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ABSTRACT 

Alkaptonuria (AKU) arises from a genetic deficiency of homogentisate 1,2 dioxygenase (HGD) an 

enzyme involved in tyrosine metabolism. AKU is characterised by high circulating homogentisic 

acid (HGA) some of which is deposited as ochronotic pigment in connective tissues, mainly 

cartilage, leading to multisystemic damage dominated by premature severe osteoarthropathy.  

Pathological changes in the spine as a result of ochronosis can be imaged using fluorine-18 

labelled sodium fluoride positron emission tomography (18F-NaF PET). This imaging modality 

allows quantitative assessment of focal bone remodelling by measuring the uptake of 18F into the 

hydroxyapatite crystal of bone and calcified cartilage. The mean standardised uptake value 

(SUVm), a mathematically derived ratio of tissue radioactivity in a region of interest (ROI) and the 

decay corrected injected dose per kilogram of the patient's body weight has common place in 

oncology. The functional changes that 18F-NaF PET detects have led to this modality being re-

evaluated for its advantages in skeletal diseases such as osteoarthritis and AKU.  

AKU patients underwent a variety of clinical testing and imaging including 18F-NaF PET scanning 

at the Royal Liverpool University Hospital. Semi-quantitative analysis of the PET scans was utilised 

to investigate the anatomical distribution of increased 18F uptake. Quantitative SUVms were also 

obtained as a measure of Fluoride uptake in the bony vertebrae and cartilaginous intervertebral 

discs (IVD). Other clinical data were taken from the case notes for correlation.    

The anatomical distribution of increased 18F uptake was confirmed to primarily affect the weight 

bearing joints. The quantitative SUVm methodology revealed a striking variation between AKU 

and control SUVms in the IVDs thought to represent calcification of the IVDs in AKU. The 

mechanism proposed is that calcium hydroxyapatite or calcium pyrophosphate dihydrate are 

deposited in the fibrocartilaginous IVDs in AKU due to biochemical alterations of the disease. 18F 

binds to the calcium deposits resulting in high SUVms compared to the control. The SUVms 

obtained from the vertebrae in both AKU and control patients are similar across the lumbar and 

thoracic spine suggesting that generalised rates of bone turnover in AKU and control patients are 

comparable.  

With age the AKU SUVms of the IVDs followed an interesting trend (the inverted ‘U’ shaped trend) 

that was strikingly different to that of the control group that appears to remain stable with age. 

It is proposed that the AKU trend demonstrates the process of disc degeneration. In the bony 

vertebrae, an age-related decline in SUVm was observed in both AKU and control groups, thought 

to represent reduced bone turnover with age. 

Correlations were made with the IVD SUVms and other clinical data. Reduced vertebrae SUVm 

and increased IVD SUVm were found to be associated with higher clinical scores, pain scores, 

excessive spinal curvature angles, lower BMD T-scores and spinal flexibility measurements. The 

proposed reason for this is primarily due to reduced BMD with age and spinal arthropathy 

associated with calcified IVDs.   

All in all, this thesis has provided new insights into spinal arthropathy in AKU. The utilisation of 
novel quantitative techniques demonstrated in this thesis can be used to aid in clinical 
interpretation of PET scans as well as providing a measure of disease severity and to analyse 
disease progression and response to therapy. 
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1.1 Alkaptonuria 

Alkaptonuria (AKU) is a rare autosomal recessive disorder that arises due to a genetic 

deficiency of homogentisate 1, 2 dioxygenase (HGD), an enzyme involved in tyrosine 

metabolism resulting in the inability to fully metabolise tyrosine and phenylalanine. 

Loss of activity of the HGD enzyme results in high circulating levels of homogentisic 

acid (HGA) (Figure 1.1). Oxidative conversion of HGA leads to the production of a 

melanin-like polymer, this is termed ochronosis (Figure 1.2) (1). HGA is excreted via 

the urinary system causing urine to darken upon exposure to air (2). However, some 

HGA is deposited over time in connective tissues leading to the formation of 

ochronotic pigment which causes multisystemic damage dominated by premature 

severe osteoarthropathy (2,3). 

 

1.1.1 History 

The earliest reported case of alkaptonuria dates back to 1500 B.C of an Egyptian 

mummy named Harwa. Biochemical and radiographical analysis of the hip and knee 

joints and intervertebral discs were used to confirm the diagnosis (4–6). The first 

clinical case of alkaptonuria was reported in 1584, when Scibonius reported a case of 

a school boy in good health who passed urine “as black as ink” and coined the term 

‘black urine disease’ (7). Schenck reported the same findings in a Carmelite monk. 

The term “alkaptonuria” was first used in 1859 by Boedeker to describe the 

discolouration of urine due to the unusual reducing properties of a compound it 

contained (4). He named this compound ‘alkapton’ derived from the Arabic word 

‘alkali’ and a Greek word meaning “to suck up oxygen greedily” (4,8,9). The term 
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ochronosis was first described by Virchow in 1866 after discovering black pigmented 

articular cartilage of a 67-year-old man. He examined the pigment microscopically 

and found the pigment was actually yellow/brown (ochre) in colour leading him to 

describe the findings as ochronosis (10). Wolkow and Bauman identified HGA as the 

causative compound by 1891 (9). Albrecht, made the link between between AKU and 

ochronosis in 1902, when he explained that AKU results in ochronosis over a number 

of years. In 1908 Archibald Garrod brought AKU into the spotlight in his Croonian 

lectures when he used the disease to illustrate his theory of ‘the inborn error of 

metabolism’ (11,12). He provided evidence of the dynamic nature of metabolism 

demonstrating that normal metabolic pathways can be made variant by mendelian 

inheritance. He identified a familial pattern of inheritance and concluded that an 

inherited biochemical abnormality must result in the passage of an abnormal 

intermediate in the urine. Garrod identified that AKU was a recessive disorder and 

thus became the first genetic disease to conform to mendelian autosomal recessive 

inheritance. Garrod’s lectures today are considered as landmarks in the history of 

genetics, medicine and biochemistry, and his contribution to understanding AKU is 

by far the most important in the history of the disease (11). Almost half a century 

after Garrod identified that AKU conformed to mendelian inheritance, La Du and 

colleagues discovered that AKU was a result of the deficiency of an enzyme involved 

in the tyrosine and phenylalanine metabolic pathway and called this enzyme HGD 

(13).  
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Figure 1.1 The tyrosine metabolic pathway. The biochemical defect in alkaptonuria 

is the deficiency of the enzyme homogentisate 1,2 dioxygenase. The drug nitisinone 

inhibits the enzyme 4-hydroxyphenylpyruvic acid dioxygenase blocking production of 

homogentisic acid and downstream metabolites (Adapted from (14)). 
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Figure 1.2 Formation of ochronotic pigment. Protein is metabolised via homogentisic 

acid (HGA) to maleylacetoacetate. Deficiency of the enzyme homogentisate 1,2 

dioxygenase in alkaptonuria leads to increased HGA. Oxidative conversion of HGA to 

benzoquinone acetic acid leads to the production of ochronotic pigment that binds 

to connective tissues (Adapted from (3)). 
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disease (8,9). Hotspots have been identified in Slovakia, Dominican Republic, Jordan 

and India, with the highest incidences found in the North-West region of Slovakia 

reaching greater than 1:20,000. A possible reason for this is genetic isolation and the 

founder effect (loss of genetic variation) due to living in isolated hamlets (15). Also 

consanguineous marriages may explain the increased incidence in countries such as 

Jordan and India (8,13,16). The reason for this can be explained by the offspring of a 

consanguineous marriage receiving two defective gene copies derived from a 

common ancestor (17). High numbers of novel mutations of the HGD gene have been 

identified in Slovakia and Jordan demonstrating the high incidence of the disease in 

these countries (18). Research suggests that reporting of new cases of AKU has 

increased due to the increased awareness of the features of the disease. However, 

the number of cases worldwide is much less than what we might expect based on the 

incidence (8). 

 

1.1.3 Genetic defect  

AKU arises due to a genetic deficiency of the enzyme HGD. HGD converts HGA into 

maleylacetoacetate and has a major role in the catabolism of tyrosine and 

phenylalanine (Figure 1.1). Fernandez-Canon et al., 1996 (19) identified that the 

enzymatic loss in AKU is caused by mutations within the HGD gene. The human HGD 

gene is a single copy gene, spanning 54,363 bp of genomic sequence and is mapped 

to chromosome 3q13.33 (1). The HGD transcript is split into 14 exons ranging from 

35 – 360 bp that encodes the HGD protein (20,21).  The crystalline structure of the 

HGD protein has been resolved and the protein is composed of 445 amino acids that 
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forms a dimer of trimers giving rise to a functional hexamer (22). Northern blot 

hybridisation shows expression of HGD in the liver, prostate, small intestine, colon 

and kidney. The first human HGD mutations were described by Fernandez-Canon (19) 

in Spanish AKU families and were found to have missense mutations. To date 149 

different HGD variants have been identified, of which 116 are mutations and 33 are 

polymorphisms (23). The mutations are spread throughout the entire gene with some 

prevalence in exons 3,6,7,8 and 13. Missense mutations are the most common 

followed by splicing, frameshift, nonsense, deletions and expansion. It has been 

identified that some mutations are spread throughout the world and some are 

specific to certain countries where there are hotspots of AKU e.g. Slovakia, India and 

Jordan (20). There is currently no genotype-phenotype correlation due to the 

complex hexameric structure of the enzyme.   

 

1.1.4 Homogentisic acid  

HGA is a small water-soluble molecule. It is an intermediate in the catabolism of 

tyrosine and phenylalanine (Figure 1.1). HGA is usually broken down by HGD into 

maleylacetoacetic acid in the liver, however in AKU the enzymatic deficiency of HGD 

results in a build-up of HGA. Upon oxidation (addition of NaOH or in the presence of 

O2) HGA forms the highly reactive benzoquinone acetic acid (BQA). BQA polymerises 

to form the pigmented polymer termed ochronosis (24). HGA has also been found to 

be present in a bacterial plant pathogen as well as in yeast of which it has been 

associated with the production of brown pigment and has been identified as a 

precursor of melanin synthesis (25).     
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1.1.5 Clinical Presentation 

AKU is characterised by three distinct features; homogentisic acidurea, ochronosis 

and ochronotic osteoarthropathy and tissue damage. The first feature to be detected 

from birth is the high concentrations of HGA in urine. HGA oxidises in air (or 

alkalinisation) and turns black. This feature is pathognomonic to AKU and leads to 

21% of patients being diagnosed with the condition before the age of 1 (8). However, 

darkening may not occur for several hours so this often goes unnoticed by the patient 

(26). Chromatographic testing of urine samples for the presence of HGA is the gold 

standard for diagnosis. Plasma HGA concentrations in AKU patients ranges from 

0.018 – 0.165mM, compared to 0.014 – 0.071µM in the non AKU patient. Additionally 

genetic testing would determine if the patient was homozygous or compound 

heterozygous for the condition (1,8).  The reason urine turns black in AKU is a result 

of oxidative conversion of the excess HGA to benzoquinone acetic acid, and this in 

turn forms a melanin like polymer that results in the urine slowly turning black (Figure 

1.2). The HGA that is not excreted undergoes oxidation and polymerisation in 

connective tissues of skeletal, cardiovascular and ocular systems, leading to a 

pathological blue-black discolouration termed ochronosis (7).  

Black pigmentation of the sclera and the pinna of the ear are two of the most obvious 

features externally, however these features are not commonly seen before age 25-

30. Pigmentation of the ear and eyes has been reported in 70% and 50% of AKU 

patients respectively. Pigmentation of bodily fluids including perspiration leads to the 

discolouration of skin. Discolouration of the hands, nose and gums has also been 

documented (7,8). Continued polymerisation of HGA in tissues, specifically cartilage 
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over time, leads to rapid early onset osteoarthropathy around the third to fourth 

decade of life.  

Ochronotic arthropathy primarily affects the axial and weight bearing joints. Both 

synovial and intervertebral joints are affected. The first clinical symptom often starts 

in the spine as lower back pain (17).  In a study of 163 cases of AKU, the spine was 

found to be involved in 159 patients compared to much lower frequencies of 

involvement found in the knee and hip (27). Radiological observations of the spine 

include wafer-like disc calcification, IVD space narrowing with vacuum phenomenon 

(radiolucent collection of gas), osteophyte formation and in most severe cases fusion 

of vertebrae (17,26). Symptoms worsen from the fourth decade and include 

progressive kyphoscoliosis and impaired spinal mobility. This has been shown to 

cause secondary effects on pulmonary inflation, disc herniation and cord 

compression (1).  

Involvement of the large weight bearing joints usually occurs several years after the 

spinal changes. The knees, hips and shoulders are most frequently involved with 

relative sparing of the small joints of the hands and feet in most cases (28). 

Radiographic observations of the large peripheral joints are similar to that of 

osteoarthritis (OA) including, joint space narrowing, subchondral bone (SB) sclerosis 

and osteophytosis, and as a result AKU is often misdiagnosed as OA (17). Ochronotic 

arthropathy is crippling and inevitably leads to the patient requiring multiple joint 

replacements. By the age of 55, 50% of AKU patients have undergone at least one 

joint replacement (29).  
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AKU is often diagnosed intraoperatively when a blackened joint is exposed (30). 

Autopsy results from a 74-year-old female with AKU who died of disseminated 

ovarian cancer revealed extensive osteoarthropathy. The patient had undergone 

surgery to replace both knee joints, both hip joints and the left shoulder joint and had 

OA of both ankles and the right shoulder. Thoracic scoliosis and lumbar lordosis was 

evident and marked pigmentation on the annulus fibrosus of the IVDs was observed 

with bony bridging between vertebral bodies. OA of the shoulder was identified with 

extensive bony exposure and a narrow rim of pigmented cartilage and debris present 

(31). In AKU the pigmented tissues often become weak and brittle and are susceptible 

to chipping and splintering hence the pigmented debris present at autopsy. This 

process results in rapid joint deterioration coupled with inflammatory processes in 

some cases (17).  

Apart from joint damage other manifestations of AKU include renal, salivary gland, 

prostate and gall bladder stones. Ligament and tendon calcification and ruptures 

have also been documented (8).  Osteopenia and fractures are less common but have 

been documented. Fisher et al. (4) documented a case of a 69 year old AKU patient 

presenting with a low trauma fracture of the distal femur, and distal radius. She had 

no other contributing risk factors that may have predisposed her to fractures such as 

vitamin D deficiency, osteoporosis or history of osteoporotic fractures.  Bone changes 

are thought to be less common in frequency and severity than cartilage changes. This 

is thought to be due to the remodelling properties of bone limiting the ability to 

reduce the cross linking of the collagen fibrils that result in connective tissue failure 

(4).  
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The cardiac manifestations of AKU are not un-common. Many studies have 

documented pigmentation associated with the cardiac valves and atherosclerotic 

plaques. At autopsy Helliwell et al. (31) found prominent pigmentation of the mitral 

valve as well as calcification and mild fusion of the aortic valve therefore AKU is a 

predisposing factor for valve calcification, stenosis and regurgitation. Patients with 

AKU exhibit a high frequency of aortic valve involvement acquiring this condition in 

the seventh to eighth decade of life. The aortic sinus region also contained 

pronounced pigmentation. Interestingly no pigmentation was observed in the venous 

components of circulation and the tricuspid valve and the pulmonary valve showed 

minimal pigmentation. It was proposed that pigmentation of the aortic and mitral 

valves as well as the carotid sinus region is due to the high blood pressure and 

turbulent blood flow that is associated with those structures and that deposition of 

pigment may be linked to areas of high blood pressure and other haemodynamic 

factors. It is still unclear whether the pigment alone causes increased stiffening of the 

valve or whether it is a result of pigment related damage to the collagen fibres. 

Echocardiographic screening is recommended for all AKU patients (32). Currently 

there is no effective licenced therapy to treat AKU. Joint replacements and pain relief 

are offered to help ease the pain but do not combat the cause.  

 

1.1.6 The Initiation of ochronotic pigmentation (the exposed collagen hypothesis) 

The pathogenesis of ochronosis is still not fully understood and it wasn’t until recently 

that possible mechanisms to explain the initiation of pigmentation were elucidated. 

In 2009 Taylor et al. (33,34) described the relationship between HGA and fibrillar 
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collagen suggesting there was a binding site for HGA on collagen. Taylor et al. 

identified that pigmentation is initiated in the pericellular matrix surrounding 

chondrons of the articular calcified cartilage. Further studies revealed that tissues are 

initially resistant to pigmentation but become susceptible following mechanical or 

biochemical damage to the extracellular matrix such as repetitive mechanical 

loading, chemical attack and ageing (35). It is proposed that the collagen fibre has 

sites which HGA can bind to, however these are protected in healthy collagen by 

proteoglycans (Figure 1.4). Following mechanical or biochemical damage, 

proteoglycans are lost, and these binding sites become exposed and available for 

HGA to attach. The initial binding of HGA is comparable to a nucleation event; once 

HGA has bound there is rapid deposition of HGA as an ochronotic polymer. Binding 

of HGA to collagen results in stiffening of the fibre leading to further mechanical 

damage. This process results in progressive ochronosis (Figure 1.4) (13).  This process 

is thought to be as a result of ageing and is thought to occur in non-AKU connective 

tissues also.  

 

1.1.7 Pathogenesis of Joint Destruction  

Initial pigmentation is laid down in individual chondrocytes and their territorial matrix 

within the calcified cartilage. Pigmentation spreads to other chondrons within the 

calcified cartilage and proliferates through the hyaline cartilage. Pigmented hyaline 

cartilage becomes stiff and shields the underlying bone from normal mechanical 

loading leading to aggressive resorption of the subchondral plate by osteoclasts 

resulting in degeneration of the joint (Figure 1.3) (13,35,36).   
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1.1.8 Diagnosis 

Currently, the diagnosis of AKU is based on the detection of a significant amount of 

HGA in a urine sample by gas chromatography-mass spectrometry analysis. The 

amount of HGA excreted per day in urine in individuals with alkaptonuria is usually 

between 1-8 g compared to 20-30 mg in an individual without AKU. Genetic testing 

is required to determine if the individual is homozygous or compound heterozygous. 

Identification of biallelic pathogenic variants confirms the diagnosis and allows family 

studies and counselling (1,37).  

Once the HGD pathogenic variants have been identified in an alkaptonuric family 

member, prenatal testing and preimplantation genetic diagnosis for a pregnancy at 

increased risk for the disease are optional (37).  
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Figure 1.3 Progression of ochronosis in the joint. A) Ochronotic pigment is laid down 

within individual chondrocytes within the calcified cartilage. B) Ochronosis spreads 

to other chondrons in the calcified cartilage and proliferates through to the hyaline 

cartilage. C) Ochronotic cartilage shields the underlying bone from normal 

mechanical loading, leading to resorption of the subchondral plate by osteoclasts. D) 

Despite the increased stiffness the pigmented shell of the remaining articular 

cartilage fails catastrophically leading to rapid onset severe osteoarthropathy. Taken 

from (3), evidence from (2). 
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Figure 1.4 The initiation of ochronotic pigment - the exposed collagen hypothesis. 

A) Homogentisic acid (HGA) is present in the extracellular environment however 

cannot bind to the collagen fibril due to the protective proteoglycans (PG). B) 

Protective PG are lost as a result of repetitive mechanical loading, chemical attack 

and or ageing and this exposes the collagen fibril to attack from small molecules such 

as HGA.  C) In AKU the initial binding of HGA to the collagen fibril is comparable to a 

nucleation event followed by rapid deposition of HGA as an ochronotic polymer. This 

binding results in the collagen fibril becoming stiff and leading to further mechanical 

damage. This leads to a downward cascade of increasing pigment deposition and 

ochronosis (38). Taken from (13) evidence from (35).  
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1.1.9 Therapy 

Several therapeutic approaches have been tried to treat AKU with little effect. 

Currently there is no effectively therapy licenced to treat AKU. The only available 

treatments focus on reducing the symptoms, and do not tackle the intrinsic cause (1). 

Palliative management of AKU includes joint replacement therapy, physiotherapy 

and pain management (8). Table 1.1 summarises all the therapies that have been 

tried in AKU.  

 

1.1.9.1 Vitamin C 

Vitamin C was first used to treat AKU in 1940 by Sealock et al. (39). He reported that 

Vitamin C therapy delayed the darkening of urine presumably by preventing the 

oxidation of HGA. Studies have shown that Vitamin C acts by blocking the conversion 

of HGA to benzoquinone acetic acid (BQA) by inhibiting the enzyme HGA polyphenol 

oxidase (Figure 1.2) [8]. BQA is an intermediary product in the formation of 

ochronotic pigment, therefore the hypothesis was that preventing the oxidative 

conversion of HGA to BQA would prevent ochronosis. Wolff et al. (40) reported that 

the administration of relatively large amounts of Vitamin C resulted in the 

disappearance of BQA in the urine. However, it did not change the amount of HGA 

excreted. It was also found that HGA concentration doubled after administration of 

Vitamin C in young infants and the authors proposed that this was due to activation 

of the enzyme hydroxyphenylpyruvate dioxygenase (HPPD) that converts 4-

hydroxyphenylpyruvic acid (HPPA) to HGA (Figure 1.1) (40). Other studies found that 

Vitamin C caused HGA production to increase, contributing to the production of renal 
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oxalate stones, increasing their risk of developing these further. This evidence 

confirms that Vitamin C is not an effective treatment in AKU.   

1.1.9.2 Low Protein Diet  

Reducing dietary intake of protein seems the most logical form of treatment. By 

reducing dietary intake of phenylalanine and tyrosine this will reduce the amount of 

HGA produced, therefore reducing ochronosis. Haas et al. (41) from the Netherlands 

found a significant decrease in the excretion of HGA with a low protein diet of 1 g/kg 

per day however this was age dependant. They found that children below the age of 

twelve had reduced HGA production but above the age of twelve there was no effect. 

They concluded that protein restriction in older patients is probably useless but 

restriction should be advised in younger patients. This would require strict specialist 

supervision during growth periods to ensure adequate levels of essential amino acids, 

vitamins and minerals are available for growth (1). Another report from the 

Netherlands described reduced joint pain after receiving a low protein diet in children 

(42). Other studies also reported no change in HGA excretion with protein restriction 

(9). Approximately only 6% of dietary protein is degraded via HGA, however, nearly 

all HGA is produced by dietary intake of protein. Additionally reducing dietary protein 

is very hard to comply with long term and it appears small reductions in protein intake 

do not have a noticeable effect (1). It was concluded that restricting protein intake 

was not the most appropriate treatment option.   
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1.1.9.3 Nitisinone  

Nitisinone, 2-(2-nitro-4-trifluromethylbenzoyl)cyclohexane-1,3-dione (NTBC), a very 

effective herbicide, is a potential disease modifying therapy for AKU. Nitisinone acts 

by inhibiting the enzyme HPPD (HPPD coverts HPPA into HGA), therefore blocking the 

production of the culprit HGA (Figure 1.1). It is administered orally and has high 

affinity for HPPD in the liver (1). Nitisinone has been used since 1992 for the rare 

disease tyrosinemia type 1 (HT1) and has proven to be well tolerated long and short 

term. Nitisinone operates several steps before the defect in HT1 and the dosage given 

is 1-2mg/kg body weight. Nitisinone acts on the very reaction that causes AKU 

therefore it was proposed that a lower dosage may be required. An early study 

revealed the dose to treat AKU was 30-fold lower than that used to treat HT1 (43). 

Current experience with nitisinone in AKU is limited. Suwannarat et al. (14) at the NIH 

investigated the safety and efficacy of nitisinone in a study of 9 AKU patients over a 

period of 4 months. A dose of 2.1mg was given, and this was shown to decrease 

urinary HGA concentrations by 95% (from an average of 4.0 to 0.2g/day) and increase 

plasma tyrosine levels 11-fold (from 68 µmol/L to 760 µmol/L). The tyrosinemia did 

not cause any corneal toxicity, and six out of seven patients that received nitisinone 

reported decreased pain in their joints (14).  

In a second study Introne et al. (44) conducted  a three year randomised therapeutic 

NIH trial of nitisinone (2.1mg/day) on 40 AKU patients. Nitisinone was shown to 

reduce mean urinary HGA by 98% (from 5.1 to 0.125 g/day). Mean plasma HGA levels 

reduced by 95% from 5.74 to 0.306 mg/l.  Hip rotation was used as the defining 

parameter to determine the efficacy of the drug, however the results were 
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inconclusive from a rheumatological aspect (44). Ranganath et al. (45) suggested one 

possible reason for this could be that an optimal dose was not used. Ranganath and 

his team conducted a dose response study to investigate the effect of nitisinone on 

urinary HGA (SONIA 1). The study had 5 groups of patients each containing 8 patients 

and the 5 dosages were 0,1,2,4, and 8mg. A clear dose-response relationship was 

observed at 4 weeks, the adjusted geometric mean u-HGA in 24 hours was 

31.53mmol, 3.26mmol, 1.44mmol, 0.57mmol for the 1mg, 2mg, 4mg and 8mg doses, 

respectively. The 8mg dose daily was most effective, corresponding to a mean 

reduction of u-HGA of 98.8% compared with baseline. No safety concerns were 

reported in this short study, however the long-term safety and efficacy of the drug is 

not fully understood so a 2mg dose is what is usually prescribed in clinic today (45).  

Life-long therapy is required to maintain reduced levels of HGA. The 

pathophysiological and clinical significance of tyrosinemia is not fully understood, 

however it can cause corneal irritation as well as other serious side effects such as 

thrombocytopenia, leukopenia and porphyria which are associated with neurological 

complications such as tremor, ataxia, delayed development and intellectual 

impairment (8).  

1.1.9.4 Other treatments   

A variety of options are available to treat AKU and these are summarised in Table 1.1. 

Lifestyle counselling can be beneficial. Siblings with the same mutation and gender 

can have very different symptoms. Assessing lifestyle choices can have a positive 

impact on symptoms. Minimising joint loading in all areas of life is likely to be 
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important. Physiotherapy is used to increase joint motion and activity. Pain control is 

vital but often is only partially effective. A wide variety of drugs are prescribed to 

tackle the pain such as paracetamol, non-steroidal anti-inflammatories, opioids, 

anticonvulsants, local anaesthetics and gabapentin. Physical modalities are also used 

such as acupuncture, nerve blocks and trans-cutaneous nerve stimulation. Organ 

transplantation has been associated with resolving AKU however it is not justified in 

a disease where longevity is rarely affected. Multiple joint replacement therapy and 

spinal surgery are inevitable and are often required multiple times throughout life 

(1).  

Nitisinone is most effective in reducing the causative agent however it is imperfect 

because it is acting as a metabolic block and therefore causes secondary effects on 

tyrosine levels. A perfect treatment would involve replacing the missing enzyme by 

utilising gene or enzyme replacement therapy. This would result in decreasing HGA 

without affecting the rest of the tyrosine metabolic pathway. However, there are 

potentially fatal complications with this therapy. The HGD enzyme would have to be 

delivered to the exact location of tyrosine metabolism within the hepatocytes of the 

liver to be successful. If the HGD enzyme was present in the blood and the 

extracellular fluid this would result in succinylacetone to spontaneously form from 

maleylacetoacetate and fumarylacetoacetate (Figure 1.1). These products are toxic 

and highly mutagenic resulting in serious complications as the enzymes required to 

break these products down would not be present unlike in the liver (8).    
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Table 1.1 Information regarding the various, current and future therapies to treat 

AKU. Adapted from (8,1). 

 

 

 

 

 

 

 

 

 

 

Treatment Summary 

Vitamin C Efficacy unproven, HGA production 
increases, may worsen the condition 

Low protein diet Efficacy in adults unproven, compliance 
difficult 

Lifestyle counselling  Underused, lack of evidence base 

Physiotherapy Underused 

Pain control Widely used, palliative, incompletely 
effective 

Organ replacement Unjustified in a disease with normal 
lifespan 

Palliative surgery Effective but invasive 

HGA lowering therapies: 
Nitisinone  
 
 
Enzyme replacement 
Gene replacement 

 
Not shown to alter outcomes, increases 
tyrosine 
 
Not yet available 
Not yet available 
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1.1.10 Assessment  

AKU is present from birth however these patients experience an asymptomatic pre-

ochronotic phase from birth up until around the third decade of life. This delay in 

ochronotic deposition is still not fully understood. A major difficulty in clinical 

research is the lack of suitable quantifiable methodology to describe disease severity 

(46). Until recently, most descriptions of AKU were qualitative and there was no 

methodology to quantify the disease, or to define an objective measure of disease 

severity. Without an appropriate method to quantify the disease, clinicians were 

unable to make comparisons of disease severity between patients. This issue has 

been rectified recently with the introduction of the AKU severity score index 

(AKUSSI). This score is based on a quantitative, validated, multidisciplinary 

assessment that can be used for patient assessment in the AKU clinical trials (1).  

The AKUSSI quantifies the clinical features of AKU systematically in a standardised 

manner. Table 1.2 is the AKUSSI which represents the clinical features that are scored 

and summed to derive a composite score. The features of AKU are broken down into 

three categories, features due to excess circulating HGA (prostate, kidney, salivary 

and gall stones), features due to ochronosis (ear/eye pigmentation, teeth and skin 

pigment, osteopenia, ENT features and cardiac valve disease) and features due to 

damage of connective tissue (fractures, tendon/ligament/muscle ruptures, as well as 

spinal and joint disease). The early appearing features were scored lower and the 

latter appearing features were scored higher (46). A questionnaire based severity 

score index, has also been described and is easy to use and could be used at any 

hospital around the world.  
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Table 1.2 AKUSSI table. Features shown in the table are scored and summed up to 

derive a composite score. This score represents the totality of clinical features of AKU. 

The modality regarding how clinical features are scored is shown red. The scores 

given for each feature are in brackets depending on the severity or if the feature is 

present. 

 

1.2 AKU Society and the National Alkaptonuria Centre 

The AKU society was founded in 2003 by an AKU patient Robert Gregory and 

Professor L. Ranganath. The AKU society is a patient group, with a foundation of a 

partnership between patient and doctor. The aim of this society is to research 

possible treatments, connect AKU patients from across the world, and to help 

patients and their families live with the disease (47,48). Communications with the UK 

Department of Health suggested approaching National Specialised Services with the 

idea of founding a Centre of Excellence for AKU patients to provide expert care to all 
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patients with AKU. In 2012 the Robert Gregory National Alkaptonuria Centre (NAC), 

was established by the NHS Highly Specialised Services Commissioning Group at the 

Royal Liverpool University Hospital. The NAC delivers expert care and advice from 

leading experts in the field. The NAC provides off-label nitisinone to patients who 

receive annual check-ups and follow up blood, and urine tests post nitisinone. 

Patients confirmed with alkaptonuria are commenced on 2 mg dose of nitisinone that 

they take on alternative days, for three months with daily dose thereafter. 

Monitoring and clinical assessments are performed annually. Currently 58 patients 

with AKU have been enrolled at the NAC for treatment with nitisinone. Twenty-three 

females (mean age 53 years, range 22-75) and 35 males (mean age 48 years, range 

22-70). The NAC is an on-going service that is transforming the lives of AKU patients 

through patient support, community building and medical research (47,48).  

1.3 DevelopAKUre 

Research into the use of nitisinone in AKU started in the 1990’s however, the results 

were underpowered and were not statistically significant. A goal for the AKU society 

was to further investigate the efficacy of nitisinone (48). In 2012 a series of 

international clinical trials was founded called the DevelopAKUre consortium with 

Sobi (the pharmaceutical company with the licence for nitisinone) (49). The 

DevelopAKUre consortium is coordinated by Professor L. Ranganath, at the Royal 

Liverpool University Hospital. Two other clinical sites are involved outside of the UK; 

The National Institute of Rheumatic Disease, Piestany, Slovakia and Hospital Necker 

and Institute Necker in France. The objective is to study the efficacy and safety of 

nitisinone to obtain marketing authorisation for the treatment of AKU. The duration 
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of DevelopAKUre is approximately 75 months, and is due to conclude in 2019 (49). If 

nitisinone is proven to be effective in AKU, the consortium will apply for marketing 

authorisation and approval of Nitisonone by the European Medicines Agency. 

DevelopAKUre involves three studies, a dose response study called ‘Suitability of 

Nitisinone in Alkaptonuria 1’ (SONIA 1), an efficacy study called ‘Suitability of 

Nitisinone in Alkaptonuria 2 (SONIA 2) and a cross sectional study called ‘Sub-clinical 

Ochronotic Features in Alkaptonuria (SOFIA) (49).  

1.3.1 Suitability of Nitisnone in Alkaptonuria 1 (SONIA 1) 

This study was designed to identify the most appropriate dose of nitisinone to be 

used over a patient’s lifetime, as well as the most effective dose in reducing HGA 

levels. Forty patients were recruited for the trial and were split up into five age 

dependent groups of eight. Each group received varying doses of nitisinone (0mg, 

1mg, 2mg, 4mg, and 8mg). SONIA 1 began in May 2013, and lasted 4 weeks (45). Two 

centres were involved, the Royal Liverpool University Hospital and the National 

Institute of Rheumatic Disease, Piestany. The 8mg dose showed the least variability 

and was found to reduce urinary HGA levels down by on average 99.4%, as well as 

reducing serum HGA to undetectable levels in 7/8 patients (45,50).  
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1.3.2 Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2)  

This study is designed to test whether nitisinone slows down the progression of the 

disease in AKU. SONIA 2 commenced in 2014 and is expected to finish in 2019. 138 

patients were enrolled and were randomly divided into two equal groups of 69. One 

group receives nitisinone (10mg/day) and the other group does not. This trial is based 

across three clinical sites in Liverpool, Piestany and Paris. Patients attend their 

allocated test centre a total of six times, each visit lasting up to 4 days. SONIA 2 aims 

to elucidate the impact of nitisinone on HGA levels in the body over a period of 4 

years; this will define whether nitisinone has a positive impact on HGA levels and 

whether it is safe long term. If nitisinone is proven to be beneficial in the treatment 

of AKU the DevelopAKUre consortium will apply for a drug license for AKU (49,50).      

1.3.3 Subclinical Ochronotic Features in Alkaptonuria (SOFIA) 

This study is an observational cross-sectional study that commenced early 2017. 

SOFIA is designed to investigate the onset of ochronosis and to define the best time 

to begin treatment with nitisinone. Thirty patients (15 males, 15 females) were 

recruited for SOFIA from a range of ages. They were split into 8 age groups (16-20, 

21-25, 26-30, 31-35, 36-40, 41-45, 45-50, 50+) with 4 patients in each group (2 males, 

2 females). This trial will involve study patients visiting the clinical site in Liverpool for 

three days where a series of tests will be performed including urine tests, blood tests, 

MRI scan, ear cartilage biopsy and gait analysis. All samples will be analysed for 

ochronosis, and will be compared with 30 healthy volunteers without AKU (49,50).   
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1.4 Cartilage  

Cartilage is an avascular, flexible connective tissue found throughout the body, 

providing support to adjacent tissues. Cartilage is devoid of blood vessels, lymphatics 

and nerves; it therefore derives oxygen and nutrients via diffusion. This results in 

cartilage having a limited capacity to repair (51). Cartilage is composed of 

chondrocytes, embedded within an extracellular matrix. Chondrocytes maintain and 

regulate the turnover of extracellular matrix (52). There are three different types of 

cartilage in the body, hyaline cartilage, fibrocartilage and elastic cartilage. These 

three types differ slightly in term of the structure and function (53). Hyaline cartilage 

is the most abundant type. It is found at the ventral ends of the ribs, the tracheal 

rings, larynx and bronchi and it also forms the articular surfaces of long bones 

(articular cartilage). Hyaline cartilage matrix consists of type II collagen and the 

glycosaminoglycan chondroitin sulphate and is covered externally by perichondrium, 

a fibrous membrane that contains vessels that provide oxygen and nutrition (except 

articular cartilage) (53). Fibrocartilage contains abundant collagen and fibrous tissue. 

Fibrocartilage is distinct in that it contains Type I and Type II collagen. Type I collagen 

provides considerable tensile strength and the ability to resist compressive forces, 

therefore fibrocartilage is found in regions requiring these properties such as the 

annulus fibrosus of the intervertebral discs, pubic symphysis, menisci of the knee and 

the temporomandibular articular disc. Lastly, elastic cartilage histologically looks 

similar to hyaline cartilage in that it contains type II collagen and chondroitin 

sulphate, however it also contains many elastic fibres that lie in a solid matrix, 

providing this type of cartilage with great flexibility that can withstand repeated 

bending. Elastic cartilage can be found in the pinna of the ear and the epiglottis (53).    
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1.4.1 Articular Cartilage Structure 

Articular cartilage (AC) is highly specialised hyaline cartilage of diarthrodial joints. It 

functions to provide a smooth, lubricated surface for articulation, and to facilitate 

load transmission through the joint. Typically, AC is 2-5mm thick, and is completely 

avascular, aneural and is devoid of lymphatic drainage. AC is composed of 

chondrocytes embedded in a dense extracellular matrix (ECM) of water, collagen and 

proteoglycans and has a layered, organised structure (54). Morphologically AC is 

organised into four zones (Figure 1.5); the uppermost layer is the superficial 

(tangential) zone, immediately deep to this layer is the middle (transitional) zone, 

followed by the deep zone and calicifed zone. The superficial, middle and deep layers 

are un-mineralised and often referred to as the hyaline articular cartilage (HAC). The 

calcified zone is mineralised and is often referred to as the articular calcified cartilage 

(ACC) (52). AC provides an extremely smooth, firm yet deformable layer that 

increases contact area between bones and therefore reduces contact stress. 
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1.4.1.1 Superficial zone 

The thin superficial zone acts to protect the deeper layers, and provides a gliding 

surface for articulation. The superficial zone makes up 10% to 20% of the overall HAC 

thickness. The collagen fibres (mainly collagen type II and IX) are packed tightly and 

arranged parallel to the articular surface (54).  The chondrocytes are flattened and 

relatively high in number and express lubricin (essential for lubrication). This layer is 

in contact with the synovial fluid, and acts to resist shear, tensile and compressive 

forces. The integrity of this layer is paramount for the protection of the deeper layers, 

and is often the first layer to show changes in OA (Figure 1.5) (51). 

1.4.1.2 Middle Zone  

The middle zone provides an anatomical and functional bridge between the 

superficial and deep zones and represents approximately 40-60% of the overall HAC 

thickness. It contains obliquely orientated collagen fibrils and low density spherical 

chondrocytes embedded in dense ECM that is rich in proteoglycans such as aggrecan 

(54). The middle zone functions to resist compressive forces and transfers them from 

the superficial zone to the deeper zones (Figure 1.5) (52). 

1.4.1.3 Deep Zone  

The deep zone represents approximately 30% of the overall HAC volume, and 

contains the highest number of proteoglycans and the largest diameter of collagen 

fibrils. It therefore, functions to provide the greatest resistance to compressive 

forces. The collagen fibrils and spherical chondrocytes are arranged in vertical 

columns perpendicular to the joint surface. Cellular density is lowest in the deep zone 
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(approximately 1/3 the density of the superficial layer) however it contains the 

largest amount of aggrecan (Figure 1.5) (52,54).   

1.4.1.4 Calcified zone  

The calcified zone, also known as the ACC plays an integral role in securing the 

cartilage to bone by anchoring the collagen fibrils of the deep zone to the SB. The 

basophilic tidemark distinguishes the deep zone from the ACC. The cell population is 

scarce and the chondrocytes are hypertrophic and synthesise type X collagen that 

calcifies the surrounding matrix. Calcification of the matrix provides structural 

integrity important for shock absorption (51,54). The SB is located beneath the ACC 

and includes the subchondral plate (comprises the ACC and a thin cortical bone layer) 

and the underlying trabecular bone (Figure 1.5).  
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Figure 1.5 Zones and morphology of articular cartilage. Chondrocytes are flat and 

collagen fibres lie parallel to the surface in the superficial zone. Chondrocytes in the 

middle zone are rounded with random orientation and oblique collagen fibrils. 

Chondrocytes in the deep zone are spherical and orientated in columns with vertical 

collagen fibrils orientated perpendicular to the surface. The tidemark (represented 

by the thick black line) separates the hyaline articular cartilage (composed of the 

superficial, middle and deep zones) with the articular calcified cartilage (ACC). 

Chondrocytes in the ACC are rounded, and collagen and proteoglycans are absent. 

The ACC chondrocytes are hypertrophic and synthesise type X collagen, which upon 

release from the cell calcifies the surrounding matrix (Adapted from (52,54,55)).  
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1.4.2 Extracellular matrix 

As well as the zonal regions, the ECM has distinct regions based on the proximity to 

the chondrocyte and collagen composition and organisation. The ECM can be divided 

into the pericellular, territorial and interterritorial regions (Figure 1.6) (54). The 

pericellular matrix (PCM) directly surrounds the chondrocyte and contains mainly 

proteoglycans and glycoproteins. This region is thought to play a functional role in 

initiation of signal transduction in response to load (56). The territorial matrix (TM) 

surrounds the pericellular matrix and is composed of a network of fine collagen fibrils 

that protect the chondrocytes against mechanical stresses. The interterritorial matrix 

(ITM) is the largest and is characterised by abundant proteoglycans and the random 

organisation of collagen fibres (Figure 1.6) (54).  

 

AC contains between 65%-80% tissue fluid. Water is the most abundant component. 

The flow of water through the ECM and across the articular surface distributes 

oxygen and nutrients to the chondrocytes as well as providing lubrication (54). The 

dry weight of the ECM is composed of collagen, proteoglycans and a small number of 

lipids, phospholipids, non-collagenous proteins and glycoproteins (Figure 1.7). 

Collagen is the most abundant structural molecule in the ECM and accounts for up to 

60% of the dry weight of cartilage. Type II collagen represents approximately 90% of 

the collagen within the ECM (54). Collagen types I, IV, V, VI, IX and XI are also present 

but in small amounts and help to stabilise the type II collagen fibrillar network.  

Collagen fibres provide tensile strength to the cartilage and provide a binding site for 

proteoglycans. Proteoglycans contribute 10% - 15% of the wet weight. Proteoglycans 
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are composed of a protein core with one or more glycosaminoglycan chains 

covalently attached that extend out from the core and remain separate due to the 

charge repulsion. AC contains many essential proteoglycans. The largest (250,000d) 

and most abundant is aggrecan. Aggrecan is highly glycosylated proteoglycan, 

composed of 90% carbohydrate derived from two types of glycosaminoglycan; 

chondroitin sulphate and keratin sulphate. Aggrecan interacts with hyaluronan (HA) 

via link proteins to form large protein aggregates (Figure 1.7). The entrapment of 

these large aggregates within the collagen matrix provides the unique mechanical 

properties of cartilage (52). Chondrocytes are the only cell type responsible for 

synthesising ECM as well as regulating ECM turnover, however they only represent 

5% of the total volume of the cartilage (52).  
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Figure 1.6 Chondrocyte structure. Chondrocytes are contained in lacunae containing 

extracellular fluid and are surrounded by pericellular matrix (PCM), together they are 

termed the ‘chondron’. The territorial and interterritorial matrix constitutes the rest 

of the cartilage occupied by the chondrocytes. The territorial matrix (TM) surrounds 

the chondron and is highly basophilic due to the high number of proteoglycans and 

along with the  interterritorial matrix (ITM) acts to dissipate load (55,57).  
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1.4.3 Chondrocytes 

Chondrocytes are highly specialised, metabolically active cells found in cartilage that 

function to synthesise, maintain and repair ECM. Chondrocytes constitute 

approximately 2% of the total volume of AC and vary in number and size across the 

various zones of AC (54). Each chondrocyte establishes a specific microenvironment 

and is responsible for the turnover of ECM in its immediate vicinity. The chondrocyte 

and pericellular matrix forms a functional unit called an ‘chondron’ (58). Rarely do 

chondrocytes form cell-to-cell contacts for direct signal transduction, however they 

are responsive to a variety of stimuli including growth factors, cytokines, mechanical 

load and hydrostatic pressures (59). Under normal physiological conditions 

chondrocytes maintain ECM, however when cartilage becomes damaged, 

chondrocytes respond by secreting inflammatory cytokines (including interleukin 1 

and tumor necrosis factor -α) that result in increased synthesis of metalloproteinases 

that in turn break down ECM (60). The ageing process also influences the organisation 

of chondrocytes, their response to external factors and therefore the composition of 

the ECM that ultimately results in degradation of the articular surface. This results in 

OA, and is accelerated by injury or disease. OA affects approximately 60% of men and 

70% of women older than 65 years (52,61), and it has been forecast that 25% of the 

adult population (18 years and older) will be affected by the disease by the year 2020 

(62).  
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Figure 1.7 The molecular arrangement of extracellular matrix in cartilage.  ECM is 

composed of collagen, proteoglycans and a small number of lipids, phospholipids, 

non-collagenous proteins and glycoproteins. Collagen is the most abundant 

structural molecule in the ECM and accounts for up to 60% of the dry weight of 

cartilage. Type II collagen represents approximately 90% of the collagen within the 

ECM. Collagen types I, IV, V, VI, IX and XI are also present but in small amounts and 

help to stabilise the type II collagen fibrillar network. Proteoglycans contribute to 

10%- 15% of the wet weight. Proteoglycans are composed of a protein core with one 

or more glycosaminoglycan chains covalently attached that extend out from the core. 

AC contains many essential proteoglycans. The largest (250,000d) and most frequent 

is aggrecan. Aggrecan is highly glycosylated proteoglycan, composed of 90% 
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carbohydrate derived from two types of glycosaminoglycan; chondroitin sulphate 

and keratin sulphate (KS). Aggrecan interacts with hyaluronan via link proteins to 

form large protein aggregates. The entrapment of these large aggregates within the 

collagen matrix provides the unique mechanical properties of cartilage (52) (Image 

taken from (63)).  

1.4.4 Collagen 

Collagen is the most abundant macromolecule in ECM and accounts for 

approximately 60% of the dry weight of cartilage. Fifteen distinct collagen types have 

been identified and despite their structural diversity all have the characteristic triple 

helix, composed of three α-polypeptide chains (64). Type II collagen represents 95% 

of the total collagen in the ECM, however types I, IV, V, VI, IX and XI are also present 

but at much lower frequencies. Type II collagen consists of three α1(II)- polypeptide 

chains containing a glycine residue every third position resulting in a ‘Gly-X-Y’ repeat, 

X being proline and Y being hydroxyproline to provide stability via hydrogen bonds 

along the chain (65). This triple helical structure provides AC with impressive shear 

and tensile properties, stabilising the matrix. Type I collagen is the most abundant 

collagen in bone forming 90% of the organic mass. The collagen I triple helix is formed 

by a heterotrimer of two identical α1(I)- chains and one α2(I)- chain. Type I collagen 

provides tensile strength and torsional stiffness and provides bone with great load 

bearing qualities (64). The biosynthesis of collagen is a complex, multistep process 

involving intra and extracellular processes. The first step of collagen biosynthesis is 

transcription of the collagen genes within the nucleus producing mRNA. The 

ribosome bound mRNA is then translated into procollagen α-chains in the rough 
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endoplasmic reticulum. The proline and lysine residues are then hydroxylated 

forming hydroxyproline and hydroxylysine residues respectively (requiring vitamin-

C). Hydroxyproline is necessary for intermolecular hydrogen bonds essential for the 

stability of the triple helix. Hydroxylysine is responsible for the cross linking of 

collagen molecules during fibril formation. Glucose and galactose are added to the 

hydroxyl group of lysine (glycosylation). The hydroxylated and glycosylated pro-

peptides form the triple helix, and the procollagen is transported to the golgi complex 

where they are packaged into secretory vesicles for further processing. From here 

the procollagen trimers are secreted out into the extracellular space and the 

procollagen is cleaved at the C- and N-propeptides by specific enzymes forming 

tropocollagen. The final stage involves self-assembly of tropocollagen into fibrils and 

cross linkage of the collagen fibril for stabilisation (64,65).  
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1.5 Bone  

Bone is characterised by its strength and rigidity, providing support and protection 

for the body, as well as the power to regenerate and repair itself. Unlike cartilage, 

bone is highly vascular with a high cell content, allowing bone to adapt to changing 

mechanical demands (modelling) and to repair and regenerate following injury. Bone 

also undergoes remodelling to remove old bone with new, stronger bone, preserving 

bone strength (66). Gross inspection of bone has revealed two forms of bone tissue, 

cortical or compact bone which is dense, solid and surrounds the marrow space, and 

trabecular or cancellous bone that is found interspersed in the bone marrow 

compartment, composed of a honeycombed-like network of trabeculae. Cortical and 

trabecular bone have the same matrix composition. However, the mass of cortical 

bone matrix per unit volume is much greater. Cortical bone is usually limited to the 

outer shell of bone providing rigid articular surfaces, and is described as having an 

outer periosteal and inner endosteal surface. Trabecular bone has a much larger 

surface area and is found internally (67). Although cortical and trabecular bone have 

the same composition, the differences in arrangement and distribution facilitate the 

varied mechanical properties of different bones.  

Another categorisation of bone is based on the pattern of collagen forming the 

osteoid. Again, there are two types, woven bone which is characterised by 

disorganised and irregular arrangement of collagen fibres, and lamellar bone which 

is characterised by organised, parallel alignment of collagen fibrils organised into 

sheets. This structure gives lamellar bone great mechanical strength. Woven bone 

lacks this organised structure and is produced when osteoblasts lay down osteoid 
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rapidly. This occurs in all foetal bones during development as well as in fracture 

healing, however the woven bone is later reorganised into lamellar bone. Lamellar 

bone makes up almost all of a healthy adult skeleton (68). The arrangement of 

lamellae varies depending on the specific bone. The organisation of trabecular and 

the periosteal and endosteal surfaces of cortical bone, the lamellae form continuous 

circumferential layers located parallel to the bony surfaces. The central regions of 

cortical bone however are arranged in concentric cylinders around neurovascular 

channels called Haversian canals. Mineralisation is a gradual process that slows over 

time. Immature woven bone mineralises faster than lamellar bone. In cortical bone 

lamellae take on the form of cylindrical osteons. These structures mineralise from 

inside out, therefore the concentration of mineral is highest in the older peripheral 

layers and lowest in the inner newest layers (68).  

 

1.5.1 Bone Formation 

Bone formation or ossification occurs by two distinct processes during foetal 

development; intramembranous ossification (IO) and endochondral ossification (EO). 

IO is initiated by mesenchymal stem cells resulting in bone being laid down in the 

primitive connective tissue or mesenchyme. This process occurs in the skull, clavicle, 

and mandible. IO also occurs in the healing process of compound fractures. EO is the 

formation of bone from a hyaline cartilage precursor. This process occurs in the long 

bones and involves the ossification of bone in two different anatomical regions 

(primary ossification centre located in the centre of the diaphysis, and the secondary 

ossification centres located at both epiphyses) followed by the formation of AC and 
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epiphyseal plate. This process is essential during the natural healing of long bones 

(66,68).   

1.5.2 Bone Matrix 

Calcified bone matrix is a composite material made up of organic and inorganic parts. 

