
OPTIMISATION

IN

MULTI-MODE SYSTEMS

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy

by

Mahmoud Mousa

June 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/161101863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Contents

Notations xi

Preface xv

Abstract xvii

Acknowledgements xix

1 Introduction 1

1.1 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hybrid Automata . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Multi-mode Systems . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Approximate Solution . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13

2.1 Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Introduction to Knapsack Problem . . . . . . . . . . . . . . 13

2.1.2 Types of Knapsack Problems . . . . . . . . . . . . . . . . . 14

Binary Decision Knapsack Problem . . . . . . . . . . . . . . 14

Linear Decision Knapsack Problem . . . . . . . . . . . . . . 15

Knapsack Problem in Multiple Dimensions . . . . . . . . . . 15

2.1.3 Knapsack Problem Algorithms . . . . . . . . . . . . . . . . . 15

Dynamic Programming Algorithm . . . . . . . . . . . . . . . 16

Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Time Complexity Classes . . . . . . . . . . . . . . . . . . . . 19

iii



2.2.2 Space Complexity Classes . . . . . . . . . . . . . . . . . . . 21

2.2.3 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Differential Dynamics . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Behaviour Linearisation . . . . . . . . . . . . . . . . . . . . 22

2.4 System Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Schedules and their Cost . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Optimisation in a Simple One Dimensional Multi-mode Systems 29

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Optimal Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Infinite Time Horizon . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Finite Time Horizon . . . . . . . . . . . . . . . . . . . . . . 32

3.3 NP-Completeness of Finite Time Horizon Optimal Control . . . . . 35

3.4 Optimal Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Integer Linear Programming Algorithm . . . . . . . . . . . . 37

3.5 Constant Factor Approximation Algorithm . . . . . . . . . . . . . . 37

3.6 FPTAS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.1 Dynamic Programming for 0-1 Knapsack . . . . . . . . . . . 40

3.6.2 FPTAS Approximation Algorithm . . . . . . . . . . . . . . . 41

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Optimisation in General One Dimensional Multi-mode Systems
without an idle mode 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Motivation Example . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Structure of Finite Control in One-dimension . . . . . . . . . . . . . 50

4.3.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Rearrange Operation . . . . . . . . . . . . . . . . . . . . . . 51

Shift Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52

Shift-down Operation . . . . . . . . . . . . . . . . . . . . . . 53

Wedge Operation . . . . . . . . . . . . . . . . . . . . . . . . 53

Resize Operation . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Transforming Schedules into Optimal Ones . . . . . . . . . . 58

4.4 Complexity of Optimal Control in One-dimension . . . . . . . . . . 68

4.4.1 Infinite Time Horizon . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Finite Time Horizon . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Approximate Optimal Control in One-Dimension . . . . . . . . . . 70

4.5.1 Constant Factor Approximation . . . . . . . . . . . . . . . . 70

4.5.2 FPTAS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 73

iv



FPTAS Other Cases . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Optimisation in Multiple Dimensional Multi-mode Systems 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 ε-safe Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Optimisation of Multiple dimensional Multi-mode Systems without
Discrete Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Complexity of Limit-safe and ε-safe Finite Control . . . . . . . . . . 86

5.5 Approximation Algorithms for the Multiple Dimensional Multi-mode
Systems with Discrete Costs . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Experiments, Comparisons and Results 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Testing with Normal Instances . . . . . . . . . . . . . . . . . . . . . 99

6.3 Testing with Hard Instances . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusions and Future Work 111

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 115

v





Illustrations

List of Figures

1.1 Hybrid system example. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linear hybrid system example. . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A finite schedule with its run. . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The finite schedule σ1 in example 2. . . . . . . . . . . . . . . . . . . . 26

2.3 The finite schedule σ2 in example 2. . . . . . . . . . . . . . . . . . . . 27

2.4 The infinite schedule σ3 in example 2. . . . . . . . . . . . . . . . . . . 27

3.1 Leaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 The ending pattern of an optimal schedule. . . . . . . . . . . . . . . . 32

3.3 Combining two incomplete leaps that results in one leap. . . . . . . . . 33

3.4 Combining two incomplete leaps that results in one leap plus an in-

complete leap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 An example for the reduction into 0-1 knapsack that results in an

FPTAS approximation with ε = 5%. The complete leaps of types 1

and 2 are shown in (a) and (b), respectively.The multiples and fractions

of the complete leap of type 1 is shown in (c) and (d), respectively.

The multiples and fractions of the complete leap of type 2 is shown in

(e) and (f), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Schedules that follow the form of the optimal schedule introduced in

Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Example of a schedule that violates the form of the optimal schedule

introduced in Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Rearrange operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Shift operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Shift-down operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Wedge operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 The 10 different possibilities for an optimal schedule’s head patterns . 59

4.8 The 10 different possibilities for an optimal schedule’s tail patterns . . 60

4.9 Shrink and stretch operations being applied to two up-up flexis. . . . 61

4.10 Shrink and stretch operations being applied to two up-down flexis. . . 62

4.11 The original safe-schedule. . . . . . . . . . . . . . . . . . . . . . . . . 62

4.12 The resulting safe-schedule after step 1. . . . . . . . . . . . . . . . . . 63

4.13 The resulting safe-schedule after step 2. . . . . . . . . . . . . . . . . . 63

vii



4.14 The resulting safe-schedule after step 3. . . . . . . . . . . . . . . . . . 63

4.15 The resulting safe-schedule after step 4. . . . . . . . . . . . . . . . . . 64

4.16 The resulting safe-schedule after step 5. . . . . . . . . . . . . . . . . . 64

4.17 The resulting safe-schedule after step 6. . . . . . . . . . . . . . . . . . 65

4.18 The resulting safe-schedule after step 7. . . . . . . . . . . . . . . . . . 65

4.19 The resulting safe-schedule after step 8. . . . . . . . . . . . . . . . . . 66

4.20 The resulting safe-schedule after step 9. . . . . . . . . . . . . . . . . . 66

4.21 The resulting safe-schedule after step 10. . . . . . . . . . . . . . . . . . 67

4.22 The resulting safe-schedule after step 11. . . . . . . . . . . . . . . . . . 67

4.23 The resulting optimal safe-schedule after step 12. . . . . . . . . . . . . 68

4.24 FPTAS case with up+down pattern for the head section and partial-

up+up+down for the tail section. . . . . . . . . . . . . . . . . . . . . . 75

4.25 FPTAS case with flat+up+down pattern for the head section and up

for the tail section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.26 FPTAS case with up+partial-down+down pattern for the head section

and up for the tail section. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.27 FPTAS case with empty pattern for the head section and partial-

up+down+up for the tail section. . . . . . . . . . . . . . . . . . . . . . 79

5.1 Example of MMS in multiple dimensions. . . . . . . . . . . . . . . . . 84

6.1 Average execution time in microsecond for the algorithms while testing

with normal knapsack instances . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Average relative errors for the approximate algorithms while testing

with normal knapsack instances . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Maximum relative errors for the approximate algorithms while testing

with normal knapsack instances . . . . . . . . . . . . . . . . . . . . . . 102

viii



List of Tables

2.1 A run of the dynamic programming algorithm. . . . . . . . . . . . . . 19

4.1 An example for the multi-mode one-dimensional system general case. . 48

6.1 Average running time (in seconds) for testing ILP algorithm with knap-

sack’s strongly correlated hard instances . . . . . . . . . . . . . . . . . 103

6.2 Average running time (in seconds) for testing FPTAS algorithm (ε =

0.1) with knapsack’s strongly correlated hard instances . . . . . . . . . 104

6.3 Average running time (in seconds) for testing ILP algorithm with knap-

sack’s uncorrelated hard instances . . . . . . . . . . . . . . . . . . . . 105

6.4 Average running time (in seconds) for testing FPTAS algorithm (ε =

0.1) with knapsack’s uncorrelated hard instances . . . . . . . . . . . . 106

6.5 Average running time (in seconds) for testing ILP algorithm with knap-

sack’s weakly correlated hard instances . . . . . . . . . . . . . . . . . . 107

6.6 Average running time (in seconds) for testing FPTAS algorithm (ε =

0.1) with knapsack’s weakly correlated hard instances . . . . . . . . . 108

6.7 Average running time (in seconds) for tests with knapsack’s hard in-

stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ix





Notations

The following notations and abbreviations are found throughout this thesis:

Symbol Description

A hybrid automaton

Ẋ the first first derivative of the variables denoted by the set X

xi the ith variable that belongs to the set of variables X

V control modes vertices

E control switches edges

init(v)
initial condition predicate of a hybrid automaton A for control

mode v ∈ V

inv(v)
invariant condition predicate of a hybrid automaton A for control

mode v ∈ V

flow(v)
flow condition predicate of a hybrid automaton A for control mode

v ∈ V
Σ finite set of Events of a hybrid automaton A
E finite set of control switchs of a hybrid automaton A

jump(e)
jump condition predicate for control switch e ∈ E of a hybrid au-

tomaton A
◦C degree celsius
◦C/h degree celsius per hour

n the total number of items in a knapsack problem

wi the weight of the ith item in the input set of a knapsack problem

pi the profit of the ith item in the input set of a knapsack problem

c the capacity of a knapsack problem

Z the set of integer numbers

Z+ the set of positive integer numbers

R the set of real numbers

R+ the set of positive real numbers

xi



Symbol Description

Zj(d)
the optimal solution value for the knapsack subset of j ≤ n items

and a capacity of d ≤ c

Zi−1(d)
the optimal solution value for the knapsack subset of j − 1 items

and a capacity of d ≤ c

Z∗
the overall optimal solution for a knapsack with set of n items and

a capacity of c

ZG the greedy approximation soluton for a knapsack problem

OPT (x) the optimal cost for the input x

ρ the relative performance ratio

O the complexity of

ε the FPTAS precision value

V (t) the function describing the temperature in a room at time t

V0 the initial temperature in a room

Vmin the lower bound of the comfort zone

Vmax the hidher bound of the comfort zone

C the thermal capacity of a room

kJ/K kilojoules per kelvin

Q the heat input rate of a heater

kW kilowatt

λ the thermal conductance between a room and the ambient air

kW/K kilowatt per kelvin

Q>0 the set of positive rational numbers

Q<0 the set of negative rational numbers

0N an N -dimensional vector with all entries equal to 0

1N an N -dimensional vector with all entries equal to 1

‖v‖ the ∞-norm for a vector v (i.e. the maximum coordinate in v)

M finite set of modes

m a mode that belongs to M

N
number of continuous variables in the system (number of dimen-

sions)

