6.

Client

Actuator

Sensor

Timeline

Timeline

Timeline

Figure 5.6: The Time-Aware Messaging Sequence of the Basic Context-Adaptation Messag-
ing Model

In Figure 5.6, the tc is the start time of the request from the Client. The ta is the time

when the Actuator starts the requested operation and the ts is the time that the Sensor

starts to detect the environment. In the Client ’s own time-line, we can only know the

Chapter 5. Behavioral Abstract Support from Protocol 59

precise time of tc and t′c, however, the Actuator and Sensor can record their time stamps

in the response messages, therefore the requesting Client can know the precise time from

the Actuator ’s and Sensor ’s time-lines.

However, this mechanism will bring a new problem, that is, the different nodes’ timers

are different. In Figure 5.6, the time ta at the Actuator cannot be guaranteed as the same

time recorded in the Client node. To solve this problem, the timers in all the requests

nodes should be as same as possible, and this requirement needs another solution, i.e., the

time synchronisation mechanism.

In the CoAP, we use the QoS to satisfy the Real-time feature from three QoS prop-

erties with network latency and time consensus. Table 5.2 indicates the three main QoS

requirements for the Real-time support for the Context Adaptation in the CoAP. These

QoS policies are at the application layer, and they still need the cooperations with other

communication protocols and time synchronisation protocols which are not mentioned in

this thesis.

5.2.6 Security Support

Currently, the CoAP uses the Datagram Transport Layer Security (DTLS) as the underlying

security protocol for authenticated and confidential communication. However, the Real-time

Context Adaptation support in the CoAP may cause new problems. The main security

concerns in the approach are about the access control and Denial-of-Service (DoS) attack.

Because the adaptive resource can forward the requests to other resources, the clients or

the adaptive resources may be able to access some resources’ information that they cannot

access directly. This possibility risks the entire systems’ privacy and security, which need

more security mechanisms, especially in the access control aspect.

Another concern is about the DoS attack, because all the nodes supporting Real-time

Context Adaptation are time sensitive, and the Dos attack can significantly affect their

system behaviour correctness rather than performance. For example, if a node under the

DoS becomes slow, it may never reach the QoS requirements to provide the Real-time

Context Adaptation feature. For this concern, we recommend to use the Context Adaptation

Messaging Model with Proxy, therefore, the network pressure can transfer to the proxy side

where more mature solutions in the gateways for the DoS attacks exist.

60

5.3 Implementation

The implementation is mainly for the Context Adaptation Messaging Model part only

because this part of work is still at the early stage to support the Real-time Context

Adaptation in the CoAP yet, and the QoS policies for the Real-time support require lots

of the implementation on the communication layer protocols and other application layer

protocols which are not existing yet.

The implementation is based on the open-source CoAP Java library from the Arm

Mbed [126]. Similar as the Resource Observe mechanism, an abstract class AbstractAdapt-

ableResource is extended from the CoapResource to specify some basic requirements of the

CoAP resources that can support Context Adaptation Mode.

Compared to the Resource Observe mechanism, we have more different adaptation

modes, meanwhile, the requests’ states need to be maintained during the environment

detecting time. The management can be extremely complex, however, we only provide a

basic implementation where the Adaptive Resource uses two HashMaps to manage the

external observable resources and process environment detecting resources (like sensors).

In the LinkFormat class, a static property of “LINK ADAPTABLE” with value “ada”

is added to specify the Adaptive Resources. For an Adaptable Resource, the general steps

of processing a context-adaptive message are as follows:

1. Check if the request is a context-adaptation message.

2. If yes, check if the request contains the target resource to detect the contexts. If yes,

the Adaptive Resource does the requested operations first and then forwards the rest

of the message to the target resource.

3. Store the request and the target resource in a HashMaps to wait for the response

from the target resource.

4. If the request does not contain the target resource to detect the contexts, check if

the Adaptive Resource is observing any other CoAP resources. If no, it gives an

exception message back to the client; if yes, it sets up a timer to wait for the certain

time included in the request.

5. Eventually, the Adaptive Resource combines its own operation status and the detected

environment together, and sends it back to the client.

Chapter 5. Behavioral Abstract Support from Protocol 61

During this procedure, the Adaptive Resource has one HashMap to check all the

observing resources, and another hash map to manage the states of the context-adaptive

request.

However, the implementation here does not consider the different permissions for all

the requesting, and the strict time constraints issues. The proxy is also not supported in

the implementation. We consider to fully implement them in the future.

5.4 Conclusion

This chapter has described how the Real-time Context Adaptation can be applied into the

CoAP to functionally enhance the physical modelling abilities in the IoT systems from the

protocol level. Compared to other context adaptation solutions, the Real-time Context

Adaptation in the CoAP is a more general infrastructure level support, especially when the

CoAP has already been one of the standards for the IoT systems.

However, to provide precise Real-time Context Adaptation in the CoAP is difficult

because it is usually based on the unreliable networks (UDP) and devices. In this chapter,

we only give the four types of Messaging Models to support Context Adaptation while the

QoS for the real-time feature still needs the cooperation of other communication protocols

and time synchronisation protocols. The security issues for this approach only have some

general discussions without detailed solutions. The implementation is only for the basic

Context Adaptation Messaging Model, and it is based on the open-source CoAP Java

library from the Arm Mbed.

Future work will consist of completing the QoS support, adding security mechanisms,

and implementing the full protocol. In the future, we plan to use formal methods to verify

the proposed protocol extension. We also plan to use the extended protocol in some real

applications and test the performance.

62

T
ab

le
5.2:

T
h

e
req

u
ired

Q
oS

for
R

eal-tim
e

Q
oS

p
olicy

E
n
tity

D
escrip

tion

D
ea

d
lin

e(t)
D

R
M

ax
ex

p
ected

elap
sed

tim
e

b
etw

een
arriv

in
g

d
ata

sam
p

les.

D
W

M
ax

com
m

itted
tim

e
to

p
u

b
lish

sam
p

les
or

in
stan

ces.

L
a
ten

cy
B

u
d

g
et(t)

T
,

D
R

,
D

R
In

d
ication

on
h
ow

to
h

an
d

le
d

ata
th

at
req

u
ires

low
laten

cy.
P

rov
id

es
a

m
ax

im
u

m
accep

tab
le

d
elay

from
th

e
tim

e
th

e
d

ata
is

w
ritten

to
th

e
tim

e
it

is
received

b
y

th
e

su
b

scrib
in

g
ap

p
lication

s.

T
im

e
C

on
sen

su
s

(%
)

T
C

T
h

e
tim

e
sy

n
ch

ron
ization

level
for

d
iff

eren
t

n
o
d

es.
P

rov
id

e
a

rate
to

d
escrib

e
th

e
m

in
im

u
m

req
u

ired
tim

e
sy

n
ch

ron
ization

level
for

th
is

n
o
d

e.

Chapter 6

Uncertainty Handling

6.1 Introduction

Internet of Things (IoT) is envisioned to integrate the physical world into computer-based

systems. Recently, with the advanced technology development on sensors, networking, data

processing etc., IoT has demonstrated a great potential in various fields [64]. However,

even after decades of research on system aspects of IoT, developing IoT based systems

is still facing many challenges like scalability, inter-operability and fault tolerance [132].

Because of the complex interaction with the physical environment, the IoT systems face

more uncertainty than the traditional software systems and demand different fault tolerance

mechanisms.

Uncertainty is a classical and critical problem being well studied in many complex

systems from different perspectives. For the modern hybrid systems interacting with the

physical environments, the hardware components can be easily affordable yet significantly

affected by the physical environments, thus the systems are more unreliable due to the

inaccurate detections, actions or possible damages. The uncertainty from the unreliable

hardware components and unpredictable behaviours may confound the results or cause a

severe loss if the components are critical.

The uncertainty in the hybrid systems causes various problems. Based on the systematic

classification in [201], the uncertainty of the hybrid systems can be specified by three levels:

Application, Infrastructure and Integration. Therefore a conceptual uncertainty model is

defined as a general reference model for a different kind of uncertainty. If the uncertainty is

classified by analysing the causes in a more detailed way, the uncertainty can come from

63

64

different levels such as hardware fault [160], channel uncertainty in communication [106],

software design [15], software development [87], and hostile attacks [204]. The solutions for

a different kind of uncertainty usually only work in a specific situation using a particular

model.

Compared to other specifically designed models for uncertainty, the reputation-based

approach is a more general solution for different cases with intrinsic self-adaptation. Since

a reputation-based framework for Wireless Sensor Network (WSN) is designed in [60], this

kind of approach has been widely used in the WSN applications with different technologies.

One rationale in the reputation-based approaches in WSN is that the sensors usually have

the same functionality in the WSN applications. Therefore, they can use distance-based

outlier detection [100] or density-based outlier detection [141] to evaluate other sensors’

reputations. However, in the highly heterogeneous IoT systems, most of the devices have

different functionalities making it difficult to evaluate each other’s reputation from different

devices and system components.

One possible solution to deal with the heterogeneity is to integrate social networking con-

cept into IoT, which leads to the investigation on the Social Internet of Things (SIoT) [136].

However, defining all the relationships and behaviours among the different nodes in IoT

systems from social networking perspective remains to be one of the major challenges in

SIoT. To use social networking concept for uncertainty in IoT systems, extra networks with

many redefined relationships and behaviours are required to meet the requirements, which

is still a challenge.

Instead of using social networking concept in the IoT systems, semantics is used in

our framework to extend the classical reputation-based framework for WSN applications.

Via extracting functionalities’ semantics, we can create some conceptual “resources” and

construct a directed graph to make the system components providing the same functionality

point to the same “resource” node because they are semantically equivalent. Since the

system components that point to the same “resource” have the same type of functionality,

they have the ability to evaluate each others’ reputations. The whole reputation updating

mechanism is based on three assumptions which will be introduced in this Chapter with

details. The reputation-based approach proposed in this Chapter is a general and distributed

framework that can be seamlessly integrated to any IoT systems. We can use some basic

concepts and technologies that are currently widely used in the web to construct the

framework without requiring too much prior knowledge, specific models or additional

supporting technologies.

Chapter 6. Uncertainty Handling 65

This Chapter is organised as follows; in Section 6.2, we present some related works

on data fusion and fault detection with different approaches, especially reputation-based

methods in IoT or WSN. Our reputation-based framework is described in Section 6.3 which

is divided into four parts. Section 6.4 introduces how this framework is implemented via

RESTful web service technology. The evaluation results are expressed and discussed in

Section 6.5. Finally, Section 6.6 concludes the Chapter and discusses the future work.

6.2 Related Works

The issues of uncertainty in the IoT systems come from many different aspects such as

physical randomness, noise, software faults or attack. The research fields and technologies

in handling uncertainty in the hybrid systems mainly include data fusion, fault diagnosis,

security, etc. In this Chapter, the proposed approach focuses on the data integrity and

accuracy with data fusion, and adaptive fault diagnosis.

Ever since the Multi-sensor data fusion was developed, it benefits many different fields

like military, manufacturing and robotics [72]. In general, the approaches for data fusion

can be classified into two types, model-driven and data-driven. The model-driven approach

needs prior knowledge of the expected data model and can be more domain specific, while

the data-driven approach has a more general principle. Since a general reputation framework

is proposed in [60] for high integrity sensor networks with peer-to-peer rating reputation

based on sensor nodes’ behaviours via the watchdog components, the reputation-based

approach becomes popular for sensor networks. Many different algorithms like probability

theory, fuzzy set theory, and DempsterShafer evidence theory are used in the multi-sensor

data fusion [94].

However, it is easier to deploy reputation system in WSN because most nodes have the

similar functionality thus they can easily provide enough redundancy sensors. The resources

can choose the neighbour nodes to evaluate their reputation based on their transactional

behaviours [55][39]. In some highly heterogeneous systems like IoT, the devices all have

different functionalities. It is therefore difficult to require all the nodes to have enough

interactions with their neighbour nodes. Furthermore, besides sensors, there are many other

types of system components in IoT. This reveals difficulty to integrate those components into

the old reputation-based framework provided for the WSN. Some researchers use the social

networking concept in the IoT systems to build the more complex networks with the social

relationship to construct the reputation framework [16][17][136]. It is a very cutting-edge

66

research field and has many challenges such as scalability, lookup, communication protocols

and social networking management [124]. Because of the different foundations of social

networks and IoT systems, many concepts have to be redefined from a new perspective

such as “Honesty” in the SIoT [86] to construct the reputation framework. In [177], the

trust concept, definition, and model are rebuilt in the context of the SIoT to support the

trust evaluation in the SIoT environment.

Different from the works mentioned above, the Semantic-based Reputation Framework

(SRF) proposed in this Chapter uses many concepts from the web for general IoT systems.

Semantics is becoming an important concept in dealing with many IoT challenges. For

example, in the [42], the semantics is used in the IoT framework to support RESTful

devices’ API interoperability. In this Chapter, the framework can match different system

components with high-level semantics to construct the reputation frameworks to reduce

the runtime uncertainty self-adaptively and catch some general fault without classifying

all different fault types. Therefore, the SRF cannot only deal with highly heterogeneous

IoT systems, but also provides the self-adaptation feature for large-scale IoT applications.

Furthermore, the development and implementation of this framework can reuse many

existing web technologies thus it is easily compatible with most of the current technologies

and deployed in the existing IoT systems.

6.3 Semantic-based Reputation Framework

The entire framework can be divided into four parts: Semantic Match, Data Fusion, Belief

Updating and Fault Detection. In particular for device noise, the Data Fusion is used to

support more reliable and accurate values produced from the devices, and for unpredictable

fault, the Fault Detection can generally detect the unknown fault. The detailed uncertainty

models are discussed later in the respective Sections. The Semantic Match is to construct

the framework’s structures for the heterogeneity in the IoT systems, and the Belief Updating

provides the mechanism for evaluating the reputation values. Before the detailed framework

structures and algorithms are presented, several important concepts are defined as follows:

Definition 6.3.1 (Uncertainty). For the uncertainty in the IoT systems, the Semantic-

based Reputation framework is mainly designed for two types of uncertainty - device noise

and unpredictable fault. The typical devices used in the IoT, like sensors, always have

the deviation of measurements. Based on the central limit theorem [155], even though the

Chapter 6. Uncertainty Handling 67

µx

f(x)

x

Figure 6.1: The Uncertainty of the Devices fitting Gaussian Distribution

individual constituent deviations may not be Gaussian distributed, the combined deviation

is approximately so, therefore we assume the uncertainty from the device noise follows the

Gaussian Distribution, which is expressed in the Figure 6.1. For the unpredictable fault, it

is defined as the general fault caused from any possible reasons. For example, the device

may be damaged by animals, and starts to give wrong values. The general faults in the IoT

can be detected by the Fault Detection part in the Semantic-based Reputation framework.

Definition 6.3.2 (Component). The component is defined as the system component,

containing both the software and hardware parts. The most common example component

in the IoT environment is the sensor with the device and related software component.

Definition 6.3.3 (Resource). The concept resource is a conceptual mapping to a set of

entities, which was originally proposed in the REST (Representational State Transfer)

architectural style to build the modern web [58]. The definition of the resource is narrowed

down in the reputation framework, where the resource can be treated as the functional

description of the components from high-level semantics. If the system has one temperature

sensor at location l(x,y) to detect temperature T and the function can be written as Tl(x,y)(t)

where the t is the time variable, the function Tl(x,y)(t) can be a resource mapping to “the

real-time temperature at location l(x,y)” with a unique URI (Uniform Resource Identifier)

to name and address this resource. Any resource can be an abstract concept or function

68

mapping to a type of data that can be detected or evaluated by the components in the IoT

systems.

Definition 6.3.4 (Belief). Belief is the value to describe the reputation of the component.

The value of the belief is given by the mapped resource to express how much the component

can be trusted.

Figure 6.2 illustrates a big picture of the runtime framework in which many different

system components are matched to different resource nodes with similar semantic function-

alities. The blue nodes are resources expressing the functional semantics matched from

the components. The arrows from different devices to the resources indicate the semantic

match relationships. The resource nodes will fuse the data from different components and

give the evaluated belief properties to all the matching components. The system will detect

the fault if any components’ belief property is lower than the given thresholds. In the figure,

the green nodes are in the normal running mode, while the red nodes are in the detected

fault mode.

6.3.1 Semantic Match

Reputation-based approaches have been widely used in many WSN applications to deal with

uncertainty. However, it is very challenging to apply reputation concept in the IoT systems

because most system components are heterogeneous and multi-functional, therefore it is

difficult to require any system component to evaluate other system components’ behaviours

when they have entirely different functionalities.

However, even in the most heterogeneous systems, some system components still have

the same or similar functionalities. If we can construct a special structure to check the data

and behaviours between these components, it is possible to have distributed reputation

evaluating processes via consensus-checking between different system components which

are semantically equivalent. To achieve this goal, in this framework, we use a commonly

utilised abstract concept in the web - resource, to build the consistency-based structure for

evaluating the reputations, and the process of building the structure is named as Semantic

Match.