The organic component constitutes approximately 25% of the wet weight of bone, 

the inorganic component constitutes approximately 70% with water contributing to 

approximately 5% of the remaining wet weight of bone. The organic component 

primarily consists of collagen type I (approximately 90%) and other structural 

proteins such as proteoglycans and glycoproteins. This gives bone its form and ability 

to resist tension (66). The inorganic or mineral component consists of hydroxyapatite 

(99%) giving bone its hardness, rigidity and strength and is the main reason bone is 

seen on radiographs. Bone mineral also has an important carbonate component and 

a small amount of calcium phosphate (67). Hydroxyapatite [Ca10(PO4)6(OH)2] is the 

chief mineral salt of bone, contributing to approximately a quarter of the volume and 

half of the mass of adult bone. Hydroxyapatite is deposited along the collagen fibril 

where the crystals are packed close together. The major ions in bone mineral are 

calcium, phosphate, hydroxyl and carbonate. Fluoride ions can substitute for 

hydroxyl ions (as in 18F PET imaging) and carbonate can substitute for hydroxyl or 

phosphate ions.  The calcium and inorganic phosphate are derived from nutritional 

sources obtained from blood plasma. Calcium phosphate matures through several 

steps to produce hydroxyapatite (66).  
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1.5.3 Bone cells  

The cellular components of bone are associated with specific functions. Osteoblasts 

form new bone, osteocytes maintain bone, and osteoclasts resorb bone. Bone cells 

originate from two cell lines: a mesenchymal stem cell line where osteoblasts and 

osteocytes develop and a haematopoietic stem cell line where osteoclasts develop. 

Osteoblasts are mononucleated cells that line up along the surfaces of new bone and 

are responsible for the deposition of new bone matrix. They are also responsible for 

the regulation of osteoclasts in response to systemic hormones such as parathyroid 

hormone and local cytokines (66,67). As the osteoblasts secrete bone matrix some of 

them ultimately get trapped giving rise to osteocytes which gradually stop secreting 

osteoid. Osteocytes are mononucleated and represent terminally differentiated 

osteoblasts. Osteocytes are the most abundant cell in bone and constitute 90% of 

cells in the mature skeleton. They are thought to act as mechanosensors instructing 

osteoblasts when and where to make new bone and instructing osteoclasts when and 

where to resorb it. They are also thought to play a role in regulating the response of 

bone to mechanical loading (69,70). Osteoclasts are multinucleated cells responsible 

for resorbing bone matrix. Unlike osteoblasts and osteocytes, osteoclasts are derived 

from the hematopoietic stem-cell precursor and contain abundant mitochondria and 

lysosomes. Osteoclasts have an extremely efficient method to destroy bone matrix, 

they migrate to the bone surface and resorb bone via a phagocytic method by 

establishing an acidic environment to solubilise bone matrix and then secreting acid 

proteases to degrade the remaining matrix (67).    
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1.5.4 Bone Remodelling  

Bone remodelling is the process whereby bone is continually renewing itself 

throughout life. Bone remodelling is a lifelong active and dynamic process that relies 

on the correct balance between bone formation by osteoblasts and bone resorption 

by osteoclasts. These two functions are tightly coordinated, and vital to maintain 

bone homeostasis. When this coupling is lost the skeleton can become compromised. 

An increase in osteoclast activity or a decrease in osteoblast activity leads to 

reduction in bone loss and osteoporosis. In contrast osteopetrosis is the result of 

failure of osteoclasts to resorb bone leading to increased bone mass (71).  

Bone remodelling maintains the structural integrity of the bone and serves its 

metabolic function of storing calcium and phosphorus. Remodelling also allows the 

substitution of infantile bone for the stronger organised adult bone, removal and 

repair of micro fractured or ischaemic bone, acts to maintain correct calcium 

homeostasis, as well as responding to mechanical loading (thus bone is laid down in 

areas experiencing increases in load to provide increased strength) (66). The bone 

remodelling cycle includes a series of highly controlled steps involving osteoblasts 

and osteoclasts. The first phase is the activation phase where different inputs such as 

microfracture, an increase in mechanical loading detected by osteocytes, or factors 

released in the bone microenvironment activate quiescent osteoblasts (lining cells). 

The next phase is the resorption phase where osteoclasts adhere to the bone surface 

and begin to dissolve the bone followed by the reverse phase where the debris 

produced during matrix degradation is removed. The final stage is the formation 
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phase where osteoblasts produce new bone matrix initially as non-calcified osteoid 

then promoting mineralisation (71).     

1.5.5 Subchondral bone  

SB is the zone of epiphyseal bone beneath the ACC and includes the subchondral 

plate and underlying trabecular bone (Figure 1.5). The subchondral plate includes the 

ACC and thin layer or cortical bone. SB is a key player in protecting the joint due to 

its important shock absorbing and supportive functions to the joint and has been 

shown to attenuate 30% of the joint load, providing a mechanical base for cartilage 

(72). SB not only provides important mechanical support to cartilage but it provides 

important nutrients and facilitates removal of waste products. SB undergoes 

constant adaptation in response to alterations in the biomechanical environment 

including increases in mechanical loading due to increased body mass, weakened 

muscles with age and joint instability due to injury (73). SB is known to be extremely 

important in the pathogenesis of OA and has been used as a key target for treatment. 

SB changes have also been associated with ochronotic arthropathy in AKU.  

 

1.5.6 Osteoarthritis  

OA is the most common degenerative joint disease in the world and is characterised 

by loss of AC, SB remodelling and osteophyte formation. OA is a polymorphic disease 

presenting with a variety of clinical symptoms including chronic pain, joint instability, 

stiffness and radiographic joint space narrowing (62). The aetiology of OA is 

multifactorial, and several risk factors have been linked to the pathogenesis such as 
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ageing, menopause, joint injuries, genetic predisposition and obesity. Ageing is 

considered as one of the most common risk factors. Collagen fibre network stiffens 

with age resulting in a gradual loss of proteoglycan and water content, this 

predisposes collagen fibrils to damage via physiological mechanical loading during 

daily activities (73). Additionally ageing chondrocytes are associated with increased 

oxidative stress resulting in cell senescence and altered mitochondrial function as 

well as reduced repair response (62). SB undergoes changes during the OA process 

including, increased bone turnover, microfractures, angiogenesis and in later stages 

bone sclerosis subsequently leading to alterations in the mechanical properties of 

overlying cartilage. SB stiffness is thought to decrease the viscoelastic properties 

resulting in a reduction in shock absorbing qualities of SB and leading to extra 

mechanical loading being distributed to cartilage. This ultimately destroys the joint 

(72). With such a multifactorial aetiology the molecular mechanisms are still to be 

fully understood. Hence this is why there is still no treatment to restore degraded 

cartilage or to stop the progression of OA.  

 

1.5.7 Osteoarthritis and Alkaptonuria 

Rare diseases have been a neglected area of study in OA research. It is widely 

recognised that research into rare diseases can provide us with valuable lessons that 

apply to much more common disorders. Often rare diseases have extreme 

phenotypes and disease progression is often much more rapid and predictable 

making it easier to identify the pathological changes. Investigating AKU 

(characterised by rapid early onset osteoarthritis) has already provided important 
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lessons in the understanding of OA however, more work is needed to fully 

understand the initiation and progression of both disorders. Although AKU is a 

metabolic disorder and the mechanism of joint destruction being due to the molecule 

HGA resulting in ochronosis, there are many parallels between the pathophysiology 

of OA and AKU (74). Age related changes lead to alterations in the organisation and 

composition of the ECM. In AKU HGA is the culprit whereas in non-AKU joints, 

reaction with sugar molecules leads to the production of advanced glycation end-

products. This leads to a stiffening effect on the collagen fibrils resulting in a 

reduction in the ability to resist mechanical loading leading to structural damage. 

These changes are initiated in the calcified cartilage, then they spread through to the 

hyaline cartilage resulting in aberrant transmission of mechanical loading to bone 

ultimately resulting in resorption of the subchondral plate (74). Knowledge gained 

from AKU research of great significance is the identification of high density 

mineralised protrusions (HDMPs). Studies using AKU tissue samples and the AKU 

mouse model revealed microanatomical cracks in the subchondral plate termed 

HDMPs that have never been previously identified. Later these changes were 

identified for the first time in OA indicating that they are widespread in OA too 

(13,75).  Future research aims to make a significant contribution to the development 

of effective therapies and identification of novel biomarkers for OA.  

 

1.5.8 Intervertebral disc anatomy 

The IVD is a fundamental building block of the spine located between adjacent 

vertebrae in the vertebral column (Figure 1.8). Each IVD forms a fibrocartilaginous 
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joint allowing slight movement and flexibility of the spinal column. The function of 

the IVDs is to act as shock absorbers and to transmit and absorb mechanical loading 

down the spine (76). The IVDs occupy one-third of the height of the spinal column in 

a healthy adult and are approximately 3-5mm in height in the cervical region, 7mm 

in the thoracic region and 10mm in the lumbar region with a diameter of 

approximately 4cm in the lumbar region (77). The healthy IVD consists of three 

components: the central gelatinous nucleus pulposus; an outer fibrous ring, the 

annulus fibrosus; and the cartilaginous endplate that connects to the vertebral body. 

The annulus fibrosus consists of several (15-25) layers of concentric lamellae 

composed of type I and type II collagen. Type I collagen is organised around the 

periphery of the disc where it provides mechanical strength. Elastin fibres lie between 

the lamellae thought to help the disc return to its original arrangement after bending 

(77). 

The central nucleus pulposus contains collagen fibres, that are organised randomly 

and elastin fibres that are arranged radially embedded in a highly hydrated aggrecan 

containing gel (77). The nucleus pulposus functions to aid in distributing pressure 

evenly across the disc and acts as a shock absorber (78). The IVD is often likened to 

articular cartilage and resembles this in many ways, particularly in the biochemical 

components present.  

The third morphologically distinct region is the cartilage endplate, a thin horizontal 

layer usually less than 1mm thick of hyaline cartilage. This interfaces the disc and the 
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vertebral body. The collagen fibres within the cartilage end plate run horizontally and 

parallel to the vertebral bodies (78).   

The healthy IVD is avascular but contains some nerves, mainly restricted to the outer 

lamellae. The endplates, like other hyaline cartilage are completely avascular and 

aneural in a healthy adult. The capillaries, that originate in the vertebral bodies, 

terminate just above the cartilaginous endplate. Nutrients including HGA in AKU 

patients, must then diffuse from the capillaries through the endplate and the dense 

extracellular matrix of the annulus fibrosus and the nucleus pulposus to the cells, 

which may be as far as 8mm from the capillary bed (77).  

 

Figure 1.8 Anatomy of the intervertebral disc. The IVD is a fundamental building 

block of the spine located between adjacent vertebrae in the vertebral column. Each 

IVD forms a fibrocartilaginous joint allowing slight movement and flexibility of the 

spinal column. The healthy IVD consists of three components: the central gelatinous 

nucleus pulposus; an outer fibrous ring, the annulus fibrosus; and the cartilaginous 

endplate that connects to the vertebral body. Taken from (68).  
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1.5.9 Intervertebral disc degeneration 

IVD degeneration has been identified as one of the leading causes of back pain and 

motor deficiency. IVD degeneration is thought to be due to both age-related changes 

and tissue damage caused by multiple stresses. With age the nucleus pulposus 

dehydrates and its shock absorbing capacity reduces (76). The annulus fibrosus also 

weakens and is more likely to tear resulting in herniations. The end plates 

progressively thin and lead to sclerosis of the subchondral plate. The most significant 

biochemical change to occur in disc degeneration is the loss of proteoglycan which 

has a major effect on the discs loading properties (76). With loss of proteoglycan, the 

osmotic pressure of the disc falls and the disc is less able to maintain hydration under 

load resulting in the discs bulging. Importantly the loss of proteoglycan with 

degeneration links in with the exposed collagen hypothesis of AKU described by 

Taylor et al. where it has been suggested that tissues are initially resistant to the 

deposition of HGA due to the protective proteoglycans present. Following mechanical 

damage to the IVDs the protective proteoglycans are lost and HGA is able to bind to 

exposed collagen resulting in pigmentation, stiffening and further mechanical 

damage (76,79).  

The clinical features of a degenerating IVD are typically a reduction in disc height, 

structural deterioration, loss of lumbar lordosis and widespread calcification (76,79). 

Patients with ochronotic arthropathy usually present with lower back pain as a result 

of disc deterioration as the initial joint manifestation of AKU. Symptoms worsen from 

the fourth decade leading to painful spinal disease resulting in spinal stenosis and 

often changes to the curvature of the spine (kyphosis and scoliosis) (1).  
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1.5.10 Diagnostic imaging in OA 

Plain radiography remains the gold standard for diagnosis of OA. Many attempts have 

been made to develop diagnostic criteria to define OA. The first formalised 

radiographic classification of OA was introduced by Kellgren and Lawrence (KL) in 

1957, and was later accepted by the World Health Organisation (WHO) in 1961. They 

developed a five-grade classification scheme to define the severity of OA ranging 

from 0 – 4, with grade 0 signifying no OA, and grade 4 signifying severe OA (80). Table 

1.3 demonstrates the KL classification scale for OA severity. This classification scale is 

widely used in research and in clinical practice.  

 

Table 1.3 Kellgren-Lawrence radiographic classification scale for OA severity. 

Grades range from 0-4, 0 reflects no arthritic features present and 4 reflects severe 

osteoarthritis (Adapted from (80)). 

 

 

 

 

Grade  Description 

0 No radiographic features of OA 

1 Doubtful narrowing of joint space, possible osteophyte 
development  

2 Possible narrowing of joint space, definite osteophytes  

3 Definite narrowing of joint space, moderate multiple 
osteophytes, some subchondral sclerosis, possible joint 
deformity  

4 Marked narrowing of joint space, large osteophytes, severe 
subchondral sclerosis, definite joint deformity.  
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1.6 Medical Imaging in AKU 

Medical imaging refers to several different technologies that are used by a clinician 

to visualise both the morphology and the function of the human body to diagnose, 

monitor and treat medical conditions. Medical imaging is utilised routinely for all AKU 

patients that attend the NAC and the SONIA 2 clinical trial. These AKU patients 

undergo the following investigations annually; X-ray of the spine, bone mineral 

density testing (DEXA scan) or quantitative computer tomography (QCT), Tc99m 

isotope bone scintigraphic scan or 18F-NaF  PET/CT scan (post 2016), whole body MRI 

as well as echocardiogram and abdominal ultrasound (46). These images are 

repeated annually for each patient documenting longitudinal pathological changes.  

 

1.6.1 History of medical imaging  

120 years ago, physicians could only rely on external signs and symptoms to diagnose 

and treat a patient. If they needed to look inside, surgery was the only option. This 

changed in November 1895 when X-rays were first discovered, this remains the most 

important discovery in the history of medical technology and enabled physicians and 

medical professionals to obtain images of inside the body for the first time (81). 

Wilhelm Conrad Röntgen, a German professor of physics discovered the X-ray by 

chance. Röntgen discovered this with an early cathode ray tube, he noticed that the 

invisible rays could penetrate some solid objects (human flesh) better than others 

(bone and metal). He first introduced the radiographs at the Würzburg Physical 

Medical Society, where he sent a report with the famous X-ray picture of a hand and 

wedding ring, believed to be his wife’s Bertha. Röntgen was a pioneer in medical 
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imaging, the most important of his findings was that he identified the ability of 

various materials of the same thickness to transmit X-rays and this is dependent on 

their densities, he found also that the ability of samples of the same material to 

transmit X-rays depends on their thickness; an increase in thickness of the material 

decreases the transmission of the rays, and he found that photographic plates are 

sensitive to X-rays (82).  

The commercialisation and mass production of X-ray tubes spread worldwide quickly 

after his work was published and Roentgen was later awarded the first Nobel Prize in 

Physics in 1901 (83). By the 1920’s Fluoroscopy was introduced. Radio-opaque 

barium swallow or enema was administered, this enabled the radiologist to visualise 

motion through the gastrointestinal tract. Planar radiographs represent the anatomy 

in projections, so that the anatomical structures of the region scanned are 

superimposed on top of each other. X-rays therefore poorly depict small changes in 

density between tissues (81). X-ray tomography was later introduced in the 1940’s 

that sparked great fascination within the medical community. This imaging modality 

allowed visualisation of sections through the body without superimposition. X-ray 

tomography produces ’tomograms’ that display the anatomy slice by slice. This was 

achieved by rotating the X-ray tube around the patient so that only the desired slice 

of tissue stayed in focus.  

The first computer was made in 1946, and by 1970s Allan MacLeod Cormack and 

Godfrey Newbold Hounsfield invented computed tomography (CT), pairing the 

discovery of X-rays with the development and refinement of computational 

techniques (83). They were awarded the Nobel Prize for Physiology or Medicine in 
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1979. The first CT scan was performed in 1971, where an X-ray tube rotated around 

the patient and various detectors detected X-rays that were not absorbed, refracted 

or reflected as they passed through the body. Early computers took all night to 

process the images that today takes a few milliseconds (82).  

The risks of imaging using radiation were realised including the increased risk of 

developing cancer in the future. In 1973 Paul. C. Lauterbur an American Chemist, 

published his work on magnetic resonance imaging (MRI) that does not utilise X-rays. 

He utilised resistive magnets with weak magnetic fields producing images initially 

with low spatial resolution, however the soft tissue discrimination was seen to be 

superior to that of CT (84). In the late 1970’s Peter Mansfield an English Physicist 

developed the echo-planar imaging technique that would lead to clearer scans that 

take seconds rather than hours. In 2003 Paul Lauterbur and Peter Mansfield were 

awarded the Nobel Prize for Physiology or Medicine for their discoveries of MRI (83).           

1.6.2 Radiography  

Plain radiographs form the most basic, least expensive imaging tests carried out on 

patients with arthropathy. Radiographs have a useful role in symptomatic joint 

disease and highlight destructive lesions such as osteophytes, subchondral sclerosis 

and cysts. Radiography can also illustrate joint space width which determines AC loss 

as well as cartilage calcification (85).  
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1.6.2.1 Basic principles of radiography  

Radiography has been used for over 120 years since Röntgen discovered X-rays in 

1895. X-rays are a form of electromagnetic radiation which consist of high-energy 

photons (86). X-rays are produced in an X-ray tube consisting of a glass envelope, 

filament cathode, a copper anode and a tungsten target (Figure 1.9). The cathode is 

the source of electrons; the electrons are accelerated towards the target by applying 

a high voltage between the anode and the cathode. When the electrons hit the 

tungsten target they decelerate rapidly creating X-ray emissions (86).  The X-rays are 

passed through the patient and detected by the X-ray sensitive film located behind 

the patient (Figure 1.10). X-rays are absorbed by the material they pass through in 

differing amounts depending on the density and composition of the material. As the 

X-ray beam is passed through the body, some X-rays are absorbed or scattered 

attenuating the beam. Structures of high density (bone) cause high X-ray attenuation 

therefore appear lighter on the radiographic film and structures with low density 

(fat/air) cause less X-ray attenuation and appear darker on the film (87). Traditionally 

X-ray images were exposed onto photographic film and were processed in a dark 

room, today radiographic images are produced digitally using computed radiography 

or digital radiography. The digital images are sent straight to the viewing workstations 

and can be manipulated (images can be magnified, brightness/contrast can be 

altered and measurements can be taken) for better interpretation. Many medical 

imaging departments employ large data storage devices known as picture archiving 

and communication systems (PACS) this digitally stores all the images (including all 

other imaging modalities) allowing instant recall and display of patient scans (88).    



55 
 

Figure 1.9 Generation of X-rays in an X-ray tube consisting of A – cathode, B – 

Tungsten target (blue line), C – anode. The cathode is the source of the electrons 

(red arrows); the electrons are accelerated towards the target (B) by applying a high 

voltage between the anode (C) and the cathode (A). When the electrons hit the 

tungsten target they decelerate rapidly creating X-ray emissions (blue jagged lines) 

(Taken from (86)). 
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Figure 1.10 Set up of a chest radiograph. Posteroanterior X-ray where the X-ray beam 

originates from the X-ray tube passes through the patient and strikes the 

radiographic film (Taken from (87)).  

 

1.6.3 Bone densitometry  

Until recently plain radiographs were used to determine bone density, however this 

was an estimation and bone loss was not observed until bone loss exceeded 25-30% 

of its density. This led to finding more sophisticated methods of measuring bone 

density with the ability to detect early changes. The two most common tools used to 

measure bone mineral density (BMD) are dual-energy x-ray absorptiometry (DEXA) 

and quantitative computer tomography (QCT). These techniques are used to 

diagnose osteoporosis and to evaluate the risk of fracture. These imaging modalities 

are carried out routinely in both the NAC and the SONIA 2 clinical trial as it is widely 

recognised that changes in cartilage composition have direct implications for bone in 

AKU. The NAC patients have bi-annual QCT scans, and the SONIA 2 patients have 
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annual DEXA scans. In AKU it is proposed that chronic arthritis can impair bone 

architecture which then may predispose AKU patients to fractures (89). It is still 

however under debate as to whether bone lesions cause osteoarthritis or whether 

cartilage disease results in bone lesions, extensive research is still ongoing to 

understand this further.  

1.6.3.1 Basic principles- DEXA  

DEXA has long been used as the gold standard in the clinical diagnosis of 

osteoporosis. DEXA determines BMD in two dimensions and is based on the emission 

of two X-rays of two distinct energies (90). The fundamental principle of DEXA is the 

measurement of X-ray transmission through the body at high and low energies and 

the assumption that the body is a two-compartment model made up of bone mineral 

and soft tissue. The two X-ray beams of differing intensities are used to differentiate 

between bone and soft tissue. The ratio of attenuation of the two photon energies is 

analysed in anatomical sites containing bone and areas just containing soft tissue. 

The ratio of attenuation in areas of soft tissue can then be subtracted away leaving 

just the BMD (91,92).  

BMD is measured in g/cm², however it is more commonly referred to as the T-score. 

It is expressed as the number of standard deviations above or below the mean BMD 

of a healthy 30-year old adult (peak bone density) of the same sex and ethnicity as 

the patient. Figure 1.11 represents a DEXA report of an AKU patient. Table 1.4 

illustrates the WHO definitions of BMD levels. Osteoporosis is defined as a T-score 

equal to or below -2.5, Osteopenia as a T-score of below or equal to -1.0 and normal 
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BMD is equal to one standard deviation above or below that of a healthy adult (91). 

No upper reference value has been proposed as the adverse effects of increased BMD 

have been poorly studied. DEXA at the lumbar spine and femoral neck are the routine 

sites chosen to measure BMD. Spinal degeneration such as IVD calcification, 

osteophyte formation as well as abdominal aortic calcification has been shown to 

result in a false reading of increased BMD in DEXA. Yu et al. (93) reported that BMD 

measured by DEXA was significantly higher in patients with spinal degenerative joint 

disease changes than in those without. Spinal degeneration is inevitable in AKU and 

clinically presents around the fourth decade of life. This defines why it may be 

problematic to used DEXA as clinical findings may indicate osteoporosis, whilst the 

DEXA report may indicate BMD is normal (94). 

1.6.3.2 Basic principles - QCT 

QCT measures BMD using an X-ray computed tomography scanner containing a 

calibration standard to convert Hounsfield units into BMD values. The sites most 

commonly measured to determine BMD are the lumbar spine and hip (95). QCT is 

more costly and requires more ionising radiation than DEXA but has numerus 

advantages. This method yields volumetric 3D measurements of BMD as well as 

providing a measurement of trabecular and cortical bone density which is due to the 

difference in attenuation values of trabecular and cortical bone (95). This method has 

the ability to spatially separate highly responsive cortical bone from less responsive 

trabecular bone. This is useful because trabecular bone loss is affected earlier and to 

a greater degree than cortical bone. QCT is therefore likely to detect low BMD earlier 

in the spine than DEXA. Artificially high BMD due to spinal degeneration such as 
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calcification and osteophyte formation can therefore be avoided (94). QCT yields 

both BMD in g/cm³ and T-scores however, the WHO definition of osteoporosis (Table 

1.4) is specific to DEXA and should not be applied to QCT. It is important to note that 

QCT T-scores cannot be used to compare with DEXA T-scores. More often than not 

the QCT T-score results in a lower T-score than that of the DEXA report. It has been 

reported that a DEXA T-score of -2.5 equals an average T-score of -3.4 in QCT, 

therefore DEXA is currently the only method to diagnose osteopenia or osteoporosis 

from T-scores (96). This is due to a variety of factors such as the physiological effects 

of ageing and the menopause, the technical effects of increased mineral density due 

to osteophytes and aortic calcification, increased BMI as well as bone size (94). These 

effects will be discussed further in Chapter 5.   

 

Table 1.4 World Health Organisation definitions of bone mineral density levels. 

BMD- bone mineral density, SD- standard deviation (Adapted from (91)).     

Level Definition 

Normal BMD within 1 SD of the young adult mean 

Osteopenia BMD is between 1 and 2.5 SD below the young 

adult mean 

Osteoporosis BMD is 2.5 SD or more below the young adult 

mean 
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Figure 1.11 Dual-energy X-ray absorptiometry report. BMD is measured in g/cm³ of 

bone. The young adult T-score value represents how BMD compares to a healthy 30-

year old adult of the same sex and ethnicity (values of +1 or -1 represent normal BMD, 

values between -1 and -2.5 indicate osteopenia, values below -2.5 indicate 

osteoporosis). Age matched Z score compares BMD to others of the same age as the 

patient.  

 

1.6.4 Computed tomography  

CT is considered more sensitive than conventional X-ray imaging due to high spatial 

resolution and high contrast between low attenuating cartilage and high attenuating 

bone. Whole body CT and arthrography are utilised in AKU to determine cartilage 

damage and cartilage loss in the major joints affected. CT arthrography is excellent 

at depicting cortical bone and soft tissue calcifications as well as subchondral bone 

sclerosis and osteophytes associated with severe changes of OA (85).  
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1.6.4.1 Basic Principles - CT 

The word tomography is derived from the Greek word tomos, meaning slice. This 

definition demonstrates the fundamental limitations of the radiograph and 

represents the downfall that anatomical structures are viewed in a single plane and 

superimposed on top of each other. This led to the development of CT; an imaging 

modality whereby cross sectional images are obtained using X-rays (97). A CT scanner 

produces serial images that represent the X-ray attenuation of the various structures 

of the body.  In CT scanning the patient is passed through a rotating gantry that has 

an X-ray tube on one side and a set of detectors on the other side (86).  A fan shaped 

beam of X-rays is produced as the gantry spins around the patient and thousands of 

sectional views of the body are generated that are reconstructed into 2D cross 

sectional images. CT scans can be acquired very quickly and have a much higher 

resolution than conventional X-rays providing far more detailed images. The data 

captured by the scanner is digitally converted into reconstructed images using 

various algorithms (88). The individual volume elements that make up the image are 

represented as 2D pixels that correspond to the attenuation properties of that area 

(represented as Hounsfield units (HU)). In CT water is assigned an attenuation value 

of 0 HU, structures that are less dense than water have negative values (e.g. air = -

1000 HU, fat = -120 HU), structures that are more dense have positive values (e.g. 

muscle = 40 HU, bone = 500 HU). As in plain X-rays high density objects such as bone 

cause more attenuation of the X-rays and are therefore displayed as white or light 

grey, and the lower density tissues such as fat and air are displayed as dark grey or 

black (88). 
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1.7 Nuclear Medicine  

Nuclear medicine involves the application of radioactive substances in the diagnosis 

and treatment of disease. The purpose of radionuclide imaging is to obtain a picture 

of the distribution of the radioactive-labelled tracer around the body after it has been 

administered (either orally or intravenously). The emissions from the radioactive 

tracers are detected by cameras externally and are then converted into an image. 

Nuclear medicine in AKU uses phosphate analogues to visualise bone metabolism, 

changes of which occur in response to alterations in cartilage composition and 

structure (89). Positron emissions tomography (PET) is a branch of nuclear medicine 

where a positron-emitting radionuclide is injected into the subject. Fluoride 18- 

labelled PET imaging provides a unique non-invasive method to visualise bone 

metabolism, and molecular and cellular changes in affected joints. Changes in bone 

metabolism occur before clear morphological signs in OA and AKU, therefore PET 

imaging can be used to detect early pathological changes. PET also has a common 

place in oncology, used to diagnose bony metastasis as well as assess response to 

therapy (98,99). Hybrid imaging techniques involving fusion of PET data with CT data 

provide the clinician with cross-sectional functional and anatomical information used 

for more accurate diagnosis (89).   

PET imaging has superior spatial resolution compared to other functional imaging 

techniques such as SPECT (single-photon emission computed tomography). SPECT is 

similar to PET in that it utilises radiotracers and detects gamma rays however, SPECT 

radionucleotides directly emit gamma radiation without annihilation. The coincident 

detection of the photons in PET imaging provides more radiation event localisation 
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therefore better spatial resolution. SPECT imaging is performed using the gamma 

camera and acquires multiple 2D images that are reconstructed into a 3D images. PET 

imaging is performed using PET/CT scanner and acquires 4D images (100). 

1.7.1 History of Nuclear Medicine  

The development of nuclear medicine has been a multidisciplinary effort due to 

advances in physics, mathematics, chemistry, computer science and biology (101). 

The discovery of X-rays in 1895 lead to Henri Becquerel’s discovery of ‘mysterious 

rays’. Becquerel used salt of uranium and potassium and he noticed once exposed to 

sunlight the salt emitted radiation that blackened a photographic plate. This inspired 

many scientists to investigate this further and in 1897 Marie and Pierre Curie tried to 

isolate the substances that emitted these rays in doing so they discovered polonium 

and radium. They coined the term and confirmed the existence of  ‘radioactivity’ 

(102). In 1909 Sir Ernest Rutherford demonstrated what happens to an element 

during radioactive decay. Positron emission tomography (PET) is a branch of nuclear 

medicine that utilises the detection of a pair of gamma rays that are emitted 

indirectly by a positron-emitting radiotracer.  

The history of PET dates back to the late 1920’s, where the discovery of the positron, 

artificial radiation, invention of the cyclotron and recognition of radionuclides were 

among the important advances (101). In the 1950’s Hal Anger developed the first 

gamma camera; the Anger scintillation camera, a 2D planar detector that produces a 

2D projection image. Radon, developed the mathematical method to reconstruct 

projections in 1917 however, it was the 1970’s before its use in medical imaging came 
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to light. The first PET system was built in the 1970’s and used for phantom studies. 

The first human PET system was built soon after by Phelps and Hoffman et al. in 1975 

followed by Sokoloff et al. producing the first true image of the human brain in 1976 

(86). PET imaging continued to advance from here, in 2000 Beyer et al. conducted the 

first PET/CT scan marrying together both functional and anatomical information. 

Furthermore the development of technology and computer based algorithms 

enhanced image resolution and improved the use of PET as a clinical tool that has 

contributed to more accurate diagnosis of many diseases (103).   

 

1.7.2 Positron emission tomography- physical principles  

Proton rich isotopes decay via positron emission, in which a proton in the nucleus 

decays into a neutron, and  a positron and neutrino (104). Upon administration of the 

radiotracer the radioactive atom decays resulting in a positron being ejected from 

the nucleus. The positron travels a few millimetres before colliding with an electron 

resulting in an annihilation event producing two 511 KeV photons that travel in 

opposite directions. PET image acquisition is based on the simultaneous (coincident) 

detection of these two photons (Figure 1.12). The PET scanner consists of many 

photon detectors that are positioned surrounding the subject. During a PET scan 

millions of coincident detections are detected, that are reconstructed into electrical 

signals providing information about the distribution of the radiotracer (105).  
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Figure 1.12 Positron emission schematic. The PET isotope injected into the patient 

decays via positron emission. The positron is emitted from the nucleus and travels a 

few millimetres before colliding with an electron. This results in an annihilation event 

producing two 511 KeV photons that travel in opposite directions from one another 

(Adapted from (105)).  

 

1.7.3 Bone imaging radiopharmaceuticals  

Absorption of fluoride by bone, dentine and enamel was first discovered in 1940 

followed by the introduction of 18F-labelled sodium fluoride (18F-NaF) by Blau et al. in 

1972. 18F-NaF became widely used as a bone imaging agent and was approved by the 

U.S. Food and Drug Administration (FDA) in 1972 (106). 18F-NaF gained popularity due 

to its high skeletal uptake and rapid blood clearance resulting in high bone-to-

background ratio in a short space of time. Images can be obtained less than one hour 

after intravenous administration due to the relatively short half-life (Table 1.5). 
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Although 18F-NaF was the first widely used bone imaging agent it quickly fell into 

disuse. One limitation of 18F bone imaging was the requirement of imaging with high 

energy rectilinear scanners equipped with thick Sodium Iodide crystals due to the 

high energy (511 KeV) annihilation photons. Logistical challenges of the 110 minute 

half-life of 18F-NaF , the introduction of cheaper radiopharmaceuticals (technetium- 

Tc-99m) and the development of the Anger gamma camera designed for the 140 KeV 

photons of Tc-99m resulted in the FDA withdrawing its approval in 1975 (107). The 

widespread availability of Tc-99m generators resulted in Tc-99 labelled bone imaging 

agents to become the most commonly performed imaging procedure in nuclear 

medicine.  

The challenges associated with 18F-NaF  imaging were reassessed in 1992 when 

Dahlbom et al. (108) used 18F-NaF in the development of a whole-body PET technique 

that demonstrated increased spatial resolution, and greater photon capture due to 

coincident detection of photons. 18F-NaF whole body PET skeletal imaging was later 

introduced in 1993 with early studies showing promising results for both malignant 

and metabolic bone disorders. This led to the FDA re-issuing approval of 18F-NaF  for 

skeletal imaging in 2000 (106). Since then the development of combined PET/CT 

scanners, ease of production in a cyclotron (previously 18F-NaF was produced in a 

nuclear reactor with a two-step reaction) coupled with shortages of Tc-99m 

generators, has led to 18F-NaF being the preferred bone imaging agent once again 

(109).  

As a skeletal imaging agent 18F-NaF has superior skeletal kinetics compared to Tc-99m 

including faster blood clearance and two-fold higher bone uptake providing superior 



67 
 

bone-to-background ratio. This along with the added benefits of the PET scanner 

provides better spatial resolution, greater sensitivity and higher image quality (110) 

(Table 1.6). Furthermore, PET imaging allows quantitative measurements of NaF 

uptake that cannot be generated from other imaging modalities. Measurements that 

represent the uptake of NaF in a particular region of interest (ROI) can be used to 

assess the progression of disease and response to therapies (106).       

Table 1.5 Comparison between the characteristics of 18F-NaF  and Tc-99m MDP 

bone imaging agents (Adapted from (106)).  

Characteristic 18F-NaF  Tc-99m 

Radiotracer half-life 110 min 6 hr 

Emissions 511 KeV annihilation 

photons 

140 KeV photon 

Spatial resolution (mm) 3-6 4-15 

Organ receiving highest 

dose  

Bladder Bone 

Patient dose (mSv) 4.4-8.9  4.2-6.3 

Time to imaging after 

injection 

30-60 minutes 3-6 hr 

Technique  PET SPECT Anger camera  

 

1.7.3.1 Mechanism of 18F-NaF uptake 

Fluorine 18 is produced in a cyclotron by bombarding 18O-enriched water with high 

energy protons (111). Fluoride is well known to be taken up by bone mineral. The 

pharmacokinetics of 18F-NaF uptake essentially depend on the rates of bone uptake 

and elimination from the circulation via renal excretion. 18F-NaF  is administered 



68 
 

intravenously and the images are acquired 60 minutes’ post injection (112). 18F-NaF 

localises to bone and is distributed throughout the skeleton. The principle uptake 

mechanism involves absorption of 18F-NaF into the hydroxyapatite crystal of bone 

where substitution of 18Fˉ for OHˉ groups occurs. This results in covalent binding to 

hydroxyapatite (Ca10(PO4)6OH2) to form fluorapatite compounds (Ca10(PO4)6F2) (111). 

Uptake is higher in new bone (osteoid) due to the higher availability of binding sites 

(109). The rate of 18F uptake into bone therefore reflects the amount of actively 

mineralising bone present and closely resembles bone metabolism. Uptake in 

cartilage is seen in patients with calcification in the IVDs where 18F can bind to form 

fluoroapatite.  

Radiotracer delivery and localisation to bone depends on regional blood flow and the 

extraction rate of bone. Changes in radiotracer kinetics therefore relate to 

osteoblastic activity and or bone vascularity (110). Increased vascularity and bone 

turnover are both seen in osseous and metabolic diseases. Radioactive NaF clears 

biexponentially in plasma ensuring that only 10% of the administered dose remains 

after one hour. Soft tissue activity therefore should be minimal and reflects the 

amount of circulating 18F in the blood pool, hence good-quality images. Excretion of 

18F is via the urinary tract. Kidneys, ureters and bladder should be visible in the 

absence of renal insufficiency and urinary obstruction will cause increased tracer 

localisation proximal to the site of obstruction. Physiologic uptake of 18F in the 

skeleton is generally uniform in adults, and areas of increased localisation of tracer 

uptake reflects increased bone metabolism at that site (113).  
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Table 1.6 Advantages of 18F-NaF PET for studying bone tracer kinetics (Adapted from 

(110)). 

 

1.7.4 Quantitative measurement of 18F-NaF – SUVm  

Quantitative measurements in PET imaging are used as a tool to supplement visual 

interpretation providing a method that is less user-dependant and can be used for 

intra- and inter-patient comparisons. Today, uptake measurements are most widely 

used in oncology to assess response to therapies and to distinguish degrees of 

pathology (114). 18F-NaF PET has been applied to several kinds of bone disorders as 

18F-NaF binds to both osteoblastic and osteolytic lesions. Uptake values have been 

investigated for the early detection of OA (115). The standardised uptake value (SUV) 

is a common method of expressing the uptake of PET tracers. The SUV is a measure 

of radioactivity in a region of interest, normalised against injected activity and the 

subject’s body weight. The calculation can be seen in Figure 1.13 where the SUV is 

defined as the activity concentration in the ROI (kBq/mL) as measured by the PET 

scanner divided by the decay corrected injected dose of 18F-NaF  divided by the 

patient body weight (kg) that acts as a surrogate for the distribution volume of tracer 

(116). If all the injected 18F-NaF is retained and uniformly distributed throughout the 

18F-NaF Advantages 

Superior spatial resolution of PET scanner  

18F-NaF shows rapid bone uptake 

18F-NaF clears rapidly from blood  

High bone to soft tissue background  

18F-NaF easily generated in cyclotron by irradiation of 18O-enriched water 

PET scanners widely available  
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body, the SUV will be 1g/ml under the assumption that 1ml of tissue weighs 1g. Larger 

SUVs represent proportionally higher concentrations of radiotracer. The uptake is 

represented by pixel or voxel intensity value in the ROI, which is then converted into 

the activity concentration (117). SUV can be expressed as SUVm (mean SUV in ROI), 

SUVmin (minimum SUV in ROI) or SUVmax (maximum SUV in ROI). SUVs have been 

described in the literature as quantitative measurements of disease state. SUVs can 

be used to assess disease progression and response to therapy and has more recently 

been proposed as a diagnostic tool.  

 

 

 

 

Figure 1.13 Standardised uptake value calculation. Where ‘r’ is the radioactivity 

concentration (kBq/ml) in a ROI, divided by ‘a’ the decay corrected injected dose 

(kBq) divided by body weight (kg) (118).   

 

 

 

 

 

 

 

SUV =  
r 

(a / w) 
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1.7.4.1 SUV measurements in osteoarthritis 

PET imaging has been applied to OA for the visualisation of bone metabolism. 

Currently plain X-ray is the gold standard for diagnosing OA, however it is realised 

that functional abnormalities can exist without radiographic evidence. 18F-NaF PET 

has been shown to detect early changes in OA by identifying areas of accelerated 

bone remodelling associated with OA pathology. Kobayashi et al. (115) measured the 

SUV at the hip and revealed accelerated bone remodelling in late-stage OA. The 

SUVm was significantly associated with the radiographic stage of OA (KL grade), as 

well as the severity of pain. These authors suggested that hip pain may be related to 

subchondral bone abnormality caused by mechanical stress (115).  

The molecular kinetics of 18F-NaF PET is based on bone metabolism, other studies 

have assessed the use of 18-F fluorodeoxyglucose (18F-FDG), utilised to visualise 

inflammation by detecting accelerated glucose metabolism.  However, 18F-FDG has 

been shown to be more suitable for the detection of soft tissue inflammation as seen 

in synovitis or rheumatoid arthritis. Several studies have stated that there is no 

specific SUV that defines either benign or malignant lesions (119). However 

Kobayashi et al. (120) stated that a SUVm of 6.4 can be used to predict OA incidence 

or progression. SUVm has been used in the literature over SUVmin or max as the 

mean SUV in the ROI provides a better representation of the uptake in that site. The 

utilisation of SUVs in AKU has not previously been investigated. Considering the 

pathology of OA is comparable to that of AKU, it can be appreciated that these 

quantitative measurements could be beneficial in assessing AKU disease pathology 

as well as in the clinical trials to assess response to nitisinone.  
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Currently AKU patient 18F-NaF scans are analysed as part of the AKUSSI (Table 1.2) to 

assess the extent and burden of arthropathy. The scans are assessed by a nuclear 

medicine consultant and a visual assessment of the whole skeletal system is 

conducted, involving mapping of the various large joints with arthritic changes. The 

14 large joint areas scored include the hips, knees, ankles, feet, shoulders, elbows, 

hands including wrists. Spine involvement was also scored and included the cervical, 

thoracic and lumbar regions. The nuclear medicine consultant gives a score of 1 if 

there is increased tracer uptake at that anatomical site, and gives a score of 0 if there 

is normal uptake. These scores are then fed into the AKUSSI and contributes to an 

overall composite score of disease severity (46). Additionally an index of the relative 

activity of arthropathy is also given by visual assessment of the intensity of skeletal 

uptake, for example the scoring ranges from 0-3, where 0 = normal, 1 = mild, 2 = 

moderate and 3 = intense uptake (89). The AKUSSI describes the extent of disease 

manifestations but does not quantify disease burden. This thesis introduces for the 

first time, quantitative SUV measurements of bone and cartilage to assess disease 

state and progression in AKU.  

 

1.7.5 Maximum Intensity Projection  

A maximum intensity projection (MIP) image is a method of visualisation where the 

voxels with the highest intensity are projected on to a two-dimensional image. This 

method displays bone and contrast material - filled structures preferentially and 

other low attenuation structures are not well visualised. This method is useful 

clinically to visualise areas of high uptake of 18F into the skeleton or calcified tissues.  
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2.0 MATERIALS AND METHODS 
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2.1 ETHICAL APPROVAL  

Ethical approval for the NAC was approved by the Health and Life Sciences 

Committee on Research Ethics, University of Liverpool for ‘analysis of data from the 

National Alkaptonuria Service which could help us better understand AKU’ 

(reference:0310), dated 26/05/2017.  

Ethical approval for the SONIA 2 clinical trial was granted by the National Research 

Ethics Service (REC reference: 13/NW/0567), dated 17/9/2013.    

2.2 PATIENT GROUPS  

2.2.1 NAC 

Forty three adult AKU patients (17 females, 26 males) with a mean age of 49 (SD±14.8 

range 21-74) attended the National Alkaptonuria Centre in the Royal Liverpool 

University Hospital, Liverpool, England for baseline tests in 2012. A plethora of 

assessments and tests are carried out including the following; blood samples, urine 

samples, X-Ray, MRI, DEXA, PET/CT, ultrasound (abdomen and pelvis), clinical eye 

photographs, ear cartilage biopsies and echocardiograms. Patients all received 2mg 

of off-label nitisinone daily after the baseline visit. Twenty two of the forty three 

patients have attended the NAC annually for four visits after baseline providing 

longitudinal analysis of nitisinone. 
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2.2.2 SONIA 2 

AKU patients were recruited for the SONIA 2 clinical trial in 2014/15. 138 patients in 

total were enrolled, 69 of which were randomly selected to receive nitisinone 

(10mg/day). The 138 patients are based across three trial sites; Liverpool, Paris and 

Piestany. The Liverpool site has 41 patients attending (16 females, 25 males) with a 

mean age of 51 (SD±10.9 range 30-68) at baseline. Only the Liverpool patients were 

analysed for the purpose of this thesis. Data was available for visit 1 (baseline) and 

visit 3 (1-year post nitisinone/no treatment).     

 

2.2.3 CONTROL GROUP  

Ten female non-metastatic breast cancer patients were used as a control group with 

a mean age of 62 (SD±13.8 range 43-84). These patients had undergone 18F-NaF PET 

scanning to determine suspected bony metastasis. Exclusion criteria included active 

arthropathy of the spine, hips or shoulders.  

 

Table 2.1 Patient demographic characteristics for the 4 groups of patients analysed.   

Patient Group  SONIA 2 – AKU  NAC – AKU  NAC – AKU 

4 visits 

CONTROL  

Number of 

patients 

n= 41 n=43 n=22 n=10 

Male: Female 25:16 26:17 13:9 0:10 

Mean age (±SD) 51 (±10.9) 49 (±14.8) 47 (±16.1) 62 (±13.8) 

Age range 30-68 21-74 21-75 43-84 

Chapters 
analysed in: 

Chapter 4  
Chapter 6 

Chapter 3 Chapter 5 Chapter 4 
Chapter 5 
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2.3 PET/CT PROTOCOL  

Two hundred Mbq of 18F-fluoride was injected into the patient intravenously by direct 

venepuncture or intravenous catheter. Whole body PET and low dose CT views were 

acquired 60 minutes’ post injection. 

2.4 18F-NaF PET THRESHOLD APPLICATION 

2.4.1 IMAGE TYPE  

Maximum intensity projection (MIP) PET images were used for the threshold 

application study. MIP PET images are 3D reconstructions of PET data representing 

the maximum pixel value on every view. This method displays bone and calcified 

tissue preferentially providing a clearer image by blocking low attenuating structures 

like soft tissue that may occlude visualisation.  

2.4.2 IMAGEJ SOFTWARE 

ImageJ (1.49j) is a public domain, Java-based image processing program developed 

at the National Institute of Health. ImageJ can display, edit, analyse and process 8-

bit, 16-bit, 32-bit and RGB files and can read many file formats e.g. TIFF, JPEG, DICOM 

including stacks (121).   

2.4.3 HISTOGRAM ANALYSIS 

Baseline 8-bit MIP PET images of the 43 NAC patients were imported into Image J 

(1.49j). A histogram plot was created for each patient to analyse the distribution of 

pixel values within the image. The pixel values within the image ranged from 0-255 
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(0 = black, 255= white) (Figure 2.1). A large proportion of the pixel values in the image 

are white representing the background as demonstrated by the large spike around 

245, a small spike can be seen at pixel value 0 representing the areas of high uptake 

of 18F into bone and calcified tissue.  

 

 

Figure 2.1 Histogram plot of MIP PET image pixel value distribution. Pixel values 

ranging from 0 – 255 (0 = black, 255 = white) (NAC patient 9).  

 

Another histogram was created to further analyse the small spike at 0 as this 

represented the areas of high uptake of 18F thought to be associated with disease 

pathology (Figure 2.2A). A threshold value was then identified from the histogram 

and the pixel value was selected on the graph where the pixel counts start to increase 

(position indicated by the red line- pixel value 70) (Figure 2.2A). A threshold value 

was identified this way for every patient.  
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Figure 2.2 Histogram plot of MIP PET image pixel value distribution analysing the 

darkest pixels in the image (0 = black 255 = white). A- represents the spike at zero 

and demonstrates the threshold applied to the point on the graph where the pixel 

values start to increase (threshold value indicated by the red line – value of 70). B- 

demonstrates the counts in between pixel values 1 to 70.  
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2.4.4 THRESHOLD APPLICATION 

After obtaining a threshold value from each patient’s histogram plot (as described in 

section 2.4.3) this value was applied to the MIP PET image using ImageJ (Figure 2.3). 

The pixel values above the threshold value can be seen highlighted in red for easy 

visualisation in Figure 2.3. These pixel values were then considered as regions of 

increased uptake of 18F at that anatomical region. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Threshold application. 8-bit 18F MIP PET image with a threshold value of 

70 applied. The pixel values highlighted in red are identified as pixels above the 

threshold value.  

 

 



80 
 

2.4.5 ANATOMICAL SCORING 

The thresholded MIP PET images were then assessed anatomically. Both cartilage and 

bone were analysed for increased tracer uptake (pixels above threshold were 

considered as increased tracer uptake) and they were scored for the presence of pixel 

values above threshold. Figure 2.4 illustrates uptake of 18F into cartilage and bone of 

the spine demonstrating that the quality of these 18F MIP PET images enabled easy 

identification of bone and cartilage. The following anatomical regions were analysed, 

for the bony anatomy; the calcaneus, talus, midfoot, forefoot, tibia, fibula, patella, 

femur, hip, sacrum, vertebrae (L5-C1), scapulae, humerus, radius, ulna, carpal, 

metacarpal/ phalanges, clavicle and sternum. These regions were scored 0 or 1 (0= if 

no pixels were present above threshold 1= if pixels were identified above threshold 

(red)). For the cartilage, the joints of the foot, ankle, knee, hip, sacroiliac joint, 

intervertebral discs (S1/L5 – C1/C2), shoulder, elbow, wrist, hand were scored 0 or 1 

as described above. Figure 2.5 represents a labelled skeletal map demonstrating the 

various cartilaginous joints and bones analysed. This method aims to remove any 

subjectivity in observing regions of increased tracer uptake associated with disease 

pathology.  
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Figure 2.4 18F MIP PET images of lumbar vertebrae and intervertebral discs. Left 

image- control spine indicating healthy IVDs and vertebrae. IVDs appear light grey on 

the image due to few gamma photons. In contrast the vertebrae appear darker due 

to more gamma photons in these regions (18F binds to bone). Right image – AKU spine 

demonstrating increased uptake in the end plates of the vertebrae, as well as the 

cartilage of the IVD (red arrows indicate increased tracer uptake in the bony 

vertebrae, blue arrow indicates increased tracer uptake in the intervertebral disc). 

The quality of the 18F MIPs allows confident identification of cartilage and bone.  

 

 

 

 

 

 



82 
 

 

Figure 2.5 Labelled skeletal map of a human skeleton. Left image demonstrates the 

various bones assessed. Right image demonstrates the various cartilaginous joints 

assessed.  

 

2.4.6 CARTILAGE-ANATOMICAL THRESHOLD SCORE 

Cartilage anatomical threshold (C-AT) score represents a summation of all the 

cartilage scores (based on pixel values present above threshold) from the following 

joints; foot, ankle, knee, hip, S1-L5 - C2-C1 IVD (24 IVDs), shoulder, elbow, wrist and 

hand. A total of 32 joints were scored to give a maximum C-AT score of 32 (a score of 

one was given if increased uptake was observed in either right or left joint, if uptake 

was observed in both joints no extra score was given).  
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2.4.7 BONE-ANATOMICAL THRESHOLD SCORE  

Bone anatomical threshold (B-AT) score represents a summation of all the bone 

scores (based on pixel values present above threshold) from the following bones; 

calcaneus, talus, midfoot, forefoot, tibia, fibula, patella, femur, hip, sacrum, L5-C1 

vertebrae (24 vertebrae), scapula, humerus, radius, ulna, carpal, 

metacarpal/phalanges, clavicle and sternum. A total of 42 bones scored to give a 

maximum B-AT score of 42 (a score of one was given if increased uptake was 

observed in either right or left specific bone, if uptake was observed in both no extra 

score was given). 