A the slope of all the variables in a given mode

πc the cost per time unit spent in a given mode

πd the cost of switching to a given mode

QN a vector of N rational numbers

RN a vector of N natural numbers

xii



Symbol Description

S the safe set

tmax the horizotal time boundary

£ Great Britain Pound

£/h pounds per hour

σ a schedule

π(σ) the total cost of the finite schedule σ

πavg(σ) the average cost of the infinite schedule σ

∆ti the time duration of a complete leap of type i ∈M
∆πi the cost of a complete leap of type i ∈M
πe(i) the effective continuous cost rate per time unit of using mode i

ni∆ti all leaps, including the incomplete one

o(n, v)

the minimal knapsack weight that yields value v using subset of

items {1, .., n} where vn represents the item cost and wn is the item

weight

c∗ the α-approximation solution

o∗ the optimal solution

VΣ the value of all items in a multiset

M+ the set of up modes

M− the set of down modes

M0 the set of flat modes

∆tm,m′ the time duration of a leap of type (m,m′) ∈M+ ×M−

∆πm,m′ the cost of a leap of type (m,m′) ∈M+ ×M−

τ sequence of timed actions

∅ empty set

m− a mode that belongs to the down modes set

Vend the ending temperature of a finite schedule

tjm
the time we use the mode m in the jth switch in an abstracted

schedule

smax maximum number of discrete switchings in an abstracted schedule

T the average execution time

e the average error

xiii



Abbreviations Description

HVAC Heating, Ventilation and Air-conditioning system

FPTAS fully polynomial time approximation scheme

TRNSYS TRaNsient SYstems Simulation Program

IBPT International Building Physics Toolbox

min minimise

max maximise

KP Knapsack Problem

UKP Unbounded Knapsack Problem

PTAS Polynomial-time approximation scheme

TM Turing machine

PTIME polynomial time

NP non-deterministic polynomial time

NEXPTIME non-deterministic exponential time

Pspace polynomial space

LogSpace logarithmic space

BMS bounded rate multi-mode systems

MPC model predictive control

LP linear programming

ILP integer linear programming

poly Polynomially

xiv



Preface

This thesis expands and extends two published conference papers. These papers

are

1. Mahmoud A. A. Mousa, Sven Schewe, and Dominik Wojtczak. Optimal

Control for Simple Linear Hybrid Systems. In Proc. of TIME, pages 12–20.

IEEE Computer Society, 2016.

2. Mahmoud A. A. Mousa, Sven Schewe, and Dominik Wojtczak. Optimal

Control for Multi-Mode Systems with Discrete Costs. In Proc. of FOR-

MATS, pages 77-96. Springer, 2017.

We have been invited to submit an extended version of the TIME’s paper

into a special issue of a high ranked journal ”Journal of Logical and Algebraic

Methods in Programming”. The journal paper is still under review. We’re writing

two other papers. The first one is a tool paper that describes the tool we have

designed to produce approximation solutions for the optimisation in the multi-

mode multi-dimension systems with discrete costs. The other paper is an overall

journal paper that studies all the cases of optimisation in Multi-mode systems

with discrete costs.

xv





Abstract

We study cost optimisation in multi-mode systems with discrete costs. We first

solve the problem in one dimension and next we study it in multiple dimensions. As

a motivating example, we study the temperature control in buildings using heating,

ventilation and air-conditioning system HVAC while paying the minimal cost as

possible. By optimising the behaviour of the HVAC systems, lots of energy could

be saved. We are interested in finding optimal solutions as well as approximate

solutions with guarantees.

The optimisation problem in one dimensional multi-mode systems with dis-

crete costs –which is a simple subclass of linear hybrid systems– consists of one

continuous variable and global constraints. Each state has a continuous cost at-

tached to it, which is linear in the sojourn time, while a discrete cost is attached

to each transition taken. We study the cost minimisation for multi-mode single

dimension system with and without an idle mode. We show the corresponding

decision problem with finite time horizon to be NP-complete while the infinite

time horizon problem is in LogSpace. We search for optimal safe schedules if the

safe region is defined by the hyperrectangle bounded by Vmin and Vmax. For the

optimisation problem with an idle mode which is a cost free mode where all heaters

are turned off, we can use the idle mode to decrease the room’s temperature and

can switch heaters on to increase the room’s temperature. This implies that we

pay two types of costs (discrete and continuous) to heat the room up using heaters

and pay nothing to cool it down using the idle mode. We present a pattern of the

optimal schedules that has to end with Vmin and contains the lowest number of

switches between a heating mode and an idle mode. We use this pattern to model

the problem using the integer linear programming and hence provide an optimal

solution. We also develop a two-approximation algorithm as well as an FPTAS

to find an approximate solution. We provide a Java implementation that finds an

optimal solution as well as an approximate one. We show that, for multi-mode

systems with small number of modes, the optimal integer programming algorithm

as well as the FPTAS approximation algorithm run quickly and give the exact

optimal schedule or one which is very close to optimal (in the case of using the

xvii



FPTAS approximation algorithm), respectively. In all other instances, the con-

stant factor approximation algorithm is the best choice, as it runs really quickly

and most of the time gives a near-optimal solution.

We study also the optimisation problem in multi-mode single dimension sys-

tems without the idle mode where we may use coolers/air-conditioners to cool the

room down. So, any mode is allowed and all the modes may have costs. Now, for

the system without the idle mode, we show that its infinite time horizon version

is still in LogSpace. For its finite time horizon version, we show that the pattern

for the optimal finite schedules that was introduced in the idle mode systems is

not producing the minimal cost. We show that the pattern of an optimal schedule

can be one out of 44 possibilities. We present cost non-increasing operations that

transform any safe schedule to the optimal shape. Based on this, we propose FP-

TAS approximation as well as a 3-approximation algorithm that runs in O(|A|7)

time. We prove that the optimisation problem still NP-hard.

Then, we study optimal control in multi-mode multi-dimension systems with

discrete costs. We prove that the optimal safe schedule may not exist. This prob-

lem may occur if the initial point lies on the safe boundaries and there is no mode

that can be used to get rid of the boundary and preserves the safety constrains.

We present a solution for this problem by permitting ε-safety deviation where the

safety boundaries are extended from Vmin and Vmax to (Vmin − ε) and (Vmax + ε).

We show that if a limit-safe abstract schedule exists in A, then there exists one of

exponential length and it can be constructed in polynomial time. We also show

that finding an optimal limit-safe abstract schedule in A can be done in nonde-

terministic exponential time. Next, we show that if a limit-safe abstract schedule

exists, then finding an ε-safe ε-optimal strategy can be done in deterministic poly-

nomial space and propose an algorithm to find it. We present ε-safe ε-optimal

approximation algorithm that permits adding as many timed actions for modes

that do not have discrete costs while limiting the number of timed actions that

use modes with discrete costs.

xviii



Acknowledgements

I would like to thank my supervisors Dominik Wojtczak and Sven Schewe for their

help and guidance along my study.

I would like to thank my parents and all my family for their support and

encouragement.

I would like to thank my small family: my wife Esraa, my daughter Lara and

my little baby Tmara for giving my life a meaning and without them I would not

be able to continue fighting for better life.

I would like to thank my examiners for accepting to evaluate my thesis.

xix





Chapter 1

Introduction

This chapter introduces the optimisation problem in multi-mode systems with dis-

crete costs which are a special kind of hybrid systems. This problem is motivated

by the minimisation of the average cost being paid in the indoor temperature

control systems using HVAC systems. We show how to find for them optimal so-

lutions and approximate solutions with guarantees. Since HVAC systems account

for about 50% of the total energy cost in buildings [48], a lot of energy can be

saved by optimising their control. Next, we briefly mention the related work in the

area of hybrid systems, multi-mode systems (specially regarding the reachability

problem and its decidability) and the minimisation of energy usage in temperature

control systems. Finally, the main contributions as well as a summary for each

chapter is given.

1.1 Hybrid Systems

Hybrid systems [4, 5, 29] are systems that contain both discrete and continuous

behaviour. The discrete part represents the states and the continuous part is the

switching behaviour between these states. Then switching behaviour depends on

the system dynamics and in most cases is usually an ordinary differential equation.

In our work, we study a special case of hybrid systems which is the linear hybrid

systems where the switching behaviour is represented by linear functions. Hybrid

systems can be modeled as hybrid automata [5] with variables that change its

values continuously with time.

1.1.1 Hybrid Automata

As shown by Alur-Henzinger in [5], a hybrid automaton A is shown as follows. (i)

n-real variables X = {x1 . . . xn} where n represents the number of variables or in

1



Chapter 1. Introduction 2

other words it refers to the number of dimensions in the multi-dimension system.

The first derivative of the variables denoted using the dotted form Ẋ = {ẋ1 . . . ẋn}
while the prime formX ′ = {x′1 . . . x′n} represents the discrete values of the variables

in which the switches take place. (ii) A finite multigraph (V,E) of control modes

vertices V and control switches edges E. (iii) A finite set of events.

For the multigraph, there exist three labeling functions init(v), inv(v), and

flow(v) for each control mode v ∈ V . The first two functions init(v) and inv(v)

represent the initial condition predicate and the invariant condition predicate re-

spectively where those free variables belong to the set X. The last function flow(v)

is the flow condition predicate with free variables belong to the union between the

continuous variables and its discrete values at the switches X ∪X ′. For each con-

trol switch e there exist a labeling function for edges jump(e) which represents the

jump condition predicate with free variables from X ∪X ′. For each control switch

e ∈ E there exist a function that assign an event from a finite set of Events Σ to

the control switch using an edge labeling function event: E → Σ.

Figure 1.1 shows an example of a hybrid automaton with one continuous vari-

able and ordinary differential equation transition behaviour. It represent a tem-

perature control system where there exists a heater that can be either on or off.

The system has one continuous variable x which represents the room tempera-

ture and the aim is to maintain the room temperature between 18◦C and 22◦C.

The temperature of the room is modeled by ẋ = 5 − 0.1x when the heater is on.

When the heater is turned off, the temperature inside the room changes as follows

ẋ = −0.1x. The invariant conditions are x ≥ 18 and x ≤ 22◦C for the off and

on states, respectively. The guard transition from the off state to the on state is

x < 19◦C while it is x > 21◦C the other way around. The initial state shown is

x = 20◦C.

Figure 1.2 shows another example for the temperature control system explained

in Figure 1.1 but with a linear transition behaviour where the room will be heated

with the rate of 4◦C/h when the heater is on and cooled with the rate of 2◦C/h

when the heater is off. This is an example of a linear hybrid system.

ẋ = −0.1x

OFF ON

ẋ = 5− 0.1x

x ≥ 18 x ≤ 22

x < 19

x > 21

x = 20

Figure 1.1: Hybrid system example.



Chapter 1. Introduction 3

ẋ = −2

OFF ON

ẋ = 4

x ≥ 18 x ≤ 22

x < 19

x > 21

x = 20

Figure 1.2: Linear hybrid system example.

A particular subclass of hybrid automata is timed automata for which all the

variables have slope equal to 1 [6].

1.1.2 Multi-mode Systems

Multi-mode systems [9] are an important subclass of linear hybrid systems [4],

which consist of multiple continuous variables and global invariants for the values

that each variable is allowed to take during a run of the system. However, unlike

for the full linear hybrid systems model, multi-mode systems have no guards on

transitions and no local invariants. Examples of the multi-mode systems can

be seen as the systems that switch between finite number of operations such as

transistors or diodes (in electric systems) and switches (in hydraulic systems).