After a conceptual resource is created, several different system components can be

bound to this resource with some specific functionalities matching to the resource. A

classical example to explain this concept is the hybrid localisation solution [197] in which

Chapter 6. Uncertainty Handling 69

Figure 6.2: The Visualised Semantic-based Reputation Framework Concept

70

Entity_Location

GPS_Component

WiFi_Component

integrate

integrate

Cellular_Component integrate Entity_Location

GPS_Component

WiFi_Component

Cellular_Component

check

check

check

Figure 6.3: The Hybrid Localization Solution as a Semantic Match Example

the GPS positioning component, WiFi positioning component and Cellular positioning

component all map to a concept of the entity location as three semantically equivalent

entities. Thus we can create a resource e(x,y) to express the location of entity e and bind

the three components to this resource. This solution cannot only be used to make the

localisation more accurate and reliable but also make it possible to detect any abnormal

fault from these three components, illustrated in Figure 6.3. Because in the long-run, if any

component suddenly starts to give unbelievable drift values compared with the other two

components, it is possible that the component may have deviated from the normal running

status.

A complex IoT application may contain many different components in addition to a few

localisation modules, thus the system can construct a directed graph containing the system

component nodes, the conceptual resource nodes, and the arrows pointing from the system

component nodes to the conceptual resource nodes. As an example, Figure 6.4 illustrates a

directed graph with six individual components and four resources.

To give a formal description, any arrow aij from ci to rj indicates a functionality of the

component ci as a sequence of data with variable time t

faij (t) = (~dci,rj ,t1 ,
~dci,rj ,t2 , ...,

~dci,rj ,tk) (6.1)

Where any ~dci,rj ,tp =< v1, v2, ..., vm > is a vector produced from component ci at time tp.

Any resource rµ has a unique URIrµ . At time tp, it receives α number of data from α

number of system components and the received data in resource rµ is expressed as a set of

Chapter 6. Uncertainty Handling 71

~Dr,tp :

~Drµ,tp = {~dc1,rµ,tp , ~dc2,rµ,tp , ..., ~dcα,rµ,tp} (6.2)

Generally, any system component ci can have several different functionalities to be mapped

to different conceptual resources. Each functionality can produce a vector of data ~dci,r,tp at

time tp and the data will be sent to the resource r. Furthermore, each system component

ci has a special property bci as the Belief of the component ci assigned from the matching

resources. Because every system component has its mapping resources, the mapping

resources can keep the Belief property updated. Essentially, the process of the Semantic

Match is to add some extra resource nodes in the resource registry and construct the specific

structures with algorithms to check consistency between different components with the

same functionality. After the Semantic Match structure is built, the resources can fuse

data from different components to produce more accurate results and use the results to

update all matched components’ Belief properties to evaluate their reputations.

c1

c2

c3 c4

r1

r2

r3

c5

c6

r4

Figure 6.4: The Semantic Match to construct a Directed Graph

6.3.2 Data Fusion

Because one resource has different sources of data from different components, it is possible

to integrate different data to achieve more accurate and reliable data. This process is called

72

Data Fusion. The targeted uncertainty is from the device noise, and it is assumed that the

accuracy of the devices follows the Gaussian Distribution. Based on the redundant data

from the different components, the effects of the device noise can be reduced by applying

the algorithms. There are many different approaches for the data fusion, especially when

there is real-time updated Belief property for each source. In this Chapter, for simplicity,

we only use a linear model based on Fuzzy Set [196] to explain how the data fusion works

in our framework.

The belief bci of any component ci is between 0 and 1, 0 < bci < 1, that bci = 1 means

the system believes the component ci is 100% correct and bci = 0 means the system believes

the component is 100% wrong.

A component has its belief property bci and the output from this component to a resource

r at time tp is a vector ~dci,r,tp =< vi, v2, ..., vm >. Due to the device noise uncertainty, we

assume the real data is ~dci,r,tp,real and bci · ~dci,r,tp ≤ ~dci,r,tp,real ≤ (2− bci) · ~dci,r,tp , thus:

~dci,r,tp,real =< v1,real, v2,real, ..., v%,real, ..., vm,real > (6.3)

where 1 ≤ % ≤ m and ∀v%,real ∈ [bci · v%, (2− bci) · v%]. We use:

~dci,r,tp,real = ζ(bci ,
~dci,r,tp) (6.4)

to express the real data at time tp from the component ci to the resource r.

Any resource r is mapped from a set of components Cr, where any component ci ∈ Cr
produces the vector data ~dci,r,tp at time tp. Let’s assume the resource r successfully received

correct time-stamped data from all the source components in Cr and the size of the

components is κ = |Cr|. The received data in the resource r can be denoted as a set of

vector data ~Dr,tp :

~Dr,tp = {~dc1,r,tp , ~dc2,r,tp , ..., ~dcκ,r,tp} (6.5)

and the respective belief values from all the matched components can be expressed as a

vector br,tp =< bc1,tp , bc2,tp , ..., bcκ,tp >. Then, based on the definition 6.4, the real value

should be expressed as:

~Drreal,tp = {ζ(bc1,tp ,
~dc1,r,tp), ζ(bc2,tp ,

~dc2,r,tp), ..., ζ(bcκ,tp ,
~dcκ,r,tp)} (6.6)

Since we eventually need a single scalar quantity output for further services and to update

Chapter 6. Uncertainty Handling 73

the belief properties, the defuzzification is required to produce the expected output. There

are many different methods to do the defuzzification such as max membership principle [156],

centroid method [111], weighted average method [44], or mean max membership [169]. In

this thesis, we assume the uncertainty of the devices fitting Gaussian Distribution, therefore,

the output membership function of ~dci,r,tp,real = ζ(bci ,
~dci,r,tp) is symmetrical. It satisfies

the condition of the weighted average method, which is more computationally efficient,

so we choose it to produce the results. The general algebraic expression of the weighted

average method is defined in [156] as follows:

z∗ =

∑
µc̃(z̄) · z̄∑
µc̃(z̄)

(6.7)

Where
∑

denotes the algebraic sum and z̄ is the centroid of each symmetric membership

function. In our framework, the expected real output value can be expressed as follows:

d∗tp =

∑n
i=1

~dci,r,tp · bci∑n
i=1 bci

(6.8)

Figure 6.5: The Data Fusion Process in the Resource ru at the Moment tp

The data fusion process is running at the resource rµ with URIru , which expresses

the semantics of rµ. The resource rµ collects all the incoming data from the semantically

matched components with the same time stamp. Combined with all the related belief

values from different components, the resource rµ can calculate the fusion data d∗tp based on

74

equation 6.8 as expressed in Figure 6.5. The calculated data d∗tp is attached to the resource

rµ to express the fusion result, which could be treated as the semantic value. The fusion

result d∗tp can also be used in the next Belief Updating part to update all the matched

components’ belief values.

To take an example showing how the data fusion works, we assume the framework

contains three positioning components; c1, c2 and c3 with respective belief value of 0.9,

0.6 and 0.4. At the time t, if the three positioning components respectively send their

detected location values < 56, 43 >, < 63, 47 > and < 40, 35 > to the resource rp with

URLrp : systemX/entityA/location. The evaluated result d∗rp,tp in the resource rp is:

d∗rp,tp =<

∑n=3
i=1 dci,rp,t1 · bci∑n=3

i=1 bci
,

∑n=3
i=1 dci,rp,t2 · bci∑n=3

i=1 bci
>

=<
56 · 0.9 + 63 · 0.6 + 40 · 0.4

0.9 + 0.6 + 0.4
,
43 · 0.9 + 47 · 0.6 + 35 · 0.4

0.9 + 0.6 + 0.4
>

=< 54.8, 42.6 >

The value of d∗rp,tp is the semantic value of rp to express the location of entityA.

6.3.3 Belief Updating

To obtain the correct evaluated data based on the above data fusion process, one of the

most important factors is to assign the correct Belief values to all the components.

There are many different methods to assign the components’ Belief properties. The

method can be static, based on the historical data and prior knowledge. It can also be

dynamic, based on Bayesian probability or other theories. In this Section, we only give

some requirements as the guide to use this framework, in which the algorithms updating

the belief can be flexible.

Different from other approaches, the belief updating processes in our approach are not

individual end-to-end processes from different nodes rating each other. Each resource can

become an individual agent to decide all the matched system components’ beliefs based on

their behaviours, which is a centralised decision in the resource rather than peer-to-peer

decision.

Based on all the data from different component sources in the same Semantic Match,

the resource can update its mapped components’ Belief properties. The updating rules are

based on the following two basic assumptions:

Chapter 6. Uncertainty Handling 75

• If more resources think one component is correct, the component has a higher

reputation.

• If the outputs from different components are more consistent, these components are

more believable than others and will get a higher reputation.

With the two assumptions, we can have the Belief Updating mechanism in the following:

For any component c ∈ Cri , where Cri is the set of all semantically equivalent components

to the resource ri, we have the Belief of this c as:

bcri = ~(c, Cri) (6.9)

Where the ~(c, Cri) is a function to check the difference between the data from the

component c and other components in the Cri . The function will get a higher value if the

difference is less, and a lower value if the difference is more. The equation means that if

the component’s output values are more close to other components’ that are semantically

equivalent to this resource, the component’s output values are assumed to be more accurate.

Many system components are multi-functional, which means they can be mapped to

different resources based on the semantic equivalences between the functionalities and

resources. If a component c is mapping to multiple resources Rc, every mapping resource

can give the belief values to it separately, and eventually the Belief of this component c is:

bc = g(BRc), BRc = {bcri |ri ∈ Rc} (6.10)

Where the g(BRc) is a function used to integrate the beliefs from different resources and

the range is between 0 to 1. In general, this equation can be summarised in the following:

if more children components are reliable, the parent component is believed to be more

reliable.

The above two functions only indicate the underlying assumptions, however, the exact

algorithms need to consider many different aspects such as the network latency and data

loss. In the implementation Section, we will illustrate how to update the belief for each

different component using our data structures.

76

6.3.4 Fault Detection

With the real-time updating Belief properties, any system component in the system can

self-adaptively detect some runtime faults, especially when one system component causes

some permanent faults.

We can set a threshold value Ψ, and if any component has the belief value lower than Ψ,

the system will trigger the event of warning the related components. In some complicated

situations, the different components can also have different threshold values, thus we can

have more fine-grained operations on the fault detecting.

The fault detection is based on components’ belief values, which are automatically

updating at runtime, therefore the fault alarm is self-adaptive, which can let the deployed

IoT systems to detect any unexpected fault in real-time without any prior knowledge. This

is important because it is impossible to consider all possible states when developing the

software systems, and this self-adaptive fault alarm mechanism can deal with most of the

undefined behaviours and data.

6.4 Implementation

In our implementation, we use meaningful URIs (Uniform Resource Identifiers) with web

technologies to build the directed graphs with the semantic match. Specifically, the Semantic-

based Reputation Framework is developed based on the Resource-Oriented Architecture

with REST (Representational State Transfer) architectural style principle, and the detailed

implementation technology is based on Spring framework with Java programming language.

The framework is built from different RESTful web services which use the URIs to

annotate the service’s semantic descriptions. All the operations in the reputation framework

are based on the HTTP request-response model. Following the REST principles, we use

the GET to get the resources’ descriptions, POST to generate new resources, and PUT to

update the resources. Some RESTful web services in our implementation are expressed

in the table 6.1. For any system component, as long as it can request web services, it can

register itself to a specific resource node via POST operation, and use PUT operation

to give real-time values to the related resource node. The resource node can receive the

real-time data from different system components and produce the final data by evaluating

those data produced with the same time stamp. Then, the resource node can give related

belief values to all the requested system components.

Chapter 6. Uncertainty Handling 77

REST Verb URI Description

GET /iotSystem Get the system description

GET /iotSystem/resourceNodes Get all the resource nodes

POST /iotSystem/resourceNodes Add a new resource node

POST /iotSystem/{resourceNode} Attach some system components to
a specific resource node

PUT /iotSystem/{resourceNode} Update the data and get the belief

Table 6.1: The Example of RESTful Web Services in the Framework

To allow the resource node respond to the request from different matching system

components, we designed the particular data structures to compare the different data from

other semantically equivalent components. The structure is used to manage the data from

different system components, which is shown in Figure 6.6. Since the networks are not

always stable and all system components and web services cannot guarantee the time

synchronisation, we designed the paralleled linked lists to support the data fusion and belief

updating mechanism via tracking the timeslots. The parameter Tin is to decide the size of

the timeslots, which depends on the system contexts.

Each resource node maintains several linked lists to handle the requests from different

matching system components. Each linked list acts as the buffer to store the data from

related components, and it only keeps the size of k depending on the time duration that

the historical data is kept. After every Tin, each linked list will drop the last element and

add a new element from the other end. This runtime updating structure can guarantee the

resource node always gets the data from the components and compares them in the same

timeslot with the similar time stamps even when there are network latencies or unbalanced

source components updating frequencies.

Every semantically matching system component can send the request to the related

resource nodes to fuse their data and get updated belief value. Assume a component cra

sends a PUT request with the data dct and a time stamp tc is attached to the /iotSystem/ra,

the resource ra will process the request with its own process function, and the algorithm is

indicated in the Algorithm 1 shown below.

The belief updating strategy is based on both historical belief values and the current

calculated value, therefore another buffer is used to store historical belief values. The

historical belief values can be used to apply PI (proportional-integral) control mechanism

[8] to stabilise the belief value. In this implementation, we can simply set a length of l, and

78

Algorithm 1: The process service for any matched component: process()

input : request from a component with its name, time-stamp, and value
output : the updated belief value for the component

currentTime = timer.getTime();
if components.contains(requestComponent) then

/* Decide the correct time slot and store the data */;
intervalCount = (componentT ime− currentT ime)/intervalT ime;
oldElement = listC.get(currentPoint+ intervalCount);
if oldElement.time < currentT ime then

listC.set(currentPoint+ intervalCount,request);

/* Data Fusion to get the evaluated value with FuzzyWeightedAverage algorithm
*/;

for each component list lc in the resource do
if lc.get(currentPoint+ intervalCount) != null then

fusingDataList.add(lc.get(currentPoint+ intervalCount));
beliefWeightList.add(beliefC);

evaluatedData =
FuzzyWeightedAverage.fuse(fusingDataList, beliefWeightList);

/* Update the belief value of the request component */;
beliefC = beliefUpdate(evaluateData, comingData, updateStrategy);

Chapter 6. Uncertainty Handling 79

Time:
Value:

Current Time

Resource Node
Endpoint

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time:
Value:

Time Interval

Component 1

Component 2

Component n

Figure 6.6: The Data Structure in the Resource

only calculate the average value of the latest l belief values. The length of l is very critical

because it can significantly affect the framework’s performance. Generally, if the length l is

longer, the evaluated belief value will be more stable and fault-tolerant. However, it will

also become very insensitive to all faults in the meantime, thus some faults may not be

reported promptly. Therefore, the parameter needs to be chosen carefully to balance the

different requirements from the specific systems.

In this implementation, we did not have consistency mechanism to allow different

resource nodes to negotiate the final belief value for any system component. Therefore, the

belief value fusion from different resource nodes’ responses has to be done at the client side,

which means the system component needs to decide its final belief value by itself.

80

6.5 Evaluation

Because the framework is not deployed in the real IoT systems, randomly generated data is

used to simulate the real environment to test the framework with specially designed data

structures and algorithms. The evaluation data is generated from client-side component

nodes from the component nodes at the client side with RestTemplate which is a technology

provided by Spring Framework.

In this Section, we assume we have three different components matching with a specific

resource, and they have the different type of accuracy level. Component1 is the most

reliable one, yet component3 is the worst. The real value in the physical world is around

100, and each request their data to the resource node.

In the framework, the belief updating part only gives the basic assumptions without

detailed algorithms. The method to evaluate the belief values can be difficult. However

our purpose is to test the performance of the framework, therefore to make the simulation

clearer, we use simple linear algorithms to evaluate the belief values. That is, if the evaluated

data is de, and the requested data is dr, the belief value for component i is bi = 1− |de−dr|de
.

We decide to use the PI control mechanism, which means we store and use the historical

belief values, otherwise, the assigned belief values will be very unstable and may cause

occasional problems. The Figure 6.7 indicates the results without PI control mechanism

where we do not use historical values to stabilise the output.

If we want the assigned belief values more stable in the given environments, we can

apply the PI control mechanism by calculating the average value from the latest historical

belief values with the length l, where l is the size of the timeslots. The PI control mechanism

can help to reduce the effect from the short term device deviations. In Figure 6.8, we set

the length l as 7 and it can be observed from the figure that the belief values become stable

after about 80 timeslots.

With the same configuration to test the performance of fault detection, we let the

Component2 generate 0 after a certain time. The results are expressed in the Figure 6.9.

It is observed that the belief value of the Component2 starts to drop down when it only

produces 0. The evaluated value from the resource is also affected from the faults at the

beginning. However, it eventually returns to the correct value when the belief value of the

Component2 becomes very low. Therefore we can conclude if we choose to give up some

components in the reputation framework when their belief values are lower than the certain

threshold, the experiment reputation is probably more robust.