2.4.8 TOTAL ANATOMICAL-THRESHOLD SCORE 

The total anatomical threshold (AT) score was added up to correlate with the total 

clinical score (based on the AKUSSI). The reason for this correlation was to see if the 

threshold methodology (Section 2.4.3, 2.4.4, 2.4.5) correlated with the nuclear 

medicine report assessed by the consultant (2.4.6). The total AT score was created by 

adding up the scores from the following joints (shoulder, elbow, wrist and hand, hip, 

knee, ankle, foot and lumbar, thoracic and cervical spine) to give a maximum total AT 

score of 10. Lumbar, thoracic and cervical spine was scored 1 if there were pixels 

above threshold identified in any of the vertebrae in the region, also right and left 

joints were not distinguished. If increased uptake was observed in one joint a score 

of 1 was given irrespective of if the other joint was affected too, exactly comparable 

to the total clinical score. Other anatomical regions analysed were excluded from this 

analysis as they were not scored as part of the AKUSSI.  
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2.4.9 TOTAL CLINICAL SCORE 

The total clinical score is based on the AKUSSI. The nuclear medicine consultant scores 

the MIP PET images ‘by eye’ scoring each large joint and spine based on increased 

uptake at that site. Increased uptake (subject to consultant’s opinion) is given a score 

of 1 in each large joint (shoulder, elbow, wrist and hands, hip, knee, ankle, foot and 

lumbar, thoracic and cervical spine). Right and Left joints were not distinguished in 

this score at baseline. Therefore, if increased uptake was observed in either the right 

or left joint a score of 1 was given, no extra scores were given if both joints were 

involved. These scores were added up to give a total clinical score that could be a 

maximum value of 10.    

2.5 OBTAINING THE STANDARDISED UPTAKE VALUE  

2.5.1 HERMES HYBRID VIEWER 1.4 

The medical imaging software Hermes hybrid viewer version 1.4 (Hermes medical 

solutions, Stockholm, Sweden) was accessed in the nuclear medicine department in 

the Royal Liverpool and Broadgreen University Hospital Trust, England. This 

diagnostic imaging software was used to view the PET/CT scans as well as to obtain 

the SUVms for Chapters 4 and 5.  
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2.5.2 MEASURING THE MEAN STANDARDISED UPTAKE VALUE – SPINE  

Hermes hybrid viewer 1.4 was opened, the appropriate patient was uploaded and 

whole-body PET and the time of flight (TOF) files were opened. The trans-axial, 

sagittal, coronal and CT (TSC+CT) views were selected to view the images (Figure 2.6). 

The centre of selected vertebrae and IVDs was defined by counting the number of CT 

slices the structure extended and selecting the middle slice. The triangulation point 

was used to align all viewing planes along the same axis and was placed in the middle 

slice at the centre of the vertebrae and IVDs (Figure 2.7). The circular region of 

interest (ROI) tool with a diameter of 1cm was selected (0.785cm2). The ROI was 

placed in the appropriate anatomical location in the trans-axial PET image (in the 

centre of appropriate vertebrae or IVDs) (Figure 2.8) and the SUV (mean, minimum 

and maximum values) was automatically calculated for each ROI.  

 

2.5.3 MEASURING THE STANDARDISED UPTAKE VALUE – HIP AND SHOULDER  

Hermes hybrid viewer 1.4 was opened, the appropriate patient was uploaded and 

whole-body PET and TOF files were opened. The trans-axial view was selected for 

each of the three modalities (CT, PET/CT and PET) as seen in Figure 2.9. The 

triangulation point was placed in the centre of the hip joint where the head of the 

femur articulates with the acetabulum and ROIs (0.5cm diameter, 0.196cm2) were 

placed in the acetabulum, head of femur and the AC, SUVms were obtained for each 

location (Figure 2.9). N.B. SUVms could only be obtained from the PET data so the 

ROIs were placed in the PET scan as seen in Figure 2.8.  The triangulation point was 

then moved to the centre of the shoulder joint where the head of the humerus 
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articulates with the glenoid fossa and ROIs (0.5cm diameter, 0.196cm2) were placed 

in the glenoid fossa, head of the humerus and the AC (Figure 2.10), and SUVms were 

obtained for each location. Exclusion criteria for this analysis included bilateral hip 

and/or shoulder replacements.  The right shoulder and hip were chosen for analysis. 

If the right side was replaced the left side was measured.
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Figure 2.6 18F-NaF PET/CT scan showing trans-axial (far left), sagittal (middle), coronal (far-right) and CT (top left image) views. The 

triangulation point can be seen placed in the centre of the fourth lumbar vertebrae (triangulation point is the point where the vertical and 

horizontal lines intersect). When selected, this brings the triangulation point into view in each plane. 
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Figure 2.7 18F-NaF PET/CT sagittal view of spine. Triangulation point (intersection 

of the orange lines) selected in the centre of the vertebrae (on the left) and in the 

centre of the IVD (on the right).  

 

 

 

 

 

 

 

 

 

Figure 2.8 18F-NaF PET trans axial view with ROI placed in the centre of the IVD.  

Triangulation point placed in appropriate position as shown in Figure 2.7, the ROI 

(1cm in diameter, 0.785cm2) was then placed in the trans-axial PET image.  
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Figure 2.9 18F-NaF PET/CT trans-axial section through the hip joint demonstrating ROIs placed in the head of femur (A), acetabulum (B) and 

the articular cartilage (C). Left image: CT, middle image: PET/CT, right image: PET data showing ROIs (0.5cm in diameter, 0.196cm2) in the 

acetabulum, head of femur and AC. (ROIs could only be measured using the PET data to obtain SUVms).  
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Figure 2.10 18F-NaF PET/CT trans-axial section through the hip joint demonstrating ROIs placed in the head of the humerus (A), glenoid fossa 

(B), and articular cartilage (C). Left image: CT, middle image: PET/CT, right image: PET data showing ROIs (0.5cm in diameter, 0.196cm2) in the 

head of humerus, glenoid fossa and AC.  

A 
B 

C 
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2.6 COBB ANGLE MEASURMENTS 

Cobb angles are used to standardise spinal curvatures. Thoracic kyphosis is the 

outward curvature of the thoracic spine. Normal thoracic kyphosis ranges from 20-

45 degrees, hyperkyphosis exceeds 45 degrees (122).  Lumbar lordosis is the inward 

curvature of the lumbar spine. There is no defined measurements that determine 

hyper or hypo lumbar lordosis as muscular strength, flexibility and BMI all affect this 

angle (123).  Scoliosis is defined as a lateral curvature of the spine of 10 degrees or 

more to the right or left (124). Spinal kyphosis, lordosis and scoliosis Cobb angles 

were measured for all SONIA 2 patients using the picture archiving and 

communications system (PACS) software. X-Ray and MRI images were electronically 

stored and accessed via PACS, and Cobb angles were generated for both scans for 

each patient. Access to the PACS system was via the Royal Liverpool and Broadgreen 

University Hospital Trust computer. 

 

2.6.1 X-RAY SCOLIOSIS MEASUREMENTS  

Whole body posteroanterior (PA) X-Ray view was selected to analyse scoliosis. Using 

the Cobb angle tool the end vertebrae of the curve were selected and lines were 

drawn to demarcate the vertebrae that lie at the upper and lower limits of the curve 

(the vertebrae that tilt the most towards the apex of the curve) (Figure 2.11A). The 

Cobb angle was automatically generated measuring the intersection of the two lines 

drawn. Scoliosis is clinically defined as a spinal curvature of more than 10 degrees to 

the right or left (124).   
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2.6.2 X-RAY THORACIC KYPHOSIS AND LUMBAR LORDOSIS MEASUREMENTS  

Lateral X-ray view was selected to measure thoracic kyphosis and lumbar lordosis 

Cobb angles. Using the Cobb angle tool the lower border of the twelfth thoracic 

vertebrae (T12) and the upper border of the fourth thoracic vertebrae (T4) were 

selected to define thoracic kyphosis (125) (Figure 2.11B). The Cobb angle was 

automatically generated by measuring the intersection between the lines selected. 

Normal kyphosis ranges from 20-45 degrees, hyper kyphosis is defined as more than 

45 degrees (122). Lumbar lordosis was measured from the lower border of the fifth 

lumbar (L5) vertebrae and the upper border of the first lumbar vertebrae (L1). 

Lumbar hyperlordosis is not defined by a Cobb angle (Figure 2.11B).  

2.6.3 MRI THORACIC KYPHOSIS AND LUMBAR LORDOSIS MEASUREMENTS  

 

Thoracic kyphosis and lumbar lordosis Cobb angles were also measured on MRI 

(Figure 2.11C). The MRI whole spine was selected using the PACS and the 

methodology of measuring thoracic kyphosis and lumbar lordosis was exactly as 

described in section 2.6.2.  
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Figure 2.11 PA X-Ray (A), lateral X-Ray (B) and T1 weighted whole spine MRI- 

sagittal view (C) to measure scoliosis, thoracic kyphosis and lumbar lordosis Cobb 

angles. Figure A demonstrates scoliosis Cobb angle, the lines are drawn at the upper 

and lower limits of the curve and the angle is automatically generated. Figure B 

demonstrates the kyphosis Cobb angle (red lines) where the lines are drawn at the 

lower border of thoracic vertebrae number 12, and the upper border of thoracic 

vertebrae number 4 and the lumbar lordosis Cobb angle (blue lines) where the lines 

are drawn at the lower border of the fifth lumbar vertebrae and the upper border of 

the first lumbar vertebrae. Figure C demonstrates the thoracic kyphosis (T4-T12) 

(green lines) and lumbar lordosis (L1-L5) (blue lines) Cobb angles in MRI.   
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2.7 SPINAL FLEXIBILITY MEASUREMENTS 

2.7.1 LUMBAR SIDE FLEXION MEASUREMENTS 

 

Lumbar side flexion was measured by a senior physiotherapist at the RLBUHT. 

Lumbar side flexion was measured by firstly asking the patient to stand up straight 

against the wall with their shoulders back and feet 12 inches apart. The distance 

between the tip of the middle finger and the floor was measured on the left and right 

sides. The patient was then asked to side flex and then the physiotherapist applied 

slight over pressure to push the patient further into the range, the distance between 

the tip of the finger and the floor was re-measured on both the left and right sides to 

obtain the passive range of motion. The difference between the two measurements 

on both the right and the left was calculated reflecting passive lumbar side flexion of 

the patient to the right and to the left in cm (126,127). The passive range of 

movement determines the maximum amount of movement possible at the joint, and 

is usually higher than the active range of movement which is the distance before the 

physiotherapist applies the slight over pressure to push the patients further into the 

range. The passive range of motion was used for analysis in this thesis.  

 

2.7.2 CERVICAL SPINE ROTATION MEASURMENTS  

 

Cervical spine rotation was measured by a senior physiotherapist at the RLBUHT. 

Cervical spine rotation was measured by firstly asking the patient to stand up straight 

against the wall with their shoulders back in a neutral position with the head facing 

forwards. The distance between the gnathion (midpoint of the lower border of the 
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mandible) of the chin to the lateral aspect of the acromion of the scapula was 

measured with the head looking straight forwards on both the right and left sides. 

The patient was then asked to turn their head to the right side with the 

physiotherapist applying over pressure to push the patient further into the range. 

The distance between the gnathion and lateral aspect of the acromion was re-

measured and the difference between the two values was then calculated to obtain 

the value for passive cervical spine rotation. These measurements were then 

repeated on the left (126,127). 

 

2.8 STATISTICAL ANALYSIS  

 

All statistical analysis was carried out using Stats Direct statistical software (Version: 

3.0.171). The data was plotted using Stats Direct to see if the data was normally 

distributed using the Kolmogorov-Smirnov (K-S) test. The K-S test produces a p value, 

if p>0.05 the data is assumed to be normally distributed. Histograms were plotted to 

confirm these distributions. Parametric tests were carried out on normally 

distributed data. Non-parametric tests were carried out on non-normally distributed 

data.   

 

2.8.1 PARAMETRIC TESTS 

Independent samples t-tests were carried out to compare the means of a normally 

distributed interval dependant variable for two independent groups. Paired 

(samples) t-test were carried out to compare means from the same individual. The 

result of these tests provided p values a p≤0.05 was statistically significant. A p≤0.05 
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typically indicates strong evidence against the null hypothesis, so the null hypothesis 

is rejected. The null hypothesis states that there is no relationship between two 

measured phenomena.  

2.8.2 NON-PARAMETRIC TESTS 

Wilcoxon-Mann-Whitney test is a non-parametric analog to the independent samples 

t-test and was used when the dependant variable was not normally distributed. The 

Wilcoxon signed rank sum test is the non-parametric version of a paired samples t-

test.  This test was used when the distribution was not normally distributed. 

 

2.8.3 REGRESSION ANALYSIS  

2.8.3.1 Multiple linear regression 

A multivariate statistical technique was used to examine the linear correlations 

between two or more independent variables and a single dependent variable. 

Multiple linear regression analysis was used to compare control and AKU patients 

SUVm (in thoracic and lumbar vertebrae and IVDs) with age. The outcome variable 

was mean lumbar/thoracic IVD/vertebrae. The grouping variable was either V1 (AKU) 

vs control group, or V3 (AKU) vs control group and the other variable tested was age.  

 

2.8.3.2 Simple linear regression and Pearson’s correlation  

Simple linear regression and Pearson’s correlation was used to test the correlation 

between two variables. Pearsons r value defines the strength of the relationship, and 
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has a value between +1 and -1, where 1 is total positive linear correlation, 0 is no 

correlation and -1 is total negative correlation. The p value defines the significance 

level of the correlation (p≤0.05 is statistically significant). The R2, the coefficient of 

determination is a statistical measure of how close the data are fitted to the 

regression line which was plotted on the graphs.         

 

2.8.4 TREND LINES 

Trend lines were added to graphs using Excel. The distribution of the data was 

assessed and the most appropriate trend line was selected based on the distribution. 

A linear trend line was applied when the data set had a simple linear correlation. In 

situations where the data did not indicate a linear relationship, polynomial models 

were tested. The criteria for selecting a polynomial fit was as follows: 

1. In situations where the relationships were hypothesised to be curvilinear. For 

example, the relationship between uptake of 18F into the lumbar and thoracic 

IVDs (Figure 4.12 and 4.13), as discussed in Section. 

2. A visible inspection indicated the data are bivariate, for example the inverted 

‘U’ shaped trends shown in Figure 4.12 and 4.13. 

3. When an inspection of residuals reveals that a linear model is not appropriate 

 

Where appropriate a second order polynomial line was applied to data that had one 

peak or trough.  
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3.0 SKELETAL DISTRIBUTION OF INCREASED 18F PET UPTAKE IN PATIENTS WITH 

ALKAPTONURIA 
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3.1 INTRODUCTION   

Early osteoarthropathy is an inevitable consequence of AKU resulting in considerable 

pain and suffering in peak adulthood due to premature joint and spinal disease. 

Weight bearing joints are thought to be predominantly affected due to increased 

mechanical damage (1). The purpose of this study was to investigate the natural 

history of alkaptonuria using the novel imaging modality 18F-NaF PET. A semi-

quantitative approach was used to assess the anatomical distribution of 

osteoarthropathy with age.  

 

Plain X-Ray is still the gold standard imaging modality to diagnose arthritic disease, 

however it is realised that functional abnormalities can exist without radiographic 

evidence. 18F-NaF PET is a valuable tool to detect functional skeletal involvement and 

is routinely used in diagnosing skeletal metastatic disease. However, more recently it 

has been utilised in identifying arthropathy in OA and in AKU. 18F-NaF PET provides 

highly sensitive, three-dimensional imaging of the skeleton with advantages such as 

high spatial resolution, superior image quality and hybrid PET/CT imaging providing 

accurate anatomical localisation (89). Upon injection of the radiotracer 18F covalently 

binds to hydroxyapatite crystals of newly forming bone and therefore reflects the 

amount of actively mineralising bone present and closely resembles bone 

metabolism (110). A positive or abnormal scan manifests itself as an area of increased 

radiotracer uptake and reflects the increased osteogenic activity at that site. 

Radiotracer delivery is also dependent on regional blood flow therefore the scan also 

provides an index of vascularity of bone (89). Increased osteogenic activity and 
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vascularity are features of a degenerating joint due to the inflammatory and healing 

processes that occur in response to injury hence why this imaging modality is useful 

in AKU (89).  

Until recently there has been a lack of semi-quantifiable methodology to describe 

AKU disease severity. The AKUSSI attempts to assess all features of AKU in a 

standardised manner producing a composite score representing the totality of clinical 

features. Table 1.2 represents the AKUSSI. The 18F-NaF PET scans are analysed by an 

experienced nuclear medicine consultant. The large joint areas scored are the 

shoulder, elbow, wrist and hands, hip, knee, ankle, foot and the cervical, thoracic and 

lumbar spine based on increased uptake at that site. Increased uptake is given a score 

of 1 in each large joint and a score of zero is given if the joint has normal uptake. These 

scores are then fed into the AKUSSI and contribute the final aggregated score. It is 

important to note that this scoring is based on the opinion of the nuclear medicine 

consultant and therefore is subjective. This work attempts to develop a semi-

quantitative method that demarcates the boundary between increased tracer uptake 

and normal bone uptake that could be used as an alternative or a complementary 

non-subjective method to score the 18F-NaF PET scans by the clinician.   
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3.2 DESIGN OF STUDY  

3.2.1 PATIENT GROUP  

43 adult patients (17 females, 26 males, mean age 49, SD±14.8, range 21-74) from 

the National Alkaptonuria Centre (see section 2.2.1) underwent 18F-NaF PET scanning. 

Baseline (pre-nitisinone) PET images were analysed for each patient (see section 2.3 

for PET protocol).  Patients were included only if a whole-body MIP scan was present. 

Five patients (Patients 9,11,23,27,30) were excluded from the correlation with the 

clinical score as the AKUSSI analysis was not available.    

3.2.2 IMAGE ANALYSIS 

Baseline 8-bit MIP PET images of the 43 NAC patients were imported into Image J 

(1.49j). A histogram plot was created for each patient to analyse the distribution of 

pixel values within the image. A threshold was applied (as described in 2.4.4) 

highlighting the pixel values that represent increased tracer uptake that are 

associated with AKU disease pathology.  

3.2.3 ANATOMICAL SCORING  

The MIP PET images were then analysed anatomically (as described in section 2.4.5) 

and were scored based on the presence or absence of pixel values above threshold. 

A score of 0 or 1 was given (0= no pixels present above threshold, 1= at least one pixel 

identified above threshold in the various anatomical regions). Pixels above threshold 

represent increased tracer uptake at that site associated with disease pathology. This 

method aims to remove any subjectivity in observing regions of increased tracer 

uptake associated with disease pathology.  
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3.3 RESULTS 

Each patient was scored for the presence or absence of pixels above the threshold 

value in the various anatomical locations. Both cartilaginous joints and bones were 

analysed. For the bony anatomy the calcaneus, talus, midfoot, forefoot, tibia, fibula, 

patella, femur, hip, sacrum, vertebrae (L5-C1), scapulae, humerus, radius, ulna, carpal, 

metacarpal/ phalanges, clavicle and sternum were scored 0 or 1 (0= if no pixels were 

present above threshold 1= if pixels were identified above threshold). For the 

cartilaginous joints, the joints of the foot, ankle, knee, hip, sacroiliac joint, 

intervertebral discs (S1/L5 – C1/C2), shoulder, elbow, wrist and hand were scored 0 

or 1 as described above. The percentage incidence of increased tracer uptake (pixel 

values above threshold) was calculated and plotted on a skeletal map (Figure 2.5 

shows a skeletal map of regions analysed) demonstrating the bones and joints most 

affected by the disease. The percentage incidence was calculated by adding up the 

scores from all patients at each anatomical site. The cohort was split into five age 

dependant groups (21-30 n=8, 31-40 n=5, 41-50 n=7, 51-60 n=12, 61-70+ n=11) to 

assess distribution with age.  

 

3.3.1 SKELETAL DISTRIBUTION OF INCREASED 18F UPTAKE WITH AGE IN THE BONES 

OF THE SKELETON  

Figure 3.1 demonstrates the skeletal distribution of increased 18F PET uptake in the 

bones of the skeleton. The highest incidences of increased tracer uptake were found 

in the hip, sacrum and thoracic and lumbar vertebral bodies (93%, 64%, 73% and 80% 

incidence respectively) (Figure 3.1). The lowest incidences were found in the bones 
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of the lower limb (averaging 26% incidence in the femur, patella, tibia, fibula, 

forefoot, midfoot, talus and calcaneus) and very low in the bones of the upper limb 

(averaging 12% incidence in the humerus, radius, ulna, carpals, metacarpals and 

phalanges) (Figure 3.1).  

 

Figure 3.2 illustrates the percentage incidence of increased 18F uptake with age 

represented as a skeletal map. When looking at the overall distribution and 

percentage incidence, there does not seem to be a clear trend with age. The 

percentage incidence of increased 18F uptake overall across all bones scored was 

lowest in the 41-50 age group, followed by the 61-70+ and 21-30 age groups. The 31-

40 and the 51-60 age groups had the highest overall increased tracer uptake.  

 

When looking at the number of bones affected the youngest age group had the least 

amount of areas involved and the oldest age group has the highest number of areas 

involved. Increased uptake in the hip seems to be high across all age groups. Uptake 

in the feet and hands are generally low across all age groups. The youngest age 

groups (21-30 and 31-40) have the highest percentage incidence in the spine, sacrum 

and the hip bones. The bones of the upper limb are very low across the three 

youngest age groups and this is the case for the oldest two age groups except the 

humerus which increases to 61-80% incidence. Uptake in the bones of the lower limb 

is variable between the age groups ranging from very low in the 21-30 and 41-50 age 

groups, and increasing to moderately high in the 31-40 and 51-60 and 61-70+ age 

groups.  
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Figure 3.1 Percentage incidence of increased 18F uptake in the bones of the 

skeleton. Percentage incidence = the number of patients identified to have increased 

tracer uptake at a specific anatomical site as a percentage. n=43 (17 females, 26 

males, mean age 49, SD±14.8, range 21-74).   

C
A

L
C

A
N

E
U

S
 

T
A

L
U

S
 

M
ID

F
O

O
T

 

F
O

R
E

F
O

O
T

 

T
IB

IA
 

F
IB

U
L

A
 

P
A

T
E

L
L

A
 

F
E

M
U

R
 

H
IP

 

S
A

C
R

U
M

 

L
5

L
4

L
3

L
2

L
1

T
1

2

T
1

1

T
1

0

T
9

T
8

T
7

T
6

T
5

T
4

T
3

T
2

T
1

C
7

C
6

C
5

C
4

C
3

C
2

C
1

S
C

A
P

U
L

A
 

H
U

M
E

R
U

S

R
A

D
IU

S

U
L

N
A

 

C
A

R
P

A
L

 

M
E

T
A

C
A

R
P

A
L

/
 …

C
L

A
V

IC
L

E
 

0

10

20

30

40

50

60

70

80

90

100

BONES 

P
ER

C
EN

TA
G

E 
IN

C
ID

EN
C

E 
(%

)

% incidence



105 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Skeletal distribution of increased 18F PET uptake with age in the bones of the skeleton represented on a skeletal map. Colour scale representing 

the percentage incidence of 18F uptake (red= 81-100% incidence, orange= 61-80% incidence, yellow= 41-60% incidence, green= 21-40% incidence, blue= 1-20% 

incidence, white= 0% incidence.) Vertebrae: 5 lumbar, 12 thoracic and 7 cervical. See Figure 2.5 for a labelled skeletal map of the bones analysed. n=43 (17 

females, 26 males, mean age 49, SD±14.8, range 21-74). Age groups: 21-30 n=8, 31-40 n=5, 41-50 n=7, 51-60 n=12, 61-70+ n=11.
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Figure 3.3 illustrates the percentage incidence of increased 18F uptake in the lumbar 

vertebrae with age. The percentage incidence is very high across all age groups (100% 

in the 20-30, 31-40, 41-50 and reduces slightly in the 51-60 age group and further 

reduces in the 61-70+ age group). The percentage incidence reduces by 22% across 

all five lumbar vertebrae between the age group 41-50 to 51-60 and then drops by a 

further 29% between the age group 51-60 to the oldest age group (61-70+) (Figure 

3.3).   

 

Figure 3.3 Percentage incidence of 18F uptake in the lumbar vertebrae with age. Five 

lumbar vertebrae (L5- fifth lumbar vertebrae, L4- fourth lumbar vertebrae, L3- third 

lumbar vertebrae, L2- second lumbar vertebrae, L1- first lumbar vertebrae).  n=43 (17 

females, 26 males, mean age 49, SD±14.8, range 21-74).  Number of patients in each 

age group: 21-30 n=8, 31-40 n=5, 41-50 n=7, 51-60 n=12, 61-70+ n=11. 
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Figure 3.4 represents the percentage incidence of increased 18F uptake in the thoracic 

vertebrae with age across three youngest age groups (21-30, 31-40, 41-50). The 

general trend is a reduction in percentage incidence across the thoracic vertebrae 

with age.  The youngest age group (21-30) can be seen having the highest incidence, 

with a mean percentage of 94% across all thoracic vertebrae. The incidence then 

reduces to 76% across all thoracic vertebrae in the 31-40 age group, and down to 57% 

across all thoracic vertebrae in the 41-50 age group. The incidence can also be seen 

gradually decreasing along the spine from T12 to T1. The percentage incidence of 

increased 18F uptake is highest in the lower thoracic vertebrae and this can be seen 

to reduce up the spine from T12 to T1 across all age groups. In the three age groups 

the percentage incidence is reduced from 100% at T12 down to 63% (21-30), 67% 

(31-40) and 40% (41-50) at T1 respectively. 

Figure 3.4 Percentage incidence of 18F uptake in the thoracic vertebrae with age in 

the youngest patient groups. Twelve thoracic vertebrae (T1-T12). n=43 (17 females, 

26 males, mean age 49, SD±14.8, range 21-74). Number of patients in each age group: 

21-30 n=8, 31-40 n=5, 41-50 n=7.  
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The percentage incidence in the thoracic spine in the oldest two age groups (51-60 

and 61-70+) (Figure 3.5) does not follow the same trend as Figure 3.4, where a 

reduction in percentage incidence with age was observed in the younger age groups. 

The two oldest age groups follow a fluctuating trend with low incidence at the lower 

limits of the thoracic spine followed by increased incidence ascending by 3-4 

vertebrae followed by another dip observed around the mid thoracic spine and again 

another increase in incidence towards the upper limits of the thoracic spine (Figure 

3.5).   

 

Figure 3.5 Percentage incidence of 18F uptake in the thoracic vertebrae in the oldest 

patient groups. Twelve thoracic vertebrae (T1-T12). n=43 (17 females, 26 males, 

mean age 49, SD±14.8, range 21-74). Number of patients in each age group: 51-60 

n=12, 61-70 n=11.  
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Figure 3.6 demonstrates the percentage incidence of increased 18F uptake in the 

cervical vertebrae. The percentage incidence of increased 18F uptake in the cervical 

vertebrae decreases along the spine from C7 to C1, this general trend can be seen 

across all five age groups. It is also evident that the oldest two age groups (51-60 and 

61-70+) generally have the highest incidences of increased 18F uptake compared to 

the younger age groups (21-30, 31-40 and 41-50). This contradicts the trend of the 

lumbar (Figure 3.3) and thoracic vertebrae (Figure 3.4) that found a decrease in the 

percentage incidence with age. 

 

 

Figure 3.6 Percentage incidence of increased 18F uptake in the cervical vertebrae 

with age. Six cervical vertebrae (C1-C6). n=43 (17 females, 26 males, mean age 49, 

SD±14.8, range 21-74). Number of patients in each age group: 21-30 n=8, 31-40 n=5, 

41-50 n=7, 51-60 n=12, 61-70+ n=11. 
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3.3.2 SKELETAL DISTRIBUTION OF INCREASED 18F UPTAKE WITH AGE IN 

CARTILAGINOUS JOINTS 

 

The highest percentage incidences of increased 18F uptake in cartilage was found in 

the joints of the foot, knee, hip and shoulder with incidences of 52%, 65%, 52% and 

48% respectively. The remaining cartilaginous joints had low incidence of increased 

18F uptake of less than 20% incidence across the remaining joints scored (Figure 3.7).  

Figure 3.8 demonstrates the percentage incidence of increased tracer uptake with 

age in the 5 age groups. It is clear with increasing age; the more cartilaginous joints 

are affected with increasing percentage incidences. In the youngest age group (21-

30), two joint areas (hip and foot) were identified to have increased tracer uptake 

compared to every joint analysed in the oldest age group (61-70). Figure 3.9 

represents this data on a skeletal map.  
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Figure 3.7 Percentage incidence of increased 18F PET uptake in cartilaginous joints. 

Intervertebral discs denoted by the vertebrae they lie between e.g. L5-L4 IVD located 

between L5 and L4 vertebrae. Foot represents joints in the feet except the ankle. 

Hand represents all joints in the hand except the wrist. n=43 (17 females, 26 males, 

mean age 49, SD±14.8, range 21-74).     
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Figure 3.8 Percentage incidence of increased 18F uptake in the cartilaginous joints 

by age. n=43 (17 females, 26 males, mean age 49, SD±14.8, range 21-74).  Number 

of patients in each age group: (A) 21-30 n=8, (B) 31-40 n=5, (C) 41-50 n=7, (D) 51-60 

n=12, (E) 61-70+ n=11. 
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Figure 3.9 Skeletal distribution of increased 18F PET uptake with age in the cartilaginous joints of the skeleton. Colour scale representing the percentage 

incidence of 18F uptake (red= 81-100% incidence, orange= 61-80% incidence, yellow= 41-60% incidence, green= 21-40% incidence, blue= 1-20% incidence, 

white= 0% incidence or not analysed). IVDs: 5 lumbar, 12 thoracic and 7 cervical. See Figure 2.5 for a labelled skeletal map of the joints analysed. n=43 (17 

females, 26 males, mean age 49, SD±14.8, range 21-74).  Age groups: 21-30 n=8, 31-40 n=5, 41-50 n=7, 51-60 n=12, 61-70+ n=11. 
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The percentage incidence of 18F uptake in the knee joint, hip joint and shoulder joint 

increases with age (Figure 3.10). No increased uptake of 18F was identified in the 

shoulder and knee joints in the two youngest age groups (21-30 and 31-40) and very 

low incidence was found in the hip (12.5% incidence in the 21-30 age group, 0% 

incidence for the 31-40 age group). From the age group 31-40 the percentage 

incidence of 18F uptake increases in all three joints. In the shoulder joint the 

percentage incidence increases from 0% in the two youngest age groups to 43% in 

the 41-50 age group, then further increases to 67% in the 51-60 age group and 

increases again reaching 82% in the oldest age group. In the knee the same trend is 

seen; an exponential increase from 0% in the youngest two age groups followed by 

an increase up to 63% in the 41-50 age group, reaching 100% incidence in the 51-60 

and 61-70 age groups. In the hip low incidences were found in the youngest two age 

groups (13% in the 21-30 age group and 0% in the 31-40 age group) followed by 

exponential increase to 43% in the 41-50 age group, 58% in the 51-60 age group, 

reaching 100% in the 61-70 age group.   
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Figure 3.10 Percentage incidence of increased tracer uptake in the shoulder, hip and 

knee joints with age. n=43 (17 females, 26 males, mean age 49, SD±14.8, range 21-

74).   

3.3.3 CARTILAGE ANATOMICAL THRESHOLD SCORE WITH AGE  

The C-AT score (summation of all joints scored, explained in section 2.4.6) was 

correlated with age (Figure 3.11). Regression analysis found a positive statistically 

significant correlation (r=0.487, p<0.001). This supports the findings illustrated in 

Figures 3.8 and 3.9 that demonstrate an increase in the percentage incidence of 

increased tracer uptake with age in the cartilaginous joints.  
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Figure 3.11 Correlation between cartilage anatomical threshold (C-AT) score with 

age. 32 Joints summated to produce the C-AT score as explained in section 2.4.6. 

Maximum score of 32. A positive statistically significant correlation was found 

(r=0.487, p<0.001). n=43 (17 females, 26 males, mean age 49, SD±14.8, range 21-74).   

 

3.3.4 BONE ANATOMICAL THRESHOLD SCORE WITH AGE  

The B-AT score is the summation of all bone scores measured (explained in section 

2.4.7). No correlation was found between the B-AT score and age (r=0.0004, p>0.05) 

(Figure 3.12). This supports the findings summarised in Figure 3.2, with no obvious 

trend between overall increased uptake and age. However, in contrast Figures 3.3 

and 3.4 demonstrate a general reduction in increased tracer uptake in the spine with 

age.     
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Figure 3.12 Scatter plot showing the correlation between bone anatomical 

threshold (B-AT) score and age. 42 Joints summated to produce the B-AT score as 

explained in section 2.4.7. Maximum score of 42. No statistically significant 

correlation found (r=0.0004, p>0.05). n=43 (17 females, 26 males, mean age 49, 

SD±14.8, range 21-74).   

 

3.3.5 TOTAL CLINICAL SCORE vs TOTAL ANATOMICAL THRESHOLD SCORE 

Correlations were also made with the total clinical score obtained from the AKUSSI 
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anatomical threshold methodology (section 2.4). A positive statistically significant 
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anatomical threshold score (Figure 3.13). Positive statistically significant correlations 
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Figure 3.13 Correlation between the total clinical score and total anatomical 

threshold score. Total clinical score (explained in section 2.4.9) maximum value of 

10, total anatomical threshold score (explained in section 2.4.8) maximum value of 

10.  Positive statistically significant correlation (r=0.881, p<0.001). n=38.  
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Figure 3.14 Correlation between the total anatomical threshold score with age. 

Total anatomical threshold score explained in section 2.4.8. Positive statistically 

significant correlation (r=0.888, p<0.001). n=43 (17 females, 26 males, mean age 49, 

SD±14.8, range 21-74).   
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Figure 3.15 Correlation between the total clinical score with age. Total clinical score 

explained in section 2.4.9. Positive statistically significant correlation (r=0.956, 

p<0.001). n=38.  
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3.4 DISCUSSION  

18F has been utilised as a bone imaging radionuclide since the 1960’s. Although 18F-

NaF was the first widely used bone imaging agent it quickly fell into disuse. 

Limitations included, logistical challenges of the 110 minute half-life of 18F-NaF , the 

introduction of cheaper radiopharmaceuticals such as technetium (Tc-99m) and the 

development of the Anger gamma camera designed for the 140 KeV photons of Tc-

99m resulted in the FDA to withdraw its approval in 1975 (107). The challenges 

associated with 18F-NaF  imaging were reassessed in 1992 when Dahlbom et al. (108) 

used 18F-NaF in the development of a whole-body PET technique that demonstrated 

increased spatial resolution and greater photon capture due to coincident detection 

of photons. During the past decade nuclear imaging with 18F-NaF PET has re-emerged 

as an attractive, specific, non-invasive method of detecting bone metabolism in 

osseous diseases (109). The development of combined PET/CT scanners, ease of 

production in a cyclotron (previously 18F-NaF was produced in a nuclear reactor with 

a two-step reaction) coupled with shortages of Tc-99m generators, has led to 18F-NaF 

being the preferred bone imaging agent once again (109). The pharmacokinetics of 

18F-NaF depends on both bone uptake and elimination from the circulation. Uptake 

of 18F into the skeleton reflects the amount of actively mineralising bone present and 

resembles bone metabolism (109). The principle uptake mechanism involves 18F 

being deposited onto the crystalline structure of hydroxyapatite of newly forming 

bone by exchanging fluoride with hydroxyl ions forming fluorapatite (109,128). The 

application of 18F-NaF  PET to detect areas of increased bone remodelling and 

inflammation has been demonstrated in many studies in various osseous diseases 

(110,115,129,130). X-ray is the gold standard for imaging arthritic changes in OA. 
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Pathological changes appear with the progression of the disease and are graded 

depending on the extent of involvement (KL grading scale see Table 1.3). However, 

often functional abnormalities occur before clear radiographic signs appear (115). 

Functional PET imaging has been shown to identify these early changes. Kobayashi et 

al. (115), demonstrated the use of 18F-NaF PET in detecting bone remodelling in early 

stage osteoarthritis (OA) of the hip. Increased 18F uptake was found to be associated 

with increased radiographic stage of OA (KL grading scale) and the severity of hip 

pain. They proposed this could be useful in deciding on a treatment strategy in early 

stage OA. Watanabe et al. (129) demonstrated the coupling of inflammation and 

accelerated bone turnover in rheumatoid arthritis (RA) using 18F-FDG and 18F-NaF 

PET/CT. They found that accumulation of 18F-NaF correlated with clinical assessment 

and physical disability in RA.  Frost et al. (130) demonstrated the effect of the 

antiresorptive drug risedronate on lumbar vertebrae bone metabolism in OA 

measured by 18F-NaF PET. They found that osteoclastic and osteoblastic activity 

displayed a significant decrease after 6 months on risedronate due to the close 

coupling of bone resorption and bone formation, demonstrating the effects of the 

treatment. These studies demonstrate the usefulness of 18F-NaF PET in the detection 

and treatment of metabolic bone diseases.  

In AKU HGA deposition over time results in ochronosis of connective tissues including 

cartilage (36). It is understood that HGA deposition within cartilage alters the 

mechanical properties within the tissue leading to aberrant transmission of 

mechanical loading to bone resulting in resorption of the subchondral plate and 

calcified cartilage. The end stage of the pathogenesis of ochronosis in the joint is 
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failure. Secondary to this the cartilage becomes calcified and becomes visible on the 

PET images due to 18F binding to the calcifications forming fluorapatite. It is 

understood that ochronotic cartilage becomes stiff, it is not yet fully understood 

whether the calcifications form inside the ochronotic cartilage or if they are forming 

on the surface despite this the calcifications must be accessible for 18F to bind. It is 

unknown if binding of 18F is altered by the presence of ochronotic pigment although 

it is agreed that the weight bearing joints are predominantly affected by the disease 

possibly due to mechanical damage (1). AKU has pathological parallels with OA 

therefore 18F-NaF PET imaging can be utilised in AKU. This is the first study to date 

that looks at the distribution of 18F-NaF PET in the rare disease AKU.  

3.4.1 INCREASED 18F UPTAKE IN BONE - MECHANICAL LOADING  

In bone the highest incidences of increased 18F signal was found in the hip, sacrum, 

thoracic and lumbar vertebrae (93%, 64%, 73% and 80% respectively) (Figure 3.1). 

These bones are classically weight bearing bones and it has been proposed that there 

is a link between mechanical stress and 18F uptake. It was demonstrated by Kobayashi 

et al. (115) that mechanical loading enhances interleukin 11 (IL-11) gene expression 

that stimulates osteoblast differentiation. The function of IL-11 is believed to be 

inhibition of Dickkopf 1 and 2, which are inhibitors of Wnt signalling. Wnt signalling 

has been shown as an important regulatory pathway in osteogenic differentiation. 

Induction of Wnt signalling promotes bone formation, while inactivation leads to 

osteopenia. If bone formation is promoted this increases the availability of 

hydroxyapatite for 18F to bind. It is believed that a reduction in IL-11 with age may be 

one of the factors contributing to osteoporosis (131,132).  
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Sanchez et al. (133) also demonstrated a link between mechanical stress and 

increased expression of genes involved in bone remodelling and bone formation in 

human osteoblasts. This chapter has demonstrated that the non-weight bearing 

bones of the upper limb had very low incidences averaging 12% in comparison to the 

bones of the lower limb and foot that had an average incidence of 26% (Figure 3.1). 

This supports the theory that weight bearing bones experiencing mechanical loading 

are associated with increased bone formation and increased 18F uptake.  

Win et al. (117) described the uptake of 18F in various skeletal sites in a control 

population and found that different skeletal sites have different amounts of fluoride 

uptake. The proposed reason for this variation is the composition of bone at different 

sites. They found that 18F tends to have greater deposition in the axial skeleton (e.g. 

vertebrae and pelvis) than in the appendicular skeleton (limbs), this supports the 

results described in this chapter where the highest incidences were found in the hip, 

sacrum and lumbar and thoracic spine (Figures 3.1 and 3.2).   

3.4.2 INCREASED 18F UPTAKE IN BONE- VASCULARITY   

Uptake of 18F in bone depends on regional blood flow, osteoblastic activity and renal 

clearance (117). Trabecular bone is highly vascular and contains abundant red 

marrow, which may explain the increased incidence of 18F uptake in the vertebrae 

and hip that contain mostly trabecular bone in contrast to relatively lower trabecular 

bone in the long bones of the limbs (Figure 3.1) (134). 

 



126 
 

3.4.3 INCREASED 18F UPTAKE IN THE VERTEBRAE 

Interestingly the incidence of increased 18F uptake in the lumbar vertebrae decreases 

with age (Figure 3.3). This trend can also be seen in the three youngest age groups in 

the thoracic vertebrae (Figure 3.4). It has been described that with age there is a 

reduction in red marrow and an associated decrease in perfusion to bone (134). 

Reduced perfusion to bone would result in reduced 18F transport to that area. This 

may explain the reduction in the incidence of 18F uptake with age. It is widely agreed 

that BMD decreases with age. Riggs et al. (135) found that bone diminution in the 

vertebrae began in young adulthood and was linear with increasing age. A reduction 

in BMD with age may explain the reduction in the incidence of increased 18F uptake 

with age; if there is less hydroxyapatite available, less fluorapatite can form. Not only 

does the incidence of 18F reduce with age in the spine but it also reduces up spine 

from T12-T1 (Figure 3.4). The larger bones located towards the lower ends of the 

spine have more of a weight-bearing role, therefore have increased uptake compared 

to the smaller bones located further up. The cervical vertebrae follow a similar trend 

where the percentage incidence of 18F uptake decreases as you travel up the spine 

from C7-C1 (Figure 3.6). However, in the cervical vertebrae, generally the oldest two 

age groups (51-60 and 61-70+) have higher incidences of 18F signal compared to the 

younger age groups (21-30, 31-40, and 41-50). Interestingly, pain in the cervical 

region has been reported in older patients with AKU.  Generally lower incidences 

were seen in the cervical and upper thoracic spine compared to the lower thoracic 

spine and lumbar vertebrae in the youngest three age groups (Figure 3.2), this could 

be due to the reduced mechanical load experienced by the cervical vertebrae 

compared to the lower thoracic and lumbar vertebrae. 
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3.4.4 BONE ANATOMICAL THRESHOLD SCORE WITH AGE 

No correlation (r=0.0004, p>0.05) was identified between the B-AT score with age 

(Figure 3.12) suggesting that when looking at the overall skeletal distribution of 

increased 18F uptake there is no direct trend with age (Figure 3.2).  A reduction in 

increased uptake of 18F with age was expected due to a reduction in bone turnover, 

BMD and vascularity associated with ageing, however this trend was not evident. It 

is thought that increased 18F uptake is individual to the patient depending on where 

the disease affects them and at what stage in time. AKU can affect all cartilaginous 

joints although each patient can present differently, with different joints being 

affected and at different severities. Plotting the incidence of increased 18F uptake per 

patient and correlating the results with the clinicians notes to obtain information like 

pain scores, and radiographic signs may provide a better representation of uptake in 

bone for each patient and this would test the reliability of the method. 

3.4.5 PATHOGENESIS OF INCREASED 18F UPTAKE IN CARTILAGE  

AKU is primarily a cartilage disease with secondary effects in bone. It is therefore not 

surprising that we have identified uptake in cartilage as well as bone. In terms of the 

pathophysiology of AKU, HGA is deposited in individual chondrocytes within the 

calcified cartilage. With time ochronosis spreads through to the hyaline cartilage 

causing it to become stiff, resulting in aberrant transmission of mechanical loading to 

bone. This leads to resorption of the subchondral plate including calcified cartilage 

and bone. This results in destruction of the joint where pigmented cartilage becomes 

impacted on the underlying trabecular bone and embedded in the marrow space (3).  
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3.4.6 INCREASED UPTAKE OF 18F IN CARTILAGE  

High incidence of 18F uptake was found in the joints of the foot, knee, hip and 

shoulder joints with incidences of 52%, 65%, 52% and 48% respectively. Low 

incidences (less than 20%) were found in the rest of the cartilaginous joints scored 

(Figure 3.7). The incidence of 18F uptake was found to increase with age in the three 

large joints (shoulder, hip and knee) and was found to reach 100% in the hip and knee 

in the oldest age group (61-70) (Figure 3.10). The hip and the knee are largely weight 

bearing joints experiencing large amounts of mechanical loading. It is therefore not 

surprising that these joints have been found to be most affected by AKU. A positive 

statistically significant correlation (r=0.487, p<0.001) was identified between the C-

AT score with age (Figure 3.11), this supports the findings illustrated in Figures 3.8 

and 3.9 that demonstrate an increase in the percentage incidence of increased tracer 

uptake with age in cartilage.   

Age related changes to cartilage results in the disarray of the extracellular matrix due 

to disruption of collagen fibrils and proteoglycans which is exacerbated by trauma. 

These changes render exposed collagen vulnerable to the reactive molecule HGA in 

AKU resulting in ochronosis (136). The uptake of 18F in cartilage represents binding of 

18F to calcifications within the cartilage due to ochronosis. 18F binds to newly formed 

hydroxyapatite; therefore, the uptake in cartilage must represent newly formed 

mineral forming within the cartilage.  Chondrocalcinosis is a disease in which calcium 

pyrophosphate is deposited within cartilage leading to osteoarthritis. This disease 

process is characterised by chondrocyte hypertrophy, matrix mineralisation and 

many structural changes to the joint (136). Mineralisation within cartilage has been 
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documented in OA, especially in severe OA where deposition of calcium 

pyrophosphate and basic calcium phosphate crystals (including hydroxyapatite) have 

been frequently identified (137). It is proposed that this could also be the case in AKU 

due to the many parallels OA and AKU share. Uptake of 18F in cartilage reflects the 

severity of AKU osteoarthropathy and confirms the anatomical distribution of 

increased 18F uptake into cartilaginous joints that localise to areas of high mechanical 

loading. It therefore can be said that these areas are more susceptible to attack by 

HGA and mineral deposition within cartilage resulting in mechanical changes, 

eventually leading to multisystemic damage dominated by premature severe 

osteoarthropathy. Interestingly we found low incidence throughout all the IVDs, 

however these patients are known to suffer from spinal arthropathy. This could be 

due to the resolution of the 18F MIP PET images not enabling differentiation between 

calcified IVDs and bone in the osteoarthritic spine seen in later stages of AKU.  

3.4.7 ASSESSMENT OF METHODOLOGY  

Correlations were made between the total clinical score and the total anatomical 

threshold score to assess the methodology (Figure 3.13). The total clinical scores 

were consistently higher than the total anatomical threshold scores and a positive 

statistically significant correlation (r=0.881, p<0.001) was identified. This suggests 

that the anatomical threshold method may not be sensitive enough to identify 

smaller increases in tracer uptake that reflects areas affected by the disease. Positive 

statistically significant correlations were also identified between the total anatomical 

threshold score with age (Figure 3.14) (r=0.888, p<0.001) and the total clinical score 
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with age (Figure 3.15) (r=0.956, p<0.001) demonstrating that both methods identified 

the same trend. 

3.4.8 SUMMARY 

Uptake of 18F localises to hydroxyapatite crystals of newly formed bone and calcified 

cartilage that are exposed to high mechanical loading. Pigmentation of the AC 

associated with AKU causes stiffening, resulting in aberrant transmission of 

mechanical loading to subchondral bone, leading to altered bone remodelling. 

Secondary to this and with advancing disease progression, cartilage becomes calcified 

and identified as areas of increased 18F uptake on the PET scans. The joints exposed 

to high mechanical loading are most susceptible to destruction via this process. With 

age the uptake in bone and cartilage follows opposite trends. The incidence of 18F 

uptake in cartilage increases with age in the weight bearing joints due to 

mineralisation. However, the percentage incidence of 18F uptake in bone decreases 

with age due to reduced bone turnover associated with ageing. This work 

demonstrates the sensitivity of 18F PET scans in detecting the distribution of joint 

disease in AKU. 

3.4.9 LIMITATIONS  

The major limitations of this study are, firstly the data described in this chapter is 

based on pixel values, pixel values are a measure of intensity, however it is the 

amount 18F uptake that is directly related to what is being observed, therefore uptake 

values are more appropriate. Secondly, when trying to identify small joints the 

resolution of the 18F MIP PET images was not sufficient to differentiate between 
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cartilage and bone. This was especially evident in the osteoporotic spine where it was 

very difficult to distinguish between calcified IVDs and bone (Figure 3.16). Overlying 

CT data would help with anatomical localisation.  

 

 

 

 

 

 

 

 

 

Figure 3.16 18F-NaF images of the spine in a non-arthritic and arthritic patient. Left 

image demonstrating severe arthropathy; uptake of 18F-NaF is uniform throughout 

the spine, therefore very difficult to distinguish between IVD and bone. Right image 

demonstrating non-arthritic spine with bands of increased uptake in the vertebrae, 

with very little uptake in the IVDs. 
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3.4.10 FUTURE WORK  

Future work is needed to develop quantitative measures of 18F uptake within bone 

and cartilage which could be used to assess disease progression, and response to 

therapy. Utilising PET/CT will improve resolution and localisation of areas of 

increased 18F uptake, this will enable precise localisation of anatomical regions such 

as vertebral end plates and IVDs.  
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4.0 APPLICATION OF 18F-NaF PET STANDARDISED UPTAKE VALUE FOR THE 

DETECTION OF ARTHROPATHY IN AKU 
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4.1 INTRODUCTION  

Chapter 3 of this thesis looked at the skeletal distribution of 18F in AKU patients. The 

method used was based on the distribution of pixel values in the image. As described 

in the limitations section (3.4.9) the data described in Chapter 3 was based on pixel 

values. Pixel values are a measure of intensity. However, it is the amount of 18F uptake 

that is directly related to what is being observed. Therefore, uptake values are more 

appropriate. Additionally, the anatomical localisation of the spine proved to be 

difficult to distinguish between bone and calcified IVDs due to the resolution of the 

image. This chapter resolves these issues by utilising measurements of radioactivity 

instead of pixel values, as well as utilising PET/CT for improved anatomical 

localisation.   

Quantitative measurements in PET imaging are used as a tool to supplement visual 

interpretation providing a method that is less user-dependent and that can be used 

for intra and inter patient comparisons. Uptake measurements are used to assess 

response to therapies and to distinguish degree of pathology (114). 18F-NaF  PET has 

been used to visualise many bone disorders as 18F-NaF  binds to bone mineral 

associated with both osteoblastic and osteolytic lesions (115). 18F-NaF PET scanning 

is routinely carried out annually as part of the NAC as well as for the SONIA 2 clinical 

trial (see sections 2.2.1 and 2.2.2).  

The mean standardised uptake value (SUVm) is a common method of expressing the 

uptake of PET tracers. The SUVm is a measure of radioactivity in a region of interest, 

normalised against the injected activity and the subjects body weight. The SUVm is 

defined as the activity concentration in the ROI ((kBq/mL) as measured by the PET 
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scanner) divided by the decay corrected injected dose of 18F-NaF  (kBq) divided by 

the patient body weight (kg) that acts as a surrogate for the distribution volume of 

tracer (SUVm= radioactivity concentration / (decay corrected injected dose / body 

weight)) (116). If all the injected 18F-NaF is retained and uniformly distributed 

throughout the body, the SUVm will be 1g/ml under the assumption that 1ml of tissue 

weighs 1g. Larger SUVms represent proportionally higher concentrations of 

radiotracer. The uptake is represented by pixel or voxel intensity value in the ROI, 

which is then converted into the activity concentration (117). PET imaging allows 

quantitative SUVm measurements allowing the clinician to quantify disease state, 

progression and response to therapy. More recently, SUVm measurements in 18F-NaF  

PET have been reported to have potential as a diagnostic tool in OA (116).  This 

chapter introduces for the first time, quantitative SUVm measurements of bone and 

cartilage to identify active spondyloarthropathy and to quantify disease state in AKU.  
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4.2 FEASIBILITY STUDY  

A feasibility study was first undertaken to assess the viability and practicality of 

obtaining SUVm measurements from both cartilage and bone in the large joints and 

spine. The purpose was to objectively identify the strengths and weaknesses of the 

methodology and the feasibility of measuring small anatomical regions such as 

articular cartilage (AC).  