1.2 Problem Statement

We study multi-mode systems with discrete costs, which extend linear hybrid

systems by adding both continuous and discrete costs to states. Every time a

transition is taken (i.e. when the current state changes), the discrete cost assigned

to the target state is incurred. The continuous cost is the sum of the products of

the sojourn time in each state and the cost assigned to this state. Our aim is to

minimise the total cost over a finite-time horizon or a long-time average cost over

an infinite time horizon. The formal definition of all the terms are shown later in

Section 2.5.

1.2.1 Motivation

The motivation behind this work is to achieve the optimal control of heating,

ventilation, and air-conditioning (HVAC) systems. HVAC systems account for

about 50% of the total energy cost in buildings [48], so a lot of energy can be saved

by optimising their control. Many simulation programs have been developed to

analyse the influence of control on the performance of HVAC system components



Chapter 1. Introduction 4

such as TRNSYS [3], EnergyPlus [1], and the Matlab’s IBPT [2]. Our work has the

advantage over the existing control theory techniques that it provides guarantees.

Although the actual dynamics of a HVAC system is governed by linear differential

equations, one can argue [41, 43, 45] that constant rate dynamic, as in our model,

can approximate well such a behaviour. An example of such a model is shown in

Figure 1.2

1.2.2 Motivating Example

We optimise the usage of the HVAC systems to maintain the temperature of a

room –in single dimension system– or a finite number of rooms –in the multi-

dimension system– within a safe temperature range(s). We assume that we have

n heating/cooling modes. The heating modes correspond to the heaters behaviours

while the cooling modes reflect the idle mode or the air conditioners behaviours.

Each mode has an initial cost (discrete) which is paid every time we use the mode

and a running cost per unit time (continuous) which is paid as long as we use the

mode. We assume that the heating behaviours as well as the cooling behaviours

are linear.

We study the problem over finite and infinite time horizon. We are interested

in finding optimal safe schedules (if exist). We also find approximate solutions

with guarantees. We study the problem in theory as well as in practical. We

design a tool using Java and Gurobi that implements the suggested algorithms.

The main challenging problem is how to provide optimal safe schedules for sys-

tems with finite/infinite time horizon. We prove in Section 3.3 that this scheduling

problem is NP-complete which means that it is unlikely to be solved in polyno-

mial time. The way we prove it is by reducing this problem to the well known

knapsack problem. So, we introduce the main concept of the knapsack problem in

the Chapter 2.

1.3 Optimal Solution

We study optimal algorithms for the total cost minimisation problem in multi-

mode systems. As we will show in Section 3.3, the optimal solution can be found

in exponential time. Approximation algorithms with guarantees can be designed

so that they produce approximation solutions in polynomial time.



Chapter 1. Introduction 5

1.4 Approximate Solution

We study approximation algorithms for the total cost minimisation problem in

multi-mode systems. We say that an algorithm is a constant factor approximation

algorithm with a relative performance ρ iff, for all inputs x, the cost of the solution

that it computes, f(x), satisfies OPT (x) ≤ f(x) ≤ (1+ρ)·OPT (x), where OPT (x)

is the optimal cost for the input x.

We are particularly interested in polynomial-time approximation algorithms.

A polynomial-time approximation scheme (PTAS) is an algorithm that, for every

ρ > 0, runs in polynomial-time and has relative performance ρ. Note that the

running time of a PTAS may depend in an arbitrary way on ρ. Therefore, we

typically strive to find a fully polynomial-time approximation scheme (FPTAS),

which is an algorithm that runs in polynomial-time in the size of the input and

1/ρ. The 0-1 Knapsack problem is a well-known optimisations problem, which

possesses multiple FPTASes (see e.g. [32]).

1.5 Related Work

Our model can be viewed as weighted extension of the linear hybrid automata

model in [5, 29], but with global constraints.

In [5], Alur and Dill presented the theory of timed automata and how this can

be used to address the time behaviour of real time systems. They showed nice

properties for timed automata. For example, the time languages recognise the

non deterministic timed automata are closed under union and intersection but

not under complementation. On the other hand, the time languages recognise the

deterministic timed automata are closed under all the boolean operations.

The theory of hybrid automata was presented in [29]. Henzinger presented

the definition of hybrid automata which model real-time systems that contain

discrete behaviours. The paper demonstrated a temperature control example and

showed how this can be modelled as hybrid automaton. The composition of hybrid

automata was presented using multiplication of hybrid automata systems. The

author studied four main problems to achieve safety and liveness requirements.

These problems are the reachability problem, the emptiness problem, the time

trace inclusion problem and the time-abstract trace inclusion problem.

Even basic questions for the general linear hybrid automata model are unde-

cidable already for three variables and not known to be decidable for two variables

[11]. Most of the research for this model has focused on qualitative objectives

such as reachability. For hybrid systems, the reachability problem is one of the



Chapter 1. Introduction 6

most important problems that has been studied for the recent two decades until

now. It was shown before in [6] that the reachability problem for hybrid systems

is undecidable even for its very simple class known as linear hybrid systems. From

that time, researchers started studying sub-classes of hybrid systems with special

specifications and constraints that result in decidability. Most of these sub-classes

are still undecidable while other few sub-classes were shown to be decidable for

special constraints types. At the same time, these sub-classes became undecidable

if small changes are applied in the constraints or the continuous variables. Various

subclasses of hybrid systems with a decidable reachability problem were consid-

ered, see e.g. [11] for an overview. In particular, reachability in linear hybrid

systems, where the derivative of each variable in each state is constant, can be

shown to be decidable for one continuous variable by using the techniques from

[35]. In [6], it has been shown that reachability is decidable for timed automata.

In [9], Alur, Trivedi and Wojtczak studied the optimal scheduling for constant-

rate multi-mode systems where for every mode m and variable xi, the value of the

variable xi increases by Cm
i · t times after spending some time t in the mode m

where Cm
i represents the constant rate change of the variable xi while using the

mode m. They studied the safe schedulability and the safe reachability problems

by devising polynomial time algorithms to solve them. The work was extended to

solve the optimal schedulability problem of minimising the average cost of systems

with only continuous cost part for every mode but with no switching costs and only

for the infinite time horizon. The optimal schedulability problem with reachability

cost objective was proved to be decidable. This was done by proposing polynomial

time scheduling algorithms to find the schedules. Adding other constraints, except

the global ones, or guards with the mode switches makes the problem undecidable.

They studied the energy optimisation problem for HVAC systems as an applica-

tion. This was done with only continuous costs that are being paid per unit time

in multiple zones (dimensions). The aim was about minimising the average cost

being paid while keeping the temperature of the rooms within a comfort zone.

In [7, 8], Alur et al. studied the schedulability problem for bounded rate

multi-mode systems (BMS). The system permits free switches between the system

modes. Each mode is specified by a mode-dependant rates vector. The paper

presented the schedulability problem as a two-players game between the scheduler

and the environment. The game rule is that the scheduler suggests a mode and

a time while the other player (environment) selects the allowed mode rate which

changes the system sate within the safe set. The safe set was shown to be a closed

convex polytope. The problem of finding non-Zeno schedules for any arbitrary

starting state was proved to be decidable by introducing a winning strategy. Also,



Chapter 1. Introduction 7

the schedulability problem for the BMS was proved to be co-NP complete in gen-

eral and for the systems with only two variables can be solved in polynomial time.

In [13], the same nice theorems and algorithms regarding the safe reachability

problem and its decidability were presented for also the bounded rate multi-mode

systems but this time it is applied to the robotic motion planning problems.

In [52], the optimal control for linear-rate multi-mode systems was studied by

Wojtczak. He studied a hybrid automaton model, where the dynamics are gov-

erned by linear differential equations, but without switching costs and only with

an infinite time horizon. The author studied how power can be minimised in sys-

tem that use all the HVAC components to keep the rooms’ temperature inside a

building within a comfort zone. This paper studied the existence of safe controllers

that produce safe schedules with certain reachability and optimal objectives. The

author proposed polynomial time algorithms for producing safe schedules given

initial state within the interior set of the safe region. The optimisation problem

with continuous costs was also studied and as a result, the author suggested poly-

nomial time algorithms for finding the schedules with minimum average cost, peak

demand cost and a weighted sum between them. This papers shows that, for any

number of variables, a schedule with the optimal long-time average cost can be

computed in polynomial time.

In [15], long-time average and total cost games have been shown to be decidable

for hybrid automata with strong resets, in which all variables are reset to 0 after

each discrete transition. The long-time average and total cost optimisation for the

weighted timed automata model have been shown to be PSpace-complete (see

e.g. [14] for an overview). In [17], Brihaye et. al. studied the reachability problem

for hybrid automata over a bounded time which has a rational value. It was shown

that for rectangular hybrid automata that have only positive rates, the problem

is decidable while it is undecidable if both positive and negative rates are allowed.

In [23], optimising the energy consumption in buildings was presented by us-

ing statistical hybrid automata with the help of the UPPAAL [18] model checker.

In [36], Larsen et al. studied the statistical hybrid switched systems. As an

application, they suggested an online synthesis method for controlling the floor

temperature inside a house with multiple rooms. The reason of using online syn-

thesize instead of the off-line is that controlling a continuous variable results in

an uncountable state space, which is impossible to be explored, and even after

digitization, the sate space still huge and requires tons of searches to be explored.

The authors used the learning methods provided by the UPPAAL Stratego [24]

for small-scales systems while with industrial-scales models, the short term con-

trol strategies are applied iteratively while the author suggested a compositional



Chapter 1. Introduction 8

methodology to combine them. UPPAAL Stratego [24] supports the analysis of

the expected cost in linear hybrid systems, but uses a stochastic semantics of these

models [23, 25]. I.e. a control strategy induces a stochastic model where the time

delay in each state is uniformly or exponentially distributed. This is different to

the standard nondeterministic interpretation of the model, which we use in our

work.

In [43], Nghiem et al. studied the green scheduling for aggregate peak power re-

duction for systems with multiple zones. The authors didn’t consider any thermal

interactions between the building’s zones. The system behaviour was modelled

by ordinary differential equation. A solution for the aggregate peak reduction

problem was suggested using combinatorial optimisation to minimise the peak

constraint while ensuring the satisfaction of the safety constraints. Also, the lazy

scheduling was introduced to solve peak demand reduction problem by doing the

switching decisions only at the thresholds which make it efficient and scalable for

the systems with large number of modes. The same authors in [44] continued the

peak power demand reduction problem by providing a more accurate modelling

for the radiant systems. They extended the work to electric radiant floor heating

systems. They generated periodic schedules as a result of the reduction prob-

lem. A simulation was done in EnergyPlus for small-scale systems and Matlab

for large-scale systems. In [45], the work was extended again to address the effect

of the disturbances and being more appropriate for real applications. As a result

of taking the disturbance into account, periodic schedules can not be generated

any more and the authors presented an online state feedback scheduling strategy

to generate online schedules. The effectiveness measurements that were done for

the strategy using Matlab over a hydronic radiant system with 10-zones showed a

peak demand reduction ratio of 77.8% and a total energy consumption reduction

of 31.2%.