Chapter 6. Uncertainty Handling 81

0

20

40

60

80

100

120

140

1 7

1
3 19 25 3
1 37 43 4
9 55 61 6
7 73 79 85 9
1 97

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

2
0

5

2
1

1

2
1

7

2
2

3

2
2

9

2
3

5

2
4

1

2
4

7

2
5

3

2
5

9

2
6

5

2
7

1

2
7

7

2
8

3

2
8

9

2
9

5

3
0

1

3
0

7

3
1

3

R
E

A
L-

T
IM

E
 V

A
LU

E
Component1

Component2

Component3

Resource

(a) Data Fusion

0.75

0.8

0.85

0.9

0.95

1

1.05

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

1
7
5

1
8
1

1
8
7

1
9
3

1
9
9

2
0
5

2
1
1

2
1
7

2
2
3

2
2
9

2
3
5

2
4
1

2
4
7

2
5
3

2
5
9

2
6
5

2
7
1

2
7
7

2
8
3

2
8
9

2
9
5

3
0
1

3
0
7

3
1
3

B
E
LI
EF Component1

Component2

Component3

(b) Belief Updating

Figure 6.7: The Normal Running Mode without PI Control

To further our investigation, if we set the length I, which is the large scale of the

historical data used in the PI control, the belief values will become very stable, which is

illustrated in Figure 6.10. This effect is from the PI control mechanism.

However, if there is a permanent fault with the Component2, the evaluated value will

be affected too much and other components’ belief values will also be affected. Figure

82

0

20

40

60

80

100

120

140

1 7

1
3 19 25 3
1 37 43 4
9 55 61 6
7 73 79 85 9
1 97

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

2
0

5

2
1

1

2
1

7

2
2

3

2
2

9

2
3

5

2
4

1

2
4

7

2
5

3

2
5

9

2
6

5

2
7

1

2
7

7

2
8

3

2
8

9

2
9

5

3
0

1

3
0

7

3
1

3

R
E

A
L-

T
IM

E
 V

A
LU

E

Component1

Component2

Component3

Resource

(a) Data Fusion

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

1
7
5

1
8
1

1
8
7

1
9
3

1
9
9

2
0
5

2
1
1

2
1
7

2
2
3

2
2
9

2
3
5

2
4
1

2
4
7

2
5
3

2
5
9

2
6
5

2
7
1

2
7
7

2
8
3

2
8
9

2
9
5

3
0
1

3
0
7

3
1
3

B
E
LI
EF Component1

Component2

Component3

(b) Belief Updating

Figure 6.8: The Normal Running Mode with PI Control

6.11 illustrates the results when the Component2 causes a permanent fault with high l.

Fortunately, even in this case, it can be detected if something goes wrong because all the

three components’ belief values will decrease quickly. Therefore, this kind of situation can

also be detected by applying specially designed policies.

Chapter 6. Uncertainty Handling 83

-20

0

20

40

60

80

100

120

140

1 7

1
3 19 25 3
1 37 43 4
9 55 61 6
7 73 79 85 9
1 97

10
3

1
0

9

11
5

12
1

1
2

7

13
3

13
9

1
4

5

15
1

15
7

16
3

1
6

9

17
5

18
1

1
8

7

19
3

19
9

2
0

5

21
1

21
7

2
2

3

22
9

23
5

2
4

1

24
7

25
3

25
9

2
6

5

27
1

27
7

2
8

3

28
9

29
5

3
0

1

30
7

31
3

R
E

A
L-

T
IM

E
 V

A
LU

E
Component1

Component2

Component3

Resource

(a) Data Fusion

0

0.2

0.4

0.6

0.8

1

1.2

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

1
7
5

1
8
1

1
8
7

1
9
3

1
9
9

2
0
5

2
1
1

2
1
7

2
2
3

2
2
9

2
3
5

2
4
1

2
4
7

2
5
3

2
5
9

2
6
5

2
7
1

2
7
7

2
8
3

2
8
9

2
9
5

3
0
1

3
0
7

3
1
3

B
E
LI
EF Component1

Component2

Component3

(b) Belief Updating

Figure 6.9: The Permanent Fault in the Component2 is Detected

6.6 Conclusion

In this Chapter, we propose a novel Semantic-based Reputation Framework for the Internet

of Things to handle the uncertainty at runtime. The framework focuses more on data

accuracy with data fusion, and fault detection. Compared with some existing reputation-

84

0

20

40

60

80

100

120

140

1 7

1
3 19 25 3
1 37 43 4
9 55 61 6
7 73 79 85 9
1 97

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

2
0

5

2
1

1

2
1

7

2
2

3

2
2

9

2
3

5

2
4

1

2
4

7

2
5

3

2
5

9

2
6

5

2
7

1

2
7

7

2
8

3

2
8

9

2
9

5

3
0

1

3
0

7

3
1

3

R
E

A
L-

T
IM

E
 V

A
LU

E

Component1

Component2

Component3

Resource

(a) Data Fusion

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

1
7
5

1
8
1

1
8
7

1
9
3

1
9
9

2
0
5

2
1
1

2
1
7

2
2
3

2
2
9

2
3
5

2
4
1

2
4
7

2
5
3

2
5
9

2
6
5

2
7
1

2
7
7

2
8
3

2
8
9

2
9
5

3
0
1

3
0
7

3
1
3

B
E
LI
EF Component1

Component2

Component3

(b) Belief Updating

Figure 6.10: The Normal Running Mode with PI Control and the High l

based framework for WSN applications [60], this framework can handle more heterogeneous

systems via constructing the directed graphs with the Semantic Match mechanism. We

implemented the framework with the RESTful web service technology via Java Spring

framework and we designed our own data structures and algorithms to handle the requests

from different systems components. Some experiments in the simulation environment are

Chapter 6. Uncertainty Handling 85

-20

0

20

40

60

80

100

120

140

1 7

1
3 19 25 3
1 37 43 4
9 55 61 6
7 73 79 85 9
1 97

10
3

1
0

9

11
5

12
1

1
2

7

13
3

13
9

1
4

5

15
1

15
7

16
3

1
6

9

17
5

18
1

1
8

7

19
3

19
9

2
0

5

21
1

21
7

2
2

3

22
9

23
5

2
4

1

24
7

25
3

25
9

2
6

5

27
1

27
7

2
8

3

28
9

29
5

3
0

1

30
7

31
3

R
E

A
L-

T
IM

E
 V

A
LU

E
Component1

Component2

Component3

Resource

(a) Data Fusion

0

0.2

0.4

0.6

0.8

1

1.2

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

1
7
5

1
8
1

1
8
7

1
9
3

1
9
9

2
0
5

2
1
1

2
1
7

2
2
3

2
2
9

2
3
5

2
4
1

2
4
7

2
5
3

2
5
9

2
6
5

2
7
1

2
7
7

2
8
3

2
8
9

2
9
5

3
0
1

3
0
7

3
1
3

B
E
LI
EF Component1

Component2

Component3

(b) Belief Updating

Figure 6.11: The Permanent Fault in the Component2 Causes Wrong Data Fusion

made to evaluate the proposed Semantic-based Reputation framework and the specially

designed data structures and algorithms. In the experiments, the PI control mechanism is

used to stabilise the randomly generated simulation data. The evaluation results indicate

that the framework can work as expected.

Compared with other cutting edge approaches like Social Internet of Things, our

86

approach can use all existing well proven web technologies such as HTTP and RESTful

Web service which can handle large scale systems. The algorithms used in this Chapter are

some simple algorithms, however, based on the provided framework and structures, more

complicated algorithms can be used to adapt to different IoT systems.

The core structure of this framework is built by the Semantic Match, which uses the

semantics as the bridge to connect different physical devices and software components. The

implementation of the semantic match discussed in this Chapter is rather simple since

only the basic syntax of “resource” and URI are used to express the semantics. However,

it is possible to use rich semantics related technologies like RDF (Resource Description

Framework) to do reasoning and inferring in our framework in order to express more

complex semantics, thus any existing artificial intelligence technology in semantic reasoning

with uncertainty like [29] and [30] can be used in the IoT systems using our proposed

framework. And this is one of the advantages of our framework.

The future work is to enrich the expression of the Semantic Match with Semantic

Web technologies to allow the framework to automatically detect the appropriate system

components to construct the reputation networks via the Semantic Match. Furthermore,

we also plan to deploy the framework in some more complicated applications to test the

performance, more importantly, to implement different algorithms to test the generality

and extensibility of our framework.

Chapter 7

Access Control

7.1 Introduction

Due to the cost reduction in hardware and network infrastructure, the rapidly growing

number of Internet-connected devices bring us the prospect of the IoT applications in the

future. This will result in a seamless integration of the physical world into the digital world,

and tremendously benefit various domains, as shown in some works related to intelligent

transport systems [88], smart homes [62], smart grid [195], smart buildings [189] and smart

cities [198].

For the broad scale cross domain IoT applications, security and privacy become one of

the essential challenges [130], because the requirements are different from the traditional

computer systems or Internet applications. The IoT applications are usually deployed in

the open environments involving various different users, who might damage the applications

or steal sensitive information. Furthermore, because of the inherently spatio-temporal

feature of the IoT applications, the security and privacy mechanisms for IoT are usually

very context-sensitive, which is not the primary focus of the traditional security and privacy

protection mechanisms. Therefore, the access control mechanisms in the IoT applications

need to be fine-grained and flexible to offer features such as scalability, interoperability,

efficiency and context-awareness.

Some traditional access control approaches like Role-Based Access Control (RBAC)

[159] cannot be applied to IoT application directly because they cannot provide adequate

functionality to adapt to dynamically changing contexts. Although the Attribute-Based

Access Control (ABAC) [193] can provide fine-grained control, the process of authorisation

87

88

is complex and inflexible, thus it is difficult to be used in the open IoT applications which

may include millions of changing users [139]. To accommodate the different requirements,

many current approaches deal with different aspects with hybrid mechanisms such as

Attribute-Role-Based Hybrid Access Control (ARBHAC) [90], Capacity-Based Access

Control (CapBAC) [69][77] and Context-Aware Role-based Access Control (CA-RBAC)

[104].

The dynamic access control mechanism proposed in this Chapter is also a hybrid

approach consisting of context, role, and attribute-based access control. We design the

mechanism specifically for the open dynamic changing physical environment and the most

different perspective is that the access control mechanism is for services rather than data.

Sometimes the services are continuous processes, thus we also have the special life-cycle

management which is not contained in most of the other approaches. The mechanism is

implemented in the OWL (Web Ontology Language) to provide a flexible way to represent

and reason the access policies.

The Chapter is organised as follows; In Section 7.2, some related works are briefly

introduced. The motivation is explained in Section 7.3. Section 7.4 expresses the whole

Context-States-Aware Access Control model, including the basic conceptual model in

Section 7.4.1, its ontology model in Section 7.4.2 and the policy model in Section 7.4.3.

The logical architecture of this access control mechanism is introduced in Section 7.5. Then

Section 7.6 uses the example from Section 7.3 to illustrate how to implement the policy

rules using SWRL (Semantic Web Rule Language). Finally, Section 7.7 concludes the

Chapter and explains future work.

7.2 Related Works

Access control is a mechanism to determine whether a request to access a service or an

information resource provided by a system should be permitted or denied. As one of the

most classical access control mechanisms, the RBAC has been continuously developed for

many years from RBAC [159], NIST RBAC (National Institute of Standards and Technology

RBAC) [56], to GTRBAC (Generalized Temporal RBAC) [89] and risk-aware RBAC [33].

Even though the RBAC provides a powerful abstraction to overcome some safety issues

and limitations in the Discretionary Access Control (DAC) or Mandatory Access Control

(MAC), people start to realize that many other aspects like spatio-temporal information also

need to be paid attention to satisfy some complex requirements, therefore the Generalized

Chapter 7. Access Control 89

Spatio-Temporal Role-Based Access Control (GSTRBAC) model [1] is proposed.

During the progress, some important aspects like contexts [180] or semantics [75]

are defined and explored to integrate into the security mechanism, especially with the

development of web applications, and IoT applications, which are usually deployed in

the open dynamic environment. The CA-RBAC (context-aware RBAC) combines the

context-awareness with RBAC in the pervasive computing systems [104]. In the [93], a

context-aware access control model is proposed based on ontology with semantic web

technologies. While many different focuses in access control are proposed like privacy

preserved access control [82], criticality aware access control [68] and purpose-based access

control [144], a fine-grained mechanism, ABAC, attracts a great deal of attention [83][185].

However, since the ABAC model is too generic and difficult to be deployed, people still

prefer using a hybrid mechanism such as ARBHAC [90], role and attribute-based access

control with Semantic Web technologies [35] or ABAC in Authorisation and Authentication

Infrastructures with Ontologies [149].

ABAC model is very powerful and able to provide fine-grained access control policies,

however, it cannot control the way that the users use the assigned services. Due to this

limitation, a different access control model called Usage Control (UCON) is proposed [142].

The main novelties and advantages of the UCON are mutability of attributes and continuity

of access decision evaluation. A context-aware usage control model (ConUCON) is proposed

in the [11] for the Web of Things.

7.3 Motivation

Most current access control mechanisms still aim at data rather than services. The biggest

difference is that offering data is always a transient behaviour while offering services can be

a continuance process. Therefore accessing some actuating services in the open environment

may lead to the conflicts or unachievable policies. The following scenario illustrates that

most existing access control mechanisms cannot satisfy our requirements including the

fine-grained access policies, context-awareness, and continuously controls of the delivered

access permissions:

Scene #1: Student David has an English class with other 20 students and one teacher

in the classroom RoomA in his university on a hot summer afternoon from 2pm to 3pm.

If we want to define following access policies:

90

1. The RoomA allows any person who belongs to this university and is in the room to

access the equipment in the RoomA.

2. No one can turn on the heaters or turn the air conditioners when the outside temper-

ature is over 25◦.

3. When there is a class in the RoomA, only the people who are involved in the class

and are in the RoomA can access the attached equipment.

4. When the class is over, and no one stays in the RoomA, all the former operations

on the equipment in the room during the class should be revoked. Normally the

lights and all HVAC (Heating, Ventilation and Air Conditioning) equipment should

be turned off.

5. During the class, all the attending students have the permission to access air-

conditioning and no one should own the air conditioning exclusively. Therefore,

their permissions need to be managed with appropriate strategies.

The RBAC mechanisms can only support the first above mentioned policy. Most of

ABAC mechanisms and Context-aware Access Control mechanisms can support the first,

second and third policies but not the fourth policy, because the State is a missing piece of

concepts for most of the existing access control models. When the user is authenticated to

a specific object’s functionality like turning on the air-conditioning, the user has the full

permission for the functionality and the classical access control mechanism cannot control

how the user uses the functionality. The Usage Control model can deal with the 4th policy

because it has the element of State, however, the awareness of State in the Usage Control

model is still simple. If several users are accessing the same air-conditioning, the existing

models cannot manage the potential conflicts between different users. For example, the user

A wants the target temperature of the air-conditioning to 20◦C, while the user B wants

the target temperature of the air-conditioning to 25◦C. To avoid the conflicts, the existing

models can only let any user to exclusively use the device, which is not fair sometimes. The

State element should play a more important role with a more flexible definition to apply

fine-grained access control policies based on the different usage situations.

In order to address the above issues, we need to have the fine-grained and flexible access

control from ABAC, the efficiency from RBAC, and the method to control how the subjects

use the resources even after the subjects are authorised to access the resources. Therefore a

Chapter 7. Access Control 91

hybrid model combining the RBAC, ABAC with some extra state management supports is

proposed in this Chapter.

RolesContexts

States

Attributes

Policies

Subjects Resources

Behaviours

Figure 7.1: The Conceptual Context-States-Aware Access Control Model

7.4 Context-States-Aware Access Control

7.4.1 Context-States-Aware Access Control Model

To provide the fine-grained and powerful access control mechanisms for the different type

of access policies in the open IoT systems, the ABAC is chosen as the foundation for full

functionalities supports. To reduce the complexity and difficulty of ABAC, the Roles and

Contexts are used as the “cache” to store the attributes that are used more frequently.

When the Roles and Contexts information are sufficient to verify the access policies of the

Behaviours, we only use the Roles with Contexts to confirm the permissions. The other

attributes are only required when the information of Roles and Contexts are not sufficient.

In order to manage the continuous Behaviours from the Subjects to the Resources, the

states of the Behaviours need to be tracked as the feedback to do further control. The

Figure 7.1 illustrates the conceptual Context-States-Aware Access Control (CSAAC) Model,

which is based on the ABAC model. The detailed components of the CSAAC Model will be

explained from the three perspectives: 1. Attributes 2. Roles and Context and 3. States.

1. Attributes Definitions

In the ABAC, for the access control purpose, three types of attributes are defined:

92

• Subject Attributes. A subject is an entity (e.g., a user, application, or process) that

takes action on a resource. Each subject has associated attributes which define the

identity and characteristics of the subject. Such attributes may include the subjects

identifier, name, organisation, job title, and so on. A subjects role, naturally, can also

be viewed as an attribute.