4.2.1 DESIGN OF FEASIBILITY STUDY 

Ten female non-metastatic breast cancer patients were used as a control group 

(mean age of 62, SD±13.8, range 43-84, see section 2.2.3) exclusion criteria included 

active arthropathy in the shoulder, hip and spine. Ten randomly selected female AKU 

(NAC) patients (mean age of 60, SD±6.47, range 52-72, section 2.2.1) were included 

for comparison. Hermes hybrid viewer (section 2.5.1) was utilised to obtain SUVms 

from the hip and shoulder (see section 2.5.3) and lumbar and thoracic spine (see 

section 2.5.2). The knee and ankle could not be included in this analysis as the control 

patients were not scanned below the knee. For the hip, the SUVm was obtained from 

the head of the femur, acetabulum and AC (ROI= 0.5cm diameter, 0.196cm2). For the 

shoulder, SUVms were obtained from the head of the humerus, glenoid fossa and AC 

(ROI= 0.5cm diameter, 0.196cm2). SUVms were also obtained from the centre of each 

thoracic (T1-T12) and lumbar (L1-L5) vertebrae, and from the centre of the 

corresponding IVD below (T1/T2 – L5-S1) (ROI= 1cm diameter, 0.785cm2). The 

feasibility of measuring SUVms at these anatomical sites was assessed.  
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4.2.2 RESULTS OF FEASIBILITY STUDY 

4.2.2.1 Mean standardised uptake value – Hip  

The SUVm was obtained from AKU and control hip joints. The SUVm was measured 

in the AC, acetabulum and the head of femur. The triangulation point was placed at 

the centre of the hip joint. Figure 4.1 demonstrates the SUVm across the three 

anatomical regions within the hip joint in the individual AKU patients. It is apparent 

in Figure 4.1 when looking at patient 60B that the SUVm for the AC is strikingly higher 

(SUV = 23) compared to the other patients, with a mean SUVm of 3.7. The acetabulum 

and the head of the femur have low values and are relatively stable across all patients 

with a mean of 6.5, and 4.0 respectively. Generally, except patient 60B, the SUVms 

of the acetabulum and head of the femur are higher than that of the AC. There 

appears to be no trend in SUVms across the AC, acetabulum or the head of the femur 

with age (Figure 4.1).   

Figure 4.2 demonstrates the SUVms within the AC, acetabulum and head of the femur 

in the individual control patients. The same trends can be seen in the control group 

as in the AKU group. The acetabulum of the hip consistently has the highest SUVms 

(averaging 7.3) across the three anatomical locations for each patient. The head of 

the femur has generally low SUVms across all patients (averaging 2.7), as does the 

SUVms for the AC (averaging 3.0) (Figure 4.2). There appears to be no definitive trend 

across the AC, acetabulum or the head of femur with age as found in the AKU group.  

Figure 4.3 demonstrates a comparison of the control and AKU SUVm in the three 

anatomical regions of the hip. This Figure shows that the AKU group have marginally 

higher SUVms in both the AC and the head of the femur demonstrated by the box 
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plot (X denotes the mean value), and slightly lower SUVms in the acetabulum. 

Independent t-tests revealed no statistically significant differences between AKU and 

control SUVm in the AC (p>0.05), acetabulum (p>0.05) or the head of the femur 

(p>0.05).  

  

Figure 4.1 SUVm of the articular cartilage, acetabulum and head of femur in the 

AKU group with age. 10 female AKU patients (mean age of 60, SD±6.47, range 52-

72). ROI = diameter 0.5cm 0.196cm2, obtained from each anatomical location at the 

centre of the hip joint.  
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Figure 4.2 SUVm of the articular cartilage, acetabulum and head of femur in the 

control group with age. 9 female control patients (mean age of 62, SD±13.8, range 

43-84). ROI = diameter 0.5cm, 0.196cm2 obtained from each anatomical location 

(patient 83 was excluded due to active arthropathy in both hips). 
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Figure 4.3 Box and whisker plot comparison of AKU and control SUVm in the 

articular cartilage, acetabulum and head of femur of the hip joint. Independent t-

tests found no statistically significant differences between AKU and control in the 

articular cartilage (p>0.05), acetabulum (p>0.05) and the head of the femur (p>0.05). 

Box and whisker plot: height of box = interquartile range (upper quartile, lower 

quartile), X = mean value, line within box = median value. Whiskers show the range. 

Individual data points are plotted, the majority are hidden by the plotted boxes. Ten 

female control patients (mean age of 62, SD±13.8, range 43-84), Ten female AKU 

patients (mean age of 60, SD±6.47, range 52-72).  
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4.2.2.2 Standardised uptake value (mean) – Shoulder  

SUVms were obtained from AKU and control shoulder joints. The SUVm was 

measured in the AC, glenoid fossa of the scapula and the head of the humerus, with 

the triangulation point placed at the centre of the shoulder joint. Figure 4.4 

demonstrates the SUVm across the three anatomical regions within the shoulder 

joint in the individual AKU patients. Again, for patient 60B the SUVm for the AC is 

strikingly higher (SUVm= 27) than the other patients, who have a mean SUVm of 2.7. 

The glenoid fossa and the head of the humerus all have similar low values with a 

mean of 6.6 and 3.1 respectively across all AKU patients, this is similar to what was 

seen in the hip joint. Generally (except patient 60B), the SUVms of the glenoid fossa 

and head of the humerus are higher than that of the AC. The SUVm of the glenoid 

fossa is consistently higher than the AC and the head of the humerus, again reflecting 

what was observed in the corresponding regions of the hip. There appears to be no 

trend across the three anatomical regions with age.  

Figure 4.5 demonstrates the SUVms within the AC, glenoid fossa and head of the 

humerus in the individual control patients. The glenoid fossa of the scapula 

consistently has the highest SUVms (mean = 6.1) across the three anatomical 

locations for each patient. The head of the humerus has generally low SUVms across 

all patients (mean = 2.0), as does the SUVms for the AC (mean = 2.2).  

Figure 4.6 compares control and AKU SUVms across the three anatomical regions of 

the shoulder. This Figure shows that the AKU group had marginally higher SUVms 

compared to the control group across the three anatomical regions of the shoulder 
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joint demonstrated by the box plot (X denotes the mean values). However, 

independent t-tests revealed no statistically significant differences between AKU and 

control groups in the AC (p>0.05), glenoid fossa (p>0.05) and the head of the humerus 

(p>0.05). No trend was identified across the three anatomical regions with age in the 

control group.  

Figure 4.4 SUVm of the articular cartilage, glenoid fossa and head of the humerus 

of the shoulder in the AKU group with age. 10 female AKU patients (mean age of 60, 

SD±6.47, range 52-72). ROI = diameter 0.5cm, 0.196cm2 obtained from each 

anatomical location at the centre of the shoulder joint. 
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Figure 4.5 SUVm of the articular cartilage, glenoid fossa and head of humerus in the 

control group with age. 9 female control patients (mean age of 62, SD±13.8, range 

43-84). Patient 83 was excluded due to active arthropathy in both shoulders. ROI = 

diameter 0.5cm, 0.196cm2 obtained from each anatomical location at the centre of 

the shoulder joint.  
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Figure 4.6 Box and whisker plot comparison of AKU and control SUVm in the 

articular cartilage, glenoid fossa and head of the humerus of the shoulder joint. 

Independent t-tests found no statistically significant differences between AKU and 

control in the articular cartilage (p>0.05), glenoid fossa (p>0.05) and the head of the 

humerus (p>0.05). Box and whisker plot: height of box = interquartile range (upper 

quartile, lower quartile), X = mean value, line within box = median value.  Whiskers 

show the highest and the lowest value. Individual data points are plotted, the 

majority are hidden by the plotted boxes. Ten female control patients (mean age of 

62, SD±13.8, range 43-84).  Ten female AKU patients (mean age of 60, SD±6.47, range 

52-72).  
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4.2.2.3 Standardised uptake value – Spine 

Figure 4.7 demonstrates the SUVm across the lumbar and thoracic vertebrae in the 

AKU and control groups. Statistically there was no significant difference (p>0.05) 

between the SUVm of AKU vertebrae (mean SUVm=7.6, SD=1.3) and control 

vertebrae (mean SUVm=7.9, SD=0.6). There appears to be a gradual increase in 

SUVms in the AKU group along the vertebrae from L5-T1 ranging from 5.75 at the 

lower lumbar region to 10.05 at the upper thoracic region. The control group SUVms 

appear to be slightly more stable across the vertebrae ranging from 6.84 to 8.91. 

Figure 4.8 demonstrates the SUVm across the lumbar and thoracic IVDs in the AKU 

and control groups. AKU IVDs are consistently higher compared to the control group 

with a mean SUVm of 12.01 (SD= 1.28) and 3.81 (SD=1.26) respectively. The control 

group SUVms across the IVDs ranged from 1.54-5.63 and the AKU IVDs ranged from 

10.28- 14.95. No trend could be identified in the AKU group regionally along the spine 

reflected by the shallow fluctuations around SUVm of 12. A slight increase in SUVm 

is evident in the control group from L4/L3 IVD to T1/T2 rising from a SUV of around 2 

to 6 ascending the spine. Independent t-tests identified a statistically significant 

difference (p<0.01) between AKU and control IVDs SUVms across all levels (Figure 

4.8).  
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Figure 4.7 SUVm of mean lumbar and thoracic vertebrae in the AKU and control 

groups. SUVms obtained from the centre of the five lumbar (L1-L5) and the twelve 

thoracic (T1-T12) vertebrae. Independent sample t-tests and Wilcoxon-Mann-

Whitney tests did not find any statistically significant differences between the SUVms 

of the control and AKU vertebrae across all levels (p>0.05). Ten female control 

patients (mean age of 62, SD±13.8, range 43-84). Ten female AKU patients (mean age 

of 60, SD±6.47, range 52-72). 
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Figure 4.8 SUVm of mean lumbar and thoracic intervertebral discs in the AKU and 

control groups. SUVms obtained from the centre of the five lumbar (L1-L5) and the 

twelve thoracic (T1-T12) intervertebral discs. Independent t-test and Wilcoxon-

Mann-Whitney tests identified statistically significant differences between the 

SUVms of the control and AKU IVDs at all levels (p<0.01). Ten female control patients 

(mean age of 62, SD±13.8, range 43-84). Ten female AKU patients (mean age of 60, 

SD±6.47, range 52-72). 
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4.2.3 DISCUSSION OF FEASIBILITY STUDY 

This feasibility study was undertaken to evaluate the practicality and viability of 

obtaining accurate SUVms in the bone and cartilage of the hip (acetabulum, AC and 

head of femur), shoulder (glenoid fossa, AC and head of humerus) and the spine 

(thoracic and lumbar vertebrae and IVDs).  

In terms of the methodology, obtaining the SUVms from the spine did not prove 

difficult. The IVDs were large enough in the thoracic and lumbar regions (IVD height 

approximately 7-10 mm) to ensure that the ROI was placed within the cartilaginous 

disc. The cervical region was excluded from the analysis for this reason, as the IVDs 

were too thin (less than 3-5mm), meaning that the SUVm did not reflect cartilage 

uptake alone. Statistically significant results were obtained when analysing the spine 

which provides confidence in the methodology (Figures 4.7 and 4.8). Figure 4.7 

suggests that generalised rates of bone turnover within the thoracic and lumbar spine 

of the control and AKU groups are similar with no significant differences found (mean 

SUVm of AKU vertebrae = 7.6, and mean SUVm of control vertebrae = 7.9). This 

corresponds to the SUVs reported by Win et al. (116) who reported lumbar and 

thoracic SUVs in 11 normal vertebrae (SUV of 7.3) and Puri et al. (134) who reported 

SUVs of  the lumbar spine in 12 healthy postmenopausal women (mean SUVm of 6). 

This therefore provides further evidence that this methodology is reliable and the 

results are in line with other published studies.   

Figure 4.8 demonstrates the SUVms in the IVDs of the AKU and control groups, 

statistically significant differences were found at each level. The AKU group had much 

higher SUVms reflecting increased tracer uptake in the cartilage which has not been 
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previously identified in AKU. It is thought that this is the first time SUVms have been 

explored in cartilaginous IVDs. It is proposed that this is demonstrating calcification 

of the IVDs in AKU.  

Obtaining the SUVms from the hip and shoulder proved more difficult. There was no 

problem obtaining SUVms from the bony acetabulum, glenoid fossa, head of femur 

and head of humerus when the triangulation point was placed at the center of the 

joint, as these structures were large and thick enough for the ROI (0.5cm diameter, 

0.196cm2) (Figures 2.9 and 2.10). However, the AC proved difficult to ensure the ROI 

was placed in cartilage alone without any bony tissue as normal AC diameter ranges 

from 0.2-0.5cm. AKU results in destruction of articular cartilage, therefore many 

patients had very thin AC in both the hip and shoulder joints. The smallest ROI 

available was 0.5cm and therefore in some patients with arthropathy it was difficult 

to ensure cartilage alone was measured. Additionally, the curvature of the joint 

influenced the reliability of placing the ROI within the cartilage, due to slices 

containing part cartilage and part bone. It is thought that these issues are reflected 

in the results (Figure 4.1, 4.2, 4.4 and 4.5) excluding patient 60B in the AKU group, 

and it is likely that the results of the AC reflected some bony uptake. After looking at 

the patient noted patient 60B had active arthropathy in both hips and shoulders. 

After completing this feasibility study, we discovered issues with obtaining accurate 

SUVms within the AC of the hip and shoulder due to the nature of the very thin AC. 

Some very promising results were identified when analysing the SUVms of the IVDs 

between AKU and control groups. The AKU IVDs were found to have increased uptake 

of 18F, thought to be the first time this phenomenon has been identified in AKU. As 
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this thesis is interested in looking at the differences in uptake of 18F-NaF in both bone 

and cartilage the decision was made to exclude the shoulder and hip from any further 

analysis and to only study spinal arthropathy in a larger group of patients.   

 

4.3 DESIGN OF STUDY 

4.3.1 PATIENT GROUP  

41 adult patients (16 females, 25 males, mean age 51, SD±10.9, range 30-68) from 

the SONIA 2 clinical trial (see section 2.2.2) underwent 18F-NaF PET/CT imaging at 

baseline (V1), and again one year later (V3). V1 was carried out in 2014/15 pre-

treatment and V3 one year later post-treatment (V2 was a safety visit at 3 months). 

One group receives 10mg of nitisinone, one group receives no treatment - the 

treatment and non-treatment groups are blinded until the end of the clinical trial in 

2019 (see section 1.3.2 for more information). Ten non-metastatic breast cancer 

‘control’ patients were used as a comparison (see section 2.2.3). These patients had 

undergone 18F-NaF PET/CT to determine bony metastasis, of which all patients were 

reported as negative for any cancerous involvement.   

4.3.2 MEASURING THE SUVms  

Hermes Hybrid Viewer (see section 2.5.1) was used to measure the SUVms (section 

2.5.2). Based on the results of the feasibility study, the SUVs obtained from all lumbar 

and thoracic vertebrae were not statistically different. It was therefore decided that 

the upper most, lower most and middle vertebrae and IVDs were analysed for the 

main study. The SUVm was obtained from the centre of three lumbar (L5, L3, L1) and 
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three thoracic (T1, T6, T12) vertebral bodies, and from the centre of the 

corresponding IVDs below (L5-S1, L3/L4, L1/L2, T12/L1, T6/T7, T1/T2). For the AKU 

group the SUVms were taken at baseline (V1) and again one year later (V3). For the 

control patients SUVms were measured for the single diagnostic scan, no follow up 

scans were available.  

 

4.4 RESULTS  

4.4.1 VERTEBRAE AND IVD SUVms 

The SUVm was obtained from the lumbar and thoracic vertebrae (L5,L3,L1,T12,T6,T1) 

and IVDs (L5-S1, L3-L4, L1-L2, T12-L1, T6-T7, T1-T2) from both AKU and control 

subjects. Figure 4.9 demonstrates the mean SUVm across all AKU and control patients 

in the lumbar and thoracic vertebrae and IVDs (data is shown for both V1 and V3 for 

the AKU group). Statistically there was no significant difference across all vertebral 

levels (p>0.05) between the SUVm of the AKU vertebrae (mean SUVm =7.4) and 

control vertebrae (mean SUVm=7.58). In marked contrast, the AKU group has much 

higher SUVms in the IVDs compared to the control (mean = 11.6 and 3.81 

respectively) (Figure 4.9). Independent t-test identified a statistically significant 

difference (p<0.01) between the AKU and control IVDs at every IVD level measured.  

Paired t-tests were carried out to identify any changes between V1 and V3. 

Statistically there was no significant difference between V1 and V3 in the AKU group 

for both vertebrae (p>0.05) and IVDs (p>0.05) suggesting there has been no 

significant change in the SUVms over one year. It is clear when looking at AKU 
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vertebrae and IVDs that the vertebrae have consistently lower SUVms (mean SUVm 

= 7.58) than the IVDs (mean SUVm = 11.16), which was statistically significant at every 

level (p<0.01). When comparing the SUVms for the vertebrae and IVD in the control 

group, the opposite is seen. The SUV of the vertebrae (mean SUVm = 7.4) is 

consistently higher than the SUV of the IVDs (mean SUVm = 3.81). The control mean 

IVD SUVm was much lower in the control group (3.81) compared to what was found 

in the AKU group (11.16). This suggests that newly deposited mineral is being laid 

down in the IVDs in AKU due to calcification of the cartilage.   
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Figure 4.9 SUVm of mean lumbar and thoracic vertebrae and IVDs across all AKU 

and control patients. V1 = baseline visit, V3 = 1 year after V1. Vertebrae measured 

(L5, L3, L1, T12, T6, T1), IVDs measured (L5-S1, L3-L4, L1-L2, T12-L1, T6-T7, T1-T2). 

Independent t-tests and Wilcoxon-Mann-Whitney tests revealed statistically 

significant differences between AKU and control IVDs at every level (p<0.01). Paired 

t-tests revealed no significant differences between V1 and V3 in both the vertebrae 

and IVDs (p>0.05). n=41 AKU patients (16 females, 25 males, mean age 51, SD±10.9, 

range 30-68). V1 n=41, v3 n= 33. n=10 female control patients (mean age of 62, 

SD±13.8, range 43-84). 
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4.4.2 SUVm WITH AGE  

The mean lumbar vertebrae (L5, L3, L1) SUVm was plotted for both visits (V1 and V3) 

against age for AKU and control groups (Figure 4.10). There is an obvious trend 

demonstrating a clear reduction in SUVm with age in both AKU and control groups. 

Generally, the youngest patients have the highest SUVms and the oldest have the 

lowest.  

Paired t-tests revealed no significant difference (p>0.05) between the lumbar 

vertebrae SUVms for V1 and V3 in the AKU patients. The control mean lumbar 

vertebrae can be seen to have slightly increased SUVms compared to the AKU 

patients however independent t-tests revealed no significance between V1 and the 

control and V3 and the control (p>0.05).  

The negative relationship with age was clear in both the AKU and control groups 

demonstrated by the regression lines. Multiple variate linear regression was applied 

to analyse the trend between the mean lumbar vertebrae SUVm with age in both 

AKU and control groups. Interestingly, age was found to be statistically significant to 

the mean lumbar vertebrae SUVm (p<0.01). Age affects mean lumbar vertebrae 

SUVm outcome negatively. For every year increase in age the SUVm decreases by 

0.100 in both AKU and control groups.  
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Figure 4.10 SUVm of mean lumbar vertebrae with age in individual AKU and control 

patients. V1 – baseline, V3 -1 year after V1. MEAN L VERT (SUV mean of mean lumbar 

vertebrae (of L5, L3, L1)). Paired t-tests revealed no significant differences between 

V1 and V3 mean lumbar vertebrae SUVm. Independent t-tests also revealed no 

statistically significant differences between the SUVms of AKU (V1 and V3) and the 

control group (control vs V1 p>0.05, control vs V3 p>0.05). Multiple linear regression 

analysis identified a significant difference (p<0.01) between age and mean lumbar 

SUVm in both control and AKU groups. n=41 AKU patients (16 females, 25 males, 

mean age 51, SD±10.9, range 30-68). V1 n=41, V3 n= 33.  n=10 female control patients 

(mean age of 62, SD±13.8, range 43-84). 
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The mean thoracic vertebrae (T12, T6, T1) SUVm was plotted for V1 and V3 against 

age, the control group was added for comparison (Figure 4.11). A gradual reduction 

in SUVm can be seen with age in both AKU and control groups as seen in Figure 4.10. 

Paired t-tests revealed no significant difference (p>0.05) between the SUVms at V1 

and V3. Independent t-tests also revealed no significant differences between the AKU 

group at visit 1 and 3 with the control (p>0.05). 

Multiple variate linear regression analysis was conducted to analyse the trend in 

mean thoracic vertebrae SUVm with age in both AKU and control groups. As reported 

in the previous graph (Figure 4.10) age was found to be statistically significant to the 

mean thoracic vertebrae SUVm (p<0.05). Age has a negative effect on mean thoracic 

vertebrae SUVm, for every year increase in age the mean thoracic vertebrae SUVm 

reduces by 0.067 in both AKU and control groups.  
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Figure 4.11 SUVm of mean thoracic vertebrae with age in individual AKU and 

control patients. V1 – baseline, V3 - 1 year after V1. MEAN T VERT (SUV mean of 

mean thoracic vertebrae (of T12, T6, T1)). Paired t-tests revealed no significant 

difference between V1 and V3 (p>0.05). Independent t-tests also revealed no 

significant differences between the SUVm of V1 and V3 with the control (p>0.05, 

p>0.05 respectively). Multiple linear regression analysis identified a significant 

difference (p<0.05) between age and mean thoracic SUVm in both control and AKU 

groups. n=41 AKU patients (16 females, 25 males, mean age 51, SD±10.9, range 30-

68). V1 n=41, V3 n= 33.  n=10 female control patients (mean age of 62, SD±13.8, range 

43-84). 
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Figure 4.12 demonstrates the mean lumbar IVD SUVm with age in AKU and control 

groups. Paired t-tests revealed no significant difference between V1 and V3 in the 

AKU group (p>0.05). The SUVms of the control patients are consistently lower (SUVm 

= 2.5) compared to the AKU group (V1 SUVm = 11, V3 SUVm = 10). Independent t-

tests revealed statistically significant differences between both V1 and V3 mean 

lumbar IVD with the control mean lumbar IVDs (p<0.01). 

In the control group no trend was identified with age. In contrast, the trendline for 

the AKU group at both V1 and V3 shows a gradual increase in SUVm with age followed 

by a decline in the later years. The youngest AKU patients have the lowest SUVms 

(SUVm = below 5) that are in line with the SUVms of the control group. However, 

from the age of approximately 40 the SUVm can be seen to increase reaching a 

maximum SUV of 20 around the age of 50/55 years. From here, a general reduction 

in SUVm can be seen where the oldest patients (between 60 and 70) have a reduction 

in SUVms decreasing to values similar to that of the controls.   

Multivariate linear regression found a significant difference between the AKU and 

control groups with age (p<0.01). In the AKU group the mean lumbar IVD SUVm 

increases by 0.238 every year, compared to no change in the control group. However, 

looking at the graph this trend in the AKU group does appear to stop around the age 

of 50/55.  
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Figure 4.12 SUVm of mean lumbar IVDs with age in individual AKU and control 

patients. V1 – baseline, V3 - 1 year after V1. MEAN L IVD – SUV mean of mean lumbar 

IVD (L5/S1, T3/T4, L1/L2).  Polynomial function was fitted to the AKU data (order 2 

polynomial line used when the data has one hill), with R² values of V1 (R²= 0.458) V2 

(R²= 0.435). Linear regression line for the control had a R² value of 0.133. Paired t-

tests revealed no significant difference between V1 and V3 in the AKU group (p>0.05). 

Independent t-tests revealed statistically significant results between both V1 and V3 

mean lumbar IVD SUVm with the control mean lumbar IVDs SUVm (p<0.01). 

Multivariate linear regression found a significant difference between the groups (AKU 

vs control) with age (p<0.01). n=41 AKU patients (16 females, 25 males, mean age 51, 

SD±10.9, range 30-68). V1 n=41, V3 n= 33. n=10 female control patients (mean age 

of 62, SD±13.8, range 43-84). 
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The same trend can be seen when looking at the SUVm of the mean thoracic IVDs in 

AKU and control groups (Figure 4.13). The youngest AKU patients have similar SUVms 

to the controls (control mean SUVm = 4). From the age of around 40 the SUVm of the 

AKU patients increases reaching a maximum of 18 around the age of 50-55 years. The 

oldest AKU patients (over the age of 60) have lower SUVms reducing towards the 

values of the controls as seen in Figure 4.12. There is a slight decrease in SUVm with 

age in the thoracic vertebrae of the control group. 

No significant difference was found between the SUVms of V1 and V3 (paired t-test, 

p>0.05). Independent t-tests revealed significant differences between the mean 

thoracic IVD SUVm in the AKU groups (V1 and V3) compared to the control mean 

thoracic IVD SUVm (p<0.01).  

Multivariate linear regression found a significant difference between the AKU and 

control groups with age (p<0.01). In the AKU group the mean thoracic IVD SUVm 

increases by 0.293 every year, compared to little change in the control group. 

However, looking at the graph this trend does appear to stop around the age of 50/55 

consistent to what was described in Figure 4.12.  

 



161 
 

Figure 4.13 SUVm of mean thoracic IVDs with age in individual AKU and control 

patients. V1 (visit 1 – baseline) V3 (visit 3 - 1 year after V1). MEAN T IVD – SUV mean 

of mean thoracic IVD (T12/L1, T6/T7, T1/T2). Polynomial (order 2) regression lines = 

V1 (R²= 0.497) V2 (R²= 0.458). Linear regression line - control (R²= 0.331). Paired t-

tests revealed no significant difference between V1 and V3 mean thoracic IVD SUVm. 

Independent t-tests revealed statistically significant results between both V1 and V3 

mean thoracic IVD SUVm with the control mean lumbar IVD SUVm (p<0.01). 

Multivariate linear regression found a significant difference between the groups (AKU 

and control) with age (p<0.01). n=41 AKU patients (16 females, 25 males, mean age 

51, SD±10.9, range 30-68). V1 n=41, V3 n= 33. n=10 female control patients (mean 

age of 62, SD±13.8, range 43-84). 
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4.4.3 GENDER AND SUV  

Figure 4.14 demonstrates the SUVm across the lumbar and thoracic vertebrae and 

IVDs in males and females. The SUVms across the lumbar and thoracic vertebrae are 

very similar in males and females. Independent t-test identified no significant 

difference between the vertebrae SUVms of the males and females at all vertebral 

levels (mean p>0.05). The SUVms across the lumbar and thoracic IVDs can be seen to 

be consistently higher compared to the vertebrae. The male group can be seen to 

have higher SUVms consistently across the lumbar and thoracic IVDs compared to the 

female group. However, independent t-tests found no statistically significant 

differences across all levels (mean p>0.05).    

Figure 4.14 SUVm of mean lumbar and thoracic vertebrae and IVDs in males and 

females.  Independent sample t-tests revealed no statistically significant differences 

between the vertebrae (p>0.05) and IVDs (p>0.05) at every level of males and 

females. n=41 AKU patients (16 females, 25 males, mean age 51, SD±10.9, range 30-

68).  
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4.4.4 INDIVIDUAL CHANGE IN SUV OVER ONE YEAR  

 

The AKU patients were separated into four age-dependent groups to look at the 

individual change in SUVm over one year in the vertebrae and IVDs. Figure 4.15 

demonstrates the individual patient changes in the mean lumbar vertebrae SUVm at 

V1 and V3 in four age groups (30-39, 40-49, 50-59, 60-70). The red lines demonstrate 

a reduction in SUVm over one year, the blue lines demonstrate an increase in SUVm 

and green lines represent no change in SUVm. It is evident in graph A that the 

youngest patients have little change in SUVm over one year, with the other three age 

groups (Figure 4.15 B, C and D) having more of a change demonstrated by the steeper 

lines. In the 40-49-year-old age group there appears to be more of a reduction in 

SUVm over the one-year period, however, in the oldest two age groups patients can 

be seen to have either a reduction or increase in SUVm at equal rates. It is clear that 

the youngest age group has the highest SUVms and the oldest age group has the 

lowest SUVms supporting the age-related trend shown in Figure 4.10.  

Figure 4.16 demonstrates the individual patient changes in the mean thoracic 

vertebrae SUVm at V1 and V3 in four age groups. It is clear in the youngest patients 

(Figure 4.16 A) that there is little change if any in SUVms across the two visits 

equivalent to what was found in the lumbar vertebrae (Figure 4.15 A). In the next age 

group (Figure 4.16 B) the results are more variable with some patients having an 

increase some having a decrease and some having no change in SUVm. The oldest 

two age groups (Figures 4.16 C and D) have more patients with a reduction in SUVm 

over one year. Comparable to what was seen in the lumbar vertebrae the youngest 

age group has the highest SUVms and the oldest age group has the lowest SUVms 
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supporting what was found in Figure 4.11 that demonstrates a reduction in SUVm 

with age.  

The same analysis was carried out on the lumbar and thoracic IVDs. Figure 4.17 

demonstrates the individual mean lumbar IVDs at V1 and V3 in the four age groups. 

In terms of the change in SUVm over one year, the youngest age group has mostly 

little change, with the oldest three age groups having more of a change over one year 

like we have seen in the lumbar and thoracic vertebrae. The oldest age group has the 

biggest changes in SUVms over the one-year period. The 40-49 age group (Figure 4.17 

B) has more patients having a reduction in SUVm over one year. The next age group 

(Figure 4.17 C), the majority of patients appear to have a slight increase in SUVm 

across the visits. The oldest age group (Figure 4.17 D) has patients increasing and 

decreasing equally. Looking at the SUVms the youngest age group has the lowest 

values; the 40-49 group reaches the highest SUVms and the oldest age group can be 

seen reducing back to lower values. This supports the trend that was seen in Figure 

4.12, that demonstrates the youngest patients have the lowest SUVms followed by 

an exponential increase in SUVm up to around the age of 45-50 followed by a plateau 

at around the age group 50-60 then followed by a steady decline in the oldest 

patients.  

A very similar trend can be seen in Figure 4.18 that demonstrates the mean thoracic 

IVDs SUVm at V1 and V3 in four age groups. Again, little change is seen in the 

youngest age group (Figure 4.18 A), with more of a change seen in the other three 

age groups. The patents in the oldest age group (Figure 4.18 D) mostly have a 

reduction in SUVm over the one-year period. In terms of SUVms the youngest 
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patients have the lowest SUVms, the age group 50-59 have the highest SUVms and 

the oldest age group can be seen having lower SUVms. This confirms the findings in 

Figure 4.13 that demonstrates the youngest patients have the lowest SUVms 

followed by an exponential increase up to around the age of 50, followed by a plateau 

up to around the age of 60, followed by a steady decline in the oldest patients. 
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Figure 4.15 Individual patient mean lumbar vertebrae SUVm at V1 and V3 in four age groups.  A - 30-39 years (n=6), B - 40-49 years (n=9), C - 

50-59 years (n=8) D- 60-70 (n=10). Red = decrease in SUV across V1 and V3, Blue = increase in SUV, Green = no change in SUV.   
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Figure 4.16 Individual patient mean thoracic vertebrae SUVm at V1 and V3 in four age groups.  A - 30-39 years (n=6), B - 40-49 years (n=9), C 

- 50-59 years (n=8) D- 60-70 (n=10). Red = decrease in SUV across V1 and V3, Blue = increase in SUV, Green = no change in SUV.   
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Figure 4.17 Individual patient mean lumbar IVD SUVm at V1 and V3 in four age groups.  A - 30-39 years (n=6), B - 40-49 years (n=9), C - 50-59 

years (n=8) D- 60-70 (10). Red = decrease in SUV across V1 and V3, Blue = increase in SUV, Green = no change in SUV.
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Figure 4.18 Individual patient mean thoracic IVD SUVm at V1 and V3 in four age groups.  A - 30-39 years (n=6), B - 40-49 years (n=9), C - 50-59 

years (n=8) D- 60-70 (n=10). Red = decrease in SUV across V1 and V3, Blue = increase in SUV, Green = no change in SUV. 
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4.5 DISCUSSION 

 

In this chapter, the nuclear medicine imaging technique 18F-NaF PET has been utilised 

to measure 18F uptake in the thoracic and lumbar vertebrae and IVDs in AKU and 

control patients. The aim was to determine if there was a difference in bone 

metabolism, and/or cartilage composition/structure in AKU patients compared to 

control patients. 18F-NaF was utilised because of its superior skeletal kinetics 

compared to other radioisotopes such as Tc-99m including faster blood clearance and 

two-fold higher bone uptake providing superior bone-to-background ratio. 

Additionally, the PET scanner provides better spatial resolution, greater sensitivity 

and superior image quality (110) (Table 1.6). Furthermore, and of more significance 

to this chapter PET imaging allows quantitative measurements of 18F-NaF uptake that 

cannot be generated from other imaging modalities.  

The pharmacokinetics of 18F-NaF uptake essentially depends on the rates of bone 

uptake and elimination from the circulation via renal excretion. 18F-NaF  is absorbed 

into the hydroxyapatite crystal of bone where substitution of 18Fˉ for OHˉ groups 

covalently binds to hydroxyapatite (Ca10(PO4)6OH2) to form fluorapatite compounds 

(Ca10(PO4)6F2) (111). Uptake generally is higher in new bone (osteoid) due to the 

higher availability of binding sites (109). The rate of 18F uptake into bone therefore 

reflects the amount of actively mineralising bone present and closely resembles bone 

metabolism. Radiotracer delivery and localisation to bone depends on regional blood 

flow and the extraction rate of bone. Changes in radiotracer kinetics therefore relate 

to osteoblastic activity and or bone vascularity (110). Increased vascularity and bone 

turnover are both seen in osseous and metabolic diseases. Areas of increased 
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localisation of tracer uptake reflect increased bone metabolism at that site, although 

physiologic uptake of 18F in the skeleton is generally uniform in adults (113).  

Quantitative measurements in PET imaging are used as a tool to supplement visual 

interpretation providing a method that is less user-dependent and that can be used 

for comparison between patients. The mean standardised uptake value (SUVm) is a 

common method of expressing the uptake of PET tracers. The SUVm is a measure of 

radioactivity in a region of interest, normalised against injected activity and the 

subject’s body weight (Figure 1.13). If all injected 18F is retained and uniformly 

distributed the SUV should be 1g/ml; larger SUVms represent proportionally higher 

uptake of 18F at that specific site. This chapter investigates the SUVm of the lumbar 

and thoracic vertebrae and IVDs in AKU and control patients.   

4.5.1 Discussion of feasibility study and SONIA 2 results 

The feasibility study described at the start of this chapter identified and described 

the accuracy and robustness of the method of obtaining accurate SUVms 

representative of cartilage and bone in the spine. Figure 4.8 demonstrates the mean 

lumbar and thoracic IVD SUVm in the control and AKU groups. The SUVms were 

strikingly higher in the AKU group averaging SUVm of 12.01 across the IVDs compared 

to a mean SUVm of 3.8 in the control IVDs. Statistically significant differences were 

identified at each IVD level (p<0.01). In contrast, when analysing the vertebrae, the 

SUVms were similar to the control and the data points overlapped with no significant 

differences identified (Figure 4.7). This data was representative of ten AKU and ten 

control patients. The main study of this chapter was to repeat this analysis on a larger 
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cohort of AKU patients; 41 SONIA 2 patients were recruited and analysed. Five lumbar 

and twelve thoracic vertebrae and IVDs were measured in the feasibility study and 

the results across the vertebrae and IVDs were consistent (as seen in Figures 4.7 and 

4.8). Therefore, only three lumbar and three thoracic vertebrae were measured in 

the main study (the lower-most, middle and upper-most vertebrae of that region). 

Figure 4.9 illustrates the results of the SONIA 2 data. The SUVms for the SONIA 2 IVDs 

were in line with the values identified in the feasibility study averaging SUVm of 11.6 

compared to SUVm of 12.01 in the feasibility study. Again, independent t-tests 

revealed statistically significant differences (p<0.01) between AKU and control IVDs 

at every level. Additionally, the vertebrae SUVms also corresponded very accurately 

with the results of the feasibility study, with a mean SUVm of 7.4 in the SONIA 2 group 

and 7.6 in the feasibility study. These results demonstrate the robustness of the 

method and reliability of the results.  

 

4.5.2 IVD SUVm 

AKU patients with ochronotic arthropathy usually present with lower back pain 

resulting from disc degeneration as the initial joint manifestation of AKU. Symptoms 

worsen from the fourth decade leading to painful spinal disease often resulting in 

spinal stenosis (1). Therefore, it is not surprising that a significant difference between 

the SUVm of IVDs was identified in AKU patients compared to controls. The SUVms 

of the AKU IVDs are three times higher than that of the control (Figures 4.8 and 4.9). 

It is understood in AKU that IVDs become calcified as part of the disease 

pathophysiology. Calcification of IVDs is a consistent feature reported in many AKU 
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case reports along with disc space narrowing, loss of lumbar lordosis and in severe 

cases osteophytes (79,138–141). Jebaraj et al. (142) states that disc calcifications in 

spinal ochronosis usually occur as lamellar calcifications of the nucleus pulposus 

which begins in the lumbar disc and ascends the spine. They described the 

calcifications as calcium hydroxyapatite crystals or calcium pyrophosphate dihydrate 

crystals and suggested it was due to the biochemical alterations of the disease. IVD 

calcification or chondrocalcinosis occurs with age and the prevalence has been 

previously reported as 5-6% of the general adult population through conventional 

radiography. The prevalence in AKU has not been described but is considered a well-

known radiological feature (143). Calcification in the discs likely accounts for the 

increased uptake of 18F observed in AKU demonstrated by the increased SUVm. It is 

proposed that 18F is binding to the calcium hydroxyapatite crystals / calcium 

pyrophosphate dihydrate crystals in the IVDs hence why fluoride uptake can be 

measured in these regions. The control patients have low uptake of 18F in the discs 

due to IVDs being avascular and healthy IVDs not containing calcified deposits. 

Interestingly the SUVms of the IVDs were significantly higher than the vertebrae at 

every level in AKU patients suggesting that IVDs are more actively mineralising than 

bone. A possible reason for this is that 18F binds preferentially to newly laid down 

hydroxyapatite in the IVDs due to the higher availability of binding sites due to active 

disease processes.  
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4.5.3 Vertebrae SUVm  

18F binds to hydroxyapatite in bone to form fluorapatite. The uptake of NaF into bone 

depends on the blood flow to the area, regional osteoblastic activity and renal 

clearance. The rapid uptake of 18F occurs preferentially at high osteoblastic activity 

where bone remodelling is greatest. The spinal vertebrae are an ideal site for 

quantitative assessment of bone metabolism as the spine has a greater turnover of 

bone than other skeletal sites. This is due to factors such as the spine is subjected to 

mechanical stress which enhances interleukin 11 expression which stimulates 

osteoblast differentiation. This leads to increased bone turnover and increased 

osteoblastic activity which results in high 18F uptake (117). Additionally, the vertebrae 

consist of mostly trabecular bone which is highly vascularised and is less dense 

compared to cortical bone, thus trabecular bone has higher SUVms compared to 

cortical bone. 

The results of this study revealed that the SUVms of AKU vertebrae (SUV = 7.4) were 

very similar to control vertebrae (SUVm = 7.58) suggesting that generalised rates of 

bone turnover in AKU and control patients are very similar. This reflects that bone 

turnover in AKU is normal. It is believed that this is the first time SUVm measurements 

have been reported for AKU patients even though, there are several reports of SUVs 

of the spine in the normal skeleton. Win et al. (116) reported SUVs in the cervical, 

thoracic and lumbar vertebrae in 11 normal patients (excluding patients with 

abnormal renal function, history of cancer or metabolic bone disease). Interestingly, 

the SUVs for the vertebrae in this study were very similar to the results of this 

chapter. Win et al. (118) reported the mean SUV(max) of the thoracic and lumbar 
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vertebrae to be 7.31, which was very similar to the SUVm of the thoracic and lumbar 

vertebrae of the AKU and the control patients analysed in this study which had 

SUVms of 7.4 and 7.5 respectively. Puri et al. (134) also reported SUVs of the lumbar 

vertebrae in 12 post-menopausal women, they reported the mean SUV to be 6 

corresponding to the results we have reported. These findings provide confidence in 

the method and quality of the results reported in this chapter. 

In terms of the SUVms along the spine, the SUVms are slightly higher in the thoracic 

vertebrae compared to the lumbar vertebrae (Figures 4.7 and 4.9) and appear to 

slightly increase up the spine from L5-T1. This was also found by Kaneta et al. (144) 

who reported SUV measurements of normal thoracic and lumbar vertebrae using 

SPECT/CT Tc-99m. The SUVm gradually increased from the lower lumbar spine to the 

upper thoracic spine however this was not statistically significant. This finding is 

unexpected given that the lumbar vertebrae have the highest mechanical forces 

acting on them, and therefore increased bone turnover compared to areas of the 

spine with fewer forces acting upon them. It was expected that the lumbar vertebrae 

would have the highest SUVms. A possible reason for this could be the thoracic spine 

has increased axial forces acting upon it due to its flexibility. Additionally, in AKU the 

lumbar spine is known to be affected by osteoarthropathy to a higher extent than the 

thoracic spine. The end stage of spinal arthropathy results in spinal fusion. This could 

result in reduced SUVms due to low bone turnover at sites of bony fusion, due to less 

new mineralisation.   
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4.5.4 Vertebrae SUVm with age  

This chapter describes a reduction in SUVm with age in the thoracic and lumbar 

vertebrae in both AKU and control groups (Figures 4.10 and 4.11). Essentially this 

means less mineral available for fluoride to bind and or decreased blood flow. This 

supports what was found in the previous chapter where a reduction in the 

percentage incidence of increased 18F uptake with age was described in the lumbar 

vertebrae (Figure 3.3) as well as the thoracic vertebrae (Figure 3.4). This is consistent 

with the literature.  Win et al. (116) found a negative trend in SUV(max) with age in 

the T5, T7, T12 and L2 vertebrae but without statistical significance. It is widely 

agreed that bone deteriorates in composition, structure and function with age. In the 

first three decades of life bone turnover is coupled very tightly maintaining a steady 

state between bone resorption and bone formation. Peak bone mass is reached 

around the age of 20 in women and older in men. After this bone turnover continues 

at a slower rate resulting in a steady reduction in bone mass (145).  

The menopause in women greatly increases bone resorption due to low levels of 

oestrogen, accelerating bone loss. Daly et al. (146) conducted a ten-year population 

based observational study and reported that the annual percentage rate of loss in 

forearm BMD was 1.5 to 2.0-fold higher in females compared to males over the age 

of 60. Therefore, a reduction in BMD results in less hydroxyapatite for 18F to bind, 

therefore resulting in a lower SUVms. 

A reduction in red marrow is associated with ageing. Chen et al. (147) identified that 

the rate of vertebral bone marrow perfusion revealed a significant decrease in 
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subjects older than 50 years. Females were found to have a marked decrease in 

marrow perfusion compared to males over the age of 50. Reduced perfusion to bone 

due to reduced vascularity was proposed to result in a reduction of 18F that is 

transported to that area resulting in lower SUVms and it was expected that females 

would have a reduction in SUVm for this reason. Figure 4.14 demonstrates the gender 

differences in SUVms in the vertebrae and IVDs. No statistical difference was 

identified between the vertebrae SUVms between males and females demonstrating 

no differences in uptake 18F. A study by Aliberti et al. (148) assessed bone metabolism 

in ochronotic patients by evaluating bone turnover markers and bone mass. They 

described an imbalance in bone metabolism, leading to osteopenia or osteoporosis 

in ochronotic patients and hypothesised that HGA deposited into the bone matrix 

and osteocytes plays a pathophysiological role in accelerating bone loss. Figure 4.10 

demonstrates the reduction in SUVm with age in the lumbar vertebrae. It can be seen 

that the AKU group have reduced SUVms compared to the control across all ages 

which could be due to reduction in BMD exacerbated by the disease process.  

4.5.5 IVD SUVm with age  

The AKU SUVms of the IVDs display an interesting trend (Figure 4.12 and 4.13); 

‘inverted U’ curve on the graph, demonstrating the SUVm increasing from the 

youngest patients up to around the age of 50. At this point the curve plateaus up to 

around the age of 60 and then reduces again in the oldest patients. This trend is 

evident in both the lumbar and thoracic IVDs in both V1 and V3. The 30-40-year-old 

patients have low IVD SUVms in line with the control group. From the age of 40 a 

sharp increase is observed in SUVms, this age corresponds to the age of the onset of 
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arthritic pain, of which starts first in the spine. It is proposed that this increase in 

SUVm at this age could correspond to the deposition of hydroxyapatite / calcium 

pyrophosphate dihydrate crystals. By the age of 60-70 the IVDs may well be fused in 

some cases, or deposition is reduced reflecting the reduction in SUVm in the late 

stages of the disease. The previous chapter found low incidences throughout the IVDs 

and there was no trend with age. This was suggested to be due to the resolution of 

the 18F MIP images, inhibiting accurate identification of the IVDs and the bony 

vertebrae. The results of this chapter demonstrate for the first time the process of 

disc calcification, illustrated by changes in radiotracer uptake in AKU.  

4.5.6 Gender and SUVm  

Little has been published regarding gender differences in SUVms in the spine. Figure 

4.14 demonstrates vertebral and IVD SUVms of males and females. From this graph, 

it is clear that there is no difference between the thoracic and lumbar vertebrae 

between males and females, however when looking at the SUVms of the IVDs, males 

seem to have higher SUVms than females at each vertebral level, however this was 

not statistically significant. A possible reason for this could be that males generally 

weigh more than females therefore have increased forces acting through the spine. 

Additionally, increased weight may compress the discs to a higher extent in males. 

Win et al. (116) demonstrated a positive correlation between SUVm and weight and 

explained that increased weight puts mechanical stress on the spine, this results in 

increased osteoblastic activity therefore increased 18F uptake. Kaneta et al. (144) 

commented on gender differences in the vertebrae of normal spines, and reported 

that males had higher SUVms compared to females and suggested this was due to 
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males having higher BMD than females. This was despite the mean age of the males 

being 5 years older than the females therefore this finding was thought to be 

significant.    

4.5.7 Individual changes in SUVm  

It is clear from Figures 4.9 - 4.13 that there is no significant difference between the 

SUVms of V1 and V3 in the lumbar and thoracic vertebrae or IVDs. Figures 4.15 – 4.18 

demonstrate individual changes in SUVms across V1 to V3 in the vertebrae and IVDs. 

The individual comparisons try to shed light on what is happening over a period of 1 

year on an individual basis in the IVDs and vertebrae with age. The results are 

generally very varied, some patient’s SUVms increase some decrease and some are 

unchanged. It is hoped that once the SONIA 2 clinical trial has ended, and the 

additional visits have been analysed some interesting trends may be identified as the 

patients will have been taking the drug for a longer period. Additionally, the 

treatment group will be revealed so any changes in response to nitisinone can be 

analysed. The patients that show a reduction in SUVm over one year may be on the 

drug and those that are increasing may be the no treatment group. This data suggests 

that there appears to be a possibility of change after one year, in the clinic patients 

report improvement in symptoms soon after taking nitisinone therefore a change in 

SUVm could demonstrate this. This will be elucidated in 2019.   
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4.5.8 Limitations of the SUVm 

Due to the relatively high radiation exposure of PET imaging it is unethical to scan 

healthy patients to use as controls. The control group used in this thesis to compare 

SUVms with AKU patients is all female ranging from 43-84 years of age. These patients 

were all positive for breast cancer who underwent PET scanning due to suspected 

bony metastasis. No male scans were available, additionally there were no patients 

available younger than 43 years of age due to the nature of the disease. This 

therefore is a limitation as the control data represents females some of which may 

be post-menopausal, so this is a caveat particularly when comparing young males.  

    

There are many factors affecting quantitation using SUVms, that the radiologist is 

responsible for. These are described as biological factors and technical factors 

(149,150). The main biological factor includes the uptake duration between injection 

and scan. This linearly affects SUVm, increasing over time. The half-life of 18F is 110 

minutes, therefore all patients are scanned 60 minutes post injection (or as close to 

this as feasibly possible) in order to maintain consistency and to minimise variability 

between patients (149). Additionally, synchronisation of clocks is imperative for 

accurate radioactive decay calculations. Technical factors include residual activity in 

the syringe after patient injection. The SUVm calculation (Figure 1.12) takes into 

account the injected dose, therefore the residual activity in the syringe must be 

incorporated to avoid error in SUV (ignoring the residual activity introduces 

underestimation of SUV by approximately 2%) (150). The SUVm calculation also 

normalises for body weight; patient weight therefore must be measured on a 
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calibrated scale. Finally, correct data entry and quality of administration is vital to 

obtain accurate readings.   

 

4.5.9 Summary  

18F-NaF PET imaging allows quantitative measurements of tissue radioactivity. The 

SUV is a common method of expressing the uptake of 18F into calcified tissues. This 

chapter has revealed the variation between AKU and control SUVms in the vertebrae 

and IVDs and its use in detecting areas of arthropathy in AKU. The results of this 

chapter have described a significant difference between AKU and control IVD SUVms 

due to calcification of the IVDs in AKU. It has been proposed that calcium 

hydroxyapatite or calcium pyrophosphate dihydrate are deposited in the 

fibrocartilaginous IVDs in AKU due to biochemical alterations of the disease. 18F binds 

to these calcium deposits in AKU resulting in high SUVms. With age the IVD SUVms 

follow an interesting trend (inverted ‘U’). SUVms of the youngest patients are in line 

with that of the control. The SUVm increase exponentially then plateau at around the 

age of 55, before steadily declining again after the age of 60. This increase in SUVm 

illustrates the deposition of calcifications in the disc, the plateau illustrates maximum 

turnover, and the decline illustrates a reduction in turnover due to possible fusion of 

the vertebrae. Bone metabolism appears to be unaffected by the disease 

demonstrated by very similar SUVms between the AKU and control vertebrae 

measurements. A decline in vertebral SUVm was observed with age in both AKU and 

control groups. The AKU group was found to have lower SUVms with age reflecting 

reduced BMD that appears to be exacerbated by the disease process.   
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This chapter demonstrates the feasibility and utility of measuring vertebrae and IVD 

SUVms to identify active arthropathy and to quantify disease state in AKU. This 

methodology will provide clinicians with a quantitative tool to aid in visual 

interpretation of scans and to aid in assessing inter and intra patient differences.  