The peak electricity reduction was also studied in [46]. The authors used

the model predictive control (MPC) and real time pricing to reduce the peak

electricity demand in building climate control. In [37], On-Off optimal control was

considered for air conditioning and refrigeration. The drawback of using MPC is its

high computational complexity and the fact that it cannot provide any worst-case

guarantees.

1.6 Contributions

In [41], we proved that the optimisation in a single room system over a finite time

horizon is NP-Hard problem by having a reduction from a one dimension knapsack



Chapter 1. Introduction 9

problem which is known to be NP-hard. We studied a special case of the optimal

control for multi-mode systems with discrete cost in a single room with a simpli-

fying assumption. We assumed that an idle mode always exists to cool the room

down and it is cost free. We found optimal solution by modelling the system as an

integer programming problem. We also provided a constant factor approximation

algorithm (Two approximation) as well as a fully polynomial-time approximation

(FPTAS) algorithm to find approximation solutions with guarantees. We imple-

mented all the algorithms presented in [41] using Matlab software in order to run

some experiments. We run experiments over the knapsack strongly correlated hard

instances. The tests showed that the two approximation algorithm has the fastest

running time among the algorithms I suggest in Chapter 3 and always give an

answer and terminate. The FPTAS approximation suffers from time-out problem

especially when we consider hard problems with large time horizons and high num-

ber of modes (heaters). We also found that the integer programming algorithm

crashes due to memory management issues.

Later we submitted an extended journal version to study the same problem in

[41]. In this paper, we presented a fast FPTAS approximation algorithm. This

approximation algorithm uses a reduction to a 0-1 knapsack problem and an op-

timal dynamic programming algorithm to find solutions with guarantees with a

short running time. We also reimplemented all the algorithms in Java to solve the

crashing problem mentioned in [41]. We provided more tests with more datasets

and results to compare between the algorithms.

In [42], we extended the work done in [41] while dropping the simplifying

assumption about the existence of an idle mode and generalised the model to

multiple dimensions. We studied multi-mode multiple dimensional systems with

discrete costs, which extend linear hybrid systems by adding both continuous and

discrete costs to states. We considered a motivating example of controlling the

temperature in multiple rooms simultaneously using heaters and air conditioners.

In such a scenario, we might have different pleasant temperature ranges in differ-

ent rooms and the temperatures of the individual rooms may influence each other.

Naturally, controlling a multi-dimensional multi-mode systems is more complex

than controlling a one-dimensional multi-mode system. We showed that the op-

timal schedule may not exist. We developed a nondeterministic exponential time

algorithm for the construction of optimal control, whose complexity is only driven

by potentially required high precision in exponentially many mode switches. We

showed that allowing for an ε-deviation from the ranges of pleasant temperatures

reduces the complexity to PSpace. We provided more detailed analysis of the one-

dimensional setting, we showed that an optimal schedule always exist by defining



Chapter 1. Introduction 10

transformation operations that transform any schedule to the optimal one. We

managed to prove similar nice algorithmic properties as in [41], i.e. the existence

of finitely many patterns for optimal schedules, polynomial constant-factor ap-

proximation algorithm and an FPTAS. However, as opposed to the existence of a

unique pattern for an optimal schedule in [41], we showed that that there can be

44 different patterns when the simplifying assumption is dropped. Also, we used

the properties of the optimal schedules we proved to presented a constant-factor

approximation algorithm that requires O(n7) complexity, while in [41] it sufficed

to use one mode all the time and the algorithm ran in linear time.

Regarding the optimal control for multi-mode multi-dimension systems with

discrete costs as well as the continuous costs, we devised a ρ-approximate ε-safe

algorithm which uses the idea behind the greedy approximation technique.

1.7 Thesis Outline

• Chapter 2 contains a background information about knapsack problems and

complexity classes. It also contains the modelling of HVAC system as an

ordinary differential equation and the approximation of that model into a

linear one. The formal definition of the system as linear hybrid system is

also presented. It also introduces definitions of the terms that will be used

along the thesis.

• In Chapter 3, we study the optimisation in Multi-mode single dimension

systems with simplifying assumption. The optimisation problem in multi

mode systems would be simple if it is permitted to use a cost free idle

mode to cool the room down without paying money. We prove that the

optimisation problem is NP-hard by reduction from knapsack problem. We

introduce one of the optimal schedule forms. We use the optimal schedule

form we proved to design optimal algorithms using integer programming and

dynamic programming concepts. We also introduce the suggested approxi-

mation algorithms with guarantees such as two approximation and FPTAS

approximation algorithms.

• In Chapter 4, we study the optimisation in Multi-mode single dimension

systems without the simplifying assumption. We show the optimal schedule

form by introducing operations that transform any schedule to the optimal

one. We introduce the optimal algorithm and approximation algorithms with

guarantees –three approximation and FPTAS approximation– to solve the



Chapter 1. Introduction 11

optimisation problem for the general case without the simplifying assump-

tion.

• In Chapter 5, we study the optimisation in multi-mode multi-dimension

systems. We prove by an example that the optimal schedule may not exist.

The chapter also contains the non-deterministic exponential time algorithm

for the construction of optimal control and the approximation algorithm

when ε deviation is enabled.

• In Chapter 6, We test the algorithms presented in Chapter 3 only for the

multi-mode single dimension systems with a simplifying assumption. We

do tests for normal and hard knapsack instances. We compare between the

optimal and approximation algorithms with respect to the average execution

time and the percentage error for different situations.

• In Chapter 7, we conclude our work and discuss the future work.





Chapter 2

Preliminaries

As the minimisation problem we study can be reduced to a Knapsack problem

which will be shown in Chapter 3, this chapter introduces the knapsack problem.

We presents different types of the Knapsack problem as well as different algorithms

to solve them by either producing the optimal solution or an approximate one. The

algorithms’ complexity classes are also presented in Section 2.2.

Furthermore, Section 2.3 introduces the model of the motivating example we

used for the multi-mode systems with continuous and discrete cost. The exam-

ple being addressed studies optimising the usage of heating ventilation and air-

conditioning (HVAC) systems while maintaining the temperature of the room(s)

within a comfort zone. We are interested in the heating behaviour of the HVAC

systems. So, the dynamics of the system are modelled as an ordinary differential

equation. For narrow comfort zones, it is sufficient to use linear approximations

instead of using linear differential equations. Hence, we introduce a behaviour

linearisation which describes the room temperature inside the comfort zone. Now,

the room temperature is described by a linear (continuous) equation bounded by

two discrete values (the comfort zone boundaries) which can be formally defined

as linear hybrid system as shown in Section 2.4.

In Section 2.5, we present main terms and their definitions –supported by

demonstration examples– that are used to express schedules. The main concepts

for calculating the schedule’s average cost are also shown.

2.1 Knapsack Problem

2.1.1 Introduction to Knapsack Problem

Knapsack problem has been studied for solving the optimisation problems with

maximisation desires. The knapsack problem definition was introduced in 1896 by

13



Chapter 2. Preliminaries 14

Mathews in [39]. Mathews showed that the knapsack problem is solvable by doing

a reduction from the integer linear programming so, he showed that the Knapsack

problem is the same hardness as the integer programming problems. This was

done by combining several constraints together into one constraint.

Knapsack problem can be applied to financial and marketing problems. Con-

sider daily-life situation in which a person is doing shopping and the aim is to

buy the largest number of items from a list he/she can while being constrained

by a budget limit. So, the person wants to maximise the number of items he/she

could buy (called the objective) while not exceeding the budget limit (called the

constraint). This can be represented as a 0-1 Knapsack problem such that the

objective function is

max
∑
i≤n

xi

where xi ∈ {0, 1} represents whether the item i is selected (if xi = 1) or not –

otherwise– and n ∈ Z+ is the number of the items inside the list and the constrain

is ∑
i≤n

xiwi ≤ c

where c > 0 is the budget limit and wi represents the price of item i. Such

instances can be solved using integer programming [22, 49].

2.1.2 Types of Knapsack Problems

Suppose that we have n items where each item j ≤ n has a weight of wj > 0 and

a profit pj ≥ 0. The aim is to pack a subset of the set N = {1, . . . , n} inside a

knapsack with capacity value c that maximises the profit. The knapsack problem

can be classified according to the decision problem into binary decision knapsack

problem, linear decision knapsack problem and quadratic decision knapsack prob-

lem. In our work, we are interested only in binary and linear decision problems.

A short descriptions are now presented for these two decision problems [32].

Binary Decision Knapsack Problem

The simplest decision with the knapsack problem is the binary decision. It is known

also as 0-1 knapsack problem. Each item j has a decision variable xj ∈ {0, 1}.
When xj = 1, it means that the item j will be added to the knapsack. On the

other hand, when xj = 0, it means that the item j will be rejected as there are

better alternatives to be added instead. The problem can be modeled as integer

programming problem with two decision values 0 or 1 as follows:



Chapter 2. Preliminaries 15

maximise

n∑
j=1

pjxj (2.1)

subject to

n∑
j=1

wjxj ≤ c (2.2)

xj ∈ {0, 1}, j = 1, . . . , n (2.3)

The equation 2.1 contains the objective function
n∑
j=1

pjxj with a maximisation

desire while the equation 2.2 represents the constraint that does not allow the

solution to exceed the capacity c.

Linear Decision Knapsack Problem

The knapsack problem can also be modelled as linear decision problem where the

decision variables shown in equation 2.3 are as follows.

xj ≥ 0, xj ∈ R+, j = 1, . . . , n (2.4)

If the xj variables are more to be positive integers (i.e. xj ∈ Z+), then the

knapsack problem is called unbounded knapsack problem (UKP) and if variables

are bounded (xj ∈ {0, . . . ,m},m ∈ Z+), then the problem is called the bounded

knapsack problem (BKP).

Knapsack Problem in Multiple Dimensions

The decision knapsack problem is defined in k-dimensional system as maximisation

of an function with k− linear constrains. The simplest form is shown as follows:

Maximise
n∑
j=1

pjxj

Subject to

n∑
j=1

wijxj ≤ ci ,∀i ≤ k, xj ∈ {0, 1}, j = 1, . . . , n

(2.5)

2.1.3 Knapsack Problem Algorithms

The decision version of the knapsack problem is NP-complete while its optimi-

sation version which searches for the exactly for the optimal solution is NP-hard

[31]. So, it is unlikely that there is a polynomial time algorithm that gives the



Chapter 2. Preliminaries 16

optimal solution for the knapsack problem. The optimal solution can be com-

puted by formulating the knapsack problem as a linear programming problem and

solving it using one of the well known optimisers such as Gurobi[28], CPLEX [38]

or the optimisation toolbox provided by MATLAB [16]. In this section, we intro-

duce the dynamic programming based algorithm to solve the knapsack problem

optimally. We also introduce the greedy approximation algorithm that produces

approximation solutions in polynomial time.

Dynamic Programming Algorithm

The concept of dynamic programming [12, 32] is to solve the required problem

over small subsets of the input datasets and iteratively extend the solution step

by step to consider all the dataset and hence produce the global optimal solution.