• Resource Attributes. A resource is an entity (e.g., a provided service, structured data,

or system component) that is acted upon by a subject. With subjects, resources

have attributes that can be leveraged to make access control decisions. A patient’s

medical record document, for example, may have attributes such as owner, privacy

level, and date. Resource attributes can often be extracted from the Metadata of the

resource. In particular, a variety of service metadata attributes may be relevant for

access control purposes, such as ownership, service taxonomy, or Quality of Service

(QoS) attributes.

• Context Attributes. These attributes describe the operational, technical, and even

situational environment and context in which the information access occurs. For

example, attributes such as current date and time, the current virus/hacker activities,

and the networks security level (e.g., Internet vs. Intranet), are not associated with a

particular subject or a resource, but may be relevant in applying an access control

policy.

With these three types of attributes, we are able to set most of the access policies

for transient behaviours, however, it is still impossible to apply special policies for some

continuous processes with the “life cycle” management.

2. Roles Definitions

Any specific Role is assigned to a series of permissions, thus it is more simple and efficient to

verify the access policies if the subject has an appropriate role. The relationships between

the attributes expressions and roles can be one-to-one or many-to-one. For some frequently

used attributes combinations, it is better to assign some reasonable roles to them.

If the attributes expressions and roles have been in a one-to-many relationship, we may

need to infer the relationships to eliminate the redundancy and inconsistency. The problem

has been solved based on policy languages in [90].

3. States Definitions

States are especially used to describe the continuous Behaviours from the Subjects to the

Chapter 7. Access Control 93

Resources. Assume the status of (s, b, r) is θ(s, b, r), where the s is a Subject, the b is a

Behaviour and the r is a resource. Then a state φ is a set of θ(s, b, r): φ = ΘS,B,R where

∀θ(s, b, r) ∈ ΘS,B,R.

In the mechanism designed from the UCON [202], the function θ(s, b, r) is mapped to six

different types of states, thus θ(s, b, r) ∈ {initial, requesting, denied, accessing, revoked,

end}. However, this definition cannot express more detailed information of the states, for

example, in case of the Resource used by multiple Subjects.

In this Chapter, we use two variables to describe the state: θ(s, b, r) =< access :

p, revoke : r >, where p, r ∈ [0, 1]. If the Subject s cannot access the Resource r with

Behaviour b, then θ(s, b, r) =< access : 0, revoke : 0 >. If the s exclusively accesses

the r with b, then θ(s, b, r) =< access : 1, revoke : 0 >. For some special resources

like air conditioners, when the subject shares the accessing permission with others, the

state is < access : p, revoke : 0 > and p ∈ (0, 1). The p stands for the percentage of

permission for the subject. When the behaviour is finished, if the resource does not need

to reset a device, for example a temperature sensor, the state can immediately go back

to < access : 0, revoke : 0 >. If the resource needs to reset, for example turning off the

air-condition and lights when the user leaves the room, the revoke variable is assigned with 1.

After the revoking behaviour is finished, the state changes back to < access : 0, revoke : 0 >.

7.4.2 Context-States-Aware Model Ontology

Since our access control model is a hybrid model based on ABAC combined with RBAC

and Context-States-Awareness, it is possible that access policies may be redundant or even

conflicted. To make it more secure, safe, high-scale, and easier to be operated, we use the

semantic web technologies for reasoning and inferring attributes and policies, which can

simplify the specification and maintenance of the policies.

Based on the above requirement analysis and model definitions, we design a sample

ontology of the CSAAC model for general IoT applications. As shown in the Figure 7.2, the

ontology contains some most important classes in the CSAAC including Subject, Behaviours,

Context, Role and Resource. Apart from these, we also give some common classes like

Temporal Context and Spatial Context.

The ontology is designed based on the CSAAC model expressed in the Figure 7.1 to

describe some important attributes. The basic structure is from Subjects−Behaviours−
Resources, that is, any Subject can execute some Behaviours on the specific Resource with

94

Figure 7.2: A Sample Ontology of the CSAAC Model

the related authorisation under some conditions. Any resource can have some functionalities

and these functionalities are the Behaviours belonging to the resource.

The Context class is used to define some conditions thus the access control policies can

be more dynamic to support some special cases. For example, we can define the access

control policy for an air conditioner to let it only be turned on when the room temperature

is higher than 30◦.

The State can be used for all the Subject, Resource and Behaviours depending on if they

need to have the continuous control over the behaviours. In some cases, if a device contains

Chapter 7. Access Control 95

an actuator, it is very state-sensitive, therefore the state of the device needs to be tracked.

7.4.3 Context-States-Aware Policy Model

To reduce the difficulty and cost of the ABAC, we separate some concerns from all the

attributes - Role, Context and State. The policy model can be expressed as follows:

1. S, R, and C are subjects, resources, and contexts, respectively, while Γ are roles and

Φ are the states of the subjects accessing the resources. Based on above definition, a

state is defined as ΘS,B,R ⊂ Φ.

2. SAk (1 ≤ k ≤ K), RAm(1 ≤ m ≤M), and CAn (1 ≤ n ≤ N) are the pre-defined attributes

for subjects, resources, and contexts, respectively, while ΓAλ ⊆ SAk (1 ≤ λ ≤ k) are

roles attributes.

3. η(s), η(r) and η(c) are attribute assignment relations for the subject s, the resource

r, and the context c, respectively:

• η(s) ⊆ ΓAλ × (
∏k−λ SAk \ ΓAλ)

• η(r) ⊆ RA1 ×RA2 × ...×RAM

• η(c) ⊆ CA1 × CA2 × ...× CAM

4. The Policy Rule in our approach is different from the classical ABAC, which uses

a Boolean function to decide whether the access is granted or denied. The states Φ

we mentioned in Section 7.4.1 will be used to decide whether the behaviours are the

continuous processes. If the behaviour is a continuous process and it is assigned with

the permission successfully, the state will be used to control how to use the resource.

In this situation we may need to control the certain behaviours for a period of time

with different mechanisms.

Accept Policy Rule: transientAccess(s, r, c)←−
continuousAccess(s, r, c) ·ΘS,B,R ← f(η(s), η(r), η(c))

5. There is a policy rule base containing many different policy rules maintained by the

administrators, covering many subjects and resources. The access control decision

process is to evaluate the applicable policy rules.

96

7.5 System Architecture

The Figure 7.3 depicts a generic architecture for the Context-States-Aware Access Control

which can be treated as a context-aware attributed-based access control with extra states

tracking support. The architecture is extended from the reference architecture of XACML

(extensible Access Control Markup Language) specification [131]. The architecture here

is not intended to be fully implemented by Semantic Web technologies because the state

evaluation and verification in the continuous processes are not easy to be implemented via

Semantic Web technologies. The States Engine is developed as a set of state machines to

manage the life cycles from all requests from Access Requesters to Resources.

Policy Enforcement
Point (PEP)

Policy Decision
Point (PDP)

Policy Administration
Points (PAP)

Access Requester 2. Resource

Policy Information
Points (PIP)

States Engine

Inference Engine

3. 8.

4. 6.

7.

Context Engine5.

Figure 7.3: The CSAAC Architecture

An access control decision and enforcement may involve the following steps:

1. The PAP (Policy Administration Point) provides the access policies with Semantic

Web Rule Language (SWRL) to the PDP (Policy Decision Point). The PDP needs to

confirm that any newly added policy based on SWRL is not conflicted with all the

existing policies.

2. The user (access requester) sends a request to the policy enforcement point to access

a specific behaviour of the requested resource.

Chapter 7. Access Control 97

3. The PEP (Policy Enforcement Point) forwards this request to the PDP to check if the

access requester can get the permission. The first option is to check if the user’s Roles

with Contexts are sufficient. If they are not, the PDP checks if the other attributes

contained in the request are sufficient.

4. The PDP requests the required attributes from a policy information point.

5. If some attributes are still missing, we can try to deduce them from the attributes

included in the request and other attributes provided by the PIP (Policy Information

Point), using Semantic Web technologies. The Inference Engine is connected to a

knowledge base which contains many other ontologies.

6. The PIP delivers the attributes back to the PDP to make further decisions.

7. Based on the decision and the requested Behaviour type for the Resource, the system

can finish the state tracking of this request, or keep observing on the states of how

the resource is used. In some cases, the behaviours from the subject to the resource

need to be revoked after the behaviour is finished and the revoking process is based

on the records in the State Engine.

8. The PDP gives the final decision to the PEP and the PEP shows the decision to the

access requester.

9. The PEP meets possible obligations to let the access requester access the resource.

7.6 Implementation

Due to the inherent limitation of the Description Logic in the OWL-DL, some operations

of our access control model cannot be fully implemented, especially for the Contexts-States-

Awareness. However, we can use SWRL, which is based on the combination of the OWL-DL

and Horn logic clause.

According to the requirements, we implement these access control policies for the five

intended policies mentioned in Section 7.3, and some reasoning rules listed in the Table 7.1.

From some basic reasoning rules like S1:

belongTo(?s1, ?s2) ← hasRole(?s1, ?ro) ∧ belongTo(?ro, ?s2) , we can see how the semantic

reasoning helps to integrate the RBAC into the ABAC, because it can infer the relationships

98

between different roles and attributes. Therefore, it is easier to create new roles or merge

some roles. And the roles can also make verification of the policies easier in order to give

the appropriate access permissions.

The S2 explains that if one resource r1 is owned by a subject, then any resource

contained in the resource r1 is owned by the subject. Thus if a student is authorised for a

classroom, all the pieces of equipment belonging to this classroom are authorised at the

same time.

The S3 is an example used for the Temporal Context to decide if the time constraint

condition is satisfied, the related actions can be triggered.

A similar rule used in the context is the Si+1, where the context condition is the

temperature. The related air conditioner resource can only be set to the heating mode

when the temperature is less than 25◦C.

For the State, the rule Sn indicates that when the class is over and no one is in the

classroom any more, the behaviours done to the pieces of equipment in the classroom during

the class should be revoked, so all the resources in the classroom can be as same as before.

7.7 Conclusion

In this Chapter, we propose a CSAAC model which combines the RBAC and ABAC with

extra contexts-states-awareness support. The Role and Context are used as the cache

to store some important attributes for dynamic management. We give a different state

definition that can flexibly describe some complex states. To implement the model, we use

the semantic web technologies to create a sample ontology for the CSAAC model and we

use the SWRL to provide some examples of access control policies. Furthermore, a logical

architecture is also provided based on the reference architecture of XACML specification.

The CSAAC model is a hybrid model combining many different access control mecha-

nisms to absorb the advantages from different models. The implementation of this model is

very difficult and we only use the semantic web technologies to provide a simplified version.

Using the SWRL to define the access control policies will bring some issues because it

sometimes can be indecisive.

The detailed strategies to manage the states are not discussed in details, especially for

the continuous behaviours. Although the complex situation can be described in our model,

the strategies can be extremely complex when the different users are accessing the same

resource with potential conflicts. To guarantee the fairness, some game theory models -

Chapter 7. Access Control 99

like negotiation models are considered to be included as future works. In the future, the

proposed model CSAAC needs to be applied in the real applications to discuss the detailed

control strategies and validate the model technicalities.

100

N
o.

R
eason

in
g

ru
les

S
1

belon
g
T
o(?s1

,?s2)←
h
a
sR
ole(?s1,?ro)∧

belon
g
T
o(?ro,?s2)

S
2

ow
n
ed
B
y
(?r2,?s1)←

ow
n
ed
B
y
(?r1

,?s1)∧
h
a
sR
esou

rce(?r1
,?r2)

S
3

sa
tT
em

C
on

(?c0)←
h
a
sT
im
e(?c0

,?t)∧
op

:
tim

e
−
g
rea

ter
−
th
a
n

(?t,?td
)

∧
op

:
tim

e
−
less
−
th
a
n

(?t,?tu
)∧

tem
C
on
R
a
n
g
e(?td

,?tu
)

S
4

A
ssig

n
ed
R
esou

rce(?r,?s1)←
belon

g
T
o(?s1

,?s0)∧
ow
n
ed
B
y
(?r,?s0)∧

isA
v
a
ila
ble(?r)

S
i

......
S

i+
1

A
ssig

n
ed
B
eh
a
v
iou

r(h
ea
tin

g
,?s1)←

A
ssig

n
ed
R
esou

rce(a
irC

on
d
ition

,?s1)∧
sw
rlb

:
lessT

h
a
n

(25)
S

n
-1

......
S

n
rev

ok
e(?s,?b)←

S
u
bject(?s)∧

h
a
sT
im
e(?c0,?t)∧

op
:
tim

e
−
g
rea

ter
−
th
a
n

(?t,cla
sstim

e)
∧¬

h
a
sP
eop

le(R
oom

A
)

T
ab

le
7
.1:

S
om

e
R

eason
in

g
R

u
les

E
x
am

p
les

in
S

W
R

L

Chapter 8

Implementation and Case Study

In the above Chapters, the different approaches have been proposed and implemented to

solve the specific problems in the decentralised CPS development, as summarized in the

following:

• Implement the FASOP for the Behavioural Abstraction in Chapter 4.

• Extend the CoAP to support Real-time Context-Adaptation in Chapter 5.

• Implement the SRF for the Uncertainty Handling in Chapter 6.

• Implement the CSAAC for the Access Control in Chapter 7.

To satisfy all the requirements to develop the decentralised CPS from the resource-

oriented perspective, we can use Semantic Web technologies to accommodate all the design

principles for the architecture and keep the consistency between different design features.

The Semantics can coordinate the different engineering requirements. The Resource

Description Framework (RDF) can naturally provide the directed graph structure for the

resources. Any resource can easily have a Belief property using the specific ontology. The

resource ontology and semantic web technologies here are used as the specification with a

set of tags to integrate the above implementations together as a framework named RInfra

(Resource Infrastructure).

101

102

 ...

Configurations Services Protocols Devices

Applications

Apache Jena

Ontology
Library

Resource
Registry

Access
Control

Query

HTTP

Rinfra

Interface

Agent

Reputation
Engine

Apache Jena

Ontology
Library

Resource
Registry

Access
Control

Query

HTTP

Rinfra

Interface

Agent

Reputation
Engine

Apache Jena

Ontology
Library

Resource
Registry

Access
Control

Query

HTTP

Rinfra

Interface

Agent

Reputation
Engine

Softwares

Figure 8.1: The Cross-domain Applications Based on All the Resource Infrastructures

8.1 Resource Ontology in Rinfra

In [12] the existing ontologies in the IoT-domain are summarised. However, based on all

the requirements we discussed before, there is no perfect ontology to describe the resource

concept in the OROA. According to the requirements of our architecture, the ontology

should include sensors, actuators, context information including location and time, belief

property, platforms, protocols, and services. Therefore we modify the resource ontology

proposed in [147], and illustrate it in Figure 8.3. This ontology can contain all the concepts

appearing in the OROA.

In this ontology, each Resource is modelled as a composition of Components, and each

component can provide functionalities specified in the Capability. The resource can also be

a composition of different resources, all of which are the specifications and proxies for the

mapped components. Components can operate their functionalities via the invokeOperation

with parameters. The Physical Resources can have Belief s and this belief property is used

to build the reputation-based framework for data fusion and fault detection to handle the

uncertainty within the resource infrastructure layer. For all resources, they can have Tokens,

which are used to define the permission for any resource to access the other resources

within the resource registries. The resources can be exposed by Services, and the Interfaces

are incremental ones whose types depend on the Disturbance to the environment. If the

disturbance is high, the resource can choose to use the FASOP to design its API. The

disturbance can be specified in the resource.

Chapter 8. Implementation and Case Study 103

Compared to the original ontology, the most significant changes that we made are

described as the following four aspects.

• Integrate the Belief property to build the reputation-based framework.

• Use the Service model instead of the original processes model.

• Define the incremental interface with FASOP to let the system support context

adaptation.

• Use the Token to set up the authorisation mechanism for security.

Apache Jena

Ontology
Library

Resource
Registry

Access
Control

Query

HTTP

Rinfra

Interface

Agent

Reputation
Engine

Figure 8.2: The Resource Model Implementation to Build the Infrastructure Layer

104

ComponentContext

Location

Time Actuator

Physical
Resource

Virtual
Resource

Sensor

InvokeOperation

Capability

Attribute

Belief

InvokeParameter

Resource Service

AttributeType

hasCapability

hasContext

hasParameter

hasContext

hasAttribute

Token

Interface

hasInvokeOperation

State

hasBelief

hasToken

hasBelief

hasState

hasCapability

Figure 8.3: The Resource Ontology in the OROA

Chapter 8. Implementation and Case Study 105

8.2 RInfra - Infrastructure Unit

We use Apache Jena to develop the RInfra framework for the resource infrastructures with

the OROA. The basic unit is the RInfra server expressed in the Figure 8.2.

Any RInfra is a web application that can be treated as a server and a client (agent) at

the same time. As a server, it can accept the requests from other RInfra or users, and it

can also send requests to other Resource Infrastructural Services or web applications. The

main operations between different RInfras are register, query and de-register.