4.5.10 Further work 

Now we have established the application of the SUVm as a quantitative tool to 

measure spinal arthropathy in AKU, next we want to assess if the SUVms can 

accurately track changes longitudinally in a group of patients receiving treatment.  
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5.0 PROGRESSION OF SPINAL ARTHROPATHY IN RESPONSE TO NITISINONE IN AKU 

MONITORED BY 18F-NaF STANDARDISED UPTAKE VALUE 
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5.1 INTRODUCTION  

In Chapter 4 it was demonstrated that SUVms can be used to identify active 

arthropathy in the spine and to quantify disease state in AKU. The utility of SUVms in 

a clinical setting could provide clinicians with a quantitative tool to aid visual 

interpretation of scans and to aid in assessing inter and intra patient differences. In 

this chapter, the aim was to utilise this quantitative measurement to track disease 

progression in AKU longitudinally and to see if any trends could be identified in 

response to nitisinone (all patients analysed in this chapter all receive nitisinone).  

AKU is characterised by a deficiency of the enzyme HGD that functions to break down 

HGA. Nitisinone is a potential disease modifying therapy for AKU. It acts by inhibiting 

the enzyme HPPD (HPPD converts HPPA into HGA) therefore blocking the production 

of the culprit molecule HGA (Figure 1.1). The NAC provides off-label nitisinone (2mg) 

to patients that attend the service. Annual assessments are included in this service 

where the patients undergo a variety of tests and scans to monitor HGA and tyrosine 

levels as well as tracking the progression of the disease in terms of pain, ochronotic 

arthropathy and monitoring the other clinical manifestations associated with AKU 

such as cardiac and ocular involvement. 

This chapter utilises quantitative SUVm measurements in the spine (vertebrae and 

IVDs) across five visits, each with a year in between with the aim of determining if the 

same trends could be identified in this patient group as described in the previous 

chapter on the SONIA 2 patients. Correlations with clinical scores obtained from the 

18F-NaF PET scan, pain scores obtained from the patient questionnaire and other data 
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such as CTX-1 concentrations and quantitative CT densitometry (QCT) T-scores will 

define whether this SUVm data correlates well with other tests.  

In recent years, cellular components of the bone matrix have been identified and 

categorised as either markers of bone formation or resorption. Although these 

markers have been used in research for a long time they are only now being 

recognised as tools in the clinical management of bone disease (151). C-terminal 

telopeptide 1 (CTX-1), measured in serum, is a marker of bone resorption and is a by-

product of collagen degradation. This data will be used along with QCT T-scores of 

bone densitometry to explore the correlations with other methods of monitoring 

AKU pathophysiology. This 5-year longitudinal data should provide an insight into the 

progression of the disease, and possibly the effect of nitisinone. 

 

 

 

 

 

 

 

 

 

 



186 
 

5.2 DESIGN OF STUDY  

5.2.1 PATIENT GROUP  

58 patients enrolled at the NAC for treatment with nitisinone, of which 22 adult 

patients (9 females, 13 males, mean age 47, SD±16.05, range 21-75) attended the 

centre and undergone 18F-NaF PET/CT imaging annually for five consecutive visits. It 

is these 22 patients that were included in this chapter. The first visit was baseline, 

pre-treatment, the consecutive four visits, each patient received 2mg of nitisinone 

daily. Not every one of the patients were present for every visit, V1 n=19, V2 n=16, 

V3 n=22, V4 n=18, V5 n=11. Ten non-metastatic breast cancer patients were used as 

non-AKU control for comparison. These patients had undergone 18F-NaF PET to 

determine bony metastasis, all of which were reported as negative. The ten control 

patient data was only available for a single diagnostic scan and there were no follow 

up scans available.   

5.2.2 MEASURING THE SUVms 

Hermes hybrid viewer (see section 2.5.1) was used to measure SUVms (section 2.5.2). 

The SUVm was obtained from the centre of three lumbar (L5, L3, L1) and three 

thoracic (T1, T6, T12) vertebral bodies, and from the centre of the corresponding IVDs 

below (L5-S1, L3/L4, L1/L2, T12/L1, T6/T7, T1/T2). The SUVms were obtained for each 

visit (visit 1-5) to assess any longitudinal changes.  

 

 



187 
 

5.2.3 CORRELATIONS (QCT, CTX-1 AND PAIN SCORES)  

Correlations were made with the SUVm data to see if other parameters that measure 

AKU symptoms correlate. Data was extracted from the NAC case notes from the 

baseline visit (pre-nitisinone). Lumbar and femur QCT T-scores were extracted for 

each of the patients (for more information see section 1.6.3.2) as well as serum CTX-

1 (ug/L). Spinal pain scores that ranged from 0-10, 0= no pain, 10= most severe pain, 

were also extracted from the patient questionnaire. 
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5.3 RESULTS 

5.3.1 COMPARISON BETWEEN LUMBAR AND THORACIC VERTEBRAE AND IVD SUVms 

The SUVm was obtained from the centre of lumbar (L5, L3, L1) and thoracic (T12, T6, 

T1) vertebrae and corresponding IVDs below (L5-S1, L3/L4, L1/L2, T12/L1, T6/T7, 

T1/T2). Figure 5.1 shows the mean lumbar and thoracic vertebrae and IVD SUVm 

comparison between visit 1 and visit 5 in the NAC patient group (n=22). When 

comparing this graph to Figure 4.9 in the previous chapter, the trend is not as 

obvious. The results from Figure 4.9 demonstrate a clear difference between the AKU 

vertebrae and IVDs, with the AKU vertebrae having consistently lower SUVms (7.4) 

than the IVDs (11.6). However, when looking at Figure 5.1 there is no clear difference 

between vertebrae and IVDs. The SUVms for IVDs for V1 and V5 (9.0 and 8.8 

respectively) are only slightly higher than that of the vertebrae (V1=8.2 and V5=7.4) 

across the vertebral levels. Paired t-tests revealed no statistical significances between 

V1 and V5 SUVms in both the vertebrae and IVDs across all vertebral levels. 

Figure 5.2 demonstrates the mean lumbar and thoracic vertebrae and IVD SUVms 

across five annual visits in the NAC patient group. It is clear from the graph that the 

SUVm of the IVDs in the lumbar and thoracic region (mean SUVm across the visits = 

9.1 and 9.5 respectively) are higher than that of the vertebrae (mean SUVm across 

the visits = 7.04 and 8.1 respectively). Paired t-tests revealed a statistically significant 

difference between both the lumbar and thoracic IVDs and vertebrae at visit 4 only. 

This trend supports what was found in Chapter 4 (Figure 4.9). The mean lumbar and 

thoracic SUVm measurements are generally consistent across the five visits in both 



189 
 

the vertebrae and IVDs when the mean data is plotted, suggesting that there is little 

change in SUVm in both the vertebrae and the IVDs over the 4 years on nitisinone. 

Paired t-tests revealed no significant changes across each of the visits.   

 

Figure 5.1 Mean lumbar and thoracic vertebrae and IVD SUVm comparisons 

between visit one and visit 5. V1 = baseline, V5 = 4 years on nitisinone. Vertebrae 

measured (L5, L3, L1, T12, T6, T1), IVDs measured (L5-S1, L3-L4, L1-L2, T6-T7, T1-T2). 

Paired t-tests revealed no significant differences between V1 and V5 SUVms in both 

the vertebrae and the IVDs across all vertebral levels. n=22 AKU patients (9 females, 

13 males, mean age 47, SD±16.05, range 21-75). V1 n=19, V5 n=11.  
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Figure 5.2 Mean AKU lumbar and thoracic vertebrae and IVD SUVm across 5 annual 

visits. Each visit was one year apart, V1 (Visit 1) = baseline (pre-nitisinone), V2, V3, 

V4 and V5 each with a year in-between on nitisinone. Paired t-tests revealed a 

significant difference between lumbar vertebrae and IVDs (p<0.05), and thoracic 

vertebrae and IVDs (p<0.05) at visit 4 only. n=22 AKU patients (9 females, 13 males, 

mean age 47, SD±16.05, range 21-75). V1 n=19, V2 n=16, V3 n=22, V4 n=18, V5 n=11. 

 

5.3.2 SUVm WITH AGE 

The AKU and control mean lumbar IVD SUVm was plotted against age (Figure 5.3). 

The AKU patients were plotted for each visit; V1- V5 (Figure 5.3 A-E). The control 

patients were plotted against V1 only however, will be used as a comparison across 

the five visits. Polynomial (second order) lines were fitted to the AKU data for each 

graph. The youngest patients have low IVD SUVms that are in line with the SUVm of 

the controls. With age IVD SUVm increases reaching the highest values around the 

age of 60. From here the SUVm declines. Due to the lower number of patients in this 
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group the trend is not as convincing as was seen in the previous chapter. However, 

the trend is reminiscent of what was seen in Figures 4.12 and 4.13 with a bigger 

patient number (41 patients). In contrast to the control data, there is an obvious 

difference in the trend of SUVm with age between the two groups where the control 

data consistently has low SUVm measurements across all ages. Independent t-tests 

revealed a significant difference between the mean lumbar IVD SUVm compared to 

the control group (p<0.01). This supports what was found in Figure 4.12. In terms of 

change in SUVm across the visits the maximum values that are seen around the age 

of 60 reduces upon each visit from V1 to V5. The maximum values in visit 1 (Figure 

5.3A) reach a maximum SUVm of 24, by visit 2 (Figure 5.3B) the maximum values have 

reduced to 21, by visit 3 (Figure 5.3C) they have reduced to 18, and by visits 4 (Figure 

5.3D) and 5 (Figure 5.3E) the maximum values are 15 and 16 respectively.  

Figure 5.4 demonstrates the AKU and control mean thoracic IVD SUVm with age. The 

same trend is observed in the thoracic IVDs (Figure 5.4) however, is not as convincing 

as what was seen in Figure 4.13 in the previous chapter. In terms of change in the 

thoracic SUVm across the visits the highest SUVm is seen at V1 with a SUVm of 19 

(Figure 5.4A), by V2 the highest value is around 15 (Figure 5.4B) and this further 

reduces to 13 in V5 (Figure 5.4E). Independent t-tests revealed a significant difference 

between the mean thoracic SUVm of the AKU and control group (p =< 0.01).  

The lumbar and thoracic vertebrae SUVm were analysed across the five visits. Figure 

5.5 demonstrates the mean lumbar vertebrae SUVm with age in individual AKU and 

control patients. A negative statistically significant correlation was identified 
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between SUVm and age in both AKU (p<0.001) and control (p<0.01) patients, with 

the youngest patients having the highest SUVms and the oldest patients having the 

lowest SUVms. This confirms what was found in the previous chapter (Figure 4.10). 

The control mean lumbar vertebrae have slightly increased SUVms compared to the 

AKU patients across the ages however, independent t-tests revealed no significant 

difference between the two groups (p>0.05). This supports what was found in the 

previous chapter (Figure 4.10). In terms of change across the visits, there appears to 

be very little change in the distribution of the data from V1 to V5 indicating that 

nitisinone may be arresting the progression of the disease.  

Figure 5.6 demonstrates the mean thoracic vertebrae SUVm in individual AKU and 

control patients. Figure 5.6 shows the same trend as described in the previous 

chapter (Figure 4.11). Negative statistically significant correlation was identified 

between SUVm and age in the AKU group (p<0.001). The control group also has a 

negative correlation with age however this was not statistically significant (p>0.05). 

The youngest patients consistently have the highest SUVms and the oldest have the 

lowest values. Again, as seen in the lumbar vertebrae the SUVms of the control 

patients have higher SUVms compared to the AKU patients across the ages and no 

significant difference was found between the two groups (independent t-test, 

p>0.05). In terms of change in SUVms across the visits there appears to be no obvious 

change from V1 to V5. 
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Figure 5.3 Mean lumbar IVD SUVm with age in individual AKU and control patients across 5 visits. A – baseline (visit one-V1), B – V2, C – V3, D 

– V4, E– V5. MEAN L IVD – SUVm of mean lumbar IVD (L5/S1, T3/T4, L1/L2).  Polynomial (order 2) regression lines = A (R²=0.446), B (R²=0.634), 

C (R²=0.683), D (R²=0.690), E (R²=0.721). Linear regression line - Control (R²= 0.133). Independent t-test and Wilcoxon-Mann-Whitney test 

revealed a significant difference between the AKU mean lumbar IVD SUVm and the control (p< 0.01) (Figure A). n=22 AKU patients (9 females, 

13 males, mean age 47, SD±16.05, range 21-75). V1 n=19, V2 n=16, V3 n=22, V4 n=18, V5 n=11. 
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Figure 5.4 Mean thoracic IVD SUVm with age in individual AKU and control patients across 5 visits. A – baseline (visit one-V1), B – V2, C – V3, 

D – V4, E – V5. MEAN T IVD – SUVm of mean thoracic IVD (T12/L1, T6/T7, T1/T2).  Polynomial (order 2) regression lines = A (R²=0.362), B 

(R²=0.603), C (R²=0.535), D (R²=0.505), E (R²=0.552). Linear regression line - Control (R²= 0.331). Independent t-test and Wilcoxon-Mann-Whitney 

test revealed a significant difference between the AKU mean thoracic IVD SUVm and the control (p< 0.01) (Figure A). n=22 AKU patients (9 

females, 13 males, mean age 47, SD±16.05, range 21-75). V1 n=19, V2 n=16, V3 n=22, V4 n=18, V5 n=11. 
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Figure 5.5 Mean lumbar vertebrae SUVm with age in individual AKU and control patients across 5 visits. A – baseline (visit one-V1), B – V2, C 

– V3, D – V4, E – V5. MEAN L VERT – SUVm of mean lumbar vertebrae (L5, L3, L1). Negative statistically significant correlation identified in both 

AKU (r=-0.809, p<0.001) and control (r=-0.831, p<0.01). Independent t-test revealed no significant difference between the AKU mean lumbar 

vertebrae SUVm and the control (p>0.05) (Figure A). n=22 AKU patients (9 females, 13 males, mean age 47, SD±16.05, range 21-75). V1 n=19, V2 

n=16, V3 n=22, V4 n=18, V5 n=11. 
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Figure 5.6 Mean thoracic vertebrae SUVm with age in individual AKU and control patients across 5 visits. A – baseline (visit one-V1), B – V2, C 

– V3, D – V4, E – V5. MEAN T VERT – SUVm of mean thoracic vertebrae (T12, T6, T1). Negative statistically significant correlation identified in the 

AKU group (r=-0.696, p<0.001). Negative correlation also identified in the control group (r=-0.588, p>0.05). Independent t-test revealed no 

significant difference between the AKU mean thoracic vertebrae SUVm and the control (p>0.05) (Figure A). n=22 AKU patients (9 females, 13 

males, mean age 47, SD±16.05, range 21-75). V1 n=19, V2 n=16, V3 n=22, V4 n=18, V5 n=11.
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5.3.3 INDIVIDUAL CHANGE IN SUVm ACROSS 5 VISITS  

The AKU patients were divided into four age groups; 20-31 years, 40-49 years, 50-59 years, 

60+ years, to look at the individual change in SUVm over five visits in the thoracic and lumbar 

vertebrae and IVDs. Figure 5.7 demonstrates the mean lumbar IVD SUVm across the five visits 

in the four age groups. The age dependent trend (inverted ‘U’ trend) in SUVm is evident across 

the four graphs as seen in Figures 5.3 and 5.4. The inverted ‘U’ trend reflects the youngest 

age group (21-30) having the lowest SUVms (Figure 5.7A), the 50-59 age group reaching the 

highest (Figure 5.7C), and the oldest age group having reduced SUVms (Figure 5.7D). When 

looking at the change in SUVm in the mean lumbar IVDs across the five visits in the individual 

patients there appears to be no direct trend (Figure 5.7). When the IVD SUVm is high initially 

it appears to always come down across the visits in most cases. Generally, there is little change 

in the mean lumbar IVD SUVm in the youngest patients across the five visits (Figure 5.7A). In 

the 40-49 and the 50-59 age groups, the SUVm fluctuates across the five visits, with generally 

little change between V1 and V5 (Figure 5.7B and C). The SUVm in the oldest age group (60+ 

Figure 5.7D) is generally consistent across each of the visits.  

Figure 5.8 shows the mean thoracic IVD SUVm in the four age groups. There is a small 

reduction in SUVm across the five visits in the youngest patients (Figure 5.8A). In the patients 

aged 40-49 (Figure 5.8B) there appears to be fluctuations in SUVms across the visits again 

with little difference between the values at V1 and V5. The patients in the oldest two age 

groups (Figures 5.8 C and D) generally have consistent SUVms across the five visits with 

minimal change between visits.  
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Figure 5.9 demonstrates the mean lumbar vertebrae SUVm in the four age groups across the 

five visits. A reduction in SUVm can be seen across the four age groups (Figures 5.9 A-D) with 

the youngest patients reaching the highest SUVms (Figure 5.9A) and the oldest patients 

having the lowest SUVms (Figure 5.9D) as seen in Chapter 4 (Figure 4.10). Generally, the 

SUVms across the five visits are very consistent with little change between the visits in each 

of the patient groups.  

The same trends are seen in the thoracic vertebrae (Figure 5.10) with the youngest patients 

reaching the highest SUVms (Figure 5.10A) and the oldest having the lowest SUVms (Figure 

5.10D) as seen in the previous chapter (Figure 4.11). Again, there is little change in SUVm 

across the five visits (Figures 5.10). 
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Figure 5.7 Mean lumbar IVD SUVm across 5 visits in individual patients grouped by age. A – age 20-31 (n=6), B – age 40-49 (n=6), C - age 50-59 

(n=5), D – age 60+ (n=5). The key defines the age and gender of each patient.  
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Figure 5.8 Mean thoracic IVD SUVm across 5 visits in individual patients grouped by age. A – age 20-31 (n=6), B – age 40-49 (n=6), C - age 50-

59 (n=5), D – age 60+ (n=5). The key defines the age and gender of each patient. 
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Figure 5.9 Mean lumbar vertebrae SUVm across 5 visits in individual patients grouped by age. A – age 20-31 (n=6), B – age 40-49 (n=6), C - age 

50-59 (n=5), D – age 60+ (n=5). The key defines the age and gender of each patient. 
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Figure 5.10 Mean thoracic vertebrae SUVm across 5 visits in individual patients grouped by age. A – age 20-31 (n=6), B – age 40-49 (n=6), C - 

age 50-59 (n=5), D – age 60+ (n=5). The key defines the age and gender of each patient.    
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5.3.4 SUVm CORRELATION WITH CLINICAL AND ANATOMICAL THRESHOLD SCORES  

All the following correlations are based on baseline data (visit 1). The average lumbar 

and thoracic IVD and vertebrae SUVm were plotted against the clinical score and 

anatomical threshold scores (as described in section 2.4.6 - 2.4.9). The clinical score 

is based on the AKUSSI where a nuclear medicine clinician scores 10 large joints; the 

shoulder, elbow, wrist and hands, hip, knee, ankle, foot, lumbar, thoracic and cervical 

spine, based on those areas having increased tracer uptake or not. The clinical score 

does not distinguish between left and right joints therefore ranges from 0-10. The 

bone and cartilage anatomical threshold (AT) scores (B-AT and C-AT) differentiate 

between bone and cartilage and are both a summation of the totality of the bones or 

joints scored in Chapter 3 utilising the thresholding method (described in 2.4.4 - 

2.4.7). 

Figure 5.11 demonstrates the correlation between the total clinical score and the 

mean lumbar and thoracic IVD SUVm. A positive statistically significant correlation 

was observed (r= 0.585, p<0.01) demonstrating that low SUVms correlate with low 

clinical scores and high SUVms correlate with higher clinical scores. This suggests that 

two methodologies display the same trend providing evidence of a robust method. 

Figure 5.12 demonstrates a negative statistically significant correlation (r=-0.762, 

p<0.01) between the total clinical score and the mean lumbar and thoracic vertebrae 

SUVm. Interestingly a negative correlation suggests that in the vertebrae, high SUVms 

are associated with low clinical scores and lower SUVms are associated with high 

clinical scores. The same trends were observed when the total anatomical threshold 

(AT) score was correlated with IVD and vertebrae SUVm. The total AT score is 
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described in section 2.4.8. This score is directly comparable to the total clinical score 

in terms of the joints scored therefore also has a maximum of 10. Figure 5.13 

demonstrates a positive statistically significant correlation (r=0.658, p<0.01) between 

the total AT score and the mean thoracic and lumbar IVD SUVm as seen in Figure 

5.11. Figure 5.14 demonstrates a negative statistically significant correlation (r=-

0.612, p<0.01) between the total AT score and the mean lumbar and thoracic 

vertebrae SUVm as seen in Figure 5.12.   

 

Figure 5.11 Scatter graph demonstrating a positive correlation between the mean 

lumbar and thoracic IVD SUVm with the total clinical score for visit 1. The ages are 

represented next to each point. Positive statistically significant correlation (r= 0.585, 

p<0.01). Males are plotted in blue, females in red. 
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Figure 5.12 Scatter graph demonstrating a negative correlation between the mean 

lumbar and thoracic vertebrae SUVm with the total clinical score for visit 1. Ages 

represented next to each point. Negative statistically significant correlation (r= -0.762 

p<0.01). Males are plotted in blue, females in red. 

Figure 5.13 Scatter graph demonstrating the correlation between the mean lumbar 

and thoracic IVD SUVm with the total anatomical threshold for visit 1. The ages are 

represented next to each point. Positive statistically significant correlation (r= 0.658, 

p<0.01). Males are plotted in blue, females in red. 
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Figure 5.14 Scatter graph demonstrating the correlation between the mean lumbar 

and thoracic vertebrae SUVm with the total anatomical threshold score for visit 1. 

The ages are represented next to each point. Negative statistically significant 

correlation (r=-0.612, p<0.01). Males are plotted in blue, females in red. 

 

Correlations were also made between the total C-AT score and total B-AT score with 

the mean thoracic and lumbar IVD SUVm and vertebrae SUVm respectively. The C-AT 

and B-AT scores differentiate between bone and cartilage (described in sections 

2.4.6, 2.4.7). Figure 5.15 demonstrates no correlation between the mean lumbar and 

thoracic IVD SUVm with the C-AT score (r= 0.09, p>0.05). Figure 5.16 also 

demonstrates no correlation between the mean lumbar and thoracic vertebrae 

SUVm with the B-AT score (r=-0.169, p>0.05). 
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Figure 5.15 Scatter graph between the mean lumbar and thoracic IVD SUVm with 

the cartilage anatomical threshold score for visit 1. The ages are represented next 

to each point. No correlation (r= 0.09, p>0.05). Males are plotted in blue, females in 

red. 

Figure 5.16 Scatter graph between the mean lumbar and thoracic vertebrae SUVm 

with the bone anatomical threshold score for visit 1. The ages are represented next 

to each point. No correlation (r=-0.169, p>0.05). Males are plotted in blue, females in 

red. 
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5.3.5 LUMBAR SPINE QUANTITATIVE COMPUTER TOMOGRAPHY  

The next variable to be investigated was QCT T-scores. QCT measures BMD. 

Correlations between SUVm and BMD were made to investigate if BMD had an effect 

of SUVm, it was suggested that low SUVms may reflect low BMD, due to less 

hydroxyapatite available for 18F to bind to. Firstly, BMD (represented as T-score- 

described in section 1.6.3.2 and Table 1.4) and age were correlated in AKU males and 

females. Figure 5.17 demonstrates the lumbar (L1-L3) QCT T-score and age in males 

and females. A negative statistically significant correlation (r= -0.682, p<0.01) was 

found in both males and females. Independent t-tests revealed no significant 

differences between the lumbar QCT T-score in males and females (p>0.05). The next 

set of analysis looked at the correlation between SUVm with QCT T-score. Figure 5.18 

demonstrates a negative statistically significant correlation between the lumbar (L1-

L3) QCT T-score with the average lumbar IVD SUVm in males and females (r= -0.470, 

p>0.05). This reveals that normal BMD T-scores are associated with low IVD SUVm, 

and low BMD T-scores are associated with higher IVD SUVms.  
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Figure 5.17 Scatter graph demonstrating correlation between lumbar (L1-L3) 

Quantitative Computer Tomography T-score and age in males and females (visit 1). 

Negative statistically significant correlation (r= -0.682, p<0.01).  

 

Figure 5.18 Scatter graph demonstrating correlation between lumbar (L1-L3) 

Quantitative Computer Tomography T-score and the average lumbar IVD SUVm in 

males and females (visit 1). Negative statistically significant correlation (r= -0.470, 

p<0.05).  
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Figure 5.19 demonstrates the correlation between the lumbar QCT T-score and the 

average lumbar vertebrae SUVm. Interestingly a positive statistically significant 

correlation was found between lumbar QCT T-score and lumbar vertebrae SUVm in 

both males and females (r=0.735, p<0.01) (Figure 5.19). Low lumbar QCT T-scores are 

associated with low lumbar vertebrae SUVm suggesting that patients with low bone 

density in the vertebrae have low uptake of 18F in that region.  

 

Figure 5.19 Scatter graph demonstrating correlation between lumbar (L1-L3) 

Quantitative Computer Tomography T-score and the average lumbar vertebrae 

SUVm in males and females (visit 1). Positive statistically significant correlation (r= -

0.735, p<0.01. 
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5.3.6 FEMUR QUANTITATIVE COMPUTER TOMOGRAPHY 

The femur QCT was also performed on the AKU patients. Figure 5.20 demonstrates a 

comparison between lumbar spine and femur T-scores with age. Negative statistically 

significant correlations with age can be seen in both the lumbar spine (r=-0.682, 

p<0.01) and femur (r=-0.757, p<0.01). Notably the femur T-scores are consistently 

higher than the lumbar spine T-scores across all ages. Paired t-test revealed a 

significant difference (p<0.01) between the spine QCT T-score and the femur QCT T-

score.  

A positive statistically significant correlation was identified between spine QCT T-

scores and femur QCT T-scores (r=0.718, p<0.01) demonstrating that they both follow 

the same trend (Figure 5.21).  

The following correlations are equivalent to what was compared with the lumbar T-

scores. Figure 5.22 demonstrates a negative statistically significant correlation 

between Femur T-score and the average lumbar IVD SUVm in both males and females 

(r= -0.642, p<0.01) as seen in Figure 5.18, ochronosis being the common factor. A 

positive statistically significant correlation was found when correlating the femur QCT 

T-score with the average lumbar vertebrae SUVm in both males and females (r=0.503, 

p<0.05) (Figure 5.23) as seen in Figure 5.19, the amount of bone being the common 

factor.  
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Figure 5.20 Scatter graph demonstrating a correlation between lumbar spine and 

femur QCT T-score with age (visit 1). Negative statistically significant correlations 

identified; spine (r=-0.682, p<0.01), femur (r=-0.757, p<0.01).  

 

 

 

 

 

 

 

Figure 5.21 Correlation between spine and femur QCT T-scores (visit 1). Positive 

statistically significant correlation identified (r=0.718, p<0.01).  
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Figure 5.22 Scatter graph demonstrating correlation between femur QCT T-score 

and the average lumbar IVD SUVm in males and females (visit 1). Negative 

statistically significant correlation (r= -0.642, p<0.01).  

 

Figure 5.23 Scatter graph demonstrating correlation between femur QCT T-score 

and the average lumbar vertebrae SUVm in males and females (visit 1). Positive 

statistically significant correlation (r= 0.503, p<0.05).  
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5.3.7 C-TERMINAL TELOPEPTIDE 1 (CTX-1) BONE MARKER  

Serum CTX-1 (ug/L) is a marker of bone resorption and is a by-product of collagen 

degradation. This section looks to see if there is any correlation between CTX-1 and 

vertebrae and IVD SUVm. Firstly, Figure 5.24 demonstrates the correlation between 

CTX-1 and age in males and females of which no statistically significant correlation 

was identified (r=0.0008, p>0.05). Independent t-tests revealed no significant 

difference between CTX-1 measurements in males and females (p>0.05).  

Figure 5.25 demonstrates the correlations between CTX-1 measurements and the 

spine and femur QCT T-scores. No correlation was identified in both the spine 

(r=0.148, p>0.05) and femur (r=0.110, p>0.05) when QCT T-score was correlated with 

CTX-1 concentration. No statistically significant correlations were identified when 

correlating CTX-1 with the average lumbar and thoracic IVD SUVm in males and 

females (r=0.243, p>0.05) (Figure 5.26). No correlation was observed between CTX-1 

concentration and the average lumbar and thoracic vertebrae SUVm in males and 

females (r=0.225, p>0.05) (Figure 5.27). 
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Figure 5.24 Scatter graph demonstrating the correlation between serum CTX-1 with 

age in males (R²= 0.004) and females (R²= 0.005) for visit 1. No correlation was 

observed (r=0.0008, p>0.05).  

 

Figure 5.25 Scatter graph demonstrating the correlation between spine and femur 

T-scores with CTX-1 bone resorption marker. No correlations identified between 

spine QCT score and CTX-1 (r=0.148, p>0.05), and femur QCT T-score and CTX-1 

(r=0.110, p>0.05).  
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Figure 5.26 Correlation between CTX-1 and average lumbar and thoracic IVD SUVm 

in males and females at visit 1. No statistically significant correlation observed in 

both males and females (r=0.243, p>0.05). 

 

Figure 5.27 Correlation between CTX-1 and average lumbar and thoracic vertebrae 

SUVm in males and females at visit 1.  No statistically significant correlation observed 

in both males and females (r=0.225, p>0.05). 
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5.3.8 LUMBAR AND THORACIC PAIN SCORES 

As part of the NAC patient questionnaire, the NAC patients are asked to score pain in 

the lumbar and thoracic spine on a scale of 0-10, where zero equals no pain and ten 

equals severe pain. The lumbar and thoracic pain scores were correlated with age 

(Figure 5.28). Positive statistically significant correlation was observed between 

lumbar pain score and age (r=0.584, p<0.01). The correlation between thoracic pain 

score and age also shows the same trend however was not statistically significant 

(r=0.441, p>0.05). Low pain scores correlate with the younger patients, pain can be 

seen increasing with age up to around the age of 50-60 years of age. The polynomial 

trend line demonstrates that pain decreases in the oldest patients. Paired t-tests 

revealed a significant difference between lumbar and thoracic pain scores (p<0.01) 

suggesting that AKU patient’s lumbar spine is affected to a higher extent compared 

to the thoracic spine. 

Pain scores were correlated with IVD and vertebrae SUVms. Figure 5.29 

demonstrates a positive statistically significant correlation (r=0.601, p<0.01) between 

lumbar pain score and the average lumbar IVD SUVm.  Low lumbar pain scores are 

associated with low lumbar IVD SUVms. Lumbar pain can be seen increasing with 

increasing lumbar IVD SUVms before plateauing towards the higher SUVms. Lumbar 

pain can then be seen reducing in the highest SUVms (Figure 5.29).  

Figure 5.30 demonstrates a positive statistically significant correlation (r=0.608, 

p<0.01) between thoracic pain score and the average thoracic IVD SUVm. 

Interestingly when the lumbar and thoracic pain scores were correlated with lumbar 
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and thoracic vertebrae SUVms the opposite trend was seen. Figure 5.31 

demonstrates a negative statistically significant correlation between lumbar spine 

pain score and the average lumbar vertebrae SUVm (r= -0.587, p<0.05). Figure 5.32 

also demonstrates a negative correlation between thoracic pain scores and thoracic 

vertebrae SUVm however this was not significant (r=-0.491, p>0.05). This was also 

the trend seen previously when the total clinical score and T-AT scores were 

correlated with IVD and vertebrae SUVm. A positive correlation was observed in both 

the total clinical score and the T-AT score with IVD SUVm (Figures 5.11 and 5.13), and 

negative correlations were observed when correlating these scores with vertebrae 

SUVm (Figures 5.12 and 5.14).  

 

Figure 5.28 Correlation between the lumbar and thoracic pain scores with age at 

visit 1. Positive statistically significant correlation was observed between lumbar 

spine pain score with age (r=0.584, p<0.01). No statistically significant correlation was 

observed between thoracic pain score and age (r=0.441, p>0.05). 
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Figure 5.29 Correlation between average lumbar IVD SUVm with lumbar pain score 

at visit 1. Positive statistically significant correlation was observed (r=0.601, p<0.01). 

 

Figure 5.30 Correlation between the average thoracic IVD SUVm with thoracic pain 

score at visit 1. Positive statistically significant correlation was observed (r=0.608, 

p<0.01). 
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Figure 5.31 Correlation between average lumbar vertebrae SUVm with lumbar pain 

score at visit 1. Negative statistically significant correlation was observed (r=-0.587, 

p<0.05). 

 

Figure 5.32 Correlation between average thoracic vertebrae SUVm with thoracic 

pain score at visit 1. Negative statistically significant correlation was observed (r=-

0.584, p<0.01). 
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5.4 DISCUSSION 

This chapter aims to assess the progression of spinal arthropathy, over a period of 

five years, in response to nitisinone, the potentially disease modifying therapy 

monitored by 18F-NaF SUVm.  

5.4.1 COMPARISON BETWEEN LUMBAR AND THORACIC VERTEBRAE AND IVD SUVms  

In this chapter, the analysis described in Chapter 4 has been repeated on a different 

patient group, this chapter reporting on the NAC patients and Chapter 4 reporting on 

the SONIA 2 patients. The main difference between the two patient groups being that 

the NAC patients included in this analysis have attended the NAC 5 times, each with 

a year in between, compared to just 2 visits for SONIA 2 (with one year in between). 

Another main difference is that all the NAC patients have been prescribed nitisinone 

(2mg daily) in contrast to the SONIA 2 patients where half received 10mg of nitisinone 

in a blinded design. This chapter aims to look at the longitudinal change in SUVm over 

a period of five years in response to nitisinone.  

When looking at the comparison between the lumbar and thoracic vertebrae and 

IVDs in the NAC patients (Figure 5.1) the results were slightly different compared to 

the SONIA 2 patients (Figure 4.9). For the SONIA 2 patients the mean SUVm for the 

vertebrae was 7.4, and for the IVDs was 11.6 with significant differences identified at 

every level (except T1/ T1/T2). For the NAC patients, no significant differences were 

found between the vertebrae and IVDs at every level. The mean SUVm across the 

vertebrae was 8.2, and the mean SUVm across the IVDs was 9.0. The proposed reason 

for the similar results between the SUVm of the vertebrae and IVDs in the NAC 
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patients may be due to the age range of the patients. In the SONIA 2 patient group, 

41 patients were analysed (16 females, 25 males, mean age 51 SD±10.9, range 30-

68), in the NAC patient group, 22 patients were analysed (9 females, 13 males, mean 

age 47, SD±16.05, range 21-75). The age range of patients in the NAC patient group 

starts almost 10 years younger (21 years compared to 30 in the SONIA 2). As identified 

the youngest patients have low IVD SUVms (Figures 4.12, 4.13, 5.3 and 5.4) and high 

vertebral SUVms (Figures 4.10, 4.11, 5.5 and 5.6). It is proposed that these younger 

patients have resulted in the means of the vertebrae and IVDs to fall closer together. 

The SONIA 2 patient age range starts from the age of 30, by the age of 40 the SUVm 

are almost 3 times that of the youngest patients, with almost double the number of 

patients in this group.  

 

5.4.2 ANNUAL CHANGE IN SUVm IN THE VERTEBRAE AND IVDs  

The main purpose of this chapter was to look at the annual change in SUVm over a 

period of 4 years. Figure 5.2 demonstrates the mean AKU lumbar and thoracic 

vertebrae and IVD SUVm across the 5 visits. It is evident that there is very little change 

in SUVm across the 5 visits for the lumbar and thoracic vertebrae and IVDs. Paired t-

tests revealed no statistically significant differences between V1 and V5 in both 

lumbar and thoracic IVD and vertebrae SUVms. This supports what was found in the 

previous chapter where there was very little change in SUVm over a period of 1 year.  

At the very most nitisinone is thought to arrest ochronosis and or slow progression 

of the disease, it is widely agreed that it is very unlikely for nitisinone to reverse 

ochronosis. Figure 5.2 demonstrates small changes in SUVm across the visits with a 
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small reduction seen in the lumbar vertebrae, thoracic vertebrae and thoracic IVDs 

from V1 to V5.  Unfortunately, a control group could not be used as a comparison 

longitudinally, as we only had data representative of a single visit for each control 

patient. The control patients were non-metastatic breast cancer patients that only 

had one scan to determine bony metastasis. This would have been useful as a control 

group would have provided an insight into normal change in SUVm across a period of 

5 years. It is therefore not possible to comment on the effectiveness of nitisinone on 

SUVm in this group at this stage.  

 

5.4.3 SUVm WITH AGE  

The SUVm was plotted against age in the thoracic and lumbar vertebrae and IVDs for 

each of the five visits for comparison with the SONIA 2 data (Figures 5.3 – 5.6). 

Significant differences were identified between the AKU and control groups when 

comparing both the mean lumbar and thoracic IVD SUVms (independent t-test 

p<0.01 for both comparisons; Figures 5.3 and 5.4). This demonstrates that AKU IVD 

SUVms are significantly different to that of the control group. When analysing the 

difference between AKU mean lumbar and thoracic vertebrae SUVms compared to 

that of the control no significant differences were found (Figures 5.5 and 5.6). The 

trend with age for the AKU vertebrae SUVms supports the findings described in the 

previous chapter (Figure 4.10 and 4.11). The SUVm in AKU vertebrae decreases with 

age (Figures 5.5 and 5.6), supporting the idea that this is due to reduced bone mass 

with ageing (145). Reduced bone mass results in less hydroxyapatite for 18F to bind 

to, therefore resulting in lower SUVms. Additionally this process could be 
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exacerbated by AKU as Aliberty, et al. (148) described ochronotic patients have an 

imbalance in bone metabolism, resulting in osteopenia and osteoporosis. 

The SUVm in AKU IVDs also followed the same trend as what was found in the 

previous chapter; the inverted ‘U’ curve (Figures 4.12, 4.13, 5.5.3 and 5.4). From the 

age of 40 an exponential increase can be seen, which corresponds to the onset of 

arthropathy, of which the spine is widely affected. The results of this chapter support 

the suggested reason for this explained in Chapter 4. It is proposed that the increase 

in SUVm could be due to deposition of hydroxyapatite / calcium pyrophosphate 

dehydrate crystals of which the plateau corresponds to complete calcification of the 

IVD, and the reduction in SUVm corresponds to reduced turnover due to fusion of the 

vertebrae.  

5.4.4 INDIVIDUAL CHANGES IN SUVm ACROSS THE FIVE VISITS 

It is clear from Figure 5.2 that when the mean SUVms are plotted for the lumbar and 

thoracic vertebrae and IVDs across the five visits, little change is observed from one 

year to the next. Small fluctuations are observed, however the SUVm at V1, 

compared to the SUVm at V5 are very similar. As in Chapter 4, the next step was to 

plot individual patient changes to see if any trends could be identified with age. 

Figures 5.7 – 5.10 represent the individual changes across the five visits in the lumbar 

and thoracic vertebrae and IVDs in four age groups (20-31, 40-49, 50-59, 60+). These 

graphs try to shed light on what is happening to the SUVm over 4 years on an 

individual basis. No definitive trends were identified in any of the patients, generally 

the SUVms remain stable across the visits with very little change in the values. The 

lumbar and thoracic vertebrae SUVms are particularly stable (Figures 5.9 and 5.10) 
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reflecting a robust methodology. These results may also demonstrate the 

stabilisation of the disease by nitisinone. The SUVm of the lumbar and thoracic IVDs 

were slightly more variable. Especially so, in the 40-49 age group where the SUVm 

can be seen fluctuating, however when comparing the SUVms at V1 and V5, they 

were very similar. It was noted that if the SUVm was high at V1, it can be seen 

reducing across the visits in a few patients (Figure 5.7 C and D and 5.8 C). The effect 

of nitisinone on IVD and vertebrae SUVm cannot be confirmed due to fact that no 

AKU control group (no treatment group) was available for comparison to elucidate 

normal changes in SUVm across a period of 4 years. However, it can be commented 

that it would not be unreasonable to have expected an increase in IVD SUVm that 

reflects disease progression especially over a period of 4 years in those patients aged 

40 and over. Vertebrae SUVm was expected to decrease as we have shown this occurs 

with age. Future work includes comparing these results with an AKU non-treatment 

group to investigate changes without nitisinone.   

The systemic effects of nitisinone have been widely studied in terms of HGA levels in 

urine and in serum (44,45). Nitisinone (2.1 mg/day) has been shown to reduce urinary 

HGA down by 98% (from 5.1 to 0.125 g/day) and mean plasma HGA levels down by 

95% from 5.74 to 0.306 mg/l (44). The SONIA 1 clinical trial revealed a clear dose 

response relationship between nitisinone and urinary HGA. The five dosages given 

were 0,1,2,4 and 8mg/day, with the 8mg dose reducing urinary HGA from 31.53mmol 

to 0.15mmol after 4 weeks (45). The long-term safety and efficacy of nitisinone has 

not fully been elucidated hence why the 2mg dose is routinely prescribed currently. 

HGA is the culprit molecule in AKU and nitisinone has been shown to effectively 
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reduce this down to negligible levels. This chapter has found no clear trends in SUVm 

over the four-year period in the 22 patients analysed. It is proposed that changes in 

response to nitisinone, measured by fluoride uptake in cartilage and bone, cannot be 

elucidated until a no treatment group is analysed. It may also be questioned whether 

four years is enough time to see any definite changes in 18F uptake in the spine. 

Changes to cartilage and bone in AKU occur over many years, continued 

polymerisation of HGA in cartilage leads to osteoarthropathy. In terms of monitoring 

fluoride uptake as a measure of radioactivity and detecting osteoarthropathy, this 

method is capable of identifying arthritic changes in the spine. However, it could be 

proposed that for the effect of nitisinone on the spine to be elucidated, many more 

years of data will be required to assess the long-term effects. This method may 

demonstrate the effect of nitisinone on cartilage in AKU if a comparison was made 

between a group of patients that have been taking nitisinone for decades compared 

to a group of patients with no treatment. The increased SUVms may occur much 

younger in the non-treatment group compared to the treatment group. 

 

5.4.5 CORRELATION BETWEEN SUVm AND CLINICAL AND ANATOMICAL THRESHOLD 

SCORES 

The average lumbar and thoracic IVD and vertebrae SUVms were plotted against the 

total clinical score (described in section 2.4.9). A positive statistically significant 

correlation was identified (r=0.585, p<0.01) between the total clinical score and the 

average lumbar and thoracic IVD SUVm before plateauing at the higher total clinical 

scores (Figure 5.11). This demonstrates that higher IVD SUVms are associated with 
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higher total clinical scores. In Chapter 3 it was reported that the total clinical score 

had a positive correlation with age (Figure 3.15). Additionally, in Chapter 4 it was 

reported the age-related trend in IVD SUVm (Figure 4.12 and 4.13) that occurs with 

disease progression (the inverted ‘U’ curve) where SUVm increases up to around the 

age of 40 then stabilises and then reduces back down in the oldest patients. This 

trend was proposed to be due to calcification of the IVDs that occurs with disease 

progression. These two previous findings are reflected in these results (Figure 5.11).  

The patients with the highest total clinical scores are associated with the oldest 

patients as the more joints are affected. The lowest IVD SUVms and low clinical scores 

are associated with the younger patients less affected by the disease. This trend was 

also observed when correlating the total anatomical threshold score (explained in 

section 2.4.8) with IVD SUVm (Figure 5.13) suggesting that both the clinical and 

anatomical threshold methods are robust and demonstrate the same trend.  

Interestingly, the opposite trend was seen when plotting vertebrae SUVms with the 

total clinical score. A negative statistically significant correlation was observed when 

correlating the total clinical score with the average lumbar and thoracic vertebrae 

SUVm (Figure 5.12, r=-0.762, p<0.001) demonstrating that high vertebrae SUVms are 

associated with low total clinical scores, and these patients were identified as the 

youngest. This supports what was described in Chapter 4, where a reduction in the 

mean lumbar and thoracic vertebrae SUVm was identified with age (Figures 4.10 and 

4.11). The oldest patients have the highest total clinical scores and lower vertebrae 

SUVms. As described in Chapter 4, high SUVms in the vertebrae of younger patients 

reflects active bone remodelling that reduces with age, this is due to reduced bone 
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turnover and often reduced BMD with age. Again, the same trend was identified 

when correlating the average lumbar and thoracic vertebrae SUVm with the total 

anatomical threshold score (Figure 5.14). 

5.4.6 SUVm WITH LUMBAR SPINE AND FEMUR QCT T-SCORE 

It is widely recognised that changes in cartilage composition as seen in AKU have 

direct implications to bone. QCT was therefore performed on these patients to assess 

BMD. In AKU it is proposed that chronic arthritis can impair bone architecture which 

then may predispose AKU patients to fractures (89). Aliberti et al. (148) reported an 

imbalance in bone metabolism in 7 AKU patients, leading to osteopenia and 

osteoporosis. It was hypothesised that HGA deposition in bone matrix and osteocytes 

may play a pathophysiological role in accelerating bone loss in AKU (148).  

QCT measures BMD using an X-ray computed tomography scanner containing a 

calibration standard to convert Hounsfield units into BMD values. The sites most 

commonly measured to determine BMD are the lumbar spine and hip (95). QCT has 

the ability to spatially separate highly responsive cortical bone from less responsive 

trabecular bone. This is useful because osteoarthropathy affects the trabecular bone 

earlier and to a greater degree than cortical bone. QCT is therefore likely to detect 

low BMD earlier in the spine than DEXA. Artificially high BMD has been identified in 

DEXA reports of spinal arthropathy patients due to calcification and osteophyte 

formation, resulting in unusually high T-values (148). This is because DEXA estimates 

the amount of total mineral in the path of the X-ray beam in the region of L2-L4. This 

can be avoided in QCT as this method specifically measures volumetric trabecular 
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BMD and does not include the IVDs unlike DEXA (94). QCT imaging often results in 

lower T-scores than that of the DEXA in cases of spinal arthropathy due to the 

increased mineral content of the calcified IVDs and/or bony osteophtyes. The lower 

T-scores of QCT compared to DEXA may be due to a variety of factors such as the 

physiological effects of ageing and the menopause (that affects trabecular bone first), 

therefore QCT can detect changes earlier than DEXA (96). The size of the patient also 

affects DEXA scores as DEXA cannot exclude soft tissue, therefore obese patients 

have higher T-scores, volumetric measurements of QCT are not affected by size (94).  

Although QCT has many benefits over DEXA it is important to note that QCT T-scores 

are not comparable to DEXA T-scores and are not used to diagnose osteopenia or 

osteoporosis from the WHO definition of T-scores (a DEXA T-score of -2.5 equates to 

a QCT T-score of -3.4) (96). At present DEXA is the only modality accepted as the 

leading method in clinical decision making. However, as discussed QCT may provide 

a more accurate measure of BMD in patients with spinal arthropathy in AKU. This 

chapter explores the trends between QCT T-score and SUVms as it was proposed that 

low BMD may be the reason for low SUVms in the vertebrae a result of less 

hydroxyapatite available for 18F to bind to.  

Firstly, a negative statistically significant correlation was identified between the 

lumbar spine QCT T-score with age (r= -0.682, p<0.01) (Figure 5.17). Independent t-

test revealed no significant difference between the lumbar QCT T-scores of males and 

females (p>0.05). It is widely agreed that bone deteriorates in composition, structure 

and function with age. Peak BMD is reached around the age of 20 in women and 

slightly older in men, after this bone turnover continues at a slower rate resulting in 
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a steady reduction in BMD (145,146). Lumbar spine QCT and femur QCT T-scores 

were also found to correlate well (r=0.718, p<0.01) (Figure 5.21) demonstrating that 

both anatomical areas of obtaining BMD scores demonstrate the same trends. 

However, when lumbar spine and femur QCT T-scores were plotted with age, femur 

T-scores were consistently higher than T-scores from the lumbar spine (Figure 5.20) 

in AKU patients. When the spine QCT T-scores were statistically compared to femur 

QCT T-scores a significant difference was found (paired t -test p<0.01). This supports 

the idea that the spine is one of the first areas affected in AKU and is often associated 

with pain. Discordance in T-scores has been discussed in the literature between the 

hip and spine. Trabecular bone (typical of the lumbar spine) is known to have a more 

rapid rate of deprivation compared to cortical bone (typical of the proximal femur) 

which may explain the increased T-scores observed in the femur compared to the 

hip.   

In terms of SUVm correlations, a negative statistically significant correlation was 

observed between lumbar spine QCT T-score with the average lumbar IVD SUVm (r= 

-0.470, p<0.05). Low lumbar IVD SUVms are associated with high lumbar QCT T-

scores, which follows a negative trend (Figure 5.18). This is also the case when 

correlating the femur QCT T-score with the lumbar IVD SUVm (Figures 5.22) of which 

a negative statistically significant correlation was observed (r= -0.642, p<0.01). It is 

proposed that this effect is related to ageing as previously shown that young patients 

have high BMD compared to older patients (Figure 5.17). It has also been shown that 

the youngest patients have low IVD SUVms that increases with age before plateauing 

around middle age before decreasing back down in the oldest patients (Figures 4.12 
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and 4.13). It was expected that patients that have high BMD (i.e. the younger 

patients) will have low SUVms in the IVD as they will be less affected by the disease 

in terms of progression with age. The patients with low BMD (i.e. the older patients) 

will have higher SUVms due to calcification and spinal degeneration.  

When analysing vertebrae SUVms, the opposite trend was seen. Positive statistically 

significant correlations were identified when the lumbar vertebrae SUVm was 

correlated with both lumbar QCT T-score (r= 0.735, p<0.01) and femur QCT T-score 

(r=0.503, p<0.05) (Figures 5.19 and 5.23 respectively). This demonstrates that low 

BMD correlates with low SUVms and high BMD correlates with high SUVms. It is 

proposed that reduced BMD reflects reduced hydroxyapatite available for 18F to bind 

this therefore results in lower SUVms. It was also described in Chapter 4 that SUVm 

reduces with age in the vertebrae (Figures 4.10 and 4.11). BMD also reduces with age 

so it is proposed that this trend reflects the ageing vertebrae.        

5.4.7 C-TERMINAL TELOPEPTIDE 1 (CTX-1) BONE MARKER  

In recent year’s extracellular components of bone matrix have been identified and 

categorised as either markers of bone formation or resorption that can be used to 

reflect the rate of bone turnover. Many clinical investigations have provided evidence 

that these biomarkers correlate with the rate of bone loss and fracture risk 

demonstrating their utility in biomedical research and clinical practice (152). The 

WHO has defined osteoporosis as a BMD measured by DEXA, as 2.5 standard 

deviations (SD) or more below that of the mean peak bone mass of premenopausal 

females (T-score ≤ -2.5 SD). DEXA T-scores are used to define osteopenia and 
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osteoporosis however, as discussed in 5.4.7 they may not always represent true BMD. 

Markers of bone resorption could therefore be used as an additional tool alongside 

DEXA to report on bone turnover (153). 

The majority of bone resorption markers are degradation products of collagen. C-

terminal telopeptide 1 (CTX-1) of type I collagen is the marker of choice for bone 

resorption. CTX-1 is generated by cathepsin K activity. Cathepsin K is a major catalytic 

enzyme expressed and secreted by osteoclasts and plays a predominant role in in the 

degradation of type I collagen (153). A negative correlation has been reported 

between bone turnover markers and BMD in the literature (152). No correlation was 

identified in this chapter when the femur and spine QCT T-scores were correlated 

with CTX-1 (Figure 5.25) suggesting that there is no correlation between BMD and 

CTX-1 concentration. No correlation was identified between CTX-1 and the average 

lumbar and thoracic vertebrae and IVD SUVm (Figures 5.26 and 5.27). It was proposed 

that CTX-1 concentration would increase with age in AKU reflecting increased bone 

resorption with disease progression. Figure 5.24 demonstrates CTX-1 with age in 

males and females of which no correlation was identified (r=0.0008, p>0.05). 