The dynamic programming concept can be applied to the Knapsack optimisation

problem by starting with the case of finding an optimal set that can be selected

from initial input set that contains only one item. In this case, the optimal solution

is trivial. The optimal set contains the item if its weight is smaller than or equal

to the problem capacity (i.e. the item is fitted into the knapsack) while it contains

nothing otherwise. Iteratively, new items are added and the new optimal set is

computed based on the knowledge of the old optimal set and the details about the

new added item. As long as there is an item left to be considered, the algorithm

checks whether the latest optimal value can be enhanced or not by using the new

item. The algorithm keeps adding items until all the items are considered and

hence the algorithm terminates and returns the optimal solution.

To do that, let us define sub-problems of the main Knapsack problem that

consist the set of item {1, . . . , i} and capacity of 0 ≤ d ≤ c which means that we

are going to solve the optimisation problem over smaller item sets constrained by

smaller capacities. This can be seen as a two dimension array of n columns, where

the column index corresponds to the number of items, and c rows ,where the row

index represents the capacity. A cell indexed by (x, y) inside the two dimension

array contains the optimal solution for the knapsack problem over the first y items

from the overall item set constrained by the capacity equal to x.

Let Zj(d) be the optimal solution value for subset of j items while Zj−1(d) is

the optimal solution value for the subset of (j−1) items for a knapsack of capacity

d. Initially, Zj−1(d) is initialized to zeros for all capacities 0 ≤ d ≤ c. The optimal

solution value Zj(d) can be computed as shown in the following recursive equation



Chapter 2. Preliminaries 17

while the algorithm is presented in Algorithm 1 with a complexity of O(cn).

Zj(d) =

Zj−1(d) if d < wj

max{Zj−1(d), Zj−1(d− wj) + pj} if d ≥ wj

Algorithm 1 Dynamic programming algorithm computing the optimal solution
for the 0-1 Knapsack problem [32].

Input: Set of items {1, . . . , n}, items’ weights and profits wj and pj, respectively
where j ∈ {1, . . . , n} and the budget limit c.

Output: The optimal solution Z∗.
1: for d := 0 to c do
2: Z0(d) = 0
3: end for
4: for j := 1 to n do
5: for d := 0 to wj−1 do
6: Zj(d) = Zj−1(d)
7: end for
8: for d := wj to c do
9: if Zj−1(d− wj) + pj > Zj−1(d) then

10: Zj(d) = Zj−1(d− wj) + pj
11: else
12: Zj(d) = Zj−1(d)
13: end if
14: end for
15: end for
16: return the overall optimal solution Z∗ = Zn(c).

Greedy Algorithm

The idea for a greedy algorithm is to pack the items with the highest profit per

weight which means that we select the most precious items that can be fitted

into small space. The greedy algorithm generates an approximate solution in

polynomial time. The greedy algorithm for the 0-1 Knapsack problem is shown

by Algorithm 2. A pre-processing stage is to sort the items according to the profit

per weight value such that

p1

w1

≥ p2

w2

≥ . . . ≥ pn
wn

and start packing items with the highest profit per weight values. The packing

operation is done item by item and after the addition of every item, we calculate

the remaining knapsack capacity by subtracting the item weight from the origi-

nal/latest capacity. The item can be packed if and only if it can be fitted inside



Chapter 2. Preliminaries 18

the knapsack which means that its weight is smaller than the remaining capacity.

Algorithm 2 Greedy algorithm for the 0-1 Knapsack problem [32].

Input: Set of items {1, . . . , n}, items’ weights and profits wj and pj, respectively
where j ∈ {1, . . . , n} and the budget limit c.

Output: The approximate solution ZG.
1: w := 0; ZG := 0;
2: for j := 1 to n do
3: if w + wj ≤ c then
4: xj := 1
5: w := w + wj
6: ZG := ZG + pj
7: else
8: xj := 0
9: end if

10: end for
11: return the solution ZG corresponding to the item set {j|xj = 1}.

Example 2.1. Suppose that we are given a knapsack problem with three items.

The weight and profit for each item are as follows {(2, 6), (3, 8), (1, 1)}. The items

are sorted according to the profit per weight values as the values of the profit per

weight are 3, 22
3

and 1, respectively. If the knapsack capacity is c = 4, the optimal

value computed from the run of the dynamic programming method shown in Table

2.1 is 9 by selecting the second and the third items while the greedy algorithm

selects the first and the third items with a total profit of 7. After selecting the first

item, the remaining knapsack capacity is 4 − 2 = 2 which is not enough to pack

the second item with a weight of 3.

2.2 Complexity Classes

The complexity class is the set of problems that are solved by O(f(n)) of resource

R using an abstract machine M where n represents the input size dataset of the a

given problem. The complexity classes study the rate of growth of the resources

needed if the input size n is increased. If the execution of the algorithm does not

depend on the input size n, the value f(n) is constant while it can be polynomial,

exponential or logarithmic for other algorithms that depend on the input size.

The resource R can be time/CPU (for time complexity) or memory (for space

complexity). So, we are going to briefly present some of the complexity classes we

will mention during the thesis.



Chapter 2. Preliminaries 19

d \j 0 1 2 3

0 0 0 0 0

1 0 0 0 1

2 0 6 6 6

3 0 6 8 8

4 0 6 8 9

Table 2.1: Dynamic programming solution for the Knapsack problem with
n = 3 items and capacity c = 4. The first row represents the number of items
while the first column denotes the capacities for each knapsack sub-problem.

2.2.1 Time Complexity Classes

• P or PTIME. It stands for polynomial time complexity class. It is the

complexity class that contains the decision problems which are solvable by

a deterministic Turing machine (TM) in polynomial time.

Example. Finding the greatest common factor of two integer inputs gcd(x, y)

is in P-complexity class.

• NP. It stands for non-deterministic polynomial time complexity class which

contains the decision problems that are verifiable by deterministic com-

putations in polynomial time, and solvable in polynomial tine using non-

deterministic turning machine (non-deterministic TM). NP is a generalisa-

tion of P class which means that all the problems in P are also in NP.

Example. An example of problem in NP is the integer factorization problem

which studies the existence of a factor f such that 1 < f < k, and f divides n

where n ∈ Z and k ∈ Z [34, 50]. The reason of why the integer factorization

problem is not in P-complexity class is that until now, there is no polynomial

time algorithm suggested or proved to factorizes a number given in binary

of size (m-bit) in time O(mk) for some constant k.

• Co-NP. We say that a decision problem P1 is in Co-NP if the complement

of that problem P1 is in NP. This implies that the instances that result

in no answers can be accepted using a non-deterministic turing machine



Chapter 2. Preliminaries 20

in polynomial time. The P-complexity class is a subset of NP and Co-NP

complexity classes [27, 30].

• NP-hard. It stands for non-deterministic polynomial time hardness. A

problem P1 is NP-hard if from every problem in NP, there exists a polyno-

mial time reduction to the problem P1. So, we say that P1 is NP-hard if

it is at least as hard as the hardest problem in NP.

Examples

– Optimisation problems such as the optimisation version of the knapsack

problem are considered as NP-hard problems. For these problems, the

optimal solution can not be obtained in polynomial time but approxi-

mation solutions with constant approximation ratios can be computed

in polynomial time.

– The halting problem ,which studies the termination of any arbitrary

computer program with a given input, is an example which is NP-

hard but not the NP-complete [20].

• NP-complete. It refers to the set of decision problems that belong to

NP and NP-hard complexity classes at the same time. It means that a

solution can be verified in polynomial time. A decision problem P1 is NP-

complete if it is in NP and there exist a polynomial time reduction from a

well-known NP-complete problem to the problem P1. The concept of the

NP-completeness was introduced in 1971 by Cook-Levin theorem [21].

Examples of NP-completer problems are

– Boolean satisfiability problem (SAT) [21].

– Knapsack problem [31].

– Travelling salesman problem [47].

– Vertex Cover problem [33].

– Subset sum problem [33].

For the NP-complete problems, the required time to solve them grows

rapidly while increasing the problem size n. So, researchers usually propose

heuristic based methods or approximation algorithms to solve these problems

faster (polynomial time approximations are preferred).

• PTAS. It stands for polynomial-time approximation scheme. A PTAS com-

plexity class always refers to approximation algorithms of the optimisation



Chapter 2. Preliminaries 21

problems (NP-Complete and NP-hard problems). For a given precision

value ε > 0, the PTAS algorithm computes an approximation solution in

polynomial time with a ratio of (1− ε) for maximisation problems or (1 + ε)

for minimisation problems. This time complexity for the PTAS algorithms

is polynomial in the problem size n in the form of O(nc) where c may depend

on ε [10].

• FPTAS. It stands for fully polynomial time approximation scheme. The

FPTAS class is a subset of the PTAS class. A problem P1 is in FPTAS if

it is in PTAS and the algorithm complexity is polynomial in both the size

of the problem n and 1
ε
.

Not all the NP-hard problems have FPTAS approximations but at least we

know from [51] that there exist an FPTAS approximation for the knapsack

problem.

• NEXPTIME. It stands for non-deterministic exponential time. A problem

P1 is in NEXPTIME if it can be solved by a non-deterministic Turing

machine in exponential time in the form of 2n
O(1)

.

2.2.2 Space Complexity Classes

• Pspace. It stands for polynomial size. It contains the set of the problems

that can be solved using Turing machine using polynomial amount of storage

size.

• LogSpace. It stands for logarithmic space. It contains the decision prob-

lems that are solvable using deterministic Turing machine using logarithmic

amount of storage size [19].

2.2.3 Reductions

Reduction is a technique that is used to map unknown problem X to its com-

plexity class by reducing the unknown problem X to the form of one of the class

well-known problems Y . This is known as a reduction from X to Y . Hence, we

conclude that the problem X can not be harder than the problem Y . The mapping

procedure from a problem to another is performed using a turing machine com-

putable function. We say that it is a polynomial time reduction if the complexity

of the mapping function is O(poly(problem size)).



Chapter 2. Preliminaries 22

2.3 System Dynamics

This section presents the system’s dynamics as ordinary differential equation and

builds an approximated linearised model which is suitable for our work.

2.3.1 Differential Dynamics

Let V (t) be the function describing the temperature in the room at time t and

V (0) = V0 be the initial temperature satisfying Vmin ≤ V0 ≤ Vmax. The equation

below, taken from [43, 45], describes the change of temperature in a room with

one heater:

C
dT

dt
+ λV = Q

where C is the thermal capacity of the room (kJ/K), λ is the thermal conductance

between the room and the ambient air (kW/K), and Q is the heat input rate of

the heater (kW). If the heater is switched off then Q = 0.

Solving this first order differential equation gives us the following formula for

V (t).

V (t) =
Q

λ
+

(
V0 −

Q

λ

)
e−

λ
C
t

We can write down this equation as:

V (t) = K1e
at +K2

where K1 = V0 − Q
λ

, K2 = Q
λ

, and a = − λ
C

. So, the temperature inside a room

is described by an exponential equation which is hard to analyse. Under some

conditions which are satisfied in our system, the exponential equation can be

approximated as a linear one. This is shown next.