Since Jena already provides the Resource Description Framework (RDF), the resources

registered in the RInfra can be organised as the directed graph provided by RDF. In our

implementation, Jena is mainly used as the triple store to save all the resource data. The

resource registry is just an encapsulation to let the Resource Infrastructural Service have

one directed graph to store resources. The Ontology Library keeps all the required ontology

as the resource templates to support the resource descriptions.

The Access Control is an integrated module to implement Contexts-States-Aware Access

Control based on the resource descriptions. The Reputation Engine can be treated as a

separate service to keep all physical resources updating their Belief values. The Interface

exposes the interfaces for remote operations, thus in the other applications, users or

developers can discover the resources and use them via the HTTP on the web.

The Query uses SPARQL Query and SPARQL Update languages to query and update

the resource registry. Furthermore, the resource register can use the SPARQL update to

insert the specific resources, and the SPARQL update also includes the “DELETE” method

to de-register any resource.

8.3 Cross-domain Applications Development

Using the Service-Oriented Architecture, especially the recently popular Micro-Service Ar-

chitecture [102], we can develop high-level applications based on the resource infrastructure

layer. The Figure 8.1 indicates the overview of the development and deployment of the

different CPS applications based on many RInfra units as infrastructures with metadata.

It can provide more flexibility and interoperability for the CPS applications.

The developers, users and applications can access and request the different RInfras

via HTTP. The resources contain various metadata of all system components, allowing

the high-level applications to be configured based on these specifications, and the services

106

in the application can be dynamically composed by these resource infrastructures. The

HTTP is used to access all the resources in the resource infrastructure layer, however, to

access the components mapped by the related resources, we can use different protocols if

the components and the applications support the protocols.

For any single resource infrastructural service, its registered resources are dynamically

changing based on the high-level applications and environment. In the next Section, we

will simulate some scenes in smart transport and smart building as examples to explain

how the mechanisms in the OROA work and how they can help to develop the high-level

decentralised CPS applications.

8.4 Case Studies

The proposed software architecture and implemented framework is a highly general solution

which can be used in most of the decentralised CPS applications. To express the generality

of the OROA and RInfra, we use two cases, i.e., smart transport and smart building,

to explain how to develop decentralised CPS based on the RInfra and how the different

features in the OROA can benefit the systems in different scenes.

8.4.1 Smart Transport Scenarios

This Section refers to how the proposed software architecture and framework can be

exploited to develop the applications in the smart transport scenarios. We consider some

decentralised CPS applications developed from the evolutionary processes based on the

OROA software architecture and the RInfra framework.

One of the basic units in the smart transport is the vehicle, where we use a smart car

developed based on the Raspberry Pi to simulate. With the deployed RInfra in the smart

car, we can show how the future vehicles can work in the context of the smart transport as

part of the decentralised CPS.

The Figure 8.4 is a general scene of using OROA in the smart transport where each

vehicle is an individual CPS, and they can cooperate based on the infrastructure resources

to build the decentralised CPS applications in the smart transport. In a big picture, the

resource infrastructure layer is built from the different RInfra servers running on different

devices for different services. In the Figure 8.4, it is obvious that each vehicle has its

own RInfra server and the crossroad has its RInfra server to handle the requests from

Chapter 8. Implementation and Case Study 107

Cloud/Fog

Resource Register

Resource Query

Resource De-Register

Service Trigger

Figure 8.4: The Scenario of Using the OROA for Smart Transport

the vehicles. Moreover, the gas station also has its RInfra server to handle the related

applications. For more devices not shown in the figure, the street lamps, street cameras

and other sensors are considered and will be used in the following simulation services for

different scenes.

108

Figure 8.5: The Car Built from Raspberry Pi

Build the Resource Infrastructure Layer

The resource infrastructure layer is built based on the dynamic Register/De-Register

processes, thus the different applications can share some owned resources. In this part,

we introduce how the Register/De-Register processes work and how the different RInfra

servers can share their resources.

The smart car is shown in the Figure 8.5 with one ultrasonic sensor, one GPS and four

motors. This car model is used to simulate a real vehicle running on the roads. To bring

this car into the smart transport platform, a RInfra is deployed in the car to specify all

the available resources and expose the related API. The resource registry for this car is

illustrated in the Figure 8.6, where all the components in the car are registered. Moreover,

the ultrasonic sensor and GPS are composed into the “PerceptModule”, and the four motors

are composed into the “ActuateModule”. The two modules can provide a higher level

abstraction of the basic devices to support more complex functionalities. For example, the

“PerceptModule” can open an API function to detect the location of the car from several

different sensors without giving algorithm details. This directed graph structure can even

produce further useful and powerful mechanisms in developing decentralised CPS, which

will be explained in the following scenarios.

We assume the entire city is divided into many different blocks. For each block, a

deployed RInfra server is responsible for all the resources located in the block. When the car

Chapter 8. Implementation and Case Study 109

G1:GPS1

C1:Car1

P1:PerceptModule1

S1:Sensor1

U1:ActuateModule1

M3:Motor1

M4:Motor1M2:Motor1

M1:Motor1

Figure 8.6: The Car’s Resource Registry

arrives at a crossroad as shown in the Figure 8.4, if the car can detect the resource registry

of this block, it can choose to register itself into the resource registry. In our simulation, we

use a laptop as the server of this block to host the street resource registry, and it is also the

Wi-Fi hotspot providing the wireless connection to the car. We assume the street resource

registry is shown in the Figure 8.7 where the resources are simulated in the laptop. The

Figure 8.8 explains the registration process, if the car C1 chooses to register itself into this

street S2, the process will merge these two graphs. If the car has driven away from the

street, it can de-register from the street resource registry and all the related resources of

the car will be removed from the street resource registry. During this process, the car can

also choose to partially register its modules depending on the policies.

The Register/De-Register mechanism is very important in the RInfa framework to build

the resource infrastructure layer.

1. It allows the different RInfra servers to query and share their own resources.

2. It limits the size of the resource registries in different RInfra servers, because the

unnecessary resources can be de-registered and removed from the directed graph of

any particular RInfra.

110

L2:Lamp2

L1:Lamp1

S2:Street2

C2:Car2

G2:GPS2

P2:PerceptModule

S2:Sensor2

Figure 8.7: The Street’s Resource Registry

G1

L2

L1

S2

C2

C1

P1S1

G2

P2

Register

S2

L2

L1

S2

C2

G2

P2

S2

De-Register

U1
M2

M1

M3

M4

G1

C1

P1S1

U1

M2

M1

M3

M4

Figure 8.8: The Street Resources Change via Resource Register/De-Register from a Car

Chapter 8. Implementation and Case Study 111

In the above scene, when the car registers into the block of a crossroad, which can

be treated as part of the transport systems, it will be permitted to find some available

information or trigger some existing developed services. The permission is given based

on the attributes which are expressed as the resource description in the resource ontology.

In our implementation, the car can share its perceptions and speeds on the server side,

therefore other registered resources like other vehicles can extend their perception to drive

safer and more efficiently.

Belief Updating via the Dynamic Reputation Networks

To illustrate the concept of uncertainty handling mechanisms in the OROA, an example of

positioning the car is given in the Figure 8.9.

Car_Cellular Car_GPS

Car_Radar

Car_Position

Street_
Camera

Figure 8.9: The Temporal Semantic-based Reputation Network

Assume the car itself already has three Components: “Car Radar”, “Car Cellular” and

“Car GPS” and they can all provide the service to the “Car Position” resource with the

position data of the car. In the existing reputation network in the car, all the components

have their belief values, and they can be used for data fusion in positioning the car.

When the car is passing on the registered street, and the related street camera catches

the car, the “Car Position” resource can have a new external component with the semantic

matching. The mechanisms and algorithms in the semantic-based reputation framework

can be triggered for further data fusion and fault detect.

This feature of OROA can significantly help multi-dimensional data fusion in smart

transports and support all the decentralised CPS supported by the infrastructure resources

112

to automatically self-detect the unpredictable faults. Via semantic match, many devices in

the different systems can provide the similar functionalities to support data fusion from

different dimensions.

Smart Street Lamps Applications

Car StreetRInfra StreetLamp LightSensor

register(C1)

Token

query(Lamp)

ListofLamps

turnOn(StreetLamp,LightSensor)
checkLight()

brightness
results

Figure 8.10: The Sequence Diagram to Turn On the Street Lamps

Apart from sharing the traffic information, the RInfra framework can also help to

develop cross-domain applications in the smart transport scenes. For example, the smart

transport system can contain a smart street lamp application to save energy. Most of

the street lamps are off. However, any car can turn a lamp on by sending it a request to

trigger the turnOn service and allow it to illuminate for a period of time t. When the car

registers itself into the cross-road, it can Query the resource registry to find available road

lamps around the area managed by the RInfra deployed in this block. As shown in the

example, the car C1 can send a request, then turn on these lamps and the whole process

can be described in the Figure 8.10. The behaviour here is following the Feedback-based

Context-Adaptive Paradigm, so the car can have the entire required information. The

services here can help the streets to save more electrical energy since the street lamps are

Chapter 8. Implementation and Case Study 113

only on when they are requested. After a specific time period tµ, the street lamps will be

turned off unless the “turn on” service is used again.

One of the advantages of the OROA is that we can always develop and deploy different

services via the evolutionary processes. Consider a different required service from the

Smart Street Lamps Applications, every car, bike and pedestrian has its own sphere of

light provided by a set of smart street lamps. The sphere is determined by the number of

lamps that increase the brightness of their LED lights. The size of the sphere is based on

the vehicle’s or pedestrian’s speed and adapts to the speed at runtime. Furthermore, if the

vehicle is travelling over the speed limit, the vehicle is given an alarm. This requirement

is more complex than the former one, however, based on the existing deployed resource

infrastructures, the development of the service is not difficult.

LampA StreetCamera Vehicle LampB

changeLight

de-register

speed

detect

StreetRinfra

register

speed

Loop

speed

changeLight

speedAlarm

Figure 8.11: The Sequence Diagram for Smart Lighting Services

To complete the required service, there are four required functions: 1) detect the

presence of an object (car, bike, or pedestrian); 2) compute an object’s speed; 3) increase

and decrease the brightness of the related lights; 4) send and receive messages to and from

neighbour lamps. If we need to develop this service from scratch, it is not an easy task.

However, if all required devices are already deployed as the resource infrastructures like

in the former scene, the service can be developed rapidly based on the existing resources.

114

Figure 8.11 indicates the sequence diagram of this service.

The vehicle initially registers into the RInfra server of this street, and the street camera

can detect the vehicle at the same time. The camera can report to lamp A about the

vehicle’s speed and the vehicle itself can report its speed to the street RInfra. Based on

the data fusion in the reputation framework, lamp A can accurately read the vehicle’s

speed and decide how much brightness it provides. The decision is not only based on the

information of the vehicle, but also on all moving objects that this street can detect. At

the same time, lamp A will also cooperate with neighbouring lamps, such as lamp B, to

provide the appropriate brightness. If lamp A finds out the vehicle exceeds, the lamp will

activate the alarm.

Vehicle Driving Assistant

When many vehicles all register themselves into the street resource registry, this resource

registry can grow very large. It also contains lots of real-time traffic data which is the

crowd sourcing from all registered resources. By querying the resource registry, the car can

obtain the information of other vehicles running on this road. If all other vehicles expose

their sensors and perception data by querying surrounding vehicles, all of these can share

their readings. These extended perceptions can help vehicles evaluate the real situation

and make appropriate decisions. Furthermore, all shared real-time traffic data can be

used to manage the public transport systems and optimise traffic. With the support from

built resource infrastructures based on the OROA, we can develop different cross-domain

applications. More significantly, most of the developments and deployments can be reused.

It can reduce the difficulty in developing and deploying the decentralised CPS, and also

inspire the creativity.

Within the topic of self-driving vehicles, the RInfra framework can also help the process

of remote controlling the vehicle if it can assign its actuators’ permission to a remote user.

Assuming the StreetRInfra contains a central controller to dispatch all the registered cars

in this StreetRInfra, because the StreetRinfra can have more street information than any

single vehicle, theoretically, the StreetRInfra is a better option to optimise the traffic. The

sequence diagram 8.12 indicates the process of remotely controlling a car.

For a vehicle wanting to transfer the control permission to the central traffic controller

for remote control, the vehicle can register itself into the RInfra server of the street. The

vehicle can choose to assign its actuators’ permission to the central traffic controller. The

Chapter 8. Implementation and Case Study 115

CarActuator CarSensor StreetRInfra TrafficController

register(C1)

Token

assignPermission(TrafficController)

Contexts

drive()

assign(CarActurator1)

speed
speed TrafficInfo

Loop

Figure 8.12: The Sequence Diagram to Remote Control the Car

advantage of the central traffic control is that it has much more traffic information than any

individual vehicle. The central traffic controller not only has all the information reported

from the registered vehicle, but the entire street’s resource infrastructures such as street

cameras. The large data collected from the real-time traffic environments help the central

traffic controller to have comprehensive cognitions to make smart decisions. Furthermore,

the central traffic controller can afford better computation resources than any individual

vehicle.

In summary, based on the OROA and RInfra, many possible services and applications

are available in the context of smart transport, and the proposed solutions can greatly

lower the entry barrier for decentralised CPS in the smart transport area.

8.4.2 Smart Building Scenarios

Compared to the smart transport, the smart building is a more well-defined field, thus

there are already many solutions and case studies in [2][167][51][14].

For the existing technologies used in the smart building, REST architecture is a popular

choice, and many solutions are proposed [53][54] ever since a web service-based approach

116

is presented to integrate resource-constrained sensor and actuator nodes into an IP-based

network using REST architecture in [162]. Because the proposed OROA architecture is

based on the REST, in this Section, we focus on selected cases highlighting the advantages

of OROA compared to the REST.

Figure 8.13: The Scenario of using the OROA for Smart Building

The Figure 8.13 is a big picture of the scenarios in the smart building. We consider

the mobile phone as the client side terminal to interact with the equipment in the smart

buildings. For any person who has the related mobile app, the appropriate permission will

be given to use any available pieces of equipment in the smart building.

For most scenarios, the OROA can provide similar support as the REST architecture,

however, special features in the OROA can significantly help the smart building in different

aspects as shown below.

More Accurate System States Estimation

One of the biggest issues in managing commercial HVAC (Heating, Ventilation, and Air

Conditioning) systems in the building is the unclear errors [13]. A very common scene is

happening probably every day when you switch on a controller of a light, and the light is

not turned on successfully. In this case, you will usually try a few times, and if it is still

not working, you will report the malfunction to the building operators.

Now if the building is developed as the smart building, all the HVAC equipment can

Chapter 8. Implementation and Case Study 117

be controlled from digital messages. If the REST architecture style is to develop such

systems, all equipment will be modelled as resources providing the unified interface of

“GET”, “POST”, “PUT” and “DELETE” to operate the resources. The client can call the

provided services via HTTP or CoAP.

Based on the REST architecture, the most common method to turn on a light is to

send a “PUT” request to the light resource. If the client gets the response of “200 OK”,

the operation is assumed successful. The problem of this approach is analysed in more

details in Chapter 4. The successfully triggered controller cannot guarantee the successfully

running actuators.

Client BuildingRinfra LightA

token

turn on

LightSensor

register

success

detect

success

Figure 8.14: The Sequence Diagram to Turn On a Light in the Building

On the other hand, in the OROA, because the Feedback-based Adaptive Service

Paradigm is used, the system can provide better system states estimation. Figure 8.14

illustrates the process of turning on a light with OROA and Figure 8.15 illustrates the

process of turning on an air conditioner to a given temperature with OROA. Therefore, in

our approach, most of the faults in the actuators themselves or in the networks between

the controllers and actuators can be detected from each request to the actuators.

Therefore with the support of Feedback-based Adaptive Service Paradigm in the OROA,

more accurate system state estimations can be obtained, which can eventually benefit the

118

Client BuildingRinfra AirCondition

token

turn on

TemperatureSensor

register

success

detect

temperature

loop

Figure 8.15: The Sequence Diagram to Turn On an Air-conditioner to a Given Temperature
with OROA

developing and maintaining of the smart buildings.

Self Faults Detection

In the smart building scenarios, there are many sensors to monitor the environmental

conditions such as the temperature and humidity. Collecting the correct data from the

sensors is extremely important, because many high-level services and applications are

running based on the collected data.

In the REST architecture, the data collected from the sensors are usually assumed to

be correct. However, even if the device noises from the sensors are ignored, there are some

damage risks in the sensors running in the physical environments.

For this issue, the feature of Semantic-based Reputation Framework in OROA is very

useful by evaluating the resources’ belief. The detailed mechanism is explained in details in

Chapter 6 and here we use a sample to show how this mechanism can be used in the smart

building.

The Figure 8.16 indicates part of the reputation framework in the smart building.

Assume the room has three temperature sensors to detect the correct temperature, because

these three sensors are all cheap yet inaccurate and unreliable, the output of the room

Chapter 8. Implementation and Case Study 119

Room_
Temperature

Sensor1

Room_Temperature

Room_
Temperature

Sensor2

Room_
Temperature

Sensor3

Robot_
Temperature

Sensor

Figure 8.16: The Temporal Reputation Network When the Robot is Cleaning the Room

temperature needs data fusion from the different sensors. At the same time, a cleaning

robot is responsible for cleaning the building, and it has a more accurate, reliable and

expensive temperature sensor.