Independent t-test revealed that there is no significant difference between CTX-1 

concentration in males and females (p>0.05). An increase in CTX-1 concentration with 

an increase in IVD SUVm was also expected reflecting increased bone resorption due 

to spinal degeneration however no correlations were identified in this group of 

patients. 

No correlation was identified between CTX-1 and vertebrae SUVms (Figure 5.27). 

High CTX-1 concentration was expected to be associated with lower vertebrae SUVms 
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as this is thought to reflect reduced bone turnover associated with ageing. This 

assumption seems sensible as increased bone resorption markers reflect reduced 

BMD, and reduced BMD is associated with reduced SUVm as there is less bone for 

fluoride to bind to. However, this trend is not obvious here. When analysing IVD 

SUVms against CTX-1, no correlation was identified (Figure 5.26). High CTX-1 

concentrations were expected to be associated with low IVD SUVms. High IVD SUVms 

are associated with advanced spinal osteoarthropathy, and increased CTX-1 is 

representative of increased bone resorption. It was therefore expected that CTX-1 

would correlate with high IVD SUVms for this reason, however this was not the case 

here.  

There are many factors that affect the concentration of CTX-1. CTX-1 and other 

markers of bone resorption have been reported to exhibit marked circadian variation. 

Increased bone resorption occurs at night compared to a lower rate in the day. This 

variation is independent of age, gender, ethnicity, menopausal state, osteoporotic 

stage and antiresorptive therapy. The cause of circadian variation remains unknown 

but it has been speculated that calcium homeostasis is crucial (152). All bone markers 

are also significantly lower in a fed state, this may be due to several factors including 

the clearance rate of markers which may be partly explained by a variation in serum 

insulin (151). CTX-1 is therefore measured after fasting and tested early in the 

morning as and where possible. Bone turnover markers also varies with the 

menstrual cycle, where bone resorption is decreased during the luteal period and 

increased during the follicular phase. Fractures also increase levels of all bone 

markers and these may remain elevated for up to one year (151). Inter-patient 



234 
 

variability also proves a problem when comparing between patients as bone 

metabolism rates vary between males, females, pubertal stage, menopausal stage, 

as well as age. Antiresorptive therapy will also reduce CTX-1 concentration. All these 

factors should be taken into account when analysing the results.  

In terms of AKU CTX-1 is used as an additional measurement reflecting bone turnover 

that can be used to compare between visits. This data is representative of the 

baseline visit pre-nitisinone, therefore these CTX-1 concentrations are not 

representative of the effect of nitisinone. 

5.4.8 LUMBAR AND THORACIC PAIN SCORES  

Clinical pain scores were extracted from the patient questionnaires at baseline (pre-

nitisinone). The patients were asked to score pain on a scale of 0-10 where zero 

equals no pain, and ten equals severe pain, in the thoracic and lumbar spine. The 

spine has been described as the first region to experience pain in AKU. Pain was 

scored in both the lumbar and thoracic regions. Interestingly paired t-test revealed a 

significant difference between lumbar and thoracic pain scores. Figure 5.28 

demonstrates that lumbar pain reaches higher pain scores, therefore suggesting that 

the lumbar spine is affected to a higher degree compared to the thoracic spine. This 

is thought to be due to the increased mechanical stress that the lumbar spine 

experiences.  

An interesting correlation was identified with age in both the lumbar and thoracic 

pain scores that is proposed to be representative of spinal degeneration and 

progression with age (Figure 5.28). A positive statistically significant correlation was 
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identified between the lumbar pain score and age (r=0.584 p<0.01). With a 

polynomial trend line applied, pain can be seen increasing with age with the highest 

pain scores observed around the mid 40’s, from here pain can be seen decreasing 

from around the mid 50’s. This is representative of what was described in Figures 

4.12 and 4.13 that demonstrates the trend between the IVD SUVm with age. In 

Chapter 4 an inverted ‘U’ trend was described between age and IVD SUVm where 

SUVm is low in the youngest patients, SUVm then increases up to around the age of 

50 where it then stabilises before reducing back down in the oldest patients between 

60 and 70 (Figures 4.12 and 4.13). It is proposed that Figure 5.28 pain scores reflect 

the trend in IVD SUVm with age. The reduction in both IVD SUVm and pain in the 

oldest patients reflects the end-point of spinal arthropathy which is spinal fusion that 

has been associated with reduced pain. To support this a positive statistically 

significant correlation (r=0.601, p<0.01) was observed between the lumbar IVD SUVm 

and lumbar pain scores (Figure 5.29). A positive statistically significant correlation 

was also identified between thoracic IVD SUVm and thoracic pain (r=0.608, p<0.01) 

(Figure 5.30). These graphs demonstrate that the highest SUVms are representative 

of calcified IVD and disc degeneration, this undoubtedly results in high pain scores. 

In contrast, negative statistically significant correlations were observed between the 

lumbar and thoracic pain scores with vertebrae SUVms (Figure 5.31 and 5.32). Again, 

this supports what was described in Chapter 4 (Figures 4.10 and 4.11) where a 

reduction in SUVm can be seen with age. Therefore, the youngest patients have high 

SUVms reflecting active bone turnover and have low pain scores. Low SUVms have 
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been shown to be associated with older patients, with reduced bone turnover and 

increased pain.  

 

5.4.9 SUMMARY  

This chapter has confirmed the findings identified in Chapter 4, and confirmed the 

repeatability and validity of the SUVm methodology. This chapter has revealed 

differences between AKU and control SUVms in the spine. This was most strikingly 

observed in the IVDs where the SUVms were significantly higher than the control. The 

proposed explanation for this is that in AKU, deposition of calcifications in the IVDs 

occurs with disease progression, which levels out around the sixth decade due to 

reduced turnover seen in advancing spinal disease. The SUVm then reduces in the 

oldest patients due to spinal fusion. It has also been identified that bone metabolism 

in the spine of AKU patients is normal and in-line with age matched controls. Age 

related changes in the SUVms of AKU vertebrae were reported, where the SUVm 

reduces with age due to reduced bone turnover, and BMD with ageing. However, the 

longitudinal changes in SUVm in response to nitisinone were not significant and very 

small. It is proposed that four years on nitisinone may not be long enough to identify 

any changes in fluoride uptake, therefore for the effect of nitisinone on the spine to 

be elucidated, many more years of data will be required to assess the long-term 

effects. Additionally, when the SONIA 2 clinical trial is complete longitudinal data will 

be available on a non-treatment AKU group for comparison which is key to 

understanding if nitisinone is having an effect.      



237 
 

Positive correlations were described between IVD SUVm with the total clinical score 

and the T-AT scores, demonstrating that increased IVD SUVms represent disc 

degeneration which is related to age. The opposite negative trend was identified 

when correlating vertebrae SUVm with the total clinical score, total anatomical 

threshold score and pain scores demonstrating that high vertebrae SUVms are 

associated with active bone turnover in the youngest patients. High IVD SUVms were 

also associated with low QCT T-scores reflecting osteoarthritic spine with disease 

progression. The opposite was seen when correlating QCT T-scores with vertebrae 

SUVms where high vertebrae SUVms correlated with high T-scores. High vertebrae 

SUVms reflect active bone remodelling and normal BMD. The trend in spinal pain 

when correlated with IVD and vertebrae SUVms also confirmed what was described 

previously. An increase in spinal pain was associated with increased IVD SUVm up to 

around middle-age before plateauing and decreasing in the oldest patients. In 

contrast, a negative correlation was identified when correlating pain with vertebrae 

SUVm. Therefore, SUVm in the spine and IVDs could also be used as an indicator of 

pain. 

 

5.4.10 FURTHER WORK 

The next step will be to correlate the SONIA 2 SUVm data from Chapter 4 with other 

data extracted from the clinical trial site files such as urine and plasma HGA levels, 

spinal flexion and DEXA and Cobb angle measurements. This will determine if the 

SUVm measurements correlate well with other data that has been extracted from 

the SONIA 2 patients.  
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6.1 INTRODUCTION  

Chapter 4 demonstrates the utility of SUVms to identify active arthropathy in the 

spine and to quantify disease state in the SONIA 2 patient group. Chapter 5 

demonstrates the repeatability and validity of the method in the NAC patient group, 

as well as reported some interesting correlations in this patient group with other data 

obtained at the NAC. This chapter aims to look at the correlations between the SONIA 

2 SUVm data reported in Chapter 4 with other patient data obtained as part of the 

clinical trial at visit one (baseline; pre-nitisinone). Correlations made with other data 

obtained from the same patient group is important to analyse to observe if the data 

follows similar trends, this provides evidence of a robust methodology.  

Serum and urine HGA levels were recorded at baseline (pre-nitisinone). Serum HGA 

(s-HGA) concentration provides a measure of HGA that is circulating around the body. 

Urine HGA (u-HGA) concentration provides a measure of HGA that is excreted out of 

the body. As explained previously HGA is the culprit molecule in AKU that is deposited 

in connective tissues resulting in ochronosis that ultimately leads to early onset 

osteoarthropathy.   

Cobb angles are used to standardise spinal curvatures. Obtaining Cobb angles of 

thoracic kyphosis, lumbar lordosis and scoliosis provide the clinician with detailed 

information regarding the curvatures of the spine, and these can be assessed 

annually to observe if there are any changes. The spine has naturally three 

curvatures: cervical lordosis, thoracic kyphosis, lumbar lordosis. Normal thoracic 

kyphosis is said to range from 20-45 degrees, hyper kyphosis is defined as more than 

45 degrees and the most common reason for this being osteoporosis (122). Lumbar 
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lordosis is characterised by increased inward curving of the lumbar spine. There is no 

definition of normal lumbar lordosis or is there a definition for lumbar hyperlordosis 

as many factors affect this angle such as muscular strength, flexibility and BMI (123). 

Scoliosis is defined as a lateral spinal curvature of 10 degrees or more to the right or 

left (124). Measurements of lumbar side flexion and cervical rotation measured in cm 

by the physiotherapist were also obtained to assess spinal flexibility.  
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6.2 DESIGN OF STUDY  

6.2.1 PATIENT GROUP  

41 adult patients (16 females, 25 males, mean age 51, SD±1.09, range 30-68) from 

the SONIA 2 clinical trial (see section 2.2.2) underwent a series of tests and 

examinations in 2014/15. This chapter is based on the baseline data obtained at visit 

1 (pre-nitisinone). Each patient underwent 18F-NaF PET/CT, X-ray, MRI and DEXA 

imaging. Physiotherapy assessments were carried out to assess spinal motion and 

flexibility and blood and urine was extracted to measure circulating and excreted 

HGA. These data were used to correlate with the SUVms reported in Chapter 4.  

 

6.2.2 MEASURING THE SUVms 

Hermes hybrid viewer (see section 2.5.1) was used to measure SUVms (section 2.5.2). 

The SUVm was obtained from the centre of three lumbar (L5, L3, L1) and three 

thoracic (T1, T6, T12) vertebral bodies, and from the centre of the corresponding IVDs 

below (L5-S1, L3/L4, L1/L2, T12/L1, T6/T7, T1/T2). The SUVms utilised in this chapter 

were obtained from the baseline visit; visit 1 (pre-nitisinone).  

 

6.2.3 PATIENT DATA OBTAINED 

The DEXA images were accessed on the PACS system at the RLBUHT computer and 

the data from visit 1 was recorded (for more information regarding DEXA see section 

1.6.3.1). Table 1.4 demonstrates the WHO definitions of BMD. X-ray images were also 

accessed on the PACS system and the Cobb angles were measured using this software 
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(method explained in section 6.2.3.1 and 6.2.3.2). The physiotherapy measurements 

of lumbar side flexion and cervical rotation were obtained from the site files at the 

RLBUHT and visit 1 data was recorded. Urine and serum HGA levels for visit 1 were 

analysed in the biochemistry lab at the RLBUHT and were provided by the lab in an 

excel file.  

6.2.3.1 X-RAY AND MRI COBB ANGLE MEASURMENTS  

Whole body posterioanterior (PA) X-Ray view was selected to analyse scoliosis. Using 

the Cobb angle tool the end vertebrae of the curve were selected and lines were 

drawn to demarcate the vertebrae that lie at the upper and lower limits of the curve 

(the vertebrae that tilt the most towards the apex of the curve) (Figure 2.11A). The 

Cobb angle was automatically generated measuring the intersection of the two lines 

drawn.  

Lateral X-ray view was selected to measure the thoracic kyphosis and lumbar lordosis 

Cobb angles. Using the Cobb angle tool, the lower border of the twelfth thoracic 

vertebrae (T12) and the upper border of the fourth thoracic vertebrae (T4) were 

selected (Figure 2.11B). The Cobb angle was automatically generated by measuring 

the intersection between the lines selected. Normal kyphosis ranges from 20-45 

degrees, hyper kyphosis is defined as more than 45 degrees (122). Lumbar lordosis 

was measured from the lower border of the fifth lumbar (L5) vertebrae and the upper 

border of the first lumbar vertebrae (L1). Lumbar hyperlordosis is not defined by a 

Cobb angle (Figure 2.11B).  
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Thoracic kyphosis and lumbar lordosis Cobb angles were also measured on MRI 

(Figure 2.11C). The MRI whole spine was selected using the PACS and the 

methodology of measuring thoracic kyphosis and lumbar lordosis was exactly as 

described as above.  

6.2.3.2 LUMBAR SIDE FLEXION AND CERVICAL ROTATION MEASUREMENTS  

Lumbar side flexion was measured by a senior physiotherapist at the RLBUHT. The 

patient was asked to stand up straight against the wall with their feet 12 inches apart. 

Firstly, the distance was measured (in cm) between the tip of the middle finger to the 

floor with the patient standing up straight on both the right and left sides. The patient 

was then asked to side flex to the right with the physiotherapist applying over 

pressure to push the patient further into the range and the distance between the tip 

of the middle finger to the floor was measured again. This was then repeated on the 

left. The difference between the two measurements was calculated and this value 

reflects the passive lumbar side flexion of the patient in cm (126,127).  

Cervical spine rotation was measured by a senior physiotherapist. The patient was 

asked to stand up straight against the wall with shoulders back in a neutral position 

with the head facing forwards. The distance between the gnathion of the chin to the 

lateral aspect of the acromion was measured with the head looking straight forward 

on both the right and left sides. The patient was then asked to look over to the right 

with the physiotherapist applying over pressure to push the patient further into the 

range, and this distance was re-measured. This was then repeated on the left side. 
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The difference between the two values was then calculated to obtain the value of 

passive cervical spine rotation (126,127).  

6.2.3.3 SERUM AND URINE HGA 

A fasting blood sample and acidified 24-hour urine sample (25mL of 5 N sulphuric acid 

added to 2.5 L urine collection bottle) were collected at visit 1 (pre-nitisinone). Blood 

samples were collected into plain serum tubes from all subjects in a fasting state, 

centrifuged and serum acidified with perchloric acid (5.8 M, at a ratio of 1:11). The 

acidified urine and serum were analysed for HGA using liquid chromatography 

tandem mass spectrometry methodology (LC-MS/MS). Serum HGA is HGA 

concentration (µmol/L), urine HGA is total HGA output in 24 hours (µmol/24hr). 
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6.3 RESULTS 

6.3.1 SERUM HGA CORRELATIONS 

AKU patients have elevated serum-HGA (s-HGA) concentrations compared to the 

reference range. The mean s-HGA (µmol/L) in the AKU group was 33.2 µmol/L at visit 

1 (pre-nitisinone) compared to the reference range of <3.1 (154). Independent t-tests 

found no statistical significance between the s-HGA concentrations in males and 

females (p>0.05). There appears to be a weak positive correlation with age in both 

males and females, however this was not statistically significant (r=0.290, p>0.05) 

(Figure 6.1). Weak correlations were also identified between s-HGA (µmol/L) and the 

average lumbar and thoracic vertebrae SUVm (r=0.0781, p>0.05) with females having 

a slight negative correlation and males having no correlation (Figure 6.2).  

Serum HGA (µmol/L) was also correlated with the average lumbar and thoracic IVD 

SUVm (Figure 6.3). This graph demonstrates more of an interesting trend where both 

males and females follow an inverted ‘U’ trend, with low s-HGA concentrations 

correlating with low and high IVD SUVms and the high s-HGA concentrations 

correlating with the middle of the range IVD SUVms. This correlation however was 

not significant (r=0.0174, p>0.05) 
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Figure 6.1 Correlation between serum HGA pre-nitisinone (µmol/L) with age in 

males and females at visit 1. Weak positive correlation identified in males (R²=0.032) 

and females (R²=0.279). No statistically significant correlation identified (r=0.290, 

p>0.05). 

 

Figure 6.2 Correlation between serum HGA µmol/L (pre-nitisinone) with the 

average lumbar and thoracic vertebrae SUVm at visit 1 in males and females. No 

correlation in males (R²=0.02) and weak negative correlation in females (R²=0.19). No 

statistically significant correlation identified (r=0.0781, p>0.05). 
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Figure 6.3 Correlation between serum HGA µmol/L (pre-nitisinone) with the 

average lumbar and thoracic IVD SUVm at visit 1 in males and females. Correlation 

coefficient in males (R²=0.09) and females (R²=0.51). No statistically significant 

correlation identified (r=0.0174, p>0.05). 

 

6.3.2 TOTAL URINE HGA CORRELATIONS 

The total urine HGA (u-HGA) is a measure of total HGA output in 24 hours 

(µmol/24hr). AKU patients have elevated urine HGA concentrations compared to the 

reference range. The average u-HGA (µmol/24hrs) in the AKU group was 27035 

µmol/24hrs at visit 1 (pre-nitisinone) compared to the reference range of <2.92 

umol/24hrs (154). Independent t-tests revealed statistically significant differences 

between the u-HGA (µmol/24hrs) of males and females (p<0.01) with males having 

higher mean u-HGA concentrations (30546 umol/24hr) than females (21556 

umol/24hr). When correlated with age there was no statistically significant 

correlation (r=0023, p>0.05). Males and females both demonstrated variable trends, 
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with males following a weak inverted ‘U’ trend and females following a weak ‘U’ 

shaped trend (Figure 6.4).  

Total u-HGA was then correlated with the average lumbar and thoracic vertebrae 

SUVm in males and females (Figure 6.5). No statistically significant correlation was 

found (r=0.014, p>0.05). Females showed a weak negative correlation that plateaus 

at high SUVms, whereas males showed a weak positive correlation. Total u-HGA was 

correlated with the average lumbar and thoracic IVD SUVm (Figure 6.6). No 

statistically significant correlation was observed in both males and females (r=0.03, 

p>0.05).  

 

 

Figure 6.4 Correlation between total urine HGA pre-nitisinone with age in males 

and females at visit 1. Correlation coefficient in males (R²=0.21) and females 

(R²=0.04). No statistically significant correlation identified (r=0.023, p>0.05). 
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Figure 6.5 Correlation between total urine HGA pre-nitisione with the average 

lumbar and thoracic vertebrae SUVm at visit 1 in males and females. Correlation 

coefficient in males (R²=0.09) and females (R²=0.48). No statistically significant 

correlation identified (r=0.014, p>0.05). 

 

Figure 6.6 Correlation between total urine HGA pre-nitisione with the average 

lumbar and thoracic IVDs SUVm at visit 1 in males and females. Correlation 

coefficient in males (R²=0.01) and females (R²=0.06). No statistically significant 

correlation identified (r=0.03, p>0.05). 
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6.3.3 LUMBAR SIDE FLEXION CORRELATIONS 

Lumbar side flexion (cm) was measured by a senior physiotherapist at the RLBUHT. 

Negative correlations were identified in both males and females when lumbar side 

flexion was correlated with age (Figure 6.7 A and B). A negative statistically significant 

correlation was identified (r=-0.850, p<0.001) between right passive lumbar side 

flexion and age (Figure 6.7A). Right passive lumbar side flexion was highest in the 

younger patients and this decreased linearly with age in both males and females with 

the oldest patients having the smallest range of motion in the spine. The same trend 

can be seen when correlating passive lumbar side flexion on the left side with age in 

both males and females (Figure 6.7B). A negative statistically significant correlation 

was identified between left passive lumbar side flexion with age (r=-0.806, p<0.001). 

Independent t-tests found no statistically significant differences between the lumbar 

side flexion (cm) on both the right and left sides between males and females.  

Interestingly, when lumbar side flexion was plotted against the average lumbar and 

thoracic vertebrae SUVm, positive correlations were identified in both males and 

females (Figure 6.8 A and B). A positive statistically significant correlation was 

observed between the right passive lumbar side flexion and the average lumbar and 

thoracic vertebrae SUVm (r=0.588, p<0.05). A positive statistically significant 

correlation was also identified between the left passive lumbar side flexion and the 

average lumbar and the average lumbar and thoracic vertebrae SUVm (r=0.616, 

p<0.05). This trend supports what has been described in Chapter 4 and 5 with high 

vertebrae SUVms being associated with the younger patients with increased range of 

motion in the spine.  
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Weak inverted ‘U’ shaped trends were identified when correlating lumbar side flexion 

with the average lumbar and thoracic IVD SUVm in both males and females (Figure 

6.9 A and B). Suggesting that reduced lumbar flexion is associated with middle of the 

range IVD SUVms, and that high and low IVD SUVms are associated with increased 

lumbar side flexion. However, this was not statistically significant on both the right 

and left sides.  
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Figure 6.7 Correlation between lumbar side flexion (cm) with age in males and 

females at visit 1. A- right passive lumbar side flexion (cm) with age. B- left passive 

lumbar side flexion (cm) with age. Negative statistically significant correlations were 

observed; A- (r=-0.850, p<0.001), B- (r=-0.806, p<0.001).   
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Figure 6.8 Correlation between lumbar side flexion (cm) with average lumbar and 

thoracic vertebrae SUVm in males and females at visit 1. A- right passive lumbar side 

flexion (cm) with vertebrae SUVm. B- left passive lumbar side flexion (cm) with 

vertebrae SUVm. Positive statistically significant correlations were observed; A- 

(r=0.588, p<0.05), B- (r=0.616, p<0.05).   
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Figure 6.9 Correlation between lumbar side flexion (cm) with average lumbar and 

thoracic IVD SUVm in males and females at visit 1. A- right passive lumbar side 

flexion (cm) with IVD SUVm. B- left passive lumbar side flexion (cm) with IVD SUVm. 

No statistical significant correlations identified; A- (r=0.160, p>0.05), B-(r=0.0312, 

p>0.05).  
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6.3.4 CERVICAL SPINE ROTATION CORRELATIONS 

Cervical spine rotation (cm) was measured by a senior physiotherapist at the RLBUHT. 

No statistically significant correlations were identified in both males and females 

when cervical spine rotation was correlated with age. Figure 6.10A demonstrates no 

correlation between right passive cervical spine rotation with age (r=0.175, p>0.05). 

Figure 6.10B shows no correlation between left passive cervical spine rotation with 

age (r=0.113, p>0.05). No correlations were also identified between cervical spine 

rotation and vertebrae and IVD SUVm in both males and females on both the right 

and left sides (Figure 6.11 A and B, and 6.12 A and B).  

Independent t-tests revealed significant differences between cervical spine rotation 

(cm) on the right and left sides in males and females (p<0.01, and p<0.05 

respectively). Males can be seen having increased cervical rotation compared to 

females on both the right and left sides (mean cervical rotation on the right males = 

12.08, females = 9.96, mean cervical rotation on the left males = 11.97, females = 

10.31).  
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Figure 6.10 Correlation between cervical spine rotation with age in males and 

females at visit 1. A- right passive cervical spine rotation (cm) with age. B- left passive 

cervical spine rotation (cm) with age. No statistical significant correlations identified; 

A- (r=0.175, p>0.05), B- (r=0.113, p>0.05). 
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Figure 6.11 Correlation between cervical spine rotation with the average lumbar 

and thoracic vertebrae SUVm in males and females at visit 1. A- Right passive 

cervical spine rotation (cm) with average vertebrae SUVm, B- Left passive cervical 

spine rotation (cm) with average vertebrae SUVm. No statistical significant 

correlations identified; A- (r=0.258, p>0.05), B- (r=0.248, p>0.05). 
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Figure 6.12 Correlation between cervical spine rotation with the average lumbar 

and thoracic IVD SUVm in males and females at visit 1. A- Right passive cervical spine 

rotation (cm) with average IVD SUVm, B- Left passive cervical spine rotation (cm) with 

average IVD SUVm. No statistical significant correlations identified; A- (r=0.026, 

p>0.05), B-(r=0.231, p>0.05). 
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6.3.5 COBB ANGLE CORRELATIONS WITH SUVm 

Correlations were made between spinal Cobb angles obtained from X-ray images and 

vertebrae and IVD SUVms. Figure 6.13 demonstrates the correlation between the 

average thoracic vertebrae SUVm with thoracic kyphosis Cobb angles. No correlation 

was identified (r=0.204, p>0.05) between the normal thoracic kyphosis Cobb angles 

that range from 20-45 degrees (blue) with the thoracic vertebrae SUVm. However, 

the hyperkyphosis Cobb angles (>45 degrees- red) demonstrate a negative 

statistically significant correlation with the thoracic vertebrae SUVms (r=-0.850, 

p<0.01). Figure 6.14 demonstrates the correlation between lumbar vertebrae SUVm 

and the lumbar lordosis Cobb angle. No statistically significant correlation was 

identified (r=0.068, p>0.05).  

Cobb angles were also correlated with IVD SUVms. Figure 6.15 demonstrates the 

correlation between the average thoracic IVD SUVm with the thoracic kyphosis Cobb 

angle. No correlation was identified (r=0.035, p>0.05) between the normal thoracic 

kyphosis Cobb angles that range from 20-45 degrees (blue) with the thoracic IVD 

SUVm. However, the hyperkyphosis Cobb angles (>45 degrees- red) demonstrate a 

negative statistically significant correlation with the thoracic IVD SUVms (r=-0.723, 

p<0.01). Figure 6.16 demonstrates the correlation between the lumbar IVD SUVm 

with the lumbar lordosis Cobb angle, no correlation was identified (r=0.004, p>0.05).  
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Scoliosis Cobb angles were also correlated with the mean lumbar and thoracic IVD 

and vertebrae SUVms (Figures 6.17 and 6.18). No correlations were identified even 

when assessing the patients with a scoliosis angle greater than 10 degrees (clinical 

definition of scoliosis >10 degrees). 

 

 Figure 6.13 Correlation between the average thoracic vertebrae SUVm with 

thoracic kyphosis X-Ray Cobb angle in AKU patients at visit 1. No statistical 

significant correlation identified between the normal range of Cobb angles (20-45 ֯ 

blue) and thoracic vertebrae SUVm (r=0.204, p>0.05). Negative statistically significant 

correlation between the hyperkyphosis Cobb angles (>45֯ red) and thoracic vertebrae 

SUVm (r=-0.850, p<0.01).  
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Figure 6.14 Correlation between average lumbar vertebrae SUVm with lumbar 

lordosis X-Ray Cobb angle in AKU at visit 1. No statistical significant correlation 

identified (r=0.068, p>0.05). 

 

Figure 6.15 Correlation between average thoracic IVD SUVm with thoracic kyphosis 

X-Ray Cobb angle in AKU patients at visit 1. No statistical significant correlation 

between the normal thoracic kyphosis Cobb angles (20-45֯ -blue) with the thoracic 

IVD SUVm (r=0.035, p>0.05). Negative statistically significant correlation between the 

hyperkyphosis Cobb angles (>45 ֯  red) and thoracic IVD SUVm (r=-0.723, p<0.01).  
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Figure 6.16 Correlation between average lumbar IVD SUVm with lumbar lordosis X-

Ray Cobb angle in AKU patients at visit 1. No statistical significant correlation 

identified (r=0.004, p>0.05).  

 

Figure 6.17 Correlation between average thoracic and lumbar IVD SUVm with 

scoliosis X-Ray Cobb angle in AKU patients at visit 1. No statistical significant 

correlation identified (r=0.01, p>0.05). 
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Figure 6.18 Correlation between average thoracic and lumbar vertebrae SUVm with 

scoliosis X-Ray Cobb angle in AKU patients at visit 1. No statistical significant 

correlation identified (r=0.08, p>0.05). 

 

6.3.6 COBB ANGLE MRI vs X-RAY 

The Cobb angles presented in section 6.3.5 were measured using the conventional X-

Ray method (see section 2.6 for more information). This section investigates the 
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those obtained from MRI scans. A traditional chest X-ray is obtained whilst the 

patient is standing. It is known that standing up (weight bearing) accentuates 

kyphosis and is therefore used for clinical assessments. It is widely agreed that IVDs 

reduce in height from morning to night due to the forces and weight that passes 

through them throughout the day. MRI is performed with the patient lying supine, 
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the Cobb angles was the same (described in sections 2.6.2 and 2.6.3) for both the X-

Ray and MRI images.  

Positive statistically significant correlations were identified between both thoracic 

kyphosis and lumbar lordosis Cobb angles when correlating X-ray and MRI 

techniques. This suggests that the two modalities of measuring Cobb angles both 

generate similar results and correlate well (Figures 6.19 and 6.20). Table 6.1 

demonstrates the mean thoracic kyphosis and lumbar lordosis Cobb angles obtained 

from MRI and X-ray imaging modalities with the difference and statistical significance 

of the correlation included. Correlations were also made between thoracic kyphosis 

and lumbar lordosis Cobb angles to see if they show the same trends. No statistical 

significant correlation was identified between the lumbar lordosis Cobb angle and 

thoracic kyphosis Cobb angle using both the X-Ray imaging and MRI modalities. 

Figure 6.19 Correlation between X-Ray and MRI thoracic kyphosis Cobb angles in 

AKU patients at visit 1. Positive statistically significant correlation was observed 

(r=0.691, p<0.001).  
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Figure 6.20 Correlation between X-Ray and MRI lumbar lordosis Cobb angles in AKU 

patients at visit 1. Positive statistically significant correlation was observed (r=0.825, 

p<0.001). 

 

Table 6.1 Thoracic kyphosis and lumbar lordosis mean Cobb angles obtained from 

MRI and X-ray imaging modalities. All angles are given in mean degrees (standard 

deviation).  

 

 

 

 MRI X-Ray Difference Correlation 

Thoracic 
Kyphosis 

27.9 (8.4) 36.3 (9.9) 9.14 (6.25) 
r=0.691, 

p<0.001 

Lumbar 
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30.2 (10.9) 38.6 (13.4) 9.29 (6.44) 
r=0.825 

p<0.001 
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6.3.7 DEXA LUMBAR SPINE T-SCORE 

The next set of analysis was to explore lumbar spine bone density utilising data 

obtained from DEXA scans in the form of T-scores. DEXA T-scores of the lumbar region 

were measured at the L2-L4 spinal level. Table 1.4 describes the WHO definitions of 

bone mineral density. Figure 6.21 demonstrates the correlation between DEXA 

lumbar spine T-scores with age in males and females. No statistically significant 

correlation was identified in both males and females (males r=0.006, p>0.05, females 

r=0.419, p>0.05). The trend lines demonstrate from around the age of mid-40’s there 

is a general reduction in lumbar spine T-score with age in both males and females. 

This supports what was reported in the previous chapter were QCT was correlated 

with age (Figure 5.15). Interestingly however, DEXA T-scores show a slight positive 

correlation with age up to around the mid-40’s demonstrated but the inverted ‘U’ 

shaped curves in Figure 6.21. Additionally, females appear to have slightly reduced T-

scores compared to men after the age of around 45. Independent t-tests however 

revealed no statistically significant differences between male and female lumbar 

spine T-score (p>0.05). 

Figure 6.22 demonstrates the correlation between the DEXA lumbar spine T-score 

and the mean lumbar vertebrae SUVm. A statistically significant positive correlation 

was identified in the female group (r=0.345, p<0.05) where low lumbar spine T-scores 

are associated with low lumbar vertebrae SUVms. This supports what was reported 

when analysing QCT with vertebrae SUVm in the previous chapter (Figure 5.17). 

However, there was no statistically significant correlation in the male group (r=0.117, 

p>0.05).  
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Figure 6.23 displays the correlation between the DEXA lumbar spine T-score with the 

mean lumbar IVD SUVm. Positive statistically significant correlations were identified 

in males (r=0.428, p<0.05). However, the correlation was not significant in the female 

group (r=0.361, p>0.05). The trend demonstrates that high lumbar spine T-scores are 

associated with high lumbar IVD SUVms. This does not support what was found in the 

previous chapter where lumbar QCT was correlated with lumbar IVD SUVm (Figure 

5.16) this will be discussed later. 

Correlations were made between T-scores and spinal Cobb angles to investigate 

whether changes in spinal curvatures correlate with changes in bone density. Figure 

6.24 demonstrates the correlation between DEXA lumbar spine T-score and the 

thoracic kyphosis Cobb angle in males and females. No correlation was identified in 

males (r=0.032, p>0.05), and a negative correlation was identified in females (r=-

0.403, p>0.05) however this was not statistically significant. Additionally, this graph 

illustrates that males have a much wider range of thoracic kyphosis angles ranging 

from 3-53 degrees, compared to females that ranged from 29-56 degrees. However, 

independent t-tests revealed no statistical significant difference between the 

thoracic kyphosis Cobb angles of males and females (p>0.05).  

Lastly, lumbar lordosis Cobb angles were correlated with the average DEXA lumbar 

spine T-scores (Figure 6.25). No statistically significant correlations were identified in 

both males and females (males r=0.056, p>0.05, females r=0.164, p>0.05) with no 

definitive trends being identified. As described in the Figure 6.24 males had a much 

wider range of lumbar lordosis Cobb angles ranging from 13-60 degrees, whereas 

females ranged from 37-59 degrees. However, there was no statistical difference 
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between the lumbar lordosis Cobb angles of males and females (independent t-test 

p>0.05).  

Figure 6.21 Correlation between DEXA lumbar spine (L2-L4) T-score and age in 

males and females at visit 1. No statistically significant correlation observed (males 

r=0.006, p>0.05, females r=0.419, p>0.05). 

 

Figure 6.22 Correlation between DEXA lumbar spine T-score and mean lumbar 

vertebrae SUVm at visit 1 in males and females. Positive statistically significant 

correlation identified in the female group (r=0.345, p<0.05). No statistically 

significant correlation observed in the male group (r=0.117, p>0.05). 
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Figure 6.23 Correlation between DEXA lumbar spine T-score and the mean lumbar 

IVD SUVm at visit 1 in males and females. Positive statistically significant correlation 

observed in males (r=0.428, p<0.05). No significant correlation identified in females 

(r=0.361, p>0.05). 

 

Figure 6.24 Correlation between DEXA lumbar spine T-score and the thoracic 

kyphosis Cobb angle in males and females. No statistically significant correlation 

observed in both males (r=0.032, p>0.05) and females (r=-0.403, p>0.05).  
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Figure 6.25 Correlation between DEXA lumbar spine T-score and the lumbar 

lordosis Cobb angle in males and females. No statistically significant correlation 

observed in both males and females (males r=0.056, p>0.05, females r=0.164, 

p>0.05).  

 

6.3.8 DEXA FEMUR T-SCORE  

Correlations were also made with femur DEXA T-scores to investigate if the same 
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significant correlation was identified (males r=0.345 p>0.05, females r=0.331 p>0.05). 
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(p>0.05). Notably, the T-score values are much lower in the femur, ranging from -3.1 

to 1.4, compared to -3.1 to 5.2 in the lumbar spine. 

Figure 6.27 demonstrates the correlation between the DEXA femur T-score and the 

mean lumbar IVD SUVm in males and females. A negative statistically significant 

correlation was identified in females (r=-0.496, p<0.05), with no statistically 

significant correlation identified in the male group (r=0.250, p>0.05). This trend 

however demonstrates that higher femur T-scores are associated with low lumbar 

IVD SUVms. This does not support what was found when lumbar IVD SUVm was 

correlated with lumbar spine T-scores (Figure 6.23) that represents a weak positive 

trend. Again, it is clear that the T-scores in the lumbar spine reach much higher 

values, a maximum of 5.4 compared to the maximum femur T-score value of 1.3.  

Figure 6.28 demonstrates the correlation between DEXA femur T-score with age. A 

negative correlation was identified, supporting what was found in Figure 6.21. DEXA 

lumbar spine T-score was plotted alongside the femur data, illustrating that the 

lumbar spine T-scores are much higher (average T-score= 0.62) than the femur 

(average T-score=-1.53). The data of the spine and femur T-scores below the age of 

40 overlaps, however after approximately the age of 45 the spine T-scores are 

generally much higher than the femur T-scores. Paired t-tests and Wilcoxon signed 

rank sum tests revealed a significant difference between the lumbar spine and femur 

T-scores (p<0.01).     
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Figure 6.26 Correlation between DEXA femur T-score and the average lumbar 

vertebrae SUVm at visit 1 in males and females. No statistically significant 

correlation observed in both males and females (males r=0.345, p>0.05, females 

r=0.331, p>0.05).  

Figure 6.27 Correlation between DEXA femur T-score and the average lumbar IVD 

SUVm at visit 1 in males and females. Negative statistically significant correlation 

observed in females (r=0.496, p<0.05). No statistically significant correlation 

identified in males (=0.250, p>0.05).  
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6.3.8.1 Comparison between DEXA and QCT results 

Figure 5.20 in the previous chapter reported QCT T-scores of the spine and femur. 

Figure 6.28 reports DEXA T-scores of the spine and femur. The mean spine QCT T-

score was -2.27 ranging from -5.63 to 0.95, compared to the mean DEXA T-score of 

0.62 ranging from -3.2 to 5.4. The QCT femur T-score had a mean of 0.08 ranging from 

-2.58 to 4.26 compared the mean DEXA femur T-score of -1.5 ranging from -3.1 to 

1.3. Independent t-test revealed a statistically significant difference between the 

spine T-scores obtained from DEXA and QCT (p<0.001). The femur T-scores were not 

statistically different between QCT and DEXA. 

 

Figure 6.28 Correlation between DEXA spine T-score and femur T-score with age in 

AKU patients at visit 1. Negative statistically significant correlation identified; femur 

(r=-0.309, p<0.01), no significant correlation in the spine (r=0.01, p>0.05). Paired t-

test and Wilcoxon signed rank sum tests revealed statistically significant difference 

between lumbar spine and femur T-scores (p<0.01).  
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6.4 DISCUSSION  

This chapter has focused on correlating the vertebrae and IVD SUVm with other 

clinical data obtained from the clinical trial site files from SONIA 2. Correlating other 

data such as, serum and urine HGA concentrations, spinal flexibility, spinal curvature 

angles and DEXA T-scores with the SUVm method will allow us to find common trends 

between types of examination and imaging methods as well as allowing us to see if 

these show any statistical relationships.  

6.4.1 SERUM HGA CORRELATIONS 

The serum HGA (s-HGA) concentration was obtained from a fasting blood sample 

collected at visit 1 pre-nitisinone using LC-MS/MS by a biochemist at the RLBUHT. 

After plotting the data provided by the biochemistry lab, AKU patients clearly have 

elevated s-HGA concentrations (33.2umol/L) compared to the reference range 

(<3.1umol/L) pre-nitisinone, which was one of the important findings reported in the 

SONIA 1 clinical trial (45). When analysing male and female s-HGA there was no 

significant difference between the two groups (independent t-test p>0.05). The 

difference between male and female s-HGA in AKU has not been reported in the 

literature and this data has revealed no significant differences suggesting that the 

concentration of HGA in serum of patients with AKU is not affected by gender. Weak 

positive correlations were reported between s-HGA and age in both males and 

females (Figure 6.1) suggesting that age does not influence s-HGA concentration 

significantly. The weak positive correlation however may represent reduced renal 

function with age. It has been recognised for decades that there is an age associated 

loss of kidney function associated with progressive decreases in glomerular filtration 
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rate and renal blood flow. In AKU this would result in increased HGA circulating in the 

blood due to reduced efficiency of the kidneys (155).   

It is clear that s-HGA concentration is elevated in AKU patients without treatment. 

The SONIA 1 clinical trial elucidated a clear dose response relationship with increasing 

dosages of nitisinone (1,2,4 and 8mg) with the highest dose reducing HGA by 99.4% 

(45). Serum HGA concentrations in the SONIA 1 group went from 30.3 umol/L at 

baseline to 0.7umol/L after one year on nitisinone. Without treatment s-HGA remains 

elevated demonstrating the effectiveness of the drug at lowering the culprit molecule 

HGA (45).  

Correlations were also made between s-HGA and the average lumbar and thoracic 

IVD and vertebrae SUVm (Figures 6.2 and 6.3). No statistically significant correlations 

were identified between both the s-HGA and the vertebrae SUVm (r=0.0781, p>0.05) 

(Figure 6.2), or the s-HGA and IVD SUVm (r=0.0174, p>0.05) (Figure 6.3). This suggests 

that the concentration of HGA that is circulating in the blood, pre-treatment at visit 

1, does not correlate with the SUVms. This may be because s-HGA concentration does 

not appear to be affected by age and remains relatively stable across the population. 

Whereas in contrast we have seen how the SUVm changes with age in both the 

vertebrae and IVDs due to the progression of the disease (Figures 4.10- 4.13). 

Additionally, s-HGA represents the concentration of s-HGA circulating in the blood at 

a single time-point, before treatment. The SUVm is a measure of fluoride uptake that 

represents years of HGA accumulation in the spine. Therefore, it is not the circulating 

s-HGA concentration that is important, it is the life-long exposure to HGA that is key 

in AKU ochronosis that results in osteoarthropathy.   
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6.4.2 URINE HGA CORRELATION 

Acidified 24-hour urine samples were obtained from all SONIA 2 patients at visit 1, 

pre-nitisinone. The acidified urine was analysed for HGA using LC-MS/MS by a 

biochemist at the RLBUHT and is representative of the total amount of HGA excreted 

in 24 hours. The data was provided by the biochemistry lab and was plotted against 

age. AKU patients have elevated urine HGA (u-HGA) (27035 umol/L) compared to the 

reference range (<2.9 umol/L) which again was one of the main findings in the SONIA 

1 clinical trial (45). Interestingly there was a statistical significant difference between 

the u-HGA of males and females with males having a higher mean u-HGA (30546 

umol/24hr) than females (21556 umol/24hr). This may be due to the increased 

dietary intake of protein in males compared to females. It is known that dietary intake 

of tyrosine/phenylalanine results in the accumulation of HGA. The more 

tyrosine/phenylalanine ingested, the more HGA is therefore produced and excreted. 

It is widely agreed that males are generally larger than females and require more 

calories and more fluid, and they therefore excrete more urine which may represent 

why males have increased u-HGA umol/24hrs.  

As in section 6.4.1 no statistically significant correlations were identified between u-

HGA and the average lumbar and thoracic vertebrae and IVD SUVms. This suggests 

that the total urinary HGA output in 24hrs does not correlate with fluoride uptake in 

the vertebrae and IVDs. This is not unexpected as it is not the amount u-HGA that is 

excreted that is important in terms of ochronosis and arthropathy of the spine but it 

is the amount that is bathing the tissues over many years that results in ochronosis 

and spinal arthropathy.   
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6.4.3 LUMBAR SIDE FLEXION CORRELATION 

A senior physiotherapist at the RLBUHT measured lumbar side flexion (for more 

information see section 2.7.1) on all SONIA 2 patients at visit 1, pre-nitisinone. 

Lumbar side flexion measurements can be used as a standardised measurement to 

quantify spinal flexibility. Lumbar side flexion provides a good picture of spinal 

flexibility in contrast to lumbar flexion (forward bending) as it is not augmented by 

hip joint movement. Additionally, practically it is often easier to ask patients with 

back pain to flex to the side rather than bend forwards (156). When correlating 

lumbar side flexion on the right and left sides with age, negative statistically 

significant correlations were identified (p<0.001 on both the left and right sides) with 

no statistical difference between males and females (Figure 6.7 A and B). Lumbar side 

flexion was highest in the younger patients and lower in the older patients. As 

expected younger patients have increased flexibility compared to older patients. It is 

widely agreed that with increasing age, BMD reduces, that is associated with 

increased risk of fractures. Collagen production reduces with age meaning response 

to repair is reduced. Tendons and ligaments become stiffer and elasticity is reduced 

and muscles supporting the joints become weak. All these factors contribute to 

reduction in flexibility with age.  

In AKU raised HGA levels in plasma and extracellular fluid lead to ochronosis. HGA 

polymers are deposited in connective tissues such as cartilage, tendons and 

ligaments. The affected tissues often become weak and brittle, and prone to bone 

fracturing, and tendon snapping. This ultimately reduces flexibility and impacts on 

mobility due to pain and discomfort of the major joints such as the spine, hip and 
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knees (36). This clearly explains why there is a reduction in lumbar side flexion with 

age in AKU. This trend would also be expected in a control population. However, the 

slope on Figure 6.7 A and B would be expected to be shifted over to the right as AKU 

patients suffer from pain and arthropathy decades before that of control patients. 

Physiotherapy is routine practice for most AKU patients and it is encouraged that all 

patients participate in exercises set by the physiotherapist to try to increase flexibility 

and range of motion at the joint and to try to keep joints supple, reducing pain (157).  

Interestingly, positive statistically significant correlations were identified between 

lumbar side flexion (on both the right and left sides) and the average lumbar and 

thoracic vertebrae SUVm in both males and females (Figure 6.8 A and B). This 

demonstrates that increased spinal flexibility is associated with increased vertebrae 

SUVms. This trend reflects what has been described in Chapter 4, where SUVm can 

be seen decreasing with age due to reduced BMD with age (Figures 4.10 and 4.11). 

Younger patients are associated with high vertebrae SUVms and high BMD due to 

increased hydroxyapatite for 18F to bind. Older patients are associated with low 

SUVms and low BMD as there is less bone turnover with age. These findings reflect 

that younger patients have increased flexibility; higher BMD values therefore have 

increased SUVms. In contrast the older patients have reduced spinal flexibility, 

reduced BMD and reduced SUVms.  

No statistical correlations were identified when correlating the lumbar side flexion 

(on the right and left sides) with the average lumbar and thoracic IVD SUVm in both 

males and females which was disappointing. It was expected that with increased IVD 

SUVm there would be a reduction in lumbar side flexion, as increased IVD SUVm 
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reflects calcification of the IVDs and it would be assumed that calcified IVDs would be 

less flexible due to pain and or spinal fusion.  

6.4.4 CERVICAL SPINE ROTATION CORRELATION 

Cervical spine rotation is a measure of range of motion of the neck. No statistically 

significant correlations were identified between cervical spine rotation (on the right 

and left sides) with age. Suggesting that cervical flexibility is not influenced by age 

(right side r=0.175, left side r=0.113). This is surprising as although the cervical spine 

is not weight bearing and is not one of the major regions affected in AKU, cervical 

mobility has been reported to be reduced in AKU along with cervical disc space 

narrowing, spinal cord compression and disc herniations at the cervical level (158). It 

was therefore expected that cervical flexibility would be reduced in the older AKU 

patient’s as it is one of the regions where these patients report pain. No correlations 

were identified between cervical spine rotation and lumbar and thoracic vertebrae 

and IVD SUVms suggesting that lumbar side flexion may be a better indicator of 

disease state and progression compared to cervical rotation.   

6.4.5 COBB ANGLE CORRELATION WITH SUVm 

The Cobb angle is a standardised measure of spinal curvature. Cobb angles are used 

clinically to measure thoracic kyphosis, lumbar lordosis and scoliosis, if present. In 

AKU patients these measurements are repeated annually to assess if there are any 

changes to the curvatures of the spine. The data presented in this chapter was from 

visit 1, pre-nitisinone. Normal thoracic kyphosis ranges from 20-45 degrees and 
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hyperkyphosis is defined as more than 45 degrees (122). Clinically there is no range 

for normal lumbar lordosis neither is there an angle to define hyper or hypo-lordosis 

as there are many factors that influence the lumbar spine such as muscular strength, 

flexibility and BMI (123). Scoliosis is defined as a spinal curvature of 10 degrees or 

more to the left or the right (124). No statistically significant correlations were 

identified between lumbar lordosis and age (r=0.01, p>0.05) or thoracic kyphosis and 

age (r=0.07, p>0.05). 

Correlations were made between the spinal Cobb angles and vertebrae and IVD 

SUVms to see if there was a relationship between spinal curvature and bone and or 

IVD 18F uptake. When the thoracic kyphosis Cobb angle and the thoracic vertebrae 

SUVm was correlated no correlation was identified between the normal thoracic 

kyphosis Cobb angles that range from 20-45 degrees, and the thoracic vertebrae 

SUVm. Looking at the graph (Figure 6.13) the normal thoracic kyphosis Cobb angles 

all have SUVm that are higher up the scale ranging from 6-11 suggesting that normal 

thoracic curvatures are associated with uptake of fluoride consistent with the 

younger less affected patients. As we have previously reported there is a negative 

trend with vertebrae SUVm with age (see Figures 4.10 and 4.11). Interestingly it can 

be seen in Figure 6.13 that the hyperkyphosis Cobb angles (>45ᵒ) demonstrate a 

negative correlation with thoracic vertebrae SUVm and this was found to be 

statistically significant (r=-0.850, p<0.01). This suggests that the patients with 

increasingly hyperkyphotic spines have reduced thoracic vertebrae SUVms. This 

supports what we have seen previously in Figures 4.10 and 4.11 where a negative 

trend was identified between vertebrae SUVm and age. It was proposed that this 
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reduction in vertebrae SUVm was due to reduced BMD with age. It is also proposed 

that this is what this trend is demonstrating (Figure 6.13), that the hyperkyphotic 

spines have low BMD which is one of the main reasons for this hyperkyphotic 

curvature (125). Hyperkyphosis also may result from either muscle weakness and 

degenerative disc disease, leading to vertebral fractures all of which are common in 

AKU patients (125).  

Interestingly, when the hyperkyphotic Cobb angles were correlated with thoracic IVD 

SUVms (Figure 6.15) a negative statistically significant correlation was identified (r=-

0.723, p<0.01). This suggests that increasingly hyperkyphotic spines have reduced 

thoracic IVD SUVms. The negative correlation of the hyperkyphosis Cobb angles with 

thoracic IVD SUVm supports what has been presented previously in Figure 4.13. 

Figure 4.13 demonstrates the inverted ‘U’ shaped trend of thoracic IVD SUVms with 

age. It is clear in the oldest patients, around the age of 55-60, that there is a reduction 

in IVD SUVm with age. It is proposed that this reduction in SUVm is likely to be due 

to reduced deposition of hydroxyapatite/calcium pyrophosphate dihydrate crystals 

into the IVDs that occurs as part of AKU disease pathophysiology. This reduction in 

deposition may be due to complete calcification of the IVD and or spinal fusion. Once 

this has been achieved deposition of hydroxyapatite/calcium pyrophosphate 

dihydrate crystals into the IVDs stops. It is understood that 18F binds preferentially to 

newly laid down hydroxyapatite due to the higher availability of binding sites, once 

new hydroxyapatite / calcium pyrophosphate dihydrate crystals stop being laid down 

18F does not preferentially bind to those regions therefore the SUVms in those regions 

reduce.   
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When analysing the correlations between lumbar lordosis Cobb angles and the 

lumbar vertebrae and IVD SUVm no correlations were identified (Figures 6.14 and 

6.16). There is no clinical definition of lumbar hyper or hypo lordosis in terms of using 

a Cobb angle. Clinicians often visually assess lumbar lordosis by assessing the arch 

and pelvic tilt (159). Lumbar lordosis is a unique structural characteristic of the 

normal human spine and phylogenetically is considered the key structural adaptation 

to bipedalism.  An increased lumbosacral angle is known to augment the pressure on 

the posterior ligaments and facet joints of the spine, and ultimately causes lower back 

pain. Most clinicians advise their patients to abolish lumbar lordosis by carrying out 

flexion exercises to strengthen the muscles. Interestingly, a loss of lumbar lordosis is 

the most distinctive finding of the aging spine (160), and it is widely known the 

prevalence of lower back pain increases with age (161). Therefore, a positive 

correlation was expected between lumbar lordosis Cobb angle and lumbar vertebrae 

SUVm. Demonstrating that lower lumbar lordosis Cobb angles correlate with lower 

vertebrae SUVms, associated with older patients. However, when age was correlated 

with lumbar lordosis in this group no correlation was identified (r=0.01, p>0.05) 

which may explain why these results were not found.  