2.3.2 Behaviour Linearisation

Under the natural assumptions that the heater output is much higher than the

heat loss and the comfort zone is quite narrow, this exponential behaviour can

be approximated well by a linear behaviour. This is because the slope of V (t) at

t = 0 is aK1 and the most extreme value of the slope of V (t) before the boundary

of the comfort zone is reached is aK1(1 + (Vmax − Vmin)/K1).

So, the temperature inside a room heated by a heater can is governed by the

following linear equation:

V (t) = At+ V0



Chapter 2. Preliminaries 23

where A represents the slope of the linear equation. The slope A represents the

heater heating rate with positive value A ∈ Q>0 when the heater is operating

(ON). On the other hand, when the heater is not functional (OFF), the room will

be cooled down due to the difference between temperatures inside and outside the

room. Now, the slope A represents the room cooling rate with a negative value

A ∈ Q<0. The main goal is to maintain the temperature inside the comfort zone

bounded by Vmin and Vmax, which are discrete states, while temperature inside

the zone is described by a continuous linear equation. Because the linear hybrid

system consists of discrete states with linear behaviours between the states, the

system can be defined as linear hybrid automata as shown later in Section 2.4.

2.4 System Formalisation

2.4.1 Preliminaries

Let 0N and 1N be N -dimensional vectors with all entries equal to 0 and 1, respec-

tively. By R≥0 and Q≥0 we denote the sets of all non-negative real and rational

numbers, respectively. We assume that 0 · ∞ = ∞ · 0 = 0. For a vector v, let

‖v‖ be its ∞-norm (i.e. the maximum coordinate in v). We write v1 ≤ v2 if ev-

ery coordinate vector of vector v1 is smaller than or equal to the corresponding

coordinate in vector v2, and v1 < v2 if, additionally, v1 6= v2 holds.

2.4.2 Formal Definition

Motivated by our application of keeping temperature in single/multiple room(s)

within comfortable range, we restrict ourselves to safe sets being hyperrectangles,

which can be specified by giving its two extreme corner points. A multi-mode

system with discrete costs, A, henceforth referred to simply as multi-mode system,

is formally defined as a tuple A = (M,N,A, πc, πd, Vmin, Vmax, V0) where:

• M is a finite set of modes {0 . . . |M | − 1}.

• N ≥ 1 is the number of continuous variables in the system. It is also can be

seen as the number of dimensions (rooms) where we control their tempera-

tures.

• A : M → QN is the slope of all the variables in a given mode. It represents

the heating/cooling rates of modes. The value A(m)m∈M is positive for

heating modes and negative for cooling modes. It may also be zero which

means that the temperature remains fixed.



Chapter 2. Preliminaries 24

• πc : M → Q≥0 is the cost per time unit spent in a given mode. It represents

the running cost while using heaters or air conditioners.

• πd : M → Q≥0 is the cost of switching to a given mode. It can be seen as a

set up and maintenance cost.

• Vmin, Vmax ∈ QN : Vmin < Vmax, define the safe set, S, as follows {x ∈ RN :

Vmin ≤ x ≤ Vmax};

• V0 ∈ QN , such that V0 ∈ S, defines the initial value of all the variables.

This model will be more simple in the case of only one dimension (room/variable)

while using a cost free idle mode to cool the room down when all heaters are being

turned off as shown in Chapter 3. Next, we present a simple running example

which is useful for understanding the terms being introduced and their definitions.

For simplicity, the example addresses the problem of finding safe schedules to keep

the temperature inside a single room (one dimension) within a comfort zone. The

room is equipped with two heaters only and it is permitted to run any one of them

at any time and pay its discrete cost πd at the beginning and continue paying the

continuous cost πc as long as you keep it running. It is also allowed to turn the

two heaters off to cool the room down without paying any cost.

Running example 2. Suppose we need to keep the temperature inside an office

between 18◦C and 22◦C for tmax = 7 hours, and the initial temperature inside

of it is 18◦C. (As we will see later, we can reduce this problem to keeping the

temperature inside between Vmin = V0 = 0◦C and Vmax = 4◦C.) We have two

heaters, i.e. |M | = 3 (considering the idle mode as mode 0), at our disposal:

gas (mode 1) and electric (mode 2). Their parameters are A(1) = 4/3 [◦C/h],

A(2) = 2 [◦C/h], and A(0) = −4 [◦C/h], i.e. it takes 3 hours for the office to reach

the maximum allowable temperature of 22◦C when using the gas heater, but just

2 hours using the electric one. It takes 1 hour for the office to cool from 22◦C to

18◦C, when both of the heaters are off (mode 0). The running costs of the heaters

are πc(1) = 10 [£/h] and πc(2) = 20 [£/h], and the initial costs of switching each

heater are πd(1) = 30 [£] and πd(2) = 10 [£]. That is, the gas heater is cheaper to

run, but more expensive to turn on, e.g. due to a need for regular inspections. /

2.5 Schedules and their Cost

In this section, we present definitions for some keywords we use in this thesis.

We introduce the term timed action which is the most fundamental part in the



Chapter 2. Preliminaries 25

definitions of finite/infinite schedules. We also demonstrate how the total cost is

calculated for a schedule.

Definition 2.1. A timed action is a pair (m, t) ∈M ×R≥0 of a mode m and time

delay t > 0.

Definition 2.2. A schedule σ (of length k) with time horizon tmax is a finite

sequence of timed actions σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that∑k
i=1 ti = tmax.

Definition 2.3. A schedule σ with infinite time horizon is either an infinite se-

quence of timed actions σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk), . . .〉, such that∑∞
i=1 ti =∞ or a finite sequence of timed actions σ = 〈(m1, t1), (m2, t2), . . . , (mk,

tk)〉, such that tk =∞.

Definition 2.4. The run of a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉
is a sequence of states run(σ) = 〈V0, V1, ..., Vk〉 such that, for all 0 ≤ i ≤ k − 1, we

have that Vi+1 = Vi + tiA(mi) as shown in Figure 2.1.

Vmin

Vmax

0 t

t1 t2 tk
V0

V1

m1

V2

m2

Vk−1

Vk

mk

Figure 2.1: A finite schedule with its run.

Definition 2.5. A finite schedule of length k and its run are called safe if Vmin ≤
Vi ≤ Vmax holds for all 1 ≤ i ≤ k.

Definition 2.6. A finite schedule of length k and its run are called ε-safe if

Vmin − ε · 1N < Vi < Vmax + ε · 1N holds for all 1 ≤ i ≤ k.

The run of an infinite schedule and its safety and ε-safety are defined accord-

ingly. The total cost of a schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 with a

finite time horizon is defined as

π(σ) =
k∑
i=1

πd(mi) + πc(mi)ti



Chapter 2. Preliminaries 26

The limit-average cost for a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk,

tk)〉 with an infinite time horizon is defined as πavg(σ) = πc(mk) and for an infinite

schedule σ = 〈(m1, t1), (m2, t2), . . .〉 it is defined as

πavg(σ) = lim sup
k→∞

(
k∑
i=1

πd(mi) + πc(mi)ti

)/ k∑
i=1

ti

Definition 2.7. A safe finite schedule σ that covers a time horizon tmax is ε-

optimal if, for all safe finite schedules σ′ that cover the same time horizon, we have

that π(σ′) ≥ π(σ)− ε.

Definition 2.8. A safe finite schedule is optimal if it is 0-optimal.

Definition 2.9. A safe infinite schedule σ is optimal if, for all safe infinite schedules

σ′, we have that πavg(σ
′) ≥ πavg(σ).

Running example 2 continues. For instance σ1 = 〈(1, 3), (0, 1), (2, 2), (0, 1)〉
and σ2 = 〈(1, 1), (2, 1), (0, 1

2
), (1, 1), (0, 1

2
), (1, 1), (2, 1), (0, 1)〉 are both safe finite

schedules that last for 7 hours as shown in Figure 2.2 and 2.3, respectively. By

summing up the contribution of each mode to the overall cost, we get π(σ1) =

(1·30+3·10)+(1·10+2·20) = 110 [£] and π(σ2) = (3·30+3·10)+(2·10+2·20) =

180 [£]. Moreover, σ3 = 〈(1, 3), (0, 1), (2, 2), (0, 1), (1, 3), (0, 1), (2, 2), (0, 1), . . .〉
as shown in Figure 2.4 is a safe infinite run with the average cost πavg(σ3) =

110/7 [£/h]. /

18◦C

22◦C

tmax = 7ha

b

1

c

0

d

2

e

0

Figure 2.2: The finite schedule σ1 in example 2.

2.6 Conclusions

We showed that, the problem of maintaining the temperature inside a room using

HVAC systems can be modelled as a linear hybrid model for narrow comfort



Chapter 2. Preliminaries 27

18◦C

22◦C

tmax = 7ha

b

1

c

2

d

0

e

1

f

0
g

1

h

2

i

0

Figure 2.3: The finite schedule σ2 in example 2.

18◦C

22◦C

a

b

1

c

0

d

2

e

0

f

1

g

0

h

2

i

0

Figure 2.4: The infinite schedule σ3 in example 2.

zones. Optimal safe schedules are the schedules with the smallest average cost

while keeping the temperature of the room inside the comfort zone. This can be

done by a better selection of which heater or air-conditioner is turned on or off

and exactly when.





Chapter 3

Optimisation in a Simple One

Dimensional Multi-mode Systems

The simplest subclass of our model is multi-mode systems with a single dimension.

It naturally occurs when controlling the temperature in a single room or building

to stay in a pleasant range. For this, the system can be in different modes, e.g.

the air-conditioning can be switched on or off, or one can choose to switch on an

electrical radiator or a gas burner. Each such a configuration can be modelled as a

mode of our multi-mode system. Modes have start-up cost (gas burners, e.g., may

suffer from some wear and tear when switched on) as well as continuous costs.

In this chapter, we study the temperature control of a single room while paying

as small cost as possible as an application of the single dimension system in which

we have only heaters without air-conditioners. The heaters can be turned on to

increase the room temperature while we turn all the heaters off in order to cool

the room down and this mode is known as the idle mode.

When keeping an office building in a pleasant temperature range during open-

ing hours, we face a control problem for multi-mode systems with a finite time

horizon. The scheduling problem for finite time horizon, which is similar to min-

imising the total cost incurred during that finite time, is proved in Section 3.3

to be NP-hard while its decision version is NP-complete and significantly more

challenging than for the infinite time horizon (LogSpace). The proof is based on

a reduction from the unbounded knapsack problem (UKP) which is known to be

NP-complete. However, we devise optimal solver using integer programming. We

also find approximation solutions with guarantees such as two approximation and

FPTAS approximation for the finite time horizon problem. This will be achieved

by doing a reduction to the 0-1 Knapsack problem.

29



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 30

3.1 Preliminaries

The case we consider here is that we have a multi-mode system with K modes

applied in one dimension. For example, this can be used to control the temperature

inside a room with K − 1 heaters. Each heater is denoted by a single mode which

can be turned on or off any time. Every time we turn on a heater by selecting its

mode, we pay discrete cost only once and continuous cost per unit time. There

exist an idle mode when all heaters are turned off. We denote the idle mode as

m0. We refer to the set of non-negative modes by M+ = M\{m0} (all the modes

without the idle mode). The idle mode is a cost-free mode and we can use it

to cool the room down without paying money. So, the system definition can be

simplified as follows.