Every day, when the robot enters the room to clean, it will join the reputation network

in there and the temporal network is expressed in Figure 8.16. The robot reports the data

from its temperature sensor to the room temperature resource, and the room temperature

resource will update the robot’s temperature sensor’s belief value as shown in Figure 8.17.

From the above example, we can conclude the following: the proposed OROA approach

helps to build a more reliable decentralised CPS from cheaper devices thanks to the proposed

dynamic semantic-based reputation framework. With the support from this framework,

the cheaper devices can produce better output via data fusion. In addition, we can use

more expensive devices to improve the cheaper devices’ performance. Furthermore, in our

dynamic semantic-based reputation framework, if any device in the reputation networks is

broken, the belief value will be dropped down quickly, therefore the fault can be detected

rapidly, and the faults can be dealt with accordingly.

120

Robot RoomRInfra

token

report data

RoomTemperature

register

belief updating

loop

de-register

Figure 8.17: How to Construct the Temporal Reputation Framework in the Smart Building

Chapter 9

Conclusion

9.1 Summary

This thesis proposes the Open Resource Oriented Architecture that aims to overcome

issues arising when using the resource-oriented architecture in the decentralised CPS. In the

decentralised CPS, the networking plays an important role, therefore we have to consider the

effects of the networking during the design and development, which makes the traditional

controller-based perspective more difficult. The proposed architecture in this thesis is a

network-centric approach extended from the REST architecture style.

REST architectural style has many advantages such as low entry barrier, extensibility,

anarchic scalability and independent deployment. However, the REST architectural style

has some inherent limitations for designing and developing CPS applications. In Chapter 3,

the issues of applying REST architectural style into the CPS are discussed and the overview

of the Open Resource Oriented Architecture is expressed. The four important additional

required functionalities in developing the decentralized CPS when using Resource Oriented

Architecture include Structural Abstract, Behavioural Abstract, Uncertainty Handling and

Access Control.

For each of these required features, we designed the approach respectively. These

approaches are eventually integrated together with the proposed Open Resource Oriented

Architecture, which is the extended REST with the additional constraints to provide compre-

hensive support for designing and developing the decentralised CPS. Structural Abstract is

briefly introduced in Chapter 3. Behavioural Abstract contains two solutions with the same

model of Feedback-based Context-Adaptation. One is the paradigm proposed in Chapter 4

121

122

with weaker constraints. Another is the proposed extended protocol explained in Chapter 5

with stronger constraints. In Chapter 6, the proposed approach for uncertainty handling is a

self-adaptive reputation framework. The proposed reputation framework can be constructed

by Semantic Match which uses resource URIs to map different system components. Chapter

7 explains the access control mechanism for complex usage policies in the decentralised

CPS. To accommodate the different requirements and different approaches, Semantic Web

technologies are used to implement the proposed architecture. The implementation of the

OROA is the RInfra framework and a resource ontology is proposed as a resource template

to describe the registered resources.

The RInfra framework provides the decentralised resource infrastructures to develop,

configure and deploy the high-level decentralised CPS applications. A smart car based on

the Raspberry Pi is built to simulate the smart transport scenes and some scenes in the

smart building are discussed and designed based on the OROA and RInfra. The different

case studies illustrate how to use the OROA and RInfra in the decentralised cross-domain

CPS applications.

Compared to the REST architecture style, the proposed Open Resource Oriented

Architecture added more features in abstract ability, uncertainty handling and usage

policies to fit the decentralised CPS. Meanwhile, compared to the other massive solutions

for the CPS, the proposed architecture is more flexible to support heterogeneous, scalable

and interoperable systems. Furthermore, most technologies used in the Open Resource

Oriented Architecture and RInfra are common, and have been widely used, therefore it is

easier to promote our comprehensive solution.

9.2 Future Work

While we provide the RInfra framework as comprehensive support for developing and

designing the decentralised CPS, it is still at the early stage. Therefore, further works can

be conducted in the near future.

Firstly, the extended CoAP only contains the basic context adaptation part. To support

the real-time feature, we need the QoS support from the communication layer.

In the reputation framework, the current semantics is expressed from the resource URI,

which consists of weak expression. Since semantic web technologies are already used in

the RInfra, it is possible to develop the reasoning engine to let the reputation framework

become self-organizable.

Chapter 9. Conclusion 123

The current RInfra is still a simple prototype without fully exploring the functionalities

of Semantic Web technologies. Currently, Jena is used as a graph database, however, the

Semantic Web technologies are considered to be used to support inferring and reasoning.

Finally, the current prototype is simple and only implemented in the small car based on

Raspberry Pi and other simple web services to simulate some scenes. In the future, the

RInfra should be deployed in some real-world applications.

Bibliography

[1] Ramadan Abdunabi, Mustafa Al-Lail, Indrakshi Ray, and Robert B France. Specifi-

cation, validation, and enforcement of a generalized spatio-temporal role-based access

control model. IEEE Systems Journal, 7(3):501–515, 2013.

[2] Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael Wei, and

Thomas Weng. Occupancy-driven energy management for smart building automation.

In Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-

efficiency in building, pages 1–6. ACM, 2010.

[3] Gul A Agha. Actors: A model of concurrent computation in distributed systems.

Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL

INTELLIGENCE LAB, 1985.

[4] Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A foundation for

actor computation. Journal of Functional Programming, 7(1):1–72, 1997.

[5] Rima Al Ali, Tomas Bures, Ilias Gerostathopoulos, Jaroslav Keznikl, and Frantisek

Plasil. Architecture adaptation based on belief inaccuracy estimation. In Proceedings

of the 2014 IEEE/IFIP Conference on Software Architecture, WICSA ’14, pages

87–90, Washington, DC, USA, 2014. IEEE Computer Society.

[6] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer

science, 126(2):183–235, 1994.

[7] Gregory R Andrews. Paradigms for process interaction in distributed programs. ACM

Computing Surveys (CSUR), 23(1):49–90, 1991.

[8] Karl Johan Åström and Tore Hägglund. Advanced PID control. ISA-The Instrumen-

tation, Systems and Automation Society, 2006.

124

Bibliography 125

[9] Jos C. M. Baeten and Jan A. Bergstra. Real time process algebra. Formal Aspects of

Computing, 3(2):142–188, 1991.

[10] Maryam Bagheri, Ilge Akkaya, Ehsan Khamespanah, Narges Khakpour, Marjan

Sirjani, Ali Movaghar, and Edward A Lee. Coordinated actors for reliable self-

adaptive systems. In International Workshop on Formal Aspects of Component

Software, pages 241–259. Springer, 2016.

[11] Guangdong Bai, Lin Yan, Liang Gu, Yao Guo, and Xiangqun Chen. Context-aware

usage control for web of things. Security and Communication Networks, 7(12):2696–

2712, 2014.

[12] Garvita Bajaj, Rachit Agarwal, Pushpendra Singh, Nikolaos Georgantas, and Va-

lerie Issarny. A study of existing ontologies in the iot-domain. arXiv preprint

arXiv:1707.00112, 2017.

[13] Bharathan Balaji, Nadir Weibel, and Yuvraj Agarwal. Managing commercial hvac

systems: What do building operators really need? arXiv preprint arXiv:1612.06025,

2016.

[14] Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, and Yuvraj Agarwal.

Sentinel: occupancy based hvac actuation using existing wifi infrastructure within

commercial buildings. In Proceedings of the 11th ACM Conference on Embedded

Networked Sensor Systems, page 17. ACM, 2013.

[15] Linden J Ball, Balder Onarheim, and Bo T Christensen. Design requirements,

epistemic uncertainty and solution development strategies in software design. Design

Studies, 31(6):567–589, 2010.

[16] Fenye Bao and Ing-Ray Chen. Dynamic trust management for internet of things

applications. In Proceedings of the 2012 international workshop on Self-aware internet

of things, pages 1–6. ACM, 2012.

[17] Fenye Bao, Ray Chen, and Jia Guo. Scalable, adaptive and survivable trust man-

agement for community of interest based internet of things systems. In Autonomous

Decentralized Systems (ISADS), 2013 IEEE Eleventh International Symposium on,

pages 1–7. IEEE, 2013.

126

[18] José Barbosa, Paulo Leitão, Emmanuel Adam, and Damien Trentesaux. Dynamic

self-organization in holonic multi-agent manufacturing systems: The adacor evolution.

Computers in industry, 66:99–111, 2015.

[19] Jan A Bergstra and Jan Willem Klop. Process algebra for synchronous communication.

Information and control, 60(1-3):109–137, 1984.

[20] Carsten Bormann, Angelo P Castellani, and Zach Shelby. Coap: An application

protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2):62–67,

2012.

[21] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger

Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering

self-adaptive systems through feedback loops. In Software engineering for self-adaptive

systems, pages 48–70. Springer, 2009.

[22] Antonio Bucchiarone, Martina De Sanctis, Annapaola Marconi, Marco Pistore, and

Paolo Traverso. Design for adaptation of distributed service-based systems. In

International Conference on Service-Oriented Computing, pages 383–393. Springer,

2015.

[23] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit,

and Frantisek Plasil. Deeco: an ensemble-based component system. In Proceedings

of the 16th International ACM Sigsoft symposium on Component-based software

engineering, pages 81–90. ACM, 2013.

[24] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Strengthening architectures of

smart cps by modeling them as runtime product-lines. In Proceedings of the 17th

international ACM Sigsoft symposium on Component-based software engineering,

pages 91–96. ACM, 2014.

[25] Stefan Bussmann. An agent-oriented architecture for holonic manufacturing control.

In Proceedings of first international workshop on IMS, Lausanne, Switzerland, pages

1–12, 1998.

[26] Javier Camara, Carlos Canal, and Gwen Salaün. Behavioural self-adaptation of

services in ubiquitous computing environments. SEAMS, 9:28–37, 2009.

Bibliography 127

[27] Javier Cámara, Antónia Lopes, David Garlan, and Bradley Schmerl. Adaptation

impact and environment models for architecture-based self-adaptive systems. Science

of Computer Programming, 127:50–75, 2016.

[28] Mauro Caporuscio, Pierre-Guillaume Raverdy, and Valerie Issarny. ubisoap: A service-

oriented middleware for ubiquitous networking. IEEE Transactions on Services

Computing, 5(1):86–98, 2012.

[29] Rommel Carvalho, Kathryn Laskey, Paulo Costa, Marcelo Ladeira, Laécio Santos,

and Shou Matsumoto. Unbbayes: modeling uncertainty for plausible reasoning in the

semantic web. In Semantic Web. InTech, 2010.

[30] Rommel N Carvalho, Kathryn B Laskey, and Paulo CG Da Costa. Uncertainty

modeling process for semantic technology. PeerJ Computer Science, 2:e77, 2016.

[31] Francesco Casella, Filippo Donida, and Marco Lovera. Beyond simulation: Computer

aided control system design using equation-based object oriented modelling for the

next decade. In Proceedings of the 2nd International Workshop on Equation-Based

Object-Oriented Languages and Tools, number 029, pages 35–45. Linköping University

Electronic Press, 2008.

[32] Harry Chen, Tim Finin, Anupam Joshi, Lalana Kagal, Filip Perich, and Dipanjan

Chakraborty. Intelligent agents meet the semantic web in smart spaces. IEEE Internet

Computing, 8(6):69–79, 2004.

[33] Liang Chen and Jason Crampton. Risk-aware role-based access control. In Inter-

national Workshop on Security and Trust Management, pages 140–156. Springer,

2011.

[34] Andrei Ciortea, Olivier Boissier, Antoine Zimmermann, and Adina Magda Florea.

Give agents some rest: A resource-oriented abstraction layer for internet-scale agent

environments. In Proceedings of the 16th Conference on Autonomous Agents and

MultiAgent Systems, pages 1502–1504. International Foundation for Autonomous

Agents and Multiagent Systems, 2017.

[35] Lorenzo Cirio, Isabel F Cruz, and Roberto Tamassia. A role and attribute based

access control system using semantic web technologies. In Proceedings of the 2007

128

OTM Confederated international conference on On the move to meaningful internet

systems-Volume Part II, pages 1256–1266. Springer-Verlag, 2007.

[36] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. R. Kumar. The sim-

plex reference model: Limiting fault-propagation due to unreliable components in

cyber-physical system architectures. In 28th IEEE International Real-Time Systems

Symposium (RTSS 2007), pages 400–412, Dec 2007.

[37] Javier Cubo, Carlos Canal, and Ernesto Pimentel. Model-based dependable composi-

tion of self-adaptive systems. Informatica, 35:51–62, 2011.

[38] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson,

Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel,

et al. Software engineering for self-adaptive systems: A second research roadmap. In

Software Engineering for Self-Adaptive Systems II, pages 1–32. Springer, 2013.

[39] Hongmei Deng, Yi Yang, Guang Jin, Roger Xu, and Weisong Shi. Building a

trust-aware dynamic routing solution for wireless sensor networks. In GLOBECOM

Workshops (GC Wkshps), 2010 IEEE, pages 153–157. IEEE, 2010.

[40] Patricia Derler, Thomas H Feng, Edward A Lee, Slobodan Matic, Hiren D Patel,

Yang Zheo, and Jia Zou. Ptides: A programming model for distributed real-time

embedded systems. Technical report, CALIFORNIA UNIV BERKELEY DEPT OF

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2008.

[41] Patricia Derler, Edward A Lee, and Alberto Sangiovanni Vincentelli. Modeling

cyber–physical systems. Proceedings of the IEEE, 100(1):13–28, 2012.

[42] Beniamino Di Martino, Antonio Esposito, Salvatore Augusto Maisto, and Stefania

Nacchia. A semantic iot framework to support restful devices’ api interoperability. In

Networking, Sensing and Control (ICNSC), 2017 IEEE 14th International Conference

on, pages 78–83. IEEE, 2017.

[43] Ngoc-Thanh Dinh and Younghan Kim. Restful architecture of wireless sensor network

for building management system. KSII Transactions on Internet and Information

Systems (TIIS), 6(1):46–63, 2012.

[44] WM Dong and FS Wong. Fuzzy weighted averages and implementation of the

extension principle. Fuzzy sets and systems, 21(2):183–199, 1987.

Bibliography 129

[45] Yuji Dong and Kaiyu Wan. Reputation-based framework with semantic match for

the internet of things. The International Conference on Recent Advancements in

Computing, IoT and Computer Engineering Technology, 2017.

[46] Yuji Dong and Kaiyu Wan. Semantic-based reputation framework for the internet of

things. Journal of Universal Computer Science, 2018. accepted.

[47] Yuji Dong, Kaiyu Wan, Xin Huang, and Yong Yue. Contexts-states-aware access

control for internet of things. In Computer Supported Cooperative Work in Design

(CSCWD), 2018 IEEE 22st International Conference on. IEEE, 2018.

[48] Yuji Dong, Kaiyu Wan, and Yong Yue. A dynamic resource supply model towards

cyber physical system (cps). In Computer, Consumer and Control (IS3C), 2014

International Symposium on, pages 183–186. IEEE, 2014.

[49] Yuji Dong, Kaiyu Wan, and Yong Yue. Unified dynamic resource supply model to

support cyber physical system. In Proceedings of the International MultiConference

of Engineers and Computer Scientists, volume 2, 2014.

[50] Yuji Dong, Kaiyu Wan, and Yong Yue. A feedback-based adaptive service-oriented

paradigm for the internet of things. In International Conference on Service-Oriented

Computing. Springer, 2017.

[51] Varick L Erickson, Miguel Á Carreira-Perpiñán, and Alberto E Cerpa. Observe:

Occupancy-based system for efficient reduction of hvac energy. In Information

Processing in Sensor Networks (IPSN), 2011 10th International Conference on, pages

258–269. IEEE, 2011.

[52] R. Esteller-Curto, E. Cervera, A. P. del Pobil, and R. Marin. Proposal of a rest-based

architecture server to control a robot. In Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, pages 708–710,

July 2012.

[53] Orestis Evangelatos, Kasun Samarasinghe, and Jose Rolim. Evaluating design ap-

proaches for smart building systems. In Mobile Adhoc and Sensor Systems (MASS),

2012 IEEE 9th International Conference on, pages 1–7. IEEE, 2012.

130

[54] Orestis Evangelatos, Kasun Samarasinghe, and Jose Rolim. Syndesi: A framework

for creating personalized smart environments using wireless sensor networks. In Dis-

tributed Computing in Sensor Systems (DCOSS), 2013 IEEE International Conference

on, pages 325–330. IEEE, 2013.

[55] Renjian Feng, Xiaofeng Xu, Xiang Zhou, and Jiangwen Wan. A trust evaluation

algorithm for wireless sensor networks based on node behaviors and ds evidence

theory. Sensors, 11(2):1345–1360, 2011.