Lastly scoliosis Cobb angles were correlated with the IVD and vertebrae SUVms of 

which no correlations were identified (Figures 6.17 and 6.18). Scoliosis is 

characterised by a lateral deviation of the spine in the coronal plane and is clinically 

defined as a spinal curvature of ten degrees or more (124,162). The prevalence of 

adult scoliosis in the USA has been reported as ranging from 2%-32% (163). In the 

SONIA 2 AKU patient group, 32.5% of the patients have clinically defined 
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degenerative scoliosis. Degenerative scoliosis is a deformity that develops from a 

previously straight spine, caused by accelerated degeneration of the spine with 

progressive disc and facet degeneration (163). In AKU it is understood that the spine 

degenerates with radiological signs such as reduced IVD height, IVD calcifications, 

osteophyte formation and in severe cases spinal fusion. These changes to the spine, 

if more severe on one side compared to another, can lead to degenerative scoliosis. 

It was expected therefore that the scoliosis Cobb angle would be associated with 

increased IVD SUVms due to calcification of the IVDs resulting in spinal changes. 

Additionally, it was expected that higher scoliosis Cobb angles would also be 

associated with reduced vertebrae SUVms as this would reflect reduced BMD in the 

vertebrae with disease progression.   

6.4.6 COBB ANGLE MRI vs X-Ray 

Standing plain radiographs remain the gold standard for measuring spinal curvatures. 

Clinicians utilise the Cobb angle methodology to obtain measurements of scoliosis, 

thoracic kyphosis and lumbar lordosis. Several studies have shown the variability and 

reliability of Cobb angle measurements. Loder et al. (164) described the interobserver 

variance of 11.8ᵒ and intraobserver variance of 9.6ᵒ when using the Cobb angle 

method to measure scoliosis using plain radiographs. Carman et al. (165) described 

that interobserver variations for measurements of the Cobb angle on radiographs of 

patients who had kyphosis (3.3ᵒ) were comparable with those on the radiographs of 

patients who had scoliosis (3.8ᵒ). It has been investigated in the literature whether 

alternative imaging modalities may be superior to the conventional X-Ray in 

obtaining more accurate measurements. In the literature, idiopathic scoliosis is the 
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deformity that has been investigated in terms of utilising alternative imaging 

methodologies as scoliosis is common in developing children and it is of concern that 

these patients are exposed to repeated ionizing radiation. Lee et al. (166) 

demonstrated the relationship between adolescent idiopathic scoliosis Cobb angle 

measurements obtained with standing plain radiographs and standard supine 

magnetic resonance images (MRI). They found that Cobb angles measured from 

supine MRI of the spine can be directly translated to Cobb angle measurements 

obtained from plain radiographs with an acceptable degree of accuracy. They 

proposed that this method could significantly reduce radiation exposure to these 

patients (166).   

Tauchi et al. (167) discussed that measuring Cobb angles with X-rays is difficult as the 

resolution of the images makes it difficult to define the appropriate end plates of the 

vertebrae to measure. They stated that 3D-CT can provide more detailed images and 

hypothesised that Cobb angles in congenital scoliosis can be measured more 

accurately using this technique. This study concluded that Cobb angles assessed using 

the X-ray method produced similar variances as 3D-CT images suggesting that plain 

X-rays are clinically useful. However, they concluded that 3D-CT can provide more 

detailed images and can contribute greatly to the development of strategies for 

surgical treatment but exposes the patient to high levels of radiation.  

Vavruch et al. (168) commented that 3D imaging is needed for the assessment of 

scoliosis due to the 3D nature of the disorder. The advantage of MRI is that it does 

not use radiation, however this method is time consuming and expensive. CT is 

superior to conventional radiographs however requires relatively high radiation 
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doses. They correlated the Cobb angles obtained from low dose CT and that 

measured from radiographs and found that the correlation was strong.  

As presented, the literature primarily focuses on using scoliosis Cobb angles to 

compare different imaging modalities such as the conventional radiography with MRI 

and CT. In this chapter, thoracic kyphosis and lumbar lordosis were used to compare 

the Cobb angles obtained from X-ray and MRI images to see if standing and lying 

down alters the spinal measurements. The results obtained from the SONIA 2 group 

at visit one are consistent with the literature. Figure 6.19 demonstrates a positive 

statistically significant correlation between the thoracic kyphosis Cobb angle 

obtained from MRI and plain X-ray (r=0.691, p<0.001) and the difference being 9.14ᵒ 

between the two modalities (Table 6.1). A positive statistically significant correlation 

was also identified between the lumbar lordosis Cobb angles obtained from plain X-

ray and MRI (r=0.825, p<0.001) (Figure 20). These results reflect that obtaining the 

thoracic kyphosis and lumbar lordosis Cobb angles from both MRI and plain X-ray 

both show very similar results and the pros and cons of both imaging modalities 

should be assessed to determine what modality is best for the patient. 

6.4.7 BONE MINERAL DENSITY T-SCORE COMPARISONS 

The assessment of BMD in AKU is important to measure as it is widely understood 

that arthritic changes to the IVDs with disease progression has direct implications to 

the bony vertebrae. It has also been hypothesised that in AKU HGA deposition in bone 

matrix and osteocytes may play a pathophysiological role in accelerating bone loss 

(148). DEXA is the gold standard for obtaining BMD T-scores and the WHO 
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classification to determine BMD is based solely on the DEXA assessment. The 'T-score' 

is a statistical definition which indicates the difference between patient's BMD and 

mean bone density of normal population in the age of 20 – 30. T-scores under the 

value of -2.5 are considered as osteoporotic, between -1 and -2.5 are defined as 

osteopenia and values of -1 and above are classed as normal (Table 1.4) (169). QCT is 

an alternative method of obtaining BMD that is obtained from CT imaging and has 

been proposed to be superior to DEXA for the assessment of accurate BMD T-scores.  

All patients attending the NAC undergo QCT to determine BMD and the SONIA 2 

clinical trial patients all undergo DEXA scanning to obtain BMD values. Chapter 5.4.6 

discussed the pros and cons of both of these two methodologies and suggested that 

QCT may be superior, especially in AKU as this method has the ability to specifically 

measure volumetric trabecular bone in the spine, avoiding the IVDs that are often 

calcified (94). Artificially high BMD has been reported in DEXA reports of spinal 

arthropathy patients due to calcification of the IVDs and osteophyte formation 

resulting in high T-scores (148). This is because DEXA estimates the total amount of 

mineral in the path of the X-ray beam in the region of L2-L4 including the cortical and 

trabecular bone as well as the IVDs. Therefore, QCT imaging often results in lower T-

scores than that of DEXA. QCT is also said to detect BMD changes earlier than DEXA 

due to the physiological effect of ageing and/or the menopause that affects 

trabecular bone first (96). Interestingly, the data analysed in this Chapter 

demonstrates these predictions.  

In Chapter 5 it was shown (Figure 5.20) that the femur QCT T-scores reached higher 

values (ranging from -2.58 to 4.26) compared to the spine QCT T-scores (ranging from 
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-5.63 to 0.95). This suggests that the spine is affected by a loss of BMD to a higher 

extent than the femur which is consistent to what has been reported in the literature. 

This could be due to several reasons. The difference between velocities of bone loss 

in different parts of human body could be the main reason. Trabecular bone, found 

in the lumbar spine is known to have a more rapid rate of bone loss compared to 

cortical bone, typical of proximal femur. In addition, the hip is primarily weight 

bearing, which can result in increased BMD that has been shown to affect the hip and 

head of femur (169).  

When T-scores of the spine and femur obtained from DEXA were plotted the range 

of T-scores were statistically different from the T-scores obtained from QCT. Figure 

6.28 demonstrates the spine and femur T-scores obtained from DEXA. It is clear that 

the spine T-scores obtained from DEXA reach much higher values compared to that 

of the femur which is the opposite to what was found in Figure 5.20. The Spine T-

scores range from -3.2 to 5.4 compared to -3.1 to 1.3 in the femur.  

Importantly, independent t-tests revealed a significant difference (p<0.001) between 

the spine T-scores obtained from DEXA and QCT.  The spine QCT T-scores are much 

lower (ranging from -5.63 – 0.95) than the DEXA spine T-scores (ranging from -3.2 – 

5.4) which supports what has been stated in the literature. This increase in spine T-

scores obtained from DEXA evident in Figure 6.28 is thought to represent IVD 

calcification and spinal arthropathy in AKU. It is clear in the literature that BMD 

measured by DEXA is variable depending on the site measured with significant 

differences identified between the T-scores obtained from the hip and spine (170). 

Increased calcification within the laminae and facet joints and increased 
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development of vascular calcifications, spondylophytes and endplate sclerosis is 

thought to render DEXA scanning of the lumbar spine unreliable (170). Discordance 

has also been reported between hip and spine BMD using DEXA that can affect overall 

diagnosis of osteoporosis (171).  Because of this discordance in 2000, the WHO 

updated the guidelines stating that diagnostic use of T-scores should be reserved for 

the use of hip DEXA BMD measurements only and no other T-scores are to be used 

to diagnose osteoporosis. BMD measurements at sites other than the hip can be used 

however to assess relative risks of osteoporosis and fracture risk (172). These finding 

suggests that maybe QCT imaging is most appropriate to determine true hip and 

lumbar vertebrae BMD in AKU. 

 6.4.8 DEXA LUMBAR SPINE T-SCORE 

It is agreed in the literature that BMD reduces with age in both males and females 

(145). Peak BMD is reached in women around the age of 20, and slightly older in men. 

Women experience a more rapid decline in BMD compared to males around the 

onset of the menopause as it is understood that reduction in oestrogen levels results 

in increased bone resorption and decreased BMD (146). Figure 6.21 demonstrates 

that in AKU after the age of around 45 there is a steady decline in the lumbar spine 

T-score with females having lower T-scores compared to males. This supports what 

has been stated in the literature. This was also found when the lumbar T-scores 

obtained from QCT were plotted with age where a statistically significant correlation 

was found (r= -0.682, p<0.01) (Figure 5.17).  
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It has been hypothesised that reductions in SUVm in the vertebrae may be due to 

reductions in BMD. Reduced BMD reflects a reduction in hydroxyapatite, reducing 

the amount available for 18F to bind. When the lumbar spine T-score was correlated 

with the lumbar vertebrae SUVm a positive correlation was identified (Figure 6.22). 

However, this was only statistically significant in the female group (r=0.345, p<0.05). 

This supports what was found in Chapter 5 when QCT lumbar T-score was correlated 

with lumbar vertebrae SUVm (Figure 5.19). This supports the hypothesis that a 

reduction in BMD is associated with lower SUVms.  

If reduced BMD in the vertebrae is associated with reduced SUVms it is therefore 

assumed that high SUVms in the IVDs would be associated with reduced BMD in the 

vertebrae. This assumption is supported by the results described in previous chapters 

where calcified IVDs are associated with age and disease progression, and with age 

there is a reduction in BMD therefore reduced amount of hydroxyapatite resulting in 

lower SUVms. This is what was found in the previous chapter where a negative 

statistically significant correlation was identified between the lumbar spine QCT T-

score and the average lumbar spine IVD SUVm (r= -0.470, p<0.05) (Figure 5.18). 

Interestingly, this trend was not identified when the lumbar spine DEXA T-score was 

correlated with the average lumbar IVD SUVm (Figure 6.23), of which positive 

correlations were identified. In males, this positive correlation was statistically 

significant (r=0.428, p<0.05). This suggests that high lumbar BMD obtained from 

DEXA is associated with high IVD SUVms. High IVD SUVms suggests that there is 

calcification in the IVDs and therefore reflects an osteoarthritic spine. This confirms 

that lumbar DEXA T-scores of the spine are overestimated due to the IVD 
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calcifications as DEXA estimates the total mineral in the path in the region of L2-L4. 

This confirms what has been discussed in the literature that lumbar spine DEXA T-

scores are unreliable in patients with spinal arthritis.  

Correlations were also made to investigate if BMD correlated with thoracic kyphosis 

and lumbar lordosis Cobb angles. Figure 6.24 demonstrates the correlation between 

the DEXA lumbar spine T-score with thoracic kyphosis of which no statistically 

significant correlation was observed in both males and females. This was surprising 

as it was expected that a reduction in BMD would correlate with increased thoracic 

kyphosis Cobb angle as it is well documented that an osteoporotic spine undergoes 

structural changes characterised by an excessive thoracic kyphosis (known as 

Dowagers hump). Figure 6.24 does however demonstrate that males have a wider 

range of thoracic kyphosis Cobb angles ranging from 3-53 degrees compared to 29-

56 degrees in females, although no statistical difference was found between male 

and female thoracic kyphosis Cobb angles (independent t-test p>0.05). 

Hyperkyphosis is defined as a Cobb angle of more than 45 degrees, normal thoracic 

kyphosis ranges from 20-45 degrees, (122). All females are within the normal and 

hyperkyphotic range (29-56 degrees). Although the males range from 3 to 53 degrees, 

Figure 6.24 demonstrates that only 2 patients lie in the hypokyphotic range the rest 

of the group fall around the normal and hyperkyphotic range.  

When lumbar lordosis Cobb angle was plotted against the DEXA lumbar spine T-score 

again no correlation was identified in both males and females suggesting that BMD 

does not affect the lumbar lordotic curvature. Additionally, when male and female 
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lumbar lordosis Cobb angles were statistically compared no statistical difference was 

identified (independent t-test p>0.05). This is not consistent with what has been 

described in the literature. Hay et al. (173) described that females had a statistically 

significant greater curvature than males. The deeper lordosis among females was 

proposed to be due to the female lumbar curve being positioned more dorsally to 

reduce stress on the vertebral elements during pregnancy and nursing (173).  

6.4.9 DEXA FEMUR T-SCORES  

The DEXA femur T-scores were also correlated with the vertebrae and IVD SUVms to 

see if the same trends were identified as in the lumbar T-scores. Figure 6.26 

demonstrates a positive correlation between the DEXA femur T-score and the lumbar 

vertebrae SUVm. This supports the trend observed between the DEXA lumbar spine 

T-score and the lumbar vertebrae SUVm (Figure 6.22) as well as the trend identified 

in Chapter 5 where the femur T-score was obtained from QCT (Figure 5.23). This 

supports the theory that high BMD is associated with increased 18F uptake into bone 

due to the availability of hydroxyapatite for 18F to bind to.  

Figure 6.27 demonstrates a negative correlation between the DEXA femur T-score 

and the IVD SUVm. This supports the findings in Figure 5.22 where a low T-score is 

associated with high IVD SUVms. This supports the theory that low BMD would be 

associated with increased uptake in the IVDs due to disease progression and 

calcification. Older patients have reduced BMD and have increased IVD SUVm for this 

reason.  
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6.4.10 SUMMARY 

This chapter aimed to investigate the correlations between the SONIA 2 SUVms 

reported in Chapter 4 with other patient data obtained from the clinical trial at visit 

1, pre-nitisinone. This chapter focuses on the baseline data (pre-nitisinone) to 

exclude trends that may be associated with the drug nitisinone. The data used to 

correlate with the SUVms included serum and urine HGA concentrations, spinal 

flexibility measurements obtained from the physiotherapist, spinal curvature Cobb 

angles and DEXA BMD scores.  

No statistically significant correlations were identified when correlating serum HGA 

with vertebrae and IVD SUVms. Serum HGA also did not correlate with age suggesting 

that the concentration of circulating HGA is not affected by disease progression with 

no differences identified between males and females. It is important to note that 

serum HGA represents the concentration of circulating HGA in the blood at a single 

time point, whereas age, vertebrae and IVD SUVms all represent lifelong exposure to 

HGA that is key to the progression of the disease. This was proposed to explain why 

no significant correlations were identified between these parameters. Correlations 

with urine HGA also did not show any significant correlations with SUVm suggesting 

that the total urinary output of HGA in 24 hours does not correlate with fluoride 

uptake in the vertebrae or IVDs. Again, it was proposed that it is not the amount of 

excreted HGA that is important in terms of disease progression it is the amount 

circulating and bathing the tissues over many years that is key to ochronosis hence 

why no correlations were identified.   
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When analysing spinal flexibility measurements obtained from the physiotherapist, 

negative statistically significant correlations were identified between lumbar side 

flexion and age. This reduction in flexibility with age is thought to represent reduced 

elasticity of tendons and ligaments due to deposition of HGA polymers rendering 

them stiff and brittle as well as solidifying IVDs. Interestingly positive statistically 

significant correlations were identified between lumbar side flexion and vertebrae 

SUVm supporting the hypothesis that SUVm decreases with age due to reduced BMD 

that will result in reduced spinal flexibility which are both linked to age. No 

statistically significant correlations were identified between cervical rotation with 

age or with vertebrae and IVD SUVms suggesting that lumbar side flexion may be a 

better indicator of disease state and progression.  

In addition to this when the hyperkyphosis Cobb angles were correlated with thoracic 

vertebrae SUVm a negative trend was identified. This suggests that patients with 

hyperkyphotic spines have reduced thoracic vertebrae SUVms and this was proposed 

to be due to the reduction in BMD with age as reduced BMD in the spine is one of the 

main reasons for hyperkyphosis. When the hyperkyphotic Cobb angles were 

correlated with thoracic IVD SUVms a negative statistically significant correlation was 

found suggesting that hyperkyphosis is associated with reduced thoracic IVD SUVms. 

This supports the theory that the older patients have the most severe spinal 

deformity reflected by reduced IVD SUVms due to reduced deposition of calcium into 

the IVDs at the late stage of spinal arthropathy. This is characterised by complete 

calcification and spinal fusion and once this has been achieved it is thought that 
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calcium deposition stops therefore 18F uptake stops hence the reduction in IVD 

SUVm.  

Furthermore, positive correlations were also identified between the DEXA lumbar 

vertebrae T-score and lumbar vertebrae SUVm this supports the theory that 

reductions in SUVm is due to reductions in BMD. This was also the case when the 

DEXA femur T-score was correlated with lumbar vertebrae SUVm supporting this 

further that high BMD is associated with increased 18F uptake into bone due to the 

availability of binding sites for 18F to attach to. Additionally, negative correlations 

were found between the DEXA femur T-score and the IVD SUVm which supports the 

theory that low BMD is associated with increased uptake of 18F into the IVDs due to 

disease progression and calcification.  

Some interesting comparisons were also made in this chapter. This chapter included 

an investigation into whether Cobb angles obtained from conventional X-ray imaging 

and that obtained from MRI that showed a strong correlation. Thoracic kyphosis and 

lumbar lordosis Cobb angles were measured using the same technique on both X-ray 

and MRI modalities. Interestingly and in support of what has been documented in the 

literature a strong statistically significant correlation was identified between X-ray 

and MRI imaging modalities when both the lumbar lordosis and thoracic kyphosis 

Cobb angles were measured. It can be commented that it was easier to see the 

margins of bone using MRI compared to X-ray therefore, it could be said that it was 

easier to calculate the Cobb angles using MRI. However, the pros and cons of both 

modalities should be considered to determine which modality is best for the patient.  
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Another interesting comparison was made in this chapter between T-scores obtained 

from DEXA and QCT. It was described in Chapter 5 that QCT may be superior to DEXA 

in obtaining accurate BMD T-scores especially in AKU, as QCT can specifically measure 

volumetric trabecular bone in the spine avoiding the IVDs. This is particularly 

beneficial in AKU as the IVDs become calcified and this has been shown to result in 

artificially high BMD T-scores obtained from DEXA reports. This is thought to be 

because the DEXA scan estimates the total amount of mineral in the path of the X-

ray beam in the region of L2-L4 including trabecular and cortical bone as well as the 

IVDs. In this chapter when T-scores of the spine obtained from DEXA were compared 

with that obtained from QCT the results were significantly different. The DEXA spine 

T-scores reached much higher values compared to that obtained from QCT and this 

is thought to represent the IVD calcification in AKU. It was suggested that the imaging 

modality QCT may be more appropriate to use in AKU for this reason.       

This chapter has demonstrated the validity of the SUVm as a measure of arthropathy 

by providing evidence that this method correlates with other clinical manifestations 

of AKU. 
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Early onset osteoarthropathy is an inevitable consequence of AKU resulting in 

considerable pain and suffering in peak adult-hood. Weight bearing joints are 

thought to be predominantly affected due to increased mechanical damage (1). The 

purpose of Chapter 3 was to investigate the natural history of AKU using the novel 

imaging modality 18F-NaF PET. The anatomical distribution of increased tracer uptake 

was assessed by analysing the various bones and joints of the skeleton. Areas of 

increased tracer uptake in cartilage were considered areas associated with 

degeneration. Areas of increased tracer uptake in bone reflects active bone 

metabolism. Chapter 3 demonstrates the various bones and joints involved in AKU 

related degeneration across a broad range of ages. Cross sectional analysis across the 

ages enabled the natural history of the disease to be elucidated.  

The bones associated with the highest incidences of increased tracer uptake were the 

hip, sacrum, lumbar and thoracic vertebral bodies (Figure 3.1). These bones are 

primarily weight bearing and involved in transferring load through the skeleton. The 

link between mechanical stress and 18F uptake has been investigated in the literature. 

It is thought that mechanical stress results in bone formation via purinergic signalling, 

and bone formation results in new hydroxyapatite for 18F to bind to. The lowest 

incidence of increased tracer uptake was identified in the bones of upper limb 

supporting the theory that bones associated with increased mechanical loading have 

increased tracer uptake. Interestingly the percentage incidence of 18F uptake in bone 

decreased with age that is proposed to be due to reduced bone turnover associated 

with ageing. This data supports what has been published in the literature by Win et 

al. (117) who described  that the uptake of 18F in various skeletal sites is variable in a 
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control population. They found that different skeletal sites have different amounts of 

fluoride uptake in healthy control patients and described that 18F tends to have 

greater deposition in the axial skeleton (e.g. vertebrae and pelvis) than in the 

appendicular skeleton. This supports the results described in Chapter 3 where the 

highest incidences were found in the hip, sacrum and lumbar and thoracic spine.   

When the cartilaginous joints were analysed high incidences of 18F uptake was found 

in the hip, knee, shoulder and joints of the foot (Figure 3.7). Interestingly, the 

incidence of 18F uptake was found to increase with age in the shoulder, hip and knee 

and reached up to 100% in the oldest age group (61-70 years old) (Figure 3.10). These 

results all support the hypothesis that it is the weight bearing joints / very heavily 

used joints that are primarily affected in AKU.  

When the cartilage scores were summated from all the joints scored for each patient 

(C-AT score explained in 2.4.6) and plotted against age a positive statistically 

significant correlation was found (Figure 3.11). It is clear that in AKU there was 

increased involvement in cartilage with age thought to be due to calcification within 

the cartilage, resulting in increased uptake of 18F. This trend was also evident when 

the total clinical score (based on the AKUSSI consultant scoring) was plotted against 

age (Figure 3.15). When the anatomical threshold score was correlated with the 

clinicians score (Figure 3.13) a statistically significant correlation was found providing 

evidence that the methodology utilised in Chapter 3 was reliable and shows the same 

trend as the clinician’s report.          
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Chapter 3 demonstrates the sensitivity of 18F-NaF PET scans in detecting the 

distribution of increased 18F uptake in AKU to determine the joints most affected by 

the disease. This data supports what has previously been published in the literature 

on the uptake of 18F in various skeletal sites in a control population. The significant 

correlation with the clinical score implies that this methodology is reliable and 

demonstrates the same trend as the clinical reports therefore, is a suitable 

methodology to measure distribution of 18F in bone and cartilage. Improvements to 

this method included obtaining a purely quantitative methodology; by obtaining 

measurements of radioactivity instead of measuring pixel values. The methodology 

described in Chapter 3 utilised the ‘pixels above the threshold value’ method to 

determine increased uptake. This threshold value was determined by the darkest 

pixels in the image based on analysing the histogram plot. An improvement would be 

to utilise the uptake of 18F instead of the intensity. Another improvement was to 

utilise PET/CT images instead of the MIP PET images, which have superior spatial 

resolution and anatomical localisation, ensuring accurate placement of the ROIs.   

Chapter 4 employed these improvements by utilising PET/CT imaging for improved 

anatomical localisation and obtaining the standardised uptake value as a measure of 

18F uptake. Uptake measurements are used to assess response to therapies and to 

distinguish degree of pathology (114). The mean standardised uptake value (SUVm) 

is a common method of expressing the uptake of PET tracers. The SUVm is a measure 

of radioactivity in a region of interest, normalised against the injected activity and 

the subject’s body weight. The SUVm is defined as the activity concentration in the 

ROI (kBq/mL) divided by the decay corrected injected dose of 18F-NaF, divided by the 
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patient body weight (kg) (116). Larger SUVms represent proportionally higher 

concentrations of radiotracer.  

Chapter 4 introduced for the first time, quantitative SUVm measurements of bone 

and cartilage to identify active arthropathy and to quantify disease state in a clinical 

trial group with AKU (SONIA 2). This methodology revealed a striking variation 

between AKU and control SUVms in the IVDs thought to represent calcification of the 

IVDs in AKU. The mechanism proposed is that calcium hydroxyapatite or calcium 

pyrophosphate dihydrate are deposited in the fibrocartilaginous IVDs in AKU due to 

biochemical alterations of the disease. 18F binds to the calcium deposits resulting in 

high SUVms compared to the control. The SUVms obtained from the vertebrae in 

both AKU and control patients are similar across the lumbar and thoracic spine 

suggesting that generalised rates of bone turnover in AKU and control patients are 

comparable. The vertebrae SUVms were also found to be in line with what has been 

published in the literature (117), providing confidence in the method and quality of 

results. Longitudinal information was also elucidated when the SUVms were plotted 

against age.  

With age the AKU SUVms of the IVDs followed an interesting trend (the inverted ‘U’ 

shaped trend, Figures 4.12 and 4.13) that was strikingly different to that of the control 

group, that appears to remain stable with age. It is proposed that the AKU trend 

demonstrates the process of disc degeneration. The SUVm increases as calcium 

deposits get laid down, the plateau represents maximum calcification and reduced 

deposition due to no more free binding sites available for 18F to bind, and the 
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reduction in SUVm represents vertebral fusion, complete calcification and/or 

reduced turnover (18F binds preferentially to newly laid down and active bone). The 

initial increase in SUVm with age in the cartilage of AKU patients supports what was 

found in Chapter 3 where an increase in percentage incidence of 18F uptake was 

found with age. In the bony vertebrae there was an age-related decline in SUVm in 

both AKU and control groups that is thought to represent reduced bone turnover 

with age. This also supports what was found in Chapter 3 where the percentage 

incidence of 18F uptake in bone decreases with age. However, the vertebrae SUVms 

in the AKU group were lower compared to the control group. The proposed reason 

for this being that they have reduced BMD compared to controls of the same age. 

This is thought to be due to AKU patients having an imbalance in bone metabolism 

resulting in loss of BMD (148). 

In summary, Chapter 4 introduced for the first time a quantitative measure of 18F 

uptake in cartilage and bone of AKU patients. This data has provided new insights 

into bone metabolism and IVD degeneration in AKU and can be used to identify active 

arthropathy in the spine. The utility of SUVms in a clinical setting could provide 

clinicians with a quantitative tool to aid visual interpretation of PET images and to 

assess inter and intra patient differences.      

Chapter 5 utilised the vertebrae and IVD SUVm methodology to assess a group of NAC 

patients that had visited the centre annually for four consecutive years. Visit one was 

baseline data, and thereafter the patients were all prescribed 2mg of nitisinone daily. 

The aim of this chapter was to utilise this quantitative measurement to track disease 
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progression in AKU longitudinally in response to nitisinone. The results described in 

this chapter support what was found in the previous chapter based on the SONIA 2 

patients. The differences between AKU and control SUVms in the spine were 

reminiscent of what was seen in Chapter 4. The inverted ‘U’ trend was observed in 

the AKU group with age where the SUVms of the IVDs reached significantly higher 

values in the AKU group compared to the control (Figures 5.3 and 5.4). The negative 

trend observed when the vertebrae SUVms were plotted against age (Figures 5.5 and 

5.6) was also observed in this chapter providing evidence of the repeatability and 

validity of the SUVm methodology.  

The longitudinal changes in SUVms did not show any significant changes across the 

visits from baseline. The effect of nitisinone could not be fully elucidated as there was 

no AKU no-treatment control group to draw a comparison to. However, this result 

could be demonstrating that nitisinone is stabilising the progression of the disease. 

When the SONIA 2 clinical trial is complete longitudinal data will be available on a no-

treatment AKU group for comparison allowing this important comparison to be 

made. It was also proposed that four years on nitisinone may not be long enough to 

identify any changes in 18F uptake into bone and cartilage since years of HGA 

exposure causes ochronosis over a period of many years. At the very least, nitisinone 

could be expected to slow the progression of the AKU. Therefore, for the effect of 

nitisinone on the spine to be further investigated, many more years of data will be 

required to assess the long-term effects of the drug.  
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Correlations were made between the IVD and vertebrae SUVms with the total clinical 

score and the total anatomical threshold score (method used in Chapter 3). Positive 

statistically significant correlations were identified between both the total clinical and 

total anatomical threshold scores with the IVD SUVms. Negative statistically 

significant correlations were identified when the vertebrae SUVms were correlated 

with the total clinical and total anatomical threshold scores. These correlations 

suggest that the 3 methodologies all demonstrate the same trends.  

Spinal pain scored by the patient was also correlated with IVD and vertebrae SUVms. 

Increased IVD SUVms were associated with increased spinal pain as well as the total 

clinical and anatomical threshold scores and is hypothesised to be due to disc 

calcification and degeneration with age. In contrast a negative correlation was 

identified between spinal pain and vertebrae SUVms. High vertebrae SUVms are 

associated with low pain scores and lower total clinical and total anatomical threshold 

scores proposed to be due to active bone remodelling in a healthy spine.  

BMD was also investigated to determine if AKU patients had altered bone 

metabolism. Interestingly high IVD SUVms correlated with low lumbar QCT T-scores 

reflecting an osteoarthritic spine with calcified IVDs. Conversely high vertebrae 

SUVms correlated with high lumbar T-scores reflecting active bone remodelling and 

normal BMD.  

Chapter 5 demonstrated the repeatability of the SUVm methodology and confirmed 

the potential use of this method in a clinical setting as a quantitative measure of 
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arthropathy in the spine. Chapter 5 also revealed that the methodology correlates 

well with the clinician’s report, the anatomical threshold methodology as well as 

patient pain scores. The aim of Chapter 6 was to utilise the SONIA 2 SUV data to 

correlate with other patient data obtained as part of the SONIA 2 clinical trial. Chapter 

6 focused on baseline data (pre-nitisinone) to exclude trends that may be associated 

with nitisinone. The clinical data used to correlate with the SUV data included serum 

and urine HGA concentrations, spinal flexibility measurements, spinal curvature Cobb 

angles and DEXA BMD scores.  

A reduction in spinal flexibility was found with age, thought to represent reduced 

elasticity of tendons, ligaments and IVDs due to the deposition of HGA in AKU 

rendering them stiff and brittle. Interestingly, when correlated with the SUVm data a 

positive correlation was identified between lumbar side flexion and vertebrae SUVm. 

This supports the hypothesis that the SUVm decreases with age due to reduced BMD 

with age and this is associated with reduced spinal flexibility. Lumbar side flexion was 

concluded to be a good indicator of disease progression in contrast to cervical spine 

rotation that found no clinical significant correlations.   

To support this, hyperkyphotic Cobb angles demonstrated a negative correlation with 

thoracic vertebrae SUVms suggesting that patients with hyperkyphotic spines have 

reduced thoracic SUVms proposed to be due to reduced BMD with age, as reduced 

BMD in the spine is one of the main reasons for hyperkyphosis. The hyperkyphosis 

Cobb angle also demonstrated a negative correlation with the thoracic IVD SUVm 

suggesting that the hyperkyphosis is associated with reduced IVD SUVms. This 
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supports the hypothesis that older patients have the most severe spinal degeneration 

reflected by reduced IVD SUVms.  

When DEXA lumbar vertebrae T-score and the lumbar vertebrae SUVm was 

correlated, a statistically significant positive correlation was observed supporting the 

theory that reductions in vertebrae SUVm may be due to reductions in BMD. This 

correlation was also identified in Chapter 4 where the lumbar QCT T-score 

demonstrated a positive correlation with the lumbar vertebrae SUVm. A comparison 

was also made between DEXA and QCT to determine what imaging modality was 

superior in terms of measuring BMD. DEXA scores were found to reach much higher 

T-scores in the spine compared to QCT. The proposed reason for this being due to 

calcification of the IVDs. It was concluded that QCT may be superior to DEXA as QCT 

measures volumetric trabecular bone unlike DEXA that measures all the mineral in 

the path of the X-ray beam in the region of L2-L4 including the IVDs. Chapter 6 has 

demonstrated the validity of the SUVm as a measure of arthropathy by providing 

evidence that this method correlates with other clinical manifestations of AKU.  

All in all this thesis has provided new insights into spinal arthropathy in AKU, the 

utilisation of novel quantitative techniques demonstrated in this thesis can be used 

to aid in clinical interpretation of PET scans as well as providing a measure of disease 

severity and to analyse disease progression and response to therapy.   

 

 



306 
 

 

 

 

 

 

 

 

 

 

8.0 REFERENCES 

 

 

 

 

 

 

 

 

 

 



307 
 

1.  Ranganath LR, Jarvis JC, Gallagher JA. Recent advances in management of 
alkaptonuria (invited review; best practice article). J Clin Pathol. 2013 
May;66(5):367–73.  

2.  Taylor AM, Boyde A, Wilson PJM, Jarvis JC, Davidson JS, Hunt JA, et al. The 
role of calcified cartilage and subchondral bone in the initiation and 
progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 2011 
Dec;63(12):3887–96.  

3.  Gallagher J, Taylor A, Boyde A, Jarvis J, Ranganath L. Recent advances in 
understanding the pathogenesis of ochronosis:Najnowsze postępy w 
zrozumieniu patogenezy ochronozy. Reumatologia. 2012 Sep50(4):316-323.  

4.  Fisher AA, Davis MW. Alkaptonuric ochronosis with aortic valve and joint 
replacements and femoral fracture: a case report and literature review. Clin 
Med Res. 2004 Nov;2(4):209–15.  

5.  Stenn F, Milgram J, Lee S, Weigand R, Veis A. Biochemical identification of 
homogentisic acid pigment in an ochronotic egyptian mummy. Science. 1977 
Aug;197(4303):566-568.  

6.  Lee SL, Stenn FF. Characterization of Mummy Bone Ochronotic Pigment. 
JAMA J Am Med Assoc. 1978 Jul;240(2):136.  

7.  Aquaron R. Alkaptonuria: A very rare metabolic disorder. Vol. 50, Indian 
Journal of Biochemistry and Biophysics. 2013 Oct;50(5):339–44.  

8.  Mistry JB, Bukhari M, Taylor AM. Alkaptonuria. Rare Dis. 2013 
Dec;18;1.e27475. DOI: 10.4161/rdis.27475.   

9.  Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick 
DL, et al. Natural History of Alkaptonuria. N Engl J Med. 2002 
Dec;347(26):2111–21.  

10.  Benedek TG. Rudolph virchow on ochronosis. Arthritis Rheum. 1966 
Feb;9(1):66–71.  

11.  Scriver CR. Garrod's Croonian Lectures (1908) and the charter 'Inborn Errors 
of Metabolism': Albinism, alkaptonuria, cystinuria, and pentosuria at age 100 
in 2008. J Inherit Metab Dis. 2002 Oct;31(5):580-98.  

12.  Garrod AE, Oxon MA. The Incidence of Alkaptonuria: A Study in Chemical 
Individuality 1902. Yale J Biol Med. 2002 Jul-Aug;75(4):221–31.  

13.  Gallagher JA, Dillon JP, Sireau N, Timmis O, Ranganath LR. Alkaptonuria: An 
example of a “fundamental disease”-A rare disease with important lessons 
for more common disorders. Semin Cell Dev Biol. 2016 Apr;52(3):53–7.  

14.  Suwannarat P, O’Brien K, Perry MB, Sebring N, Bernardini I, Kaiser-Kupfer MI, 
et al. Use of nitisinone in patients with alkaptonuria. Metabolism. 2005 
Jun;54(6):719–28.  

15.  Zatková  a, de Bernabé DB, Poláková H, Zvarík M, Feráková E, Bosák V, et al. 
High frequency of alkaptonuria in Slovakia: evidence for the appearance of 
multiple mutations in HGO involving different mutational hot spots. Am J 
Hum Genet. 2000 Nov;67(5):1333–9.  



308 
 

16.  Al-Sbou M, Mwafi N. Nine cases of Alkaptonuria in one family in southern 
Jordan. Rheumatol Int. 2012 Mar;32(3):621–5.  

17.  Mannoni A, Selvi E, Lorenzini S, Giorgi M, Airò P, Cammelli D, et al. 
Alkaptonuria, Ochronosis, and Ochronotic Arthropathy. Vol. 33, Seminars in 
Arthritis and Rheumatism. 2004 Feb;33(4):239–48.  

18.  Al-Sbou M. Novel mutations in the homogentisate 1,2 dioxygenase gene 
identified in Jordanian patients with alkaptonuria. Rheumatol Int. 2012 
Jun;32(6):1741–6.  

19.  Granadino B, Beltran-Valero de Bernabe D, Fernandez-Canon JM, Penalva 
MA, Rodriguez de Cordoba S. The human homogentisate 1,2-dioxygenase 
(HGO) gene. Genomics. 1997 Jul;43(2):115–22.  

20.  Zatkova A, Nemethova M. Genetics of alkaptonuria – an overview. Acta Fac 
Pharm Univ Comenianae. 2015 May;62(11):27–32.  

21.  Zatkova A. An update on molecular genetics of Alkaptonuria (AKU). J Inherit 
Metab Dis. 2011 Dec;34(6):1127–36.  

22.  Vilboux T, Kayser M, Introne W, Suwannarat P, Bernardini I, Fischer R, et al. 
Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. 
Human Mutat. 2009 Dec;30(12): 1611–9.  

23.  Nemethova M, Radvanszky J, Kadasi L, Ascher DB, Pires DE V, Blundell TL, et 
al. Twelve novel HGD gene variants identified in 99 alkaptonuria patients: 
focus on “black bone disease” in Italy. Federica Genov Jozef Rovensky Eur J 
Hum Genet. 2016 Jan;24(1):66–72.  

24.  Martin JP, Batkoff B. Homogentisic acid autoxidation and oxygen radical 
generation: implications for the etiology of alkaptonuric arthritis. Free Radic 
Biol Med. 1987 Jun;3(4):241–50.  

25.  Kotob SI, Coon SL, Quintero EJ, Weiner RM. Homogentisic acid is the primary 
precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and 
Shewanella colwelliana. Appl Environ Microbiol. 1995 Apr;61(4):1620–2.  

26.  Kahveci R, Ergüngör MF, Günaydin A, Temiz A. Alkaptonuric patient 
presenting with “black” disc: A case report. Acta Orthop Traumatol Turc. 
2013 May;47(2):134–8.  

27.  O’Brien WM, La Du BN, Bunim JJ. Biochemical pathologic and clinical aspects 
of alcaptonuria, ochronosis, and ochronotic arthropathy: Review of World 
Literature (1584–1962). Am J Med. 1963 Dec;36(6):813–38.  

28.  Acar MA, Erkocak ÖF, Aydin BK, Altan E, Şenaran H, Elmadaǧ NM. Patients 
with black hip and black knee due to ochronotic arthropathy: Case report and 
review of literature. Oman Med J. 2013 Nov;28(6):448–9.  

29.  Wilke A, Steverding D. Ochronosis as an unusual cause of valvular defect: a 
case report. J Med Case Rep. 2009 Nov;27(3):9302.  

30.  Ozmanevra R, Guran O, Karatosun V, Gunal I. Total knee arthroplasty in 
ochronosis: a case report and critical review of the literature. Eklem Hastalik 
Cerrahisi. 2013 Mar;24(3):169–72.  



309 
 

31.  Helliwell TR, Gallagher JA, Ranganath L. Alkaptonuria - A review of surgical 
and autopsy pathology. Histopathology. 2008 Nov;53(5):503–12.  

32.  Hannoush H, Introne WJ, Chen MY, Lee SJ, O’Brien K, Suwannarat P, et al. 
Aortic stenosis and vascular calcifications in alkaptonuria. Mol Genet Metab. 
2012 Feb;105(2):198–202.  

33.  Taylor AM, Fraser WD, Wilson PMJ, Ranganath LR, Gallagher JA. 
Ultrastructural studies on the binding of ochronotic pigment to collagen 
fibres in cartilage and bone in vivo and in vitro. Calcif Tissue Int. 2009 
Aug;85(2):187.  

34.  Taylor AM, Wlodarski B, Prior IA, Wilson PJM, Jarvis JC, Ranganath LR, et al. 
Ultrastructural examination of tissue in a patient with alkaptonuric 
arthropathy reveals a distinct pattern of binding of ochronotic pigment. 
Rheumatology (Oxford). 2010 Jul;49(7):1412–4.  

35.  Taylor AM, Boyde A, Wilson PJM, Jarvis JC, Davidson JS, Hunt JA, et al. The 
role of calcified cartilage and subchondral bone in the initiation and 
progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 2011 
Dec;63(12):3887–96.  

36.  Gallagher J, Taylor A, Boyde A, Jarvis J. Recent advances in understanding the 
pathogenesis of ochronosis. Reumatologia. 2012 Sep;50(4):316-323.  

37.  Introne WJ, Gahl WA. Alkaptonuria. GeneReviews. University of Washington, 
Seattle; 1993-2018. Available from 
https://www.ncbi.nlm.nih.gov/books/NBK1454/ 

38.  Gallagher JA, Dillon JP, Sireau N, Timmis O, Ranganath LR. Alkaptonuria: An 
example of a “fundamental disease”-A rare disease with important lessons 
for more common disorders. Semin Cell Dev Biol. 2016 Apr;52:53–7.  

39.  Sealock RR, Galdston M, Steele JM. Administration of Ascorbic Acid to an 
Alkaptonuric Patient. Exp Biol Med. 1940 Jun;44(2):580–3.  

40.  Wolff JA, Barshop B, Nyhan WL, Leslie J, Seegmiller JE, Gruber H, et al. Effects 
of ascorbic acid in alkaptonuria: alterations in benzoquinone acetic acid and 
an ontogenic effect in infancy. Pediatr Res. 1989 Aug;26(2):140–4.  

41.  De Haas V, Carbasius Weber EC, de Klerk JB, Bakker HD, Smit GP, Huijbers 
WA, et al. The success of dietary protein restriction in alkaptonuria patients is 
age-dependent. J Inherit Metab Dis. 1998 Dec;21(8):791–8.  

42.  Morava E, Kosztolányi G, Engelke UFH, Wevers RA. Reversal of clinical 
symptoms and radiographic abnormalities with protein restriction and 
ascorbic acid in alkaptonuria. Ann Clin Biochem. 2003 Jan;40(1):108–11.  

43.  McKiernan PJ. Nitisinone for the treatment of hereditary tyrosinemia type I. 
Expert Opin Orphan Drugs. 2013 Apr;1(6):491–7.  

44.  Introne WJ, Perry MB, Troendle J, Tsilou E, Kayser MA, Suwannarat P, et al. A 
3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol Genet 
Metab. 2011 Aug;103(4):307–14.  

45.  Hall AK, Ranganath LR, Milan A, Hughes A, Olsson B, Szamosi J, et al. 



310 
 

Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1): Results of a dose- 
response study of once-daily nitisinone on 24-hour urinary homogentisic acid 
excretion (u-HGA 24 ) in patients with alkaptonuria. Ann Rheum Dis. 2016 
Feb;75(2):362-7.  

46.  Cox TF, Ranganath L. A quantitative assessment of alkaptonuria. J Inherit 
Metab Dis. 2011 Dec;34(6):1153–62.  

47.  Welcome To The Alkaptonuria Society - AKU Society [Internet]. [cited 2017 
Mar 19]. Available from: http://www.akusociety.org. 

48.  Lock E, Ranganath LR, Timmis O. The Role of Nitisinone in Tyrosine Pathway 
Disorders. Curr Rheumatol Rep. 2014 Nov;16(11):457 

49.  Partners in DevelopAKUre  [Internet] Retrieved from 
http://pathlabs.rlbuht.nhs.uk/developakure.pdf.  

50.  DevelopAKUre Home [Internet]. [cited 2017 Mar 19]. Available from: 
http://www.developakure.eu/. 

51.  Cucchiarini M. Biological Systems: Open Access The Biology of Articular 
Cartilage: An Overview? Biol Syst Open Access. 2013;2(1):104-105.  

52.  Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ. Articular 
cartilage biology. J Am Acad Orthop Surg. 2003 Nov-Dec,11(6):421–30.  

53.  Martini FH, NathJL, Bartholomew EF. Fundamentals of Anatomy and 
Physiology, ninth edition; Pearsons Eduction;2012.   

54.  Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: 
structure, composition, and function. Sports Health. 2009 Nov;1(6):461–8.  

55.  Poole CA. Articular cartilage chondrons : form, function and failure. J Anat. 
1997 Jul;191(1):1–13.  

56.  Alexopoulos LG, Setton L a, Guilak F. The biomechanical role of the 
chondrocyte pericellular matrix in articular cartilage. Acta Biomater. 2005 
May;1(3):317–25.  

57.  Sobol E, Shekhter A, Guller A, Baum O, Baskov A. Laser-induced regeneration 
of cartilage. J Biomed Opt. 2011 Aug;16(8):80902.  

58.  Poole, C A, Ayad S, Gilbert RT. Chondrons from Articular Cartilage. J Cell Sci. 
1992 Sep;103(4):1101–10.  

59.  Akkiraju H, Nohe A. Role of Chondrocytes in Cartilage Formation, Progression 
of Osteoarthritis and Cartilage Regeneration. J Dev Biol. 2015 Dec;3(4):177–
92.  

60.  Liacini A, Sylvester J, Li WQ, Huang W, Dehnade F, Ahmad M, et al. Induction 
of matrix metalloproteinase-13 gene expression by TNF-α is mediated by 
MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. 
Exp Cell Res. 2003 Aug;288(1):208–17.  

61.  Hochberg MC, Yerges-Armstrong L, Yau M, Mitchell BD. Genetic 
epidemiology of osteoarthritis: recent developments and future directions. 
Curr Opin Rheumatol. 2013 Mar;25(2):192–7.  



311 
 

62.  Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis: 
toward a comprehensive understanding of pathological mechanism. Bone 
Res. 2017 Jan 17;5:16044.  

63.  Lindahl A. From gristle to chondrocyte transplantation: treatment of cartilage 
injuries. Philos Trans R Soc London B Biol Sci. 2015 Oct;19(370):1680.  

64.  Gelse K, Pöschl E, Aigner T. Collagens--structure, function, and biosynthesis. 
Adv Drug Deliv Rev. 2003 Nov;55(12):1531–46.  

65.  Hulmes DJS. Collagen diversity, synthesis and assembly. In: Collagen: 
Structure and Mechanics. 2008. p.15–47.  

66.  Kini U, Nandeesh BN. Physiology of Bone Formation, Remodeling, and 
Metabolism. In: Radionuclide and Hybrid Bone Imaging. Berlin, Heidelberg: 
Springer Berlin Heidelberg; 2012. p.29–57.  

67.  Buckwalter JA, Glimcher MJ, Cooper RR, Recker R, A Buckwalter BJ, Iowa City 
Md, et al. Bone Biology Bone Biology Part I: Structure, blood supply, Cells, 
Matrix, and Mineralisation. J Bone Jt Surg J Bone Jt Surg Am. 1995;77:1256–
75.  

68.  Standring S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. Vol. 2, 
Development. 2008. p.1389-1406. 

79.  You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, et al. Osteocytes as 
mechanosensors in the inhibition of bone resorption due to mechanical 
loading. Bone. 2008 Jan;42(1);172-9.   

70.  Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. 
Vol. 42, Bone. 2008. p.606–15.  

71.  Rucci N. Molecular biology of bone remodelling. Clin Cases Miner Bone 
Metab. 2008 Jan-Apr;5 (1):49–56.  

72.  Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral 
bone as a key target for osteoarthritis treatment. Biochem Pharmacol. 2012 
Feb;83(3):315–23.  

73.  Wen C, Lu WW, Chiu KY. Importance of subchondral bone in the 
pathogenesis and management of osteoarthritis from bench to bed. J Orthop 
Transl. 2014 Jan;2(1):16–25.  

74.  Gallagher JA, Ranganath LR, Boyde A. What does the arthropathy of 
alkaptonuria teach us about disease mechanisms in osteoarthritis and ageing 
of joints? Rheumatology (Oxford). 2016 Jul;55(7):1151–2.  

75.  Boyde A, Davis GR, Mills D, Zikmund T, Cox TM, Adams VL, et al. On 
fragmenting, densely mineralised acellular protrusions into articular cartilage 
and their possible role in osteoarthritis. J Anat. 2014 Oct;225(4):436–46.  

76.  Wang F, Cai F, Shi R, Wang X-H, Wu X-T. Aging and age related stresses: a 
senescence mechanism of intervertebral disc degeneration. Osteoarthr Cartil. 
2016 Mar;24(3):398–408.  

77.      Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res 



312 
 

Ther. 2003;5(3):120–30. 

78.  Ouyang Z-H, Wang W-J, Yan Y-G, Wang B, Lv G-H. The PI3K/Akt pathway: A 
critical player in intervertebral disc degeneration. Oncotarget. 2015 
Jun;8(34):57870-57881.  

79.  Etzkorn E, Oliver AM. Not just another case of low back pain. BMJ Case Rep. 
2014 Apr. DOI 10.1136/bcr-2014-204085.  

80.  Kohn MD, Sassoon AA, Fernando ND. Classifications in Brief: Kellgren-
Lawrence Classification of Osteoarthritis. Clin Orthop Relat Res. 2016 
Aug;474(8):1886–93.  

81.  Siemens AG, Healthcare. Background Information: The History of Computed 
Tomography at Siemens. [Internet]. [cited 2017 April 15]. Available from: 
https://www.siemens.com/press/pool/de/feature/2015/healthcare/2015-
07-ct-40/background-history-ct-siemens-e.pdf 

82.  Cierniak R. Some Words About the History of Computed Tomography. In: X-
Ray Computed Tomography in Biomedical Engineering. 2011. p.1–14.  

83.  Bradley WG. History of medical imaging. Proc Am Philos Soc. 2008 
Sep;152(3):349–61.  

84.  Scatliff JH, Morris PJ. From Roentgen to magnetic resonance imaging: the 
history of medical imaging. N C Med J. 2014 Mar;75(2):111–3.  