∀m∈M+A(m) ≥ 0 ∧ πc(m) ≥ 0 ∧ πd(m) ≥ 0

A(m0) < 0 ∧ πc(m0), πd(m0) = 0

Given a simple linear automaton A = (M,A, πc, πd, [Vmin, Vmax], V0, tmax) with

Vmin > 0, consider automaton A′ := (M,A, πc, πd, [0, Vmax−Vmin], V0−Vmin, tmax).
Note that any finite (infinite) safe schedule σ in A is also safe in A′ and its cost

(limit-average cost, respectively) is the same. As a result we have the following

observation which allows us to assume Vmin = 0 from now on.

Observation 1. Any decision problem regarding (ε-)optimal (finite or infinite)

schedules for multi-mode systems, can be easily reduced to the same decision

problem for multi-mode systems with Vmin = 0.

As we shown in Observation 1 and will be shown in Observation 2, the decision

problems for multi-mode systems that we study in this paper can easily be reduced

to the same ones for structurally equivalent multi-mode systems with Vmin = V0 =

0. We can simply argue that by considering a case with Vmin < V0 < Vmax. We

can use the idle mode at the start without paying any cost until the temperature

reaches Vmin or we reach the end of the time period tmax, whichever comes first.

Definition 3.1. A leap is a sequence of two pairs (mk, tk), (mk+1, tk+1) in a sched-

ule such that mk+1 = 0, A(mk)tk ≤ Vmax, and A(mk)tk + A(mk+1)tk+1 = 0. A

leap is of type i ∈M+ iff mk = i.

Definition 3.2. A complete leap is a leap such that A(k)tk = Vmax.

Intuitively, a complete leap consists of a phase where the variable is increasing

in the same non-idle mode from Vmin = 0 to Vmax, followed by a phase where



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 31

the value of the variable is decreasing back to Vmin = 0 in the idle mode. By

∆ti and ∆πi we denote the time duration and the cost of a complete leap of

type i ∈ M+, respectively. Note that ∆ti = Vmax/A(i) − Vmax/A(0) and ∆πi =

πd(i) + πc(i) · Vmax/A(i). We also introduce πe(i) = (∆πi − πd(i))/∆ti to be the

effective continuous cost rate per time unit of using mode i as part of a leap. Note

that a leap of type i that lasts for time t has the total cost of πd(i) + πe(i) · t.

Running example 2 continues. For instance (1, 3), (0, 1) is a complete leap

of type 1 and (2, 1), (0, 1
2
) is an incomplete leap of type 2. Their costs are (30 +

3 · 10) + (0 + 1 · 0) = 60 [£] and (10 + 1 · 20) + (0 + 1
2
· 0) = 30 [£], respectively.

We can calculate that ∆t1 = 4 [h], ∆t2 = 3 [h], ∆π1 = 60 [£], and ∆π2 = 50 [£].

Moreover, πe(1) = 71
2

[£/h] and πe(2) = 131
3

[£/h]. Note that the cost of this

example incomplete leap of type 2 is πd(2) +πe(2) · (1 + 1
2
) = 30 [£], which matches

the cost that we computed earlier. /

Vmax

Vmin

Vmax

Vmin

(a) A leap of type 1. (b) An incomplete leap of type 2.

1 0

2 0

Figure 3.1: Leaps.

3.2 Optimal Schedules

We start with considering the easy case of infinite time horizons, before turning

to the interesting case of finite time horizons.

3.2.1 Infinite Time Horizon

Let j = argmini∈M+ ∆πi/∆ti. Obviously, at all times t = k · ∆tj where k ∈ N,

using only complete leaps of type j is the cheapest finite schedule. Consequently,

the limit superior of the average cost cannot be smaller than ∆πj/∆tj. At the

same time, the simple schedule that only uses complete leaps of type j realises this

long-time average. Taking into account that argmini∈M+ ∆πi/∆ti can be computed



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 32

using logarithmic space, because multiplication, division and comparison can be

[19], we get the following theorem.

Theorem 3.3. An optimal safe infinite schedule can be computed in deterministic

LogSpace.

Running example 2 continues. It is easy to check that σ4 = 〈(1, 3), (0, 1), (1, 3),

(0, 1), . . .〉 is an optimal safe infinite run whose long-time average cost is πavg(σ4) =

15 [£/h]. /

3.2.2 Finite Time Horizon

For finite time horizon, it is more challenging to find the optimal safe schedules.

This is because we do not what is the best combination of modes that reduce the

cost and cover exactly the time period tmax. So, in this section we introduce the

shape of the optimal schedules for finite time horizon.

Vmax

Vmin
5

tmax

1

2

3

4

Figure 3.2: Any optimal schedule can be assumed to reach value Vmin = 0
at the end. Replacing timed actions 1→ 2→ 3 in a finite safe schedule with
timed actions 1→ 4→ 5 reduces the cost of this schedule within its time
horizon tmax.

We start with the following observation.

Proposition 3.4. For every safe schedule σ there exists a safe schedule σ′ with

the same or a lower cost and the value of the variable at the end of run(σ′) equal

to Vmin = 0.

Proof. We can see this illustrated in Figure 3.2. Let t be the first point of time

during the execution of σ that the value of the variable equals A(0) · (t − tmax).
(Note that such a t ∈ [0, tmax] exists.) We then construct σ′ from σ by changing



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 33

the behaviour in the last tmax − t time units, choosing the idle mode there. As

choosing the idle mode incurs no costs, this can only reduce the overall costs. Let

we have a schedule σ = 〈(m1, t1), . . . , (mk, tk)〉 with a run of 〈V0, V1, . . . , Vk〉. If

Vk = Vmin, it is true. Otherwise, if Vmin < Vk ≤ Vmax, we have two cases.

• If mk = m0 (i.e. it is the idle mode): We construct the schedule σ′ =

〈(m1, t1), . . . , (mk−1, tk−1−(t− tk)), (mk, t)〉 that ends with Vmin and π(σ′) <

π(σ) because the amount of time we use the idle (cost free) mode increased

while the time we use the mode tk−1 is decreased.

• If mk ∈ M+ (i.e. it is not an idle mode): We construct the schedule σ′ =

〈(m1, t1), . . . , (mk, tk − t), (m0, t)〉 that ends with Vmin and π(σ′) < π(σ)

because we added a timed action at the end for the idle mode (cost free) and

the time we use the mode tk is decreased by t.

In the remainder of this chapter, we assume that all schedules have the property

as stated in Proposition 3.4. In fact, we can show that there exists an optimal

schedule of a very special form as stated by the following theorem.

Theorem 3.5. Thanks to Proposition 3.4, we can assume that schedules end with

Vmin and hence, for every safe schedule σ there exists a safe schedule σ′ consisting

of a sequence of leaps where all but possibly the last one are complete and such

that the cost of σ′ is the same or lower than σ.

Vmax

Vmin
1

2

3

4

5

6

Figure 3.3: Two incomplete leaps 1→ 2→ 3 and 3→ 4→ 5 being combined
into one leap 1→ 6→ 5.

Proof. Let σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 be any safe schedule. Define Tσ(m) :=∑
1≤i≤k:mi=m

ti to be the total time mode m ∈ M+ is used for in σ. We define a



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 34

Vmax

Vmin
1

2

3

4

5

6

7

8

Figure 3.4: Two incomplete leaps 1→ 2→ 3 and 3→ 4→ 5 being combined
into one complete leap 1→ 6→ 7 and one incomplete one 7→ 8→ 5.

schedule σ′′ as follows: it starts with bTσ(m)A(m)/Vmaxc complete leaps of type

m for each mode m ∈ M+. At the end we add for each m ∈ M+ an incomplete

leap starting with a timed action (m,Tσ(m) − Vmax/A(m)bTσ(m)A(m)/Vmaxc) if

Tσ(m)A(m)/Vmax is not an integer. It is easy to see that σ′′ is safe and no more

expensive than σ, because each mode is used the same amount of time as in σ and

the number of switches to any mode m ∈ M+ is the same or smaller. Also, the

total time we use the idle mode in σ′′ is the same as the total time we use it in σ

because it is the only mode that can be used to cool the room down. To construct

σ′ we iterate the following until there is at most one incomplete leap left: take the

first two incomplete leaps in σ′′: (m1, t1), (0, t01) and (m2, t2), (0, t02). W.l.o.g. the

continuous cost for mode m1 is lower, i.e. πc(m1)·t1/(t1+t01) ≤ πc(m2)·t2/(t2+t02).

We can then replace these two incomplete leaps by

• (m1, (t1 + t2 + t01 + t02) · t1/(t1 + t01)), (0, (t1 + t2 + t01 + t02) · t01/(t1 + t01))

if it is a leap, i.e. A(m1)(t1 + t2 + t01 + t02) · t1/(t1 + t01) ≤ Vmax, see Figure

3.3

• one complete leap for m1 and a shorter leap for m2 such that the time delay

of the two leaps is t1 + t2 + t01 + t02, see Figure 3.4

This operation cannot increase the cost of the schedule, because the continuous

cost of m1 is the same or lower and the number of mode switches is the same or

lower. At the same time the number of incomplete leaps is strictly reduced and

still the resulting schedule σ′ ends with Vmin as shown in Figure 3.3 and 3.4.

From Theorem 3.5, an optimal schedule exists, because for any fixed time

horizon tmax there are only finitely many schedules of the form stated and no

other schedule can have a better cost than all of them.



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 35

When we allow the initial value, V0, of the variable to be non-zero at the

beginning, then we can exploit a similar argument to show that it is safe to initially

stay in the idle mode until either tmax is reached or the value of the variable has

fallen to Vmin = 0, whatever happens first.

Observation 2. For multi-mode systems with V0 > Vmin the following holds. For

every safe schedule σ there exists a safe schedule σ′ where initially the idle mode

is active until the value of the variable is Vmin = 0 (or, if this is earlier, for the

complete duration tmax), followed by a sequence of leaps, where all but possibly

the last one are complete and such that the cost of σ′ is the same or lower cost

than σ.

3.3 NP-Completeness of Finite Time Horizon Op-

timal Control

In this section, we study the complexity of the optimal control problem for a finite

time horizon. As usual, we analyse the complexity of the related decision problem:

For a given cost C, is there a way to control the system in such a way

that the total cost incurred for keeping the system in the safe zone for

time tmax is at most C?

We show that this optimal control decision problem is NP-complete. We start

by showing its hardness by a reduction from the Unbounded Knapsack problem,

which is NP-complete [26]. For this reduction, it suffices to use a simpler problem,

where all continuous costs πc are 0. We refer to this problem as 0-cost rate optimal

control decision problem.

Theorem 3.6. The 0-cost rate optimal control decision problem is NP-hard.

Proof. For the 0-cost rate optimal control problem, cost is only incurred when

switching to a non-idle mode. This reduces our continuous optimisation problem

to a discrete one, which is easier to relate to the Unbounded Knapsack problem.