[56] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy

Chandramouli. Proposed nist standard for role-based access control. ACM Transac-

tions on Information and System Security (TISSEC), 4(3):224–274, 2001.

[57] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach,

and Tim Berners-Lee. Hypertext transfer protocol–http/1.1. Technical report, 1999.

[58] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.

[59] Francois Fouquet, Brice Morin, Franck Fleurey, Olivier Barais, Noel Plouzeau, and

Jean-Marc Jezequel. A dynamic component model for cyber physical systems. In

Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software

Engineering, pages 135–144. ACM, 2012.

[60] Saurabh Ganeriwal, Laura K Balzano, and Mani B Srivastava. Reputation-based

framework for high integrity sensor networks. ACM Transactions on Sensor Networks

(TOSN), 4(3):15, 2008.

[61] David Garlan, Robert T Monroe, and David Wile. Acme: Architectural description of

component-based systems. Foundations of component-based systems, 68:47–68, 2000.

[62] Khusvinder Gill, Shuang-Hua Yang, Fang Yao, and Xin Lu. A zigbee-based home

automation system. IEEE Transactions on consumer Electronics, 55(2), 2009.

[63] William I Grosky, Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. Senseweb:

An infrastructure for shared sensing. IEEE multimedia, 14(4), 2007.

Bibliography 131

[64] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.

Internet of things (iot): A vision, architectural elements, and future directions. Future

generation computer systems, 29(7):1645–1660, 2013.

[65] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture for the web of

things. In Internet of Things (IOT), 2010, pages 1–8, Nov 2010.

[66] Dominique Guinard, Iulia Ion, and Simon Mayer. In search of an internet of things

service architecture: Rest or ws-*? a developers perspective. In International

Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services,

pages 326–337. Springer, 2011.

[67] Dominique Guinard and Vlad Trifa. Towards the web of things: Web mashups for

embedded devices. In Workshop on Mashups, Enterprise Mashups and Lightweight

Composition on the Web (MEM 2009), in proceedings of WWW (International World

Wide Web Conferences), Madrid, Spain, volume 15, 2009.

[68] Sandeep KS Gupta, Tridib Mukherjee, and Krishna Venkatasubramanian. Criticality

aware access control model for pervasive applications. In Pervasive Computing and

Communications, 2006. PerCom 2006. Fourth Annual IEEE International Conference

on, pages 5–pp. IEEE, 2006.

[69] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. A capability-based

security approach to manage access control in the internet of things. Mathematical

and Computer Modelling, 58(5):1189–1205, 2013.

[70] Amelie Gyrard, Soumya Kanti Datta, Christian Bonnet, and Karima Boudaoud. Cross-

domain internet of things application development: M3 framework and evaluation. In

Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference

on, pages 9–16. IEEE, 2015.

[71] Marc Hadley and Paul Sandoz. Jax-rs: Java api for restful web services. Java

Specification Request (JSR), 311, 2009.

[72] David L Hall and James Llinas. An introduction to multisensor data fusion. Proceed-

ings of the IEEE, 85(1):6–23, 1997.

[73] Klaus Hartke. Observing resources in the constrained application protocol (coap).

2015.

132

[74] Wu He, Gongjun Yan, and Li Da Xu. Developing vehicular data cloud services in

the iot environment. IEEE Transactions on Industrial Informatics, 10(2):1587–1595,

2014.

[75] Zhengqiu He, Lifa Wu, Huabo Li, Haiguang Lai, and Zheng Hong. Semantics-based

access control approach for web service. Journal of Computers, 6(6):1152–1161, 2011.

[76] Thomas A Henzinger. The theory of hybrid automata. In Verification of Digital and

Hybrid Systems, pages 265–292. Springer, 2000.

[77] Jose L Hernandez-Ramos, Antonio J Jara, Leandro Marın, and Antonio F Skarmeta.

Distributed capability-based access control for the internet of things. Journal of

Internet Services and Information Security (JISIS), 3(3/4):1–16, 2013.

[78] Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis

Karnouskos, and David Boyle. From Machine-to-machine to the Internet of Things:

Introduction to a New Age of Intelligence. Academic Press, 2014.

[79] Biqing Huang, Chenghai Li, Chao Yin, and Xinpei Zhao. Cloud manufacturing

service platform for small-and medium-sized enterprises. The International Journal

of Advanced Manufacturing Technology, 65(9-12):1261–1272, 2013.

[80] Jian Huang, F Bastani, I-L Yen, Jing Dong, Wenke Zhang, F-J Wang, and H-J

Hsu. Extending service model to build an effective service composition framework for

cyber-physical systems. In Service-Oriented Computing and Applications (SOCA),

2009 IEEE International Conference on, pages 1–8. IEEE, 2009.

[81] Jian Huang, Farokh Bastani, I-Ling Yen, and Jun-Jang Jeng. Toward a smart cyber-

physical space: A context-sensitive resource-explicit service model. In Computer

Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE

International, volume 2, pages 122–127. IEEE, 2009.

[82] Xin Huang, Rong Fu, Bangdao Chen, Tingting Zhang, and AW Roscoe. User

interactive internet of things privacy preserved access control. In Internet Technology

And Secured Transactions, 2012 International Conference for, pages 597–602. IEEE,

2012.

Bibliography 133

[83] Junbeom Hur and Dong Kun Noh. Attribute-based access control with efficient

revocation in data outsourcing systems. IEEE Transactions on Parallel and Distributed

Systems, 22(7):1214–1221, 2011.

[84] LA Hurtado, PH Nguyen, WL Kling, and W Zeiler. Building energy management

systemsoptimization of comfort and energy use. In Power Engineering Conference

(UPEC), 2013 48th International Universities’, pages 1–6. IEEE, 2013.

[85] Marija D Ilic, Le Xie, Usman A Khan, and José MF Moura. Modeling of future

cyber–physical energy systems for distributed sensing and control. IEEE Transactions

on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(4):825–838,

2010.

[86] Upul Jayasinghe, Hyun-Woo Lee, and Gyu Myoung Lee. A computational model to

evaluate honesty in social internet of things. In Proceedings of the Symposium on

Applied Computing, pages 1830–1835, 2017.

[87] Magne Jorgensen. Evidence-based guidelines for assessment of software development

cost uncertainty. IEEE Transactions on Software Engineering, 31(11):942–954, 2005.

[88] A. D. Joseph, A. R. Beresford, J. Bacon, D. N. Cottingham, J. J. Davies, B. D. Jones,

Haitao Guo, Wei Guan, Yong Lin, Houbing Song, L. Iftode, S. Fuchs, B. Lamprecht,

K. Kyamakya, J. G. Fernandez, J. C. Yelmo Garcia, Y. S. Martin Garcia, J. de Gra-

cia Santos, M. Nimesh, Gang Pan, Zhaohui Wu, Qing Wu, Zhenyu Shan, Jie Sun,

Jian Lu, Guoqing Yang, M. K. Khan, and Jiashu Zhang. Intelligent transportation

systems. IEEE Pervasive Computing, 5(4):63–67, Oct 2006.

[89] James BD Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized

temporal role-based access control model. IEEE Transactions on Knowledge and

Data Engineering, 17(1):4–23, 2005.

[90] Sun Kaiwen and Yin Lihua. Attribute-role-based hybrid access control in the internet

of things. In Asia-Pacific Web Conference, pages 333–343. Springer, 2014.

[91] Woochul Kang, Krasimira Kapitanova, and Sang Hyuk Son. Rdds: A real-time data

distribution service for cyber-physical systems. IEEE Transactions on Industrial

Informatics, 8(2):393–405, 2012.

134

[92] Woochul Kang and Sang H Son. The design of an open data service architecture for

cyber-physical systems. ACM SIGBED Review, 5(1):3, 2008.

[93] ASM Kayes, Jun Han, and Alan Colman. Ontcaac: an ontology-based approach to

context-aware access control for software services. The Computer Journal, 58(11):3000–

3034, 2015.

[94] Bahador Khaleghi, Alaa Khamis, Fakhreddine O Karray, and Saiedeh N Razavi.

Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1):28–

44, 2013.

[95] Jussi Kiljander, Alfredo Delia, Francesco Morandi, Pasi Hyttinen, Janne Takalo-

Mattila, Arto Ylisaukko-Oja, Juha-Pekka Soininen, and Tullio Salmon Cinotti. Se-

mantic interoperability architecture for pervasive computing and internet of things.

IEEE access, 2:856–873, 2014.

[96] Heejae Kim, Jiyong Han, Seong-Hwan Kim, Jisoo Choi, Dongsik Yoon, Minsu Jeon,

Eunjoo Yang, Nhat Pham, Sungpil Woo, Jeongkyu Park, et al. Isv2c: an integrated

road traffic-network-cloud simulator for v2c connected car services. In Services

Computing (SCC), 2017 IEEE International Conference on, pages 434–441. IEEE,

2017.

[97] Sehoon Kim, Jin-Young Hong, Seil Kim, Sung-Hoon Kim, Jun-Hyung Kim, and

Jake Chun. Restful design and implementation of smart appliances for smart home.

In Ubiquitous Intelligence and Computing, 2014 IEEE 11th Intl Conf on and IEEE

11th Intl Conf on and Autonomic and Trusted Computing, and IEEE 14th Intl

Conf on Scalable Computing and Communications and Its Associated Workshops

(UTC-ATC-ScalCom), pages 717–722. IEEE, 2014.

[98] Laura Klein, Jun-young Kwak, Geoffrey Kavulya, Farrokh Jazizadeh, Burcin Becerik-

Gerber, Pradeep Varakantham, and Milind Tambe. Coordinating occupant behavior

for building energy and comfort management using multi-agent systems. Automation

in construction, 22:525–536, 2012.

[99] Uri Klein and Kedar S Namjoshi. Formalization and automated verification of restful

behavior. In International Conference on Computer Aided Verification, pages 541–556.

Springer, 2011.

Bibliography 135

[100] Edwin M Knox and Raymond T Ng. Algorithms for mining distancebased outliers in

large datasets. In Proceedings of the International Conference on Very Large Data

Bases, pages 392–403. Citeseer, 1998.

[101] Zvi Kohavi and Niraj K Jha. Switching and finite automata theory. Cambridge

University Press, 2009.

[102] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. Designing a smart city internet

of things platform with microservice architecture. In Future Internet of Things and

Cloud (FiCloud), 2015 3rd International Conference on, pages 25–30. IEEE, 2015.

[103] Koojana Kuladinithi, Olaf Bergmann, Thomas Pötsch, Markus Becker, and Carmelita

Görg. Implementation of coap and its application in transport logistics. Proc. IP+

SN, Chicago, IL, USA, 2011.

[104] Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access control in

pervasive computing systems. In Proceedings of the 13th ACM symposium on Access

control models and technologies, pages 113–122. ACM, 2008.

[105] H. J. La and S. D. Kim. A service-based approach to designing cyber physical systems.

In 2010 IEEE/ACIS 9th International Conference on Computer and Information

Science, pages 895–900, Aug 2010.

[106] Amos Lapidoth and Prakash Narayan. Reliable communication under channel uncer-

tainty. IEEE Transactions on Information Theory, 44(6):2148–2177, 1998.

[107] Ora Lassila and Ralph R Swick. Resource description framework (rdf) model and

syntax specification. 1999.

[108] Zsolt Lattmann, Adam Nagel, Tihamer Levendovszky, Ted Bapty, Sandeep Neema,

and Gabor Karsai. Component-based modeling of dynamic systems using hetero-

geneous composition. In Proceedings of the 6th International Workshop on Multi-

Paradigm Modeling, pages 73–78. ACM, 2012.

[109] Danh Le-Phuoc and Manfred Hauswirth. Linked open data in sensor data mashups. In

Proceedings of the 2nd International Conference on Semantic Sensor Networks-Volume

522, pages 1–16. CEUR-WS. org, 2009.

136

[110] Danh Le-Phuoc, Hoan Quoc Nguyen-Mau, Josiane Xavier Parreira, and Manfred

Hauswirth. A middleware framework for scalable management of linked streams. Web

Semantics: Science, Services and Agents on the World Wide Web, 16:42–51, 2012.

[111] Chuen-Chien Lee. Fuzzy logic in control systems: fuzzy logic controller. i. IEEE

Transactions on systems, man, and cybernetics, 20(2):404–418, 1990.

[112] Edward A Lee. Cyber physical systems: Design challenges. In Object oriented

real-time distributed computing (isorc), 2008 11th ieee international symposium on,

pages 363–369. IEEE, 2008.

[113] Edward A Lee. Computing needs time. Communications of the ACM, 52(5):70–79,

2009.

[114] Edward A Lee. Heterogeneous actor modeling. In Proceedings of the ninth ACM

international conference on Embedded software, pages 3–12. ACM, 2011.

[115] Jeong Kyu Lee, Young Sik Jeong, and Jong Hyuk Park. s-itsf: a service based

intelligent transportation system framework for smart accident management. Human-

centric Computing and Information Sciences, 5(1):34, 2015.

[116] Wilfried Lepuschitz, Alois Zoitl, Mathieu Vallée, and Munir Merdan. Toward self-

reconfiguration of manufacturing systems using automation agents. IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1):52–69,

2011.

[117] Qiang Li, Weijun Qin, Bing Han, Ruicong Wang, and Limin Sun. A case study on

rest-style architecture for cyber-physical systems: Restful smart gateway. Comput.

Sci. Inf. Syst., 8:1317–1329, 2011.

[118] Jing Lin, Sahra Sedigh, and Ann Miller. Modeling cyber-physical systems with

semantic agents. In Computer Software and Applications Conference Workshops

(COMPSACW), 2010 IEEE 34th Annual, pages 13–18. IEEE, 2010.

[119] Kwei-Jay Lin and Mark Panahi. A real-time service-oriented framework to support

sustainable cyber-physical systems. In Industrial Informatics (INDIN), 2010 8th

IEEE International Conference on, pages 15–21. IEEE, 2010.

Bibliography 137

[120] Jianqi Liu, Jiafu Wan, Bi Zeng, Qinruo Wang, Houbing Song, and Meikang Qiu. A

scalable and quick-response software defined vehicular network assisted by mobile

edge computing. IEEE Communications Magazine, 55(7):94–100, 2017.

[121] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tag: A

tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Systems

Review, 36(SI):131–146, 2002.

[122] Luca Mainetti, Vincenzo Mighali, and Luigi Patrono. A software architecture enabling

the web of things. IEEE Internet of Things Journal, 2(6):445–454, 2015.

[123] Luca Mainetti, Vincenzo Mighali, Luigi Patrono, Piercosimo Rametta, and Silvio Lucio

Oliva. A novel architecture enabling the visual implementation of web of things

applications. In Software, Telecommunications and Computer Networks (SoftCOM),

2013 21st International Conference on, pages 1–7. IEEE, 2013.

[124] Ibrahim Mashal, Osama Alsaryrah, Tein-Yaw Chung, Cheng-Zen Yang, Wen-Hsing

Kuo, and Dharma P Agrawal. Choices for interaction with things on internet and

underlying issues. Ad Hoc Networks, 28:68–90, 2015.

[125] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource identifier

(uri): Generic syntax. 2005.

[126] Arm Mbed. java-coap. https://github.com/ARMmbed/java-coap, 2018.

[127] Kirill Mechitov and Gul Agha. Building portable middleware services for heterogeneous

cyber-physical systems. In Proceedings of the Third International Workshop on

Software Engineering for Sensor Network Applications, pages 31–36. IEEE Press,

2012.

[128] Alessio Meloni and Luigi Atzori. A cloud-based and restful internet of things platform

to foster smart grid technologies integration and re-usability. In Communications

Workshops (ICC), 2016 IEEE International Conference on, pages 387–392. IEEE,

2016.

[129] Julien Mineraud, Oleksiy Mazhelis, Xiang Su, and Sasu Tarkoma. A gap analysis of

internet-of-things platforms. Computer Communications, 89:5–16, 2016.

https://github.com/ARMmbed/java-coap

138

[130] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.

Internet of things: Vision, applications and research challenges. Ad Hoc Networks,

10(7):1497–1516, 2012.

[131] Tim Moses et al. Extensible access control markup language (xacml) version 2.0.

Oasis Standard, 200502, 2005.

[132] Subhas Chandra Mukhopadhyay and NK Suryadevara. Internet of things: Challenges

and opportunities. In Internet of Things, pages 1–17. Springer, 2014.

[133] Andreas Müller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and

André Platzer. A component-based approach to hybrid systems safety verification.

In International Conference on Integrated Formal Methods, pages 441–456. Springer,

2016.

[134] Naoya Namatame, Yong Ding, Till Riedel, Hideyuki Tokuda, Takashi Miyaki, and

Michael Beigl. A distributed resource management architecture for interconnecting

web-of-things using ubox. In Proceedings of the Second International Workshop on

Web of Things, page 4. ACM, 2011.

[135] National institute of standards and technology. Foundations for Innovation in Cyber-

Physical Systems, Rosemont, Illinois, January 2013. energetics incorporated Columbia,

Maryland.

[136] Michele Nitti, Roberto Girau, and Luigi Atzori. Trustworthiness management in

the social internet of things. IEEE Transactions on knowledge and data engineering,

26(5):1253–1266, 2014.