85.  Hayashi D, Roemer FW, Jarraya M, Guermazi A. Imaging of osteoarthritis. In: 
Geriatric Imaging. 2013. p.93–121.  

86.  Suetens P. Fundamentals of medical imaging. In: Fundamentals of Medical 
Imaging. 2009. p.128–58.  

87.  Herr KD. Radiology 101: The Basics and Fundamentals of Imaging, 3rd ed. 
Acad Radiol. 2010. p.269-275.  

88.  Lisle D. Imaging for students. Hodder Arnold; 2007. p.283.  

89.  Vinjamuri S, Ramesh CN, Jarvis J, Gallagher JA, Ranganath LL. Nuclear 
medicine techniques in the assessment of alkaptonuria. Nucl Med Commun. 
2011 Oct;32(10):880–6.  

90.  Mandl P, Kainberger F, Friberg Hitz M. Imaging in osteoporosis in rheumatic 
diseases. Best Pract Res Clin Rheumatol. 2016 Aug;30(4):751–65.  

91.  Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging 
methods in osteoporosis. Quant Imaging Med Surg. 2016 Dec;6(6):680–98.  

92.  Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The Impact of Recent 
Technological Advances on the Trueness and Precision of DXA to Assess Body 
Composition. Obesity. 2012 Jan;20(1):30–9.  

93.  Yu W, Glüer CC, Fuerst T, Grampp S, Li J, Lu Y, et al. Influence of degenerative 
joint disease on spinal bone mineral measurements in postmenopausal 
women. Calcif Tissue Int. 1995 Sep;57(3):169–74.  

94.  Li N, Li X-M, Xu L, Sun W-J, Cheng X-G, Tian W. Comparison of QCT and DXA: 



313 
 

Osteoporosis Detection Rates in Postmenopausal Women. Int J Endocrinol. 
2013 Mar 27;2013:895474.  

95.  Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging 
methods in osteoporosis. Quant Imaging Med Surg. 2016 Dec;6(6):680–98.  

96.  Kabayel DD, Kabayel D. The role of quantitative computed tomography and 
magnetic resonance imaging in diagnosis and follow-up of osteoporosis: A 
review. Turk J Phys Med Rehab. 2016;62(3):288–95.  

97.  Fallis A. Computed Tomography- Principles, Design, Artifacts, and Recent 
Advances. Vol. 53, Journal of Chemical Information and Modeling. 2013. 
p.1689-1699.  

98.  Hashefi M, Curiel R. Future and upcoming non-neoplastic applications of 
PET/CT imaging. Ann N Y Acad Sci. 2011 Jun;1228(1):167–74.  

99.  Boesen M, Ellegaard K, Henriksen M, Gudbergsen H, Hansen P, Bliddal H, et 
al. Osteoarthritis year in review 2016: imaging. Osteoarthr Cartil. 2017 
Feb;25(2):216–26.  

100.  Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. 
Nucl Med Commun. 2008 Mar;29(3):193–207.  

101.  Rich DA. A brief history of positron emission tomography. J Nucl Med 
Technol. 1997 Mar;25(1):4–11.  

102.  Carlson S. A Glance At The History Of Nuclear Medicine. Acta Oncol (Madr). 
1995 May;34(8):1095–102.  

103.  Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: 
From physiology to cutting-edge technology. Neurology. 2013 
Mar;80(10):952–6.  

104.  Kim EE, Inoue T, Lee MC, Wong WH. Clinical PET and PET/CT: Principles and 
applications. Clinical PET and PET/CT: Principles and Applications. 2013. p.1-
398.  

105.  Raichle ME. Positron Emission Tomography. Nature. 1985 Oct;317(6):574–
575.  

106.  Mick CG, James T, Hill JD, Williams P, Perry M. Molecular imaging in oncology: 
(18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J 
Roentgenol. 2014 Aug;203(2):263–71.  

107.  Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET 
with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008 
Jan;49(1):68–78.  

108.  Dahlbom M, Hoffman EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, et 
al. Whole-body positron emission tomography: Part I. Methods and 
performance characteristics. J Nucl Med. 1992 Jun;33(6):1191–9.  

109.  Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, 
Blomberg BA, et al. Evolving Role of Molecular Imaging with 18F-Sodium 
Fluoride PET as a Biomarker for Calcium Metabolism. Curr Osteoporos Rep. 



314 
 

2016 Aug;14(4):115–25.  

110.  Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Imaging of Site 
Specific Bone Turnover in Osteoporosis Using Positron Emission Tomography. 
Curr Osteoporos Rep. 2014 Dec;12(4):475–85.  

111.  Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-
NaF deposition. J Nucl Med. 2010 Dec;51(12):1826–9.  

112.  Wong KK, Piert M. Dynamic bone imaging with 99mTc-labeled 
diphosphonates and 18F-NaF: Mechanisms and applications. J Nucl Med. 2013 
Apr;54(4):590–9.  

113.  Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM 
Practice Guideline for Sodium 18F-Fluoride PET/CT Bone Scans 1.0. J Nucl 
Med. 2010 Nov;51(11):1813–20.  

114.  Thie JA. Understanding the standardized uptake value, its methods, and 
implications for usage. J Nucl Med. 2004 Sep;45(9):1431–4.  

115.  Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New 
application of 18F-fluoride PET for the detection of bone remodeling in early-
stage osteoarthritis of the hip. Clin Nucl Med. 2013 Oct;38(10):379-83.  

116.  Win AZ, Aparici CM. Factors Affecting Uptake of NaF-18 by the Normal 
Skeleton. J Clin Med Res. 2014 Dec;6(6):435–42.  

117.  Win AZ, Aparici CM. Normal SUV values measured from Na18F- PET/CT bone 
scan studies. Boswell CA, editor. PLoS One. 2014 Sep 25;9(9):108429.  

118.  Kinahan PE, Fletcher JW. Positron emission tomography-computed 
tomography standardized uptake values in clinical practice and assessing 
response to therapy. Semin Ultrasound CT MR. 2010 Dec;31(6):496–505.  

119.  Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET 
with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight 
and a method for correction. Radiology. 1993 Dec;189(3):847–50.  

120.  Kobayashi N, Inaba Y, Yukizawa Y, Ike H, Kubota S, Inoue T, et al. Use of 18 F-
fluoride positron emission tomography as a predictor of the hip osteoarthritis 
progression. Mod Rheumatol. 2015 Sep;25(6):925–30.  

121.  National Institute of Health. ImageJ [Internet]. [cited 2017 May 31]. Available 
from: https://imagej.nih.gov/ij/ 

122.  Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P. Pelvic Tilt and Truncal 
Inclination. Spine (Phila Pa 1976). 2009 Aug;34(17):E599–606.  

123.  Chernukha K V, Daffner RH, Reigel DH. Lumbar lordosis measurement. A new 
method versus Cobb technique. Spine (Phila Pa 1976). 1998 Jan;23(1):74-80.  

124.  Kim H, Kim HS, Moon ES, Yoon C-S, Chung T-S, Song H-T, et al. Scoliosis 
Imaging: What Radiologists Should Know. RadioGraphics. 2010 
Nov;30(7):1823–42.  

125.  Katzman WB, Wanek L, Shepherd JA, Sellmeyer DE. Age-related 
hyperkyphosis: its causes, consequences, and management. J Orthop Sports 



315 
 

Phys Ther. 2010 Jun;40(6):352–60.  

126.  Clarkson H GG 1989. Musculoskeletal Assessment: Joint Range of Motion and 
Manual Muscle Strength. Williams Wilkins, Balt. 2000; p.158–160.  

127.  Levangie PK, Norkin CC. Joint Structure and Function: A Comprehensive 
Analysis. F A Davis Co. 2005; p.393–436.  

128.  Wong KK, Piert M. Reply: Regarding Dynamic Bone Imaging with 99mTc-
Labeled Diphosphonates and 18F-NaF: Mechanisms and Applications. J Nucl 
Med. 2013 Dec;54(12):2190–1.  

129.  Watanabe T, Takase-Minegishi K, Ihata A, Kunishita Y, Kishimoto D, 
Kamiyama R, et al. (18)F-FDG and (18)F-NaF PET/CT demonstrate coupling of 
inflammation and accelerated bone turnover in rheumatoid arthritis. Mod 
Rheumatol. 2016 Jul;26(2):180–7.  

130.  Frost ML, Cook GJR, Blake GM, Marsden PK, Benatar NA, Fogelman I. A 
prospective study of risedronate on regional bone metabolism and blood 
flow at the lumbar spine measured by 18F-fluoride positron emission 
tomography. J Bone Miner Res. 2003 Dec;18(12):2215–22.  

131.  Rutkovskiy A, Stenslokken K-O, Vaage IJ. Osteoblast Differentiation at a 
Glance. Med Sci Monit Basic Res. 2016 Sep;26(22):95–106.  

132.  Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, et al. Wnt signaling in bone 
formation and its therapeutic potential for bone diseases. Ther Adv 
Musculoskelet Dis. 2013 Feb;5(1):13–31.  

133.  Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, et al. 
Regulation of subchondral bone osteoblast metabolism by cyclic 
compression. Arthritis Rheum. 2012;64(4):1193–203.  

134.  Puri T, Frost ML, Curran KM, Siddique M, Moore AEB, Cook GJR, et al. 
Differences in regional bone metabolism at the spine and hip: a quantitative 
study using 18F-fluoride positron emission tomography. Osteoporos Int. 2013 
Feb;24(2):633–9.  

135.  Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ. 
Differential changes in bone mineral density of the appendicular and axial 
skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981 
Feb;67(2):328–35.  

136.  Gallagher JA, Ranganath LR, Boyde A. Lessons from rare diseases of cartilage 
and bone. Curr Opin Pharmacol. 2015 Jun;22:107–14.  

137.  Abhishek A, Doherty M. Pathophysiology of articular chondrocalcinosis—role 
of ANKH. Nat Rev Rheumatol. 2011 Feb;7(2):96–104.  

138.  Gürkanlar D, Daneyemez M, Solmaz I, Temiz C. Ochronosis and lumbar disc 
herniation. Acta Neurochir (Wien). 2006 Aug;148(8):891–4.  

139.  Palazzi C, D’Angelo S, Leccese P, Nigro A, Olivieri I. Ochronotic arthropathy of 
the spine limited to the thoracic section. Rheumatology (Oxford). 2013 
May;52(5):799.  



316 
 

140.  Chakraverty JK, Lawson TM, Herdman G. Not just simple degenerative disc 
disease (alkaptonuria). Spine J. 2013 Aug;13(8):985–6.  

141.  Khan UN, Wenokor C, Altschuler EL. Back Pain in a Middle-Aged Man. Am J 
Phys Med Rehabil. 2015 May;94(5):42.  

142.  Jebaraj I, Chacko BR, Chiramel GK, Matthai T, Parameswaran A. A simplified 
staging system based on the radiological findings in different stages of 
ochronotic spondyloarthropathy. Indian J Radiol Imaging. 2013 
Jan;23(1):101–5.  

143.  Tarihi G, Aktafi I, Akgün K, Çakmak B. Intervertebral disc calcification in the 
elderly: a case report. Turkish J Geriatr. 2007 Oct;10(1):37–9.  

144.  Kaneta T, Ogawa M, Daisaki H, Nawata S, Yoshida K, Inoue T. SUV 
measurement of normal vertebrae using SPECT/CT with Tc-99m methylene 
diphosphonate. Am J Nucl Med Mol Imaging. 2016 Sep;6(5):262–8.  

145.  Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the 
clinician. Ther Adv Musculoskelet Dis. 2012 Apr;4(2):61–76.  

146.  Daly RM, Rosengren BE, Alwis G, Ahlborg HG, Sernbo I, Karlsson MK. Gender 
specific age-related changes in bone density, muscle strength and functional 
performance in the elderly: a-10 year prospective population-based study. 
BMC Geriatr. 2013 Jul; 6(1);13:71.  

147.    Chen W-T, Shih TT-F, Chen R-C, Lo S-Y, Chou C Te, Lee J-M, et al. Vertebral 
Bone Marrow Perfusion Evaluated with Dynamic Contrast-enhanced MR 
Imaging: Significance of Aging and Sex. Radiology. 2001 Jul;220(1):213–8. 

148.  Aliberti G, Pulignano I, Schiappoli A, Minisola S, Romagnoli E, Proietta M. 
Bone metabolism in ochronotic patients. J Intern Med. 2003;254(3):296–300.  

149.  Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the 
factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010 
Aug;195(2):310–20.  

150.  Kinahan PE, Fletcher JW. Positron emission tomography-computed 
tomography standardized uptake values in clinical practice and assessing 
response to therapy. Semin Ultrasound CT MR. 2010 Dec;31(6):496–505.  

151.  Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of 
bone marker measurements in osteoporosis. J Transl Med. 2013 Aug 
29;11(1):201.  

152.  Leeming DJ, Alexandersen P, Karsdal MA, Qvist P, Schaller S, Tankó LB. An 
update on biomarkers of bone turnover and their utility in biomedical 
research and clinical practice. Eur J Clin Pharmacol. 2006 Oct;62(10):781–92.  

153.  Garnero P. The Utility of Biomarkers in Osteoporosis Management. Mol Diagn 
Ther. 2017 Aug;21(4):401–18.  

154.  Davison AS, Milan AM, Hughes AT, Dutton JJ, Ranganath LR. Serum 
concentrations and urinary excretion of homogentisic acid and tyrosine in 
normal subjects. Clin Chem Lab Med. 2015 Feb;53(3):81-3.  



317 
 

155.  Weinstein JR, Anderson S. The Aging Kidney: Physiological Changes. Adv 
Chronic Kidney Dis. 2010 Jul;17(4):302–7.  

156.  Jonsson E, Ljungkvist I, Hamberg J. Standardized Measurement of Lateral 
Spinal Flexion and Its Use in Evaluation of the Effect of Treatment of Chronic 
Lower Back Pain. Ups J Med Sci. 1990 Mar;95(1):75–86.  

157.  Laxon S, Ranganath L, Timmis O. Living with alkaptonuria. BMJ. 2011 
Sep;29;343:d5155.  

158.  Rana AQ, Saeed U, Abdullah I. Alkaptonuria, more than just a mere disease. J 
Neurosci Rural Pract. 2015 Apr-Jun;6(2):257–60.  

159.  Chun S-W, Lim C-Y, Kim K, Hwang J, Chung SG. The relationships between low 
back pain and lumbar lordosis: a systematic review and meta-analysis. Spine 
J. 2017 Aug;17(8):1180–91.  

160.  Takeda N, Kobayashi T, Atsuta Y, Matsuno T, Shirado O, Minami A. Changes in 
the sagittal spinal alignment of the elderly without vertebral fractures: a 
minimum 10-year longitudinal study. J Orthop Sci. 2009 Nov;14(6):748–53.  

161.  Dionne CE, Dunn KM, Croft PR. Does back pain prevalence really decrease 
with increasing age? A systematic review. Age Ageing. 2006 May 1;35(3):229–
34.  

162.  Ohrt-Nissen S, Cheung JPY, Hallager DW, Gehrchen M, Kwan K, Dahl B, et al. 
Reproducibility of thoracic kyphosis measurements in patients with 
adolescent idiopathic scoliosis. Scoliosis Spinal Disord. 2017 Feb;21(1):12-4.  

163.  Kotwal S, Pumberger M, Hughes A, Girardi F. Degenerative Scoliosis: A 
Review. HSS Journal. 2011 Oct;7(3):257–64.  

164.  Loder RT, Urquhart  A, Steen H, Graziano G, Hensinger RN, Schlesinger  A, et 
al. Variability in Cobb angle measurements in children with congenital 
scoliosis. J Bone Joint Surg Br. 1995 Sep;77(5):768–70.  

165.  Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis 
radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am. 
1990 Mar;72(3):328–33.  

166.  Lee MC, Solomito M, Patel A. Supine magnetic resonance imaging cobb 
measurements for idiopathic scoliosis are linearly related to measurements 
from standing plain radiographs. Spine (Phila Pa 1976). 2013 May;38(11):656-
61.  

167.  Tauchi R, Tsuji T, Cahill PJ, Flynn JM, Flynn JM, Glotzbecker M, et al. Reliability 
analysis of Cobb angle measurements of congenital scoliosis using X-ray and 
3D-CT images. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):53–7.  

168.  Vavruch L, Tropp H. A Comparison of Cobb Angle: Standing Versus Supine 
Images of Late-onset Idiopathic Scoliosis. Polish J Radiol. 2016 Jun;81:270–6.  

169.  Moayyeri A, Soltani A, Tabari NK, Sadatsafavi M, Hossein-neghad A, Larijani B. 
Discordance in diagnosis of osteoporosis using spine and hip bone 
densitometry. BMC Endocr Disord. 2005 Dec 11;5(1):3.  



318 
 

170.  Lo HC, Kuo DP, Chen YL. Impact of beverage consumption, age, and site 
dependency on dual energy X-ray absorptiometry (DEXA) measurements in 
perimenopausal women: A prospective study. Arch Med Sci. 2017 
Aug;13(5):1178–87.  

171.  El Maghraoui A, Mouinga Abayi DA, Rkain H, Mounach A. Discordance in 
Diagnosis of Osteoporosis Using Spine and Hip Bone Densitometry. J Clin 
Densitom. 2007 Aug;10(2):153–6.  

172.  Kanis JA, Glüer CC. An update on the diagnosis and assessment of 
osteoporosis with densitometry. Committee of Scientific Advisors, 
International Osteoporosis Foundation. Osteoporos Int. 2000 Feb;11(3):192–
202.  

173.  Hay O, Dar G, Abbas J, Stein D, May H, Masharawi Y, et al. The lumbar 
lordosis in males and females, revisited. PLoS One. 2015 Aug;10(8):e0133685.  

 

 

 

 

 

 

 

 

 

 

1.  Ranganath LR, Jarvis JC, Gallagher JA. Recent advances in management of 
alkaptonuria (invited review; best practice article). J Clin Pathol. 2013 
May;66(5):367–73.  

2.  Taylor AM, Boyde A, Wilson PJM, Jarvis JC, Davidson JS, Hunt JA, et al. The 
role of calcified cartilage and subchondral bone in the initiation and 
progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 2011 
Dec;63(12):3887–96.  

3.  Gallagher J, Taylor A, Boyde A, Jarvis J, Ranganath L. Recent advances in 



319 
 

understanding the pathogenesis of ochronosis:Najnowsze postępy w 
zrozumieniu patogenezy ochronozy. 2012;  

4.  Fisher AA, Davis MW. Alkaptonuric ochronosis with aortic valve and joint 
replacements and femoral fracture: a case report and literature review. Clin 
Med Res. 2004;2(4):209–15.  

5.  Stenn F, Milgram J, Lee S, Weigand R, Veis A. Biochemical identification of 
homogentisic acid pigment in an ochronotic egyptian mummy. Science (80- ). 
1977;197(4303).  

6.  Lee SL, Stenn FF. Characterization of Mummy Bone Ochronotic Pigment. 
JAMA J Am Med Assoc. 1978 Jul 14;240(2):136.  

7.  Aquaron R. Alkaptonuria: A very rare metabolic disorder. Vol. 50, Indian 
Journal of Biochemistry and Biophysics. 2013. p. 339–44.  

8.  Mistry JB, Bukhari M, Taylor AM. Alkaptonuria. Rare Dis (Austin, Tex). 
2013;1:e27475.  

9.  Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick 
DL, et al. Natural History of Alkaptonuria. N Engl J Med. 2002;347(26):2111–
21.  

10.  Benedek TG. Rudolph virchow on ochronosis. Arthritis Rheum. 1966 
Feb;9(1):66–71.  

11.  Scriver CR. Garrod_s Croonian Lectures (1908) and the charter FInborn Errors 
of Metabolism_: Albinism, alkaptonuria, cystinuria, and pentosuria at age 100 
in 2008.  

12.  Garrod AE, Oxon MA. The Incidence of Alkaptonuria: A Study in Chemical 
Individuality. YALE J Biol Med. 2002;75:221–31.  

13.  Gallagher JA, Dillon JP, Sireau N, Timmis O, Ranganath LR. Alkaptonuria: An 
example of a “fundamental disease”-A rare disease with important lessons 
for more common disorders. Vol. 52, Seminars in Cell and Developmental 
Biology. 2016. p. 53–7.  

14.  Suwannarat P, O’Brien K, Perry MB, Sebring N, Bernardini I, Kaiser-Kupfer MI, 
et al. Use of nitisinone in patients with alkaptonuria. Metabolism. 
2005;54(6):719–28.  

15.  Zatková  a, de Bernabé DB, Poláková H, Zvarík M, Feráková E, Bosák V, et al. 
High frequency of alkaptonuria in Slovakia: evidence for the appearance of 
multiple mutations in HGO involving different mutational hot spots. Am J 
Hum Genet. 2000;67(5):1333–9.  

16.  Al-Sbou M, Mwafi N. Nine cases of Alkaptonuria in one family in southern 
Jordan. Rheumatol Int. 2012;32(3):621–5.  

17.  Mannoni A, Selvi E, Lorenzini S, Giorgi M, Airò P, Cammelli D, et al. 
Alkaptonuria, Ochronosis, and Ochronotic Arthropathy. Vol. 33, Seminars in 
Arthritis and Rheumatism. 2004. p. 239–48.  

18.  Al-Sbou M. Novel mutations in the homogentisate 1,2 dioxygenase gene 



320 
 

identified in Jordanian patients with alkaptonuria. Rheumatol Int. 
2012;32(6):1741–6.  

19.  Granadino B, Beltran-Valero de Bernabe D, Fernandez-Canon JM, Penalva 
MA, Rodriguez de Cordoba S. The human homogentisate 1,2-dioxygenase 
(HGO) gene. Genomics. 1997;43(2):115–22.  

20.  Zatkova A, Nemethova M. Genetics of alkaptonuria – an overview. Acta Fac 
Pharm Univ Comenianae. 2015;62(s11):27–32.  

21.  Zatkova A. An update on molecular genetics of Alkaptonuria (AKU). J Inherit 
Metab Dis. 2011;34(6):1127–36.  

22.  Vilboux T, Kayser M, Introne W, Suwannarat P, Bernardini I, Fischer R, et al. 
Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Vol. 
30, Human Mutation. 2009. p. 1611–9.  

23.  Nemethova M, Radvanszky J, Kadasi L, Ascher DB, Pires DE V, Blundell TL, et 
al. Twelve novel HGD gene variants identified in 99 alkaptonuria patients: 
focus on “black bone disease” in Italy. Federica Genov Jozef Rovensky Eur J 
Hum Genet. 2015;1860(2410):66–72.  

24.  Martin JP, Batkoff B. Homogentisic acid autoxidation and oxygen radical 
generation: implications for the etiology of alkaptonuric arthritis. Free Radic 
Biol Med. 1987;3(4):241–50.  

25.  Kotob SI, Coon SL, Quintero EJ, Weiner RM. Homogentisic acid is the primary 
precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and 
Shewanella colwelliana. Appl Environ Microbiol. 1995;61(4):1620–2.  

26.  Kahveci R, Ergüngör MF, Günaydin A, Temiz A. Alkaptonuric patient 
presenting with “black” disc: A case report. Acta Orthop Traumatol Turc. 
2013;47(2):134–8.  

27.  O’Brien WM, La Du BN, Bunim JJ. Biochemical pathologic and clinical aspects 
of alcaptonuria, ochronosis, and ochronotic arthropathy: Review of World 
Literature (1584–1962). Am J Med. 1963;36(6):813–38.  

28.  Acar MA, Erkocak ÖF, Aydin BK, Altan E, Şenaran H, Elmadaǧ NM. Patients 
with black hip and black knee due to ochronotic arthropathy: Case report and 
review of literature. Oman Med J. 2013;28(6):448–9.  

29.  Wilke A, Steverding D. Ochronosis as an unusual cause of valvular defect: a 
case report. J Med Case Rep. 2009;3:9302.  

30.  Ozmanevra R, Guran O, Karatosun V, Gunal I. Total knee arthroplasty in 
ochronosis: a case report and critical review of the literature. Eklem Hastalik 
Cerrahisi. 2013;24(3):169–72.  

31.  Helliwell TR, Gallagher JA, Ranganath L. Alkaptonuria - A review of surgical 
and autopsy pathology. Vol. 53, Histopathology. 2008. p. 503–12.  

32.  Hannoush H, Introne WJ, Chen MY, Lee SJ, O’Brien K, Suwannarat P, et al. 
Aortic stenosis and vascular calcifications in alkaptonuria. Mol Genet Metab. 
2012;105(2):198–202.  



321 
 

33.  A.M. T, W.D. F, P.J.M. W, L.R. R, J.A. G. Ultrastructural studies on the binding 
of ochronotic pigment to collagen fibres in cartilage and bone in vivo and in 
vitro. Calcif Tissue Int. 2009;85(2):187.  

34.  Taylor AM, Wlodarski B, Prior IA, Wilson PJM, Jarvis JC, Ranganath LR, et al. 
Ultrastructural examination of tissue in a patient with alkaptonuric 
arthropathy reveals a distinct pattern of binding of ochronotic pigment. 
Rheumatology (Oxford). 2010 Jul 1;49(7):1412–4.  

35.  Taylor AM, Boyde A, Wilson PJM, Jarvis JC, Davidson JS, Hunt JA, et al. The 
role of calcified cartilage and subchondral bone in the initiation and 
progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 2011 
Dec;63(12):3887–96.  

36.  Gallagher J, Taylor A, Boyde A, Jarvis J. Recent advances in understanding the 
pathogenesis of ochronosis. Reumatologia. 2012;  

37.  Introne WJ, Gahl WA. Alkaptonuria. GeneReviews(®). University of 
Washington, Seattle; 1993.  

38.  Gallagher JA, Dillon JP, Sireau N, Timmis O, Ranganath LR. Alkaptonuria: An 
example of a “fundamental disease”-A rare disease with important lessons 
for more common disorders. Semin Cell Dev Biol. 2016 Apr;52:53–7.  

39.  Sealock RR, Galdston M, Steele JM. Administration of Ascorbic Acid to an 
Alkaptonuric Patient. Exp Biol Med. 1940 Jun 1;44(2):580–3.  

40.  Wolff JA, Barshop B, Nyhan WL, Leslie J, Seegmiller JE, Gruber H, et al. Effects 
of ascorbic acid in alkaptonuria: alterations in benzoquinone acetic acid and 
an ontogenic effect in infancy. Pediatr Res. 1989;26(2):140–4.  

41.  de Haas V, Carbasius Weber EC, de Klerk JB, Bakker HD, Smit GP, Huijbers 
WA, et al. The success of dietary protein restriction in alkaptonuria patients is 
age-dependent. J Inherit Metab Dis. 1998 Dec;21(8):791–8.  

42.  Morava E, Kosztolányi G, Engelke UFH, Wevers RA. Reversal of clinical 
symptoms and radiographic abnormalities with protein restriction and 
ascorbic acid in alkaptonuria. Ann Clin Biochem. 2003 Jan 1;40(Pt 1):108–11.  

43.  McKiernan PJ. Nitisinone for the treatment of hereditary tyrosinemia type I. 
Expert Opin ORPHAN DRUGS. 2013;1(6):491–7.  

44.  Introne WJ, Perry MB, Troendle J, Tsilou E, Kayser MA, Suwannarat P, et al. A 
3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol Genet 
Metab. 2011;103(4):307–14.  

45.  Hall AK, Ranganath LR, Milan A, Hughes A, Olsson B, Szamosi J, et al. 
Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1): Results of a dose- 
response study of once-daily nitisinone on 24-hour urinary homogentisic acid 
excretion (u-HGA 24 ) in patients with alkaptonuria.  

46.  Cox TF, Ranganath L. A quantitative assessment of alkaptonuria. J Inherit 
Metab Dis. 2011 Dec 9;34(6):1153–62.  

47.  Welcome To The Alkaptonuria Society - AKU Society [Internet]. [cited 2017 
Mar 19]. Available from: 



322 
 

http://www.akusociety.org/?gclid=CNKphMvG4tICFYoQ0wodCa4OQA 

48.  Lock E, Ranganath LR, Timmis O. The Role of Nitisinone in Tyrosine Pathway 
Disorders. Vol. 16, Current Rheumatology Reports. 2014.  

49.  Partners in DevelopAKUre.  

50.  DevelopAKUre Home [Internet]. [cited 2017 Mar 19]. Available from: 
http://www.developakure.eu/ 

51.  Cucchiarini M. Biological Systems: Open Access The Biology of Articular 
Cartilage: An Overview? Biol Syst Open Access. 2013;2.  

52.  Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ. Articular 
cartilage biology. J Am Acad Orthop Surg. 11(6):421–30.  

53.  Martini & Nath J. Fundamentals of Anatomy and Physiology. Vol. 7th, 
Learning. 2009. 1123 p.  

54.  Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: 
structure, composition, and function. Sports Health. 2009;1(6):461–8.  

55.  Poole CA. Articular cartilage chondrons : form, function and failure. J Anat. 
1997;10:1–13.  

56.  Alexopoulos LG, Setton L a, Guilak F. The biomechanical role of the 
chondrocyte pericellular matrix in articular cartilage. Acta Biomater. 
2005;1:317–25.  

57.  Sobol E, Shekhter A, Guller A, Baum O, Baskov A. Laser-induced regeneration 
of cartilage. J Biomed Opt. 2011;16(8):80902.  

58.  Poole, C A, Ayad S, Gilbert RT. Chondrons from Articular Cartilage. J Cell Sci. 
1992;103:1101–10.  

59.  Akkiraju H, Nohe A. Role of Chondrocytes in Cartilage Formation, Progression 
of Osteoarthritis and Cartilage Regeneration. J Dev Biol. 2015 Dec 
18;3(4):177–92.  

60.  Liacini A, Sylvester J, Li WQ, Huang W, Dehnade F, Ahmad M, et al. Induction 
of matrix metalloproteinase-13 gene expression by TNF-α is mediated by 
MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. 
Exp Cell Res. 2003;288(1):208–17.  

61.  Hochberg MC, Yerges-Armstrong L, Yau M, Mitchell BD. Genetic 
epidemiology of osteoarthritis: recent developments and future directions. 
Curr Opin Rheumatol. 2013;25(2):192–7.  

62.  Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis: 
toward a comprehensive understanding of pathological mechanism. Bone 
Res. 2017 Jan 17;5:16044.  

63.  Lindahl A. From gristle to chondrocyte transplantation: treatment of cartilage 
injuries. Philos Trans R Soc London B Biol Sci. 2015;370(1680).  

64.  Gelse K, Pöschl E, Aigner T. Collagens--structure, function, and biosynthesis. 
Adv Drug Deliv Rev. 2003 Nov 28;55(12):1531–46.  



323 
 

65.  Hulmes DJS. Collagen diversity, synthesis and assembly. In: Collagen: 
Structure and Mechanics. 2008. p. 15–47.  

66.  Kini U, Nandeesh BN. Physiology of Bone Formation, Remodeling, and 
Metabolism. In: Radionuclide and Hybrid Bone Imaging. Berlin, Heidelberg: 
Springer Berlin Heidelberg; 2012. p. 29–57.  

67.  Buckwalter JA, Glimcher MJ, Cooper RR, Recker R, A Buckwalter BJ, Iowa City 
Md, et al. Bone Biology Bone Biology PART I: STRUCrURE, BLOOD SUPPLY, 
CELLS, MATRIX, AND MINERALIZATION*. J Bone Jt Surg J Bone Jt Surg Am. 
1995;77:1256–75.  

68.  Standring S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. Vol. 2, 
Development. 2008. 1389-1406 p.  

69.  You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, et al. Osteocytes as 
mechanosensors in the inhibition of bone resorption due to mechanical 
loading. 2007;  

70.  Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. 
Vol. 42, Bone. 2008. p. 606–15.  

71.  Rucci N. Molecular biology of bone remodelling. Clin Cases Miner Bone 
Metab. 2008;5:49–56.  

72.  Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral 
bone as a key target for osteoarthritis treatment. Vol. 83, Biochemical 
Pharmacology. 2012. p. 315–23.  

73.  Wen C, Lu WW, Chiu KY. Importance of subchondral bone in the 
pathogenesis and management of osteoarthritis from bench to bed. J Orthop 
Transl. 2014;2(1):16–25.  

74.  Gallagher JA, Ranganath LR, Boyde A. What does the arthropathy of 
alkaptonuria teach us about disease mechanisms in osteoarthritis and ageing 
of joints? Rheumatology (Oxford). 2016 Jul;55(7):1151–2.  

75.  Boyde A, Davis GR, Mills D, Zikmund T, Cox TM, Adams VL, et al. On 
fragmenting, densely mineralised acellular protrusions into articular cartilage 
and their possible role in osteoarthritis. J Anat. 2014;225(4):436–46.  

76.  Wang F, Cai F, Shi R, Wang X-H, Wu X-T. Aging and age related stresses: a 
senescence mechanism of intervertebral disc degeneration. Osteoarthr Cartil. 
2016 Mar;24(3):398–408.  

77.  Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res 
Ther. 2003;5(3):120–30.  

78.  Ouyang Z-H, Wang W-J, Yan Y-G, Wang B, Lv G-H. The PI3K/Akt pathway: A 
critical player in intervertebral disc degeneration. Oncotarget. 2015 Jul 18;  

79.  K. E. Not just another case of low back pain. BMJ Case Rep. 2014;no 
pagination.  

80.  Kohn MD, Sassoon AA, Fernando ND. Classifications in Brief: Kellgren-
Lawrence Classification of Osteoarthritis. Clin Orthop Relat Res. 2016 Aug 



324 
 

12;474(8):1886–93.  

81.  Siemens AG, Healthcare. Background Information: The History of Computed 
Tomography at Siemens.  

82.  Cierniak R. Some Words About the History of Computed Tomography. In: X-
Ray Computed Tomography in Biomedical Engineering. 2011. p. 1–14.  

83.  Bradley WG. History of medical imaging. Proc Am Philos Soc. 2008 
Sep;152(3):349–61.  

84.  Scatliff JH, Morris PJ. From Roentgen to magnetic resonance imaging: the 
history of medical imaging. N C Med J. 75(2):111–3.  

85.  Hayashi D, Roemer FW, Jarraya M, Guermazi A. Imaging of osteoarthritis. In: 
Geriatric Imaging. 2013. p. 93–121.  

86.  Suetens P. Fundamentals of medical imaging. In: Fundamentals of Medical 
Imaging. 2009. p. 128–58.  

87.  Herr KD. Radiology 101: The Basics and Fundamentals of Imaging, 3rd ed. 
Acad Radiol. 2010;17(10):1321.  

88.  Lisle D. Imaging for students. Hodder Arnold; 2007. 283 p.  

89.  Vinjamuri S, Ramesh CN, Jarvis J, Gallagher JA, Ranganath LL. Nuclear 
medicine techniques in the assessment of alkaptonuria. Nucl Med Commun. 
2011 Oct;32(10):880–6.  

90.  Mandl P, Kainberger F, Friberg Hitz M. Imaging in osteoporosis in rheumatic 
diseases. Best Pract Res Clin Rheumatol. 2016 Aug;30(4):751–65.  

91.  Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging 
methods in osteoporosis. Quant Imaging Med Surg. 2016 Dec;6(6):680–98.  

92.  Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The Impact of Recent 
Technological Advances on the Trueness and Precision of DXA to Assess Body 
Composition. Obesity. 2012 Jan 14;20(1):30–9.  

93.  Yu W, Glüer CC, Fuerst T, Grampp S, Li J, Lu Y, et al. Influence of degenerative 
joint disease on spinal bone mineral measurements in postmenopausal 
women. Calcif Tissue Int. 1995 Sep;57(3):169–74.  

94.  Li N, Li X-M, Xu L, Sun W-J, Cheng X-G, Tian W. Comparison of QCT and DXA: 
Osteoporosis Detection Rates in Postmenopausal Women. Int J Endocrinol. 
2013 Mar 27;2013:895474.  

95.  Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging 
methods in osteoporosis. Quant Imaging Med Surg. 2016 Dec;6(6):680–98.  

96.  Kabayel DD, Kabayel D. The role of quantitative computed tomography and 
magnetic resonance imaging in diagnosis and follow-up of osteoporosis: A 
review. Turk J Phys Med Rehab. 2016;62(3):288–95.  

97.  Fallis A. Computed Tomography- Principles, Design, Artifacts, and Recent 
Advances. Vol. 53, Journal of Chemical Information and Modeling. 2013. 
1689-1699 p.  



325 
 

98.  Hashefi M, Curiel R. Future and upcoming non-neoplastic applications of 
PET/CT imaging. Ann N Y Acad Sci. 2011 Jun;1228(1):167–74.  

99.  Boesen M, Ellegaard K, Henriksen M, Gudbergsen H, Hansen P, Bliddal H, et 
al. Osteoarthritis year in review 2016: imaging. Osteoarthr Cartil. 2017 
Feb;25(2):216–26.  

100.  Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. 
Nucl Med Commun. 2008 Mar;29(3):193–207.  

101.  Rich DA. A brief history of positron emission tomography. J Nucl Med 
Technol. 1997;25(1):4–11.  

102.  Carlson S. A Glance At The History Of Nuclear Medicine. Acta Oncol (Madr). 
1995;34(8):1095–102.  

103.  Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: 
From physiology to cutting-edge technology. Neurology. 2013;80(10):952–6.  

104.  Kim EE, Inoue T, Lee MC, Wong WH. Clinical PET and PET/CT: Principles and 
applications. Clinical PET and PET/CT: Principles and Applications. 2013. 1-398 
p.  

105.  Raichle ME. POSITRON EMISSION TOMOGRAPHY. Ann Rev NeuroJcL. 
1983;6:249–67.  

106.  Mick CG, James T, Hill JD, Williams P, Perry M. Molecular imaging in oncology: 
(18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J 
Roentgenol. 2014 Aug;203(2):263–71.  

107.  Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET 
with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 
2008;49(1):68–78.  

108.  Dahlbom M, Hoffman EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, et 
al. Whole-body positron emission tomography: Part I. Methods and 
performance characteristics. J Nucl Med. 1992 Jun;33(6):1191–9.  

109.  Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, 
Blomberg BA, et al. Evolving Role of Molecular Imaging with 18F-Sodium 
Fluoride PET as a Biomarker for Calcium Metabolism. Curr Osteoporos Rep. 
2016 Aug 15;14(4):115–25.  

110.  Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Imaging of Site 
Specific Bone Turnover in Osteoporosis Using Positron Emission Tomography. 
Curr Osteoporos Rep. 2014 Dec 29;12(4):475–85.  

111.  Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-
NaF deposition. J Nucl Med. 2010;51(12):1826–9.  

112.  K.K. W, M. P. Dynamic bone imaging with <ovid:sup>99m</ovid:sup>Tc-
labeled diphosphonates and <ovid:sup>18</ovid:sup>F-NaF: Mechanisms 
and applications. J Nucl Med. 2013;54(4):590–9.  

113.  Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM 
Practice Guideline for Sodium 18F-Fluoride PET/CT Bone Scans 1.0. J Nucl 



326 
 

Med. 2010 Nov 1;51(11):1813–20.  

114.  Thie JA. Understanding the standardized uptake value, its methods, and 
implications for usage. J Nucl Med. 2004;45(9):1431–4.  

115.  Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New 
application of 18F-fluoride PET for the detection of bone remodeling in early-
stage osteoarthritis of the hip. Clin Nucl Med. 2013;38(10):e379-83.  

116.  Win AZ, Aparici CM. Factors Affecting Uptake of NaF-18 by the Normal 
Skeleton. J Clin Med Res. 2014;6(6):435–42.  

117.  Win AZ, Aparici CM. Normal SUV values measured from NaF18- PET/CT bone 
scan studies. Boswell CA, editor. PLoS One. 2014 Sep 25;9(9):e108429.  

118.  Kinahan PE, Fletcher JW. Positron emission tomography-computed 
tomography standardized uptake values in clinical practice and assessing 
response to therapy. Semin Ultrasound CT MR. 2010 Dec;31(6):496–505.  

119.  Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET 
with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight 
and a method for correction. Radiology. 1993 Dec;189(3):847–50.  

120.  Kobayashi N, Inaba Y, Yukizawa Y, Ike H, Kubota S, Inoue T, et al. Use of 18 F-
fluoride positron emission tomography as a predictor of the hip osteoarthritis 
progression. Mod Rheumatol. 2015 Sep 8;25(6):925–30.  

121.  National Institute of Health. ImageJ [Internet]. [cited 2017 May 31]. Available 
from: https://imagej.nih.gov/ij/ 

122.  Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P. Pelvic Tilt and Truncal 
Inclination. Spine (Phila Pa 1976). 2009 Aug 1;34(17):E599–606.  

123.  Chernukha K V, Daffner RH, Reigel DH. Lumbar lordosis measurement. A new 
method versus Cobb technique. Spine (Phila Pa 1976). 1998 Jan 1;23(1):74-9-
80.  

124.  Kim H, Kim HS, Moon ES, Yoon C-S, Chung T-S, Song H-T, et al. Scoliosis 
Imaging: What Radiologists Should Know. RadioGraphics. 2010 Nov 
1;30(7):1823–42.  

125.  Katzman WB, Wanek L, Shepherd JA, Sellmeyer DE. Age-related 
hyperkyphosis: its causes, consequences, and management. J Orthop Sports 
Phys Ther. 2010 Jun;40(6):352–60.  

126.  Clarkson H GG 1989. Musculoskeletal Assessment: Joint Range of Motion and 
Manual Muscle Strength. Williams Wilkins, Balt. 2000;PP:158–160.  

127.  Levangie PK, Norkin CC. Joint Structure and Function: A Comprehensive 
Analysis. F A Davis Co. 2005;393–436.  

128.  Wong KK, Piert M. Reply: Regarding Dynamic Bone Imaging with 99mTc-
Labeled Diphosphonates and 18F-NaF: Mechanisms and Applications. J Nucl 
Med. 2013 Dec 1;54(12):2190–1.  

129.  Watanabe T, Takase-Minegishi K, Ihata A, Kunishita Y, Kishimoto D, 
Kamiyama R, et al. (18)F-FDG and (18)F-NaF PET/CT demonstrate coupling of 



327 
 

inflammation and accelerated bone turnover in rheumatoid arthritis. Mod 
Rheumatol. 2016 Jul 3;26(2):180–7.  

130.  Frost ML, Cook GJR, Blake GM, Marsden PK, Benatar NA, Fogelman I. A 
prospective study of risedronate on regional bone metabolism and blood 
flow at the lumbar spine measured by 18F-fluoride positron emission 
tomography. J Bone Miner Res. 2003 Dec 1;18(12):2215–22.  

131.  Rutkovskiy A, Stensløkken K-O, Vaage IJ. Osteoblast Differentiation at a 
Glance. Med Sci Monit Basic Res. 2016;22:95–106.  

132.  Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, et al. Wnt signaling in bone 
formation and its therapeutic potential for bone diseases. Ther Adv 
Musculoskelet Dis. 2013;5(1):13–31.  

133.  Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, et al. 
Regulation of subchondral bone osteoblast metabolism by cyclic 
compression. Arthritis Rheum. 2012;64(4):1193–203.  

134.  Puri T, Frost ML, Curran KM, Siddique M, Moore AEB, Cook GJR, et al. 
Differences in regional bone metabolism at the spine and hip: a quantitative 
study using 18F-fluoride positron emission tomography. Osteoporos Int. 2013 
Feb 12;24(2):633–9.  

135.  Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ. 
Differential changes in bone mineral density of the appendicular and axial 
skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981 
Feb 1;67(2):328–35.  

136.  Gallagher JA, Ranganath LR, Boyde A. Lessons from rare diseases of cartilage 
and bone. Curr Opin Pharmacol. 2015 Jun;22:107–14.  

137.  Abhishek A, Doherty M. Pathophysiology of articular chondrocalcinosis—role 
of ANKH. Nat Rev Rheumatol. 2011 Feb 23;7(2):96–104.  

138.  Gürkanlar D, Daneyemez M, Solmaz I, Temiz C. Ochronosis and lumbar disc 
herniation. Acta Neurochir (Wien). 2006 Aug 29;148(8):891–4.  

139.  Palazzi C, D’Angelo S, Leccese P, Nigro A, Olivieri I. Ochronotic arthropathy of 
the spine limited to the thoracic section. Rheumatology (Oxford). 2013 May 
1;52(5):799.  

140.  Chakraverty JK, Lawson TM, Herdman G. Not just simple degenerative disc 
disease (alkaptonuria). Spine J. 2013 Aug;13(8):985–6.  

141.  Khan UN, Wenokor C, Altschuler EL. Back Pain in a Middle-Aged Man. Am J 
Phys Med Rehabil. 2015 May;94(5):e42.  

142.  Jebaraj I, Chacko BR, Chiramel GK, Matthai T, Parameswaran A. A simplified 
staging system based on the radiological findings in different stages of 
ochronotic spondyloarthropathy. Indian J Radiol Imaging. 2013 
Jan;23(1):101–5.  

143.  Tarihi G, Aktafi ‹lknur, Akgün K, Çakmak B. Intervertebral disc calcification in 
the elderly: a case report. Turkish J Geriatr. 2007;10(10212):37–9.  



328 
 

144.  Kaneta T, Ogawa M, Daisaki H, Nawata S, Yoshida K, Inoue T. SUV 
measurement of normal vertebrae using SPECT/CT with Tc-99m methylene 
diphosphonate. Am J Nucl Med Mol Imaging. 2016;6(5):262–8.  

145.  Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the 
clinician. Ther Adv Musculoskelet Dis. 2012 Apr;4(2):61–76.  

146.  Daly RM, Rosengren BE, Alwis G, Ahlborg HG, Sernbo I, Karlsson MK. Gender 
specific age-related changes in bone density, muscle strength and functional 
performance in the elderly: a-10 year prospective population-based study. 
BMC Geriatr. 2013 Jul 6;13:71.  

147.  Chen W-T, Shih TT-F, Chen R-C, Lo S-Y, Chou C Te, Lee J-M, et al. Vertebral 
Bone Marrow Perfusion Evaluated with Dynamic Contrast-enhanced MR 
Imaging: Significance of Aging and Sex. Radiology. 2001 Jul;220(1):213–8.  

148.  Aliberti G, Pulignano I, Schiappoli A, Minisola S, Romagnoli E, Proietta M. 
Bone metabolism in ochronotic patients. J Intern Med. 2003;254(3):296–300.  

149.  Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the 
factors affecting accuracy of SUV measurements. Vol. 195, American Journal 
of Roentgenology. 2010. p. 310–20.  

150.  Kinahan PE, Fletcher JW. Positron emission tomography-computed 
tomography standardized uptake values in clinical practice and assessing 
response to therapy. Semin Ultrasound CT MR. 2010 Dec;31(6):496–505.  

151.  Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of 
bone marker measurements in osteoporosis. J Transl Med. 2013 Aug 
29;11(1):201.  

152.  Leeming DJ, Alexandersen P, Karsdal MA, Qvist P, Schaller S, Tankó LB. An 
update on biomarkers of bone turnover and their utility in biomedical 
research and clinical practice. Vol. 62, European Journal of Clinical 
Pharmacology. 2006. p. 781–92.  

153.  Garnero P. The Utility of Biomarkers in Osteoporosis Management. Vol. 21, 
Molecular Diagnosis and Therapy. 2017. p. 401–18.  

154.  Davison AS, Milan AM, Hughes AT, Dutton JJ, Ranganath LR. Serum 
concentrations and urinary excretion of homogentisic acid and tyrosine in 
normal subjects. Vol. 53, Clinical Chemistry and Laboratory Medicine. 2015. 
p. e81–3.  

155.  Weinstein JR, Anderson S. The Aging Kidney: Physiological Changes. Vol. 17, 
Advances in Chronic Kidney Disease. 2010. p. 302–7.  

156.  Ljungkvist I, Hamberg J. Standardized Measurement of Lateral Spinal Flexion 
and Its. Ups J Med Sci. 1990;95(1):75–86.  

157.  Laxon S, Ranganath L, Timmis O. Living with alkaptonuria. BMJ. 
2011;343(7827).  

158.  Rana AQ, Saeed U, Abdullah I. Alkaptonuria, more than just a mere disease. J 
Neurosci Rural Pract. 2015;6(2):257–60.  



329 
 

159.  Chun S-W, Lim C-Y, Kim K, Hwang J, Chung SG. The relationships between low 
back pain and lumbar lordosis: a systematic review and meta-analysis. Spine 
J. 2017 Aug;17(8):1180–91.  

160.  Takeda N, Kobayashi T, Atsuta Y, Matsuno T, Shirado O, Minami A. Changes in 
the sagittal spinal alignment of the elderly without vertebral fractures: a 
minimum 10-year longitudinal study. J Orthop Sci. 2009 Nov;14(6):748–53.  

161.  Dionne CE, Dunn KM, Croft PR. Does back pain prevalence really decrease 
with increasing age? A systematic review. Age Ageing. 2006 May 1;35(3):229–
34.  

162.  Ohrt-Nissen S, Cheung JPY, Hallager DW, Gehrchen M, Kwan K, Dahl B, et al. 
Reproducibility of thoracic kyphosis measurements in patients with 
adolescent idiopathic scoliosis. Scoliosis Spinal Disord. 2017;12(1).  

163.  Kotwal S, Pumberger M, Hughes A, Girardi F. Degenerative Scoliosis: A 
Review. Vol. 7, HSS Journal. 2011. p. 257–64.  

164.  Loder RT, Urquhart  a, Steen H, Graziano G, Hensinger RN, Schlesinger  a, et 
al. Variability in Cobb angle measurements in children with congenital 
scoliosis. J Bone Joint Surg Br. 1995;77:768–70.  

165.  Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis 
radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am. 
1990;72(3):328–33.  

166.  Lee MC, Solomito M, Patel A. Supine magnetic resonance imaging cobb 
measurements for idiopathic scoliosis are linearly related to measurements 
from standing plain radiographs. Spine (Phila Pa 1976). 2013;38(11).  

167.  Tauchi R, Tsuji T, Cahill PJ, Flynn JM, Flynn JM, Glotzbecker M, et al. Reliability 
analysis of Cobb angle measurements of congenital scoliosis using X-ray and 
3D-CT images. Eur J Orthop Surg Traumatol. 2016;26(1):53–7.  

168.  Vavruch L, Tropp H. A Comparison of Cobb Angle: Standing Versus Supine 
Images of Late-onset Idiopathic Scoliosis. Polish J Radiol. 2016;81:270–6.  

169.  Moayyeri A, Soltani A, Tabari NK, Sadatsafavi M, Hossein-neghad A, Larijani B. 
Discordance in diagnosis of osteoporosis using spine and hip bone 
densitometry. BMC Endocr Disord. 2005 Dec 11;5(1):3.  

170.  Lo HC, Kuo DP, Chen YL. Impact of beverage consumption, age, and site 
dependency on dual energy X-ray absorptiometry (DEXA) measurements in 
perimenopausal women: A prospective study. Arch Med Sci. 
2017;13(5):1178–87.  

171.  El Maghraoui A, Mouinga Abayi DA, Rkain H, Mounach A. Discordance in 
Diagnosis of Osteoporosis Using Spine and Hip Bone Densitometry. J Clin 
Densitom. 2007;10(2):153–6.  

172.  Kanis JA, Glüer CC. An update on the diagnosis and assessment of 
osteoporosis with densitometry. Committee of Scientific Advisors, 
International Osteoporosis Foundation. Osteoporos Int. 2000;11(3):192–202.  

173.  Hay O, Dar G, Abbas J, Stein D, May H, Masharawi Y, et al. The lumbar 



330 
 

lordosis in males and females, revisited. PLoS One. 2015;10(8).  

 