[137] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus and cooperation

in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[138] William R Otte, Abhishek Dubey, Subhav Pradhan, Prithviraj Patil, Aniruddha

Gokhale, Gabor Karsai, and Johnny Willemsen. F6com: A component model

for resource-constrained and dynamic space-based computing environments. In

Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),

2013 IEEE 16th International Symposium on, pages 1–8. IEEE, 2013.

Bibliography 139

[139] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman.

Access control in the internet of things: Big challenges and new opportunities.

Computer Networks, 112:237–262, 2017.

[140] Federica Paganelli, Stefano Turchi, and Dino Giuli. A web of things framework for

restful applications and its experimentation in a smart city. IEEE Systems Journal,

10(4):1412–1423, 2016.

[141] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B Gibbons, and Christos Faloutsos.

Loci: Fast outlier detection using the local correlation integral. In Data Engineering,

2003. Proceedings. 19th International Conference on, pages 315–326. IEEE, 2003.

[142] Jaehong Park and Ravi Sandhu. Towards usage control models: beyond traditional

access control. In Proceedings of the seventh ACM symposium on Access control

models and technologies, pages 57–64. ACM, 2002.

[143] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs.

big’web services: making the right architectural decision. In Proceedings of the 17th

international conference on World Wide Web, pages 805–814. ACM, 2008.

[144] Huanchun Peng, Jun Gu, and Xiaojun Ye. Dynamic purpose-based access control. In

Parallel and Distributed Processing with Applications, 2008. ISPA’08. International

Symposium on, pages 695–700. IEEE, 2008.

[145] James L Peterson. Petri net theory and the modeling of systems. 1981.

[146] Dennis Pfisterer, Kay Romer, Daniel Bimschas, Oliver Kleine, Richard Mietz, Cuong

Truong, Henning Hasemann, Alexander Kröller, Max Pagel, Manfred Hauswirth,

et al. Spitfire: toward a semantic web of things. IEEE Communications Magazine,

49(11):40–48, 2011.

[147] Henrique Brittes Pötter and Alexandre Sztajnberg. Adapting heterogeneous devices

into an iot context-aware infrastructure. In Software Engineering for Adaptive and

Self-Managing Systems (SEAMS), 2016 IEEE/ACM 11th International Symposium

on, pages 64–74. IEEE, 2016.

[148] Christian Prehofer. Models at rest or modelling restful interfaces for the internet of

things. In Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on, pages

251–255. IEEE, 2015.

140

[149] Torsten Priebe, Wolfgang Dobmeier, Christian Schläger, and Nora Kamprath. Support-

ing attribute-based access control in authentication and authorization infrastructures

with ontologies. Journal of software: JSW, 2(1):27–38, 2007.

[150] Weijun Qin, Qiang Li, Limin Sun, Hongsong Zhu, and Yan Liu. Restthing: A restful

web service infrastructure for mash-up physical and web resources. In Embedded and

Ubiquitous Computing (EUC), 2011 IFIP 9th International Conference on, pages

197–204. IEEE, 2011.

[151] Akshay Rajhans, Ajinkya Bhave, Ivan Ruchkin, Bruce H Krogh, David Garlan, André

Platzer, and Bradley Schmerl. Supporting heterogeneity in cyber-physical systems

architectures. IEEE Transactions on Automatic Control, 59(12):3178–3193, 2014.

[152] Akshay Rajhans, Shang-Wen Cheng, Bradley Schmerl, David Garlan, Bruce H Krogh,

Clarence Agbi, and Ajinkya Bhave. An architectural approach to the design and

analysis of cyber-physical systems. Electronic Communications of the EASST, 21,

2009.

[153] Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt.

Lithe: Lightweight secure coap for the internet of things. IEEE Sensors Journal,

13(10):3711–3720, 2013.

[154] Wonwoo Ro, Giyong Park, Sejin Chun, and Kyong-Ho Lee. Complex sensor mashups

for linking sensors and formula-based knowledge bases. In Information Reuse and

Integration (IRI), 2015 IEEE International Conference on, pages 126–133. IEEE,

2015.

[155] Murray Rosenblatt. A central limit theorem and a strong mixing condition. Proceedings

of the National Academy of Sciences, 42(1):43–47, 1956.

[156] Timothy J Ross. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.

[157] Ivan Ruchkin, Bradley Schmerl, and David Garlan. Analytic dependency loops

in architectural models of cyber-physical systems. Joint proceedings of ACES-MB

2015–Model-based Architecting of Cyber-physical and Embedded Systems, page 3, 2015.

[158] Ivan Ruchkin, Bradley Schmerl, and David Garlan. Architectural abstractions for

hybrid programs. In Proceedings of the 18th International ACM SIGSOFT Symposium

on Component-Based Software Engineering, pages 65–74. ACM, 2015.

Bibliography 141

[159] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based

access control models. Computer, 29(2):38–47, 1996.

[160] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, and

Sarita V Adve. mswat: low-cost hardware fault detection and diagnosis for multicore

systems. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 122–132. ACM, 2009.

[161] Rüdiger Schollmeier. A definition of peer-to-peer networking for the classification

of peer-to-peer architectures and applications. In Peer-to-Peer Computing, 2001.

Proceedings. First International Conference on, pages 101–102. IEEE, 2001.

[162] Lars Schor, Philipp Sommer, and Roger Wattenhofer. Towards a zero-configuration

wireless sensor network architecture for smart buildings. In Proceedings of the First

ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings,

pages 31–36. ACM, 2009.

[163] Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe Assmann. Enabling self-adaptive

workflows for cyber-physical systems. In International Workshop on Business Process

Modeling, Development and Support, pages 3–17. Springer, 2016.

[164] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application

protocol (coap). Technical report, 2014.

[165] Quan Z. Sheng, Sam Pohlenz, Jian Yu, Hoi S. Wong, Anne H. H. Ngu, and Zakaria

Maamar. Contextserv: A platform for rapid and flexible development of context-

aware web services. In Proceedings of the 31st International Conference on Software

Engineering, ICSE ’09, pages 619–622, Washington, DC, USA, 2009. IEEE Computer

Society.

[166] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang, and V. C. M. Leung. Lightweight

management of resource-constrained sensor devices in internet of things. IEEE

Internet of Things Journal, 2(5):402–411, Oct 2015.

[167] Thanos G Stavropoulos, Dimitris Vrakas, Danai Vlachava, and Nick Bassiliades.

Bonsai: a smart building ontology for ambient intelligence. In Proceedings of the 2nd

international conference on web intelligence, mining and semantics, page 30. ACM,

2012.

142

[168] Ivan Stojmenovic. Machine-to-machine communications with in-network data ag-

gregation, processing, and actuation for large-scale cyber-physical systems. IEEE

Internet of Things Journal, 1(2):122–128, 2014.

[169] Michio Sugeno. An introductory survey of fuzzy control. Information sciences,

36(1-2):59–83, 1985.

[170] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta,

B. Goodwine, J. Baras, and S. Wang. Toward a science of cyber-physical system

integration. Proceedings of the IEEE, 100(1):29–44, Jan 2012.

[171] Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan Jackson.

Openmeta: a model-and component-based design tool chain for cyber-physical systems.

In Joint European Conferences on Theory and Practice of Software, pages 235–248.

Springer, 2014.

[172] Ying Tan, Mehmet C Vuran, and Steve Goddard. Spatio-temporal event model for

cyber-physical systems. In Distributed Computing Systems Workshops, 2009. ICDCS

Workshops’ 09. 29th IEEE International Conference on, pages 44–50. IEEE, 2009.

[173] Ying Tan, Mehmet C Vuran, Steve Goddard, Yue Yu, Miao Song, and Shangping

Ren. A concept lattice-based event model for cyber-physical systems. In Proceedings

of the 1st ACM/IEEE International Conference on Cyber-physical Systems, pages

50–60. ACM, 2010.

[174] Giacomo Tanganelli, Carlo Vallati, Enzo Mingozzi, and Matthias Kovatsch. Efficient

proxying of coap observe with quality of service support. In Internet of Things

(WF-IoT), 2016 IEEE 3rd World Forum on, pages 401–406. IEEE, 2016.

[175] Fei Tao and Qinglin Qi. New it driven service-oriented smart manufacturing: frame-

work and characteristics. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 2017.

[176] Fei Tao, Ying Zuo, Li Da Xu, and Lin Zhang. Iot-based intelligent perception and

access of manufacturing resource toward cloud manufacturing. IEEE Transactions on

Industrial Informatics, 10(2):1547–1557, 2014.

[177] Nguyen Binh Truong, Hyunwoo Lee, Bob Askwith, and Gyu Myoung Lee. Toward a

trust evaluation mechanism in the social internet of things. Sensors, 17(6):1346, 2017.

Bibliography 143

[178] Mark Turner, David Budgen, and Pearl Brereton. Turning software into a service.

Computer, 36(10):38–44, 2003.

[179] Birgit Vogel-Heuser, Christian Diedrich, Dorothea Pantförder, and Peter Göhner.

Coupling heterogeneous production systems by a multi-agent based cyber-physical

production system. In Industrial Informatics (INDIN), 2014 12th IEEE International

Conference on, pages 713–719. IEEE, 2014.

[180] Jiafu Wan, Daqiang Zhang, Yantao Sun, Kai Lin, Caifeng Zou, and Hu Cai. Vcmia:

a novel architecture for integrating vehicular cyber-physical systems and mobile cloud

computing. Mobile Networks and Applications, 19(2):153–160, 2014.

[181] Jiafu Wan, Daqiang Zhang, Shengjie Zhao, Laurence Yang, and Jaime Lloret. Context-

aware vehicular cyber-physical systems with cloud support: architecture, challenges,

and solutions. IEEE Communications Magazine, 52(8):106–113, 2014.

[182] Kaiyu Wan. A brief history of context. In International Journal of Computer Science

Issues, Volume 6, Issue. Citeseer, 2009.

[183] Kaiyu Wan, Vangalur Alagar, and Yuji Dong. Specifying resource-centric services in

cyber physical systems. In Transactions on Engineering Technologies, pages 83–97.

Springer, 2014.

[184] Kaiyu Wan, Yuji Dong, Qian Chang, and Tengfei Qian. Applying a dynamic resource

supply model in a smart grid. Algorithms, 7(3):471–491, 2014.

[185] Zhiguo Wan, Jun’e Liu, and Robert H Deng. Hasbe: a hierarchical attribute-based

solution for flexible and scalable access control in cloud computing. IEEE transactions

on information forensics and security, 7(2):743–754, 2012.

[186] Jiacun Wang. Time petri nets. In Timed Petri Nets, pages 63–123. Springer, 1998.

[187] Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang. Towards

smart factory for industry 4.0: a self-organized multi-agent system with big data

based feedback and coordination. Computer Networks, 101:158–168, 2016.

[188] Xi Vincent Wang and Xun W Xu. An interoperable solution for cloud manufacturing.

Robotics and computer-integrated manufacturing, 29(4):232–247, 2013.

144

[189] Chuyuan Wei and Yongzhen Li. Design of energy consumption monitoring and

energy-saving management system of intelligent building based on the internet of

things. In Electronics, Communications and Control (ICECC), 2011 International

Conference on, pages 3650–3652. IEEE, 2011.

[190] Wang Wei and Payam Barnaghi. Semantic Annotation and Reasoning for Sensor

Data, pages 66–76. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[191] Xun Xu. From cloud computing to cloud manufacturing. Robotics and computer-

integrated manufacturing, 28(1):75–86, 2012.

[192] Song Yanwei, Zeng Guangzhou, and Pu Haitao. Research on the context model

of intelligent interaction system in the internet of things. In IT in Medicine and

Education (ITME), 2011 International Symposium on, volume 2, pages 379–382.

IEEE, 2011.

[193] Eric Yuan and Jin Tong. Attributed based access control (abac) for web services. In

Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Conference

on. IEEE, 2005.

[194] Ke Yue, Li Wang, Shangping Ren, Xufei Mao, and Xiangyang Li. An adaptive

discrete event model for cyber-physical system. In Analytic Virtual Integration of

Cyber-Physical Systems Workshop, USA, pages 9–15, 2010.

[195] Miao Yun and Bu Yuxin. Research on the architecture and key technology of internet

of things (iot) applied on smart grid. In Advances in Energy Engineering (ICAEE),

2010 International Conference on, pages 69–72. IEEE, 2010.

[196] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[197] Paul A Zandbergen. Accuracy of iphone locations: A comparison of assisted gps, wifi

and cellular positioning. Transactions in GIS, 13(s1):5–25, 2009.

[198] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi.

Internet of things for smart cities. IEEE Internet of Things journal, 1(1):22–32, 2014.

[199] Gulnara Zhabelova and Valeriy Vyatkin. Multiagent smart grid automation archi-

tecture based on iec 61850/61499 intelligent logical nodes. IEEE Transactions on

Industrial Electronics, 59(5):2351–2362, 2012.

Bibliography 145

[200] Gulnara Zhabelova, Valeriy Vyatkin, and Victor N Dubinin. Toward industrially

usable agent technology for smart grid automation. IEEE Transactions on Industrial

Electronics, 62(4):2629–2641, 2015.

[201] Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and Roland Norgren.

Understanding uncertainty in cyber-physical systems: a conceptual model. In Euro-

pean Conference on Modelling Foundations and Applications, pages 247–264. Springer,

2016.

[202] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park. Formal

model and policy specification of usage control. ACM Transactions on Information

and System Security (TISSEC), 8(4):351–387, 2005.

[203] Yingfeng Zhang, Cheng Qian, Jingxiang Lv, and Ying Liu. Agent and cyber-physical

system based self-organizing and self-adaptive intelligent shopfloor. IEEE Transactions

on Industrial Informatics, 13(2):737–747, 2017.

[204] Kai Zhao and Lina Ge. A survey on the internet of things security. In Computational

Intelligence and Security (CIS), 2013 9th International Conference on, pages 663–667.

IEEE, 2013.

[205] Peng Zhao, Siddharth Suryanarayanan, and Marcelo Godoy Simões. An energy

management system for building structures using a multi-agent decision-making

control methodology. IEEE Transactions on Industry Applications, 49(1):322–330,

2013.

[206] Jiehan Zhou, Teemu Leppanen, Erkki Harjula, Mika Ylianttila, Timo Ojala, Chen

Yu, Hai Jin, and Laurence Tianruo Yang. Cloudthings: A common architecture for

integrating the internet of things with cloud computing. In Computer Supported

Cooperative Work in Design (CSCWD), 2013 IEEE 17th International Conference

on, pages 651–657. IEEE, 2013.

[207] Wei Zhu, Guang Zhou, I-Ling Yen, and Farokh Bastani. A pt-soa model for cps/iot

services. In Web Services (ICWS), 2015 IEEE International Conference on, pages

647–654. IEEE, 2015.

146

[208] Detlef Zühlke and Lisa Ollinger. Agile automation systems based on cyber-physical

systems and service-oriented architectures. In Advances in Automation and Robotics,

Vol. 1, pages 567–574. Springer, 2011.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Objectives
	Contributions
	Organization

	Related Works
	Backgrounds
	Models and Methods for CPS
	Software Architecture for Decentralised CPS
	Resource Oriented Architecture for Internet of Things

	Open Resource-Oriented Architecture Overview
	REST Architectural Style
	Issues of Applying REST in the Decentralised CPS Applications
	Design Principles of Extending REST for Decentralised CPS
	Resource as the Core Concept
	Structural Abstract - Resource Abstracting
	Behavioural Abstract - Feedback-based Adaptive Service-Oriented Paradigm
	Uncertainty Handling - Reputation Framework
	Usage Policies - Context-State-Aware Access Control

	Summary

	Behavioural Abstract
	Introduction
	Related Works
	Motivation
	Issue of System States Verification
	Issue of Physical Behaviours Implementation

	Feedback-based Adaptive Service-Oriented Paradigm
	Extending REST for the IoT based on FASOP
	Implementation
	Case Studies
	Turn on/off a Lamp in the Smart Home
	Brake an AutoDriving Car

	Conclusion

	Behavioral Abstract Support from Protocol
	Introduction
	Real-time Context-Adaptation in the CoAP
	Motivation
	Requirements
	Context-Adaptation Messaging Model
	The Adaptation Option
	Real-time Support
	Security Support

	Implementation
	Conclusion

	Uncertainty Handling
	Introduction
	Related Works
	Semantic-based Reputation Framework
	Semantic Match
	Data Fusion
	Belief Updating
	Fault Detection

	Implementation
	Evaluation
	Conclusion

	Access Control
	Introduction
	Related Works
	Motivation
	Context-States-Aware Access Control
	Context-States-Aware Access Control Model
	Context-States-Aware Model Ontology
	Context-States-Aware Policy Model

	System Architecture
	Implementation
	Conclusion

	Implementation and Case Study
	Resource Ontology in Rinfra
	RInfra - Infrastructure Unit
	Cross-domain Applications Development
	Case Studies
	Smart Transport Scenarios
	Smart Building Scenarios

	Conclusion
	Summary
	Future Work

	References