In this setting, the natural constraint of the decision problem would be that

the time horizon needs to be covered completely, which is reflected by∑
i∈M+

ni∆ti ≥ tmax

This constraint says that the sum of the time of leaps is at least tmax. This includes

the—possibly incomplete—last leap. Note that, in our discrete setting where the



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 36

length of the leap does not influence the cost, the question of whether or not this

cycle is complete is irrelevant for the total cost. For this reason, the ni in this

proof refer to all leaps, including the incomplete one.

Under this constraint, we would ask if there are natural numbers (ni)i∈M+

such that
∑

i∈M+ niπd(i) ≤ C. These two constraints together are precisely the

constraints used in the Unbounded Knapsack problem, where C represents the

volume of the knapsack, πd(i) is the volume of item i—such that
∑

i∈M+ niπd(i) ≤
C reflects the constraint volume of the knapsack—∆ti the value of item i, and

tmax the lower bound on the overall value—such that
∑

i∈M+ ni∆ti ≥ tmax refers

to the (decision version of) the optimisation criterion.

The inclusion in NP of the general cost optimisation decision problem is straight-

forward, as the problem can be re-written as an integer linear program. Assume

that we know the type, j, of the incomplete leap at the end of the schedule. We

can then solve the decision cost optimisation problem by solving the following

integer linear constraint system.∑
i∈M+

ni∆πi +
(
tmax −

∑
i∈M+

ni∆ti
)
πe(j) + πd(j) ≤ C

The first term in this expression is the total cost of the complete leaps and the

other one is the total cost of the last (possibly incomplete) leap, whose duration

is tmax −
∑

i∈M+ ni∆ti. Additionally we need the following constraints.∧
i∈M+

ni ∈ Z ∧
∧
i∈M+

ni ≥ 0 ∧

tmax ≥
∑
i∈M+

ni∆ti ≥ tmax −∆tj

A solution to such a system of integer linear constraints, if it exists, can be guessed

and verified in polynomial-time, which shows that the problem is in NP for a fixed

j. Furthermore, j can be guessed at the same time, which gives us the following

theorem.

Theorem 3.7. The finite time horizon optimal control decision problem is NP-

complete.



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 37

3.4 Optimal Algorithms

3.4.1 Integer Linear Programming Algorithm

As we introduced before, the minimisation problem of the total cost being paid

in multi-mode single dimension system with discrete costs –demonstrated by the

temperature control example using HVAC systems– can be solved using integer

linear programming. The formulation of the problem and the algorithm are shown

in Algorithm 3. This algorithm produces the optimal solution.

Algorithm 3 Integer Linear Programming algorithm for the optimal cost prob-
lem.

1: Solve the following ILP for all possible j ∈M+:

Min
∑
i∈M+

ni∆πi +
(
tmax −

∑
i∈M+

ni∆ti
)
πe(j) + πd(j)

Subject to the following constraints:∧
i∈M+

ni ∈ Z ∧
∧
i∈M+

ni ≥ 0 ∧

tmax ≥
∑
i∈M+

ni∆ti ≥ tmax −∆tj

2: Pick j∗ and the corresponding solution (ni)i∈M+ with the minimum value of
the objective function.

3: return schedule consisting of ni complete leaps of type i for all i ∈ M+

followed by a leap of type j∗ and duration tmax −
∑

i∈M+ ni∆ti

3.5 Constant Factor Approximation Algorithm

We show here an approximation algorithm with a constant relative performance

≤ 2 for the cost minimisation problem in multi-mode systems which means that

this algorithm in the worst case produces approximate solution with 100% absolute

error of the optimal solution (twice the optimal solution). We prove that it suffices

to pick the cheapest schedule among the ones that only use one of the modes. The

complexity of the two approximation algorithm is linear. Building on this constant

approximation algorithm, we will show FPTAS for the same problem in the next

section.



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 38

Algorithm 4 Constant factor approximation algorithm computing a finite sched-
ule with the total cost at most twice the optimal one.

1: MinCost :=∞; m := 0;
2: for i := 1 to K do
3: ki := dtmax/∆tie;
4: Cost := πe(i) · tmax + πd(i) · ki
5: if Cost < MinCost then
6: MinCost := Cost; m := i;
7: end if
8: end for
9: return schedule consisting of btmax/∆tmc complete leaps of typem followed by

at most one more leap of type m for the remaining time tmax−btmax/∆tmc·∆tm

Let ki := dtmax/∆tie denote the minimum number of leaps of type i that have

to be used to cover the whole time horizon tmax by themselves. Let us introduce

the following constant α := max{1,max{i∈M+|ki≥2} ki/(ki − 1)}, where as usual

max ∅ = −∞. Note that α ≤ 2, because ki/(ki − 1) decreases with ki and ki ≥ 2.

Theorem 3.8. Algorithm 4 runs in deterministic LogSpace and returns an α-

approximate schedule.

Proof. It is straightforward to see that the algorithm can be made to run in de-

terministic LogSpace, because it suffices to only store m inside the for loop and

outputting the value and comparisons between arithmetic expressions can be per-

formed in deterministic LogSpace [19].

To prove that the schedule returned has relative performance at most α, we

first introduce some useful notation. Let Xj be the value of the Cost variable for

i = j, i.e. Xj = πe(j) · tmax + πd(j)kj for all j ∈ M+, which is the minimum

cost of a schedule that only uses leaps of type j. Let us assume w.l.o.g. that the

mode picked by Algorithm 4 is 1. Thus, for all i ∈ M+ we have X1 ≤ Xi. Let

σ be an optimal finite schedule of the form as described in Theorem 3.5. For

any i ∈ M+ let ni ∈ N be the number of complete leaps of type i in σ. Let

the last leap in σ be of type m and 0 ≤ L ≤ ∆tm be the time that it lasts

for. Note that L = tmax −
∑

i∈M+ ni∆ti. From the definition of ki we know that

ki∆ti ≥ tmax ≥ (ki − 1)∆ti. It follows that ∆ti/tmax ≤ 1/(ki − 1) for ki ≥ 2. If

ni ≥ 1 then obviously ∆ti/tmax ≤ 1, because otherwise we would have L < 0.



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 39

Based on these, we note the following estimations:

1− L

tmax
=
∑
i∈M+

ni∆ti
tmax

=
∑

{i∈M+|ni≥1}

ni∆ti
tmax

=

∑
{i∈M+|ni≥1&ki=1}

ni∆ti
tmax

+
∑

{i∈M+|ni≥1&ki≥2}

ni∆ti
tmax

≤

∑
{i∈M+|ni≥1&ki=1}

ni
ki

+
∑

{i∈M+|ni≥1&ki≥2}

ni
ki

ki
ki − 1

≤

max{1, max
{i∈M+|ki≥2}

ki
ki − 1

}
∑
i∈M+

ni
ki

= α
∑
i∈M+

ni
ki

Moreover, we have the following. If km ≥ 2 then kmL
tmax
≤ km∆tm

tmax
≤ km

km−1
≤ α. If

km = 1 then kmL
tmax
≤ 1 ≤ α, so in fact in both cases kmL

tmax
≤ α.

We are now ready to give a lower bound on the total cost of the optimal

schedule σ in terms of X1. The total cost of σ is equal to the following expression.∑
i∈M+

(niπd(i) + ni∆tiπe(i)) + πd(m) + Lπe(m) =∑
i∈M+

ni
ki

(kiπd(i) + ki∆tiπe(i)) + πd(m) + Lπe(m) ≥∑
i∈M+

ni
ki

(kiπd(i) + tmaxπe(i)) + πd(m) + Lπe(m) =∑
i∈M+

ni
ki
Xi + πd(m) + Lπe(m) ≥∑

i∈M+

ni
ki
X1 + πd(m) + Lπe(m) ≥

X1

α

(
1− L

tmax

)
+

kmL

αtmax
πd(m) +

L

α
πe(m) =

X1

α

(
1− L

tmax

)
+

L

αtmax
(kmπd(m) + tmaxπe(m)) =

X1

α

(
1− L

tmax

)
+

L

αtmax
Xm ≥

X1

α

(
1− L

tmax

)
+

L

αtmax
X1 =

X1

α

This shows that the cost of X1 is at most α times the optimal cost, which

concludes the proof.

Running example 2 continues. It is easy to check that σ5 = 〈(1, 3), (0, 1), (2, 2), (0, 1)〉
is an optimal safe run whose cost is π(σ5) = 110 [£]. At the same time, a cheap-

est safe schedule consisting of leaps of type 1 is σ6 = 〈(1, 3), (0, 1), (1, 9
4
), (0, 3

4
)〉



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 40

and of type 2 is σ7 = 〈(2, 2), (0, 1), (2, 2), (0, 1), (2, 2
3
), (0, 1

3
)〉. Their costs are

π(σ6) = 2 · 20 + (3 + 9
4
) · 10 = 112.5 and π(σ7) = 3 · 10 + 42

3
· 20 = 1231

3
.

Hence, Algorithm 4 will return σ6 and the approximation ratio of this solution is

1.022. /

From the proof of Theorem 3.8 we can easily deduce the following corollary.

Corollary 3.9. Algorithm 4 returns an optimal schedule if πd(i) = 0 for all i ∈
M+.

Proof. Analysing the proof of Theorem 3.8 we can make the following observations.

If πd(1) = πd(i) = 0 then the condition X1 ≤ Xi implies that πe(1) ≤ πe(i). The

cost of an optimal schedule σ is
∑

i∈M+ ni∆tiπe(i)+Lπe(m) ≥
∑

i∈M+ ni∆tiπe(1)+

Lπe(1) = tmaxπe(1) = X1.

3.6 FPTAS Algorithm

We show that the minimisation problem for multi-mode systems is in FPTAS by

a polynomial time reduction to the 0-1 Knapsack problem, for which many FP-

TAS algorithms are available (see e.g. [32]). The proposed algorithm depends on

the dynamic programming solution for the 0-1 knapsack problem. We will there-

fore introduce the dynamic programming algorithm for solving the 0-1 knapsack

problem in the next sub-section and in Section 3.6.2, we devise an FPTAS solu-

tion using a reduction from the unbounded knapsack problem to the 0-1 knapsack

problem.

3.6.1 Dynamic Programming for 0-1 Knapsack

The dynamic programming solution for the 0-1 knapsack problem searches for the

minimum knapsack weight that yields the exact profit v [32]. The problem can be

defined as finding o(n, v) which is the minimal knapsack weight that yields value

v using subset of items {1, .., n} where vn represents the item cost and wn is the

item weight. We can define o(n, v) recursively as follows:

o(n, v) =


min{o(n− 1, v), wn + o(n− 1, v − vn)} if vn ≤ v and n ≥ 1

0 otherwise if v ≤ 0

+∞ otherwise

Our optimisation problem is similar but with a minimisation objective. We

therefore modify the dynamic programming algorithm so that we search for the



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 41

maximum time span that can be covered when paying no more than cost c. As

shown in Algorithm 5, the program is being executed over one vector T where

T (c) represents the maximum time that can be covered by paying at most a total

cost of c. The solution produced by this algorithm is affected by rounding errors.

The rounding error occurs as the knapsack problem now is considered over rational

numbers (not integers any more) which was shown in [53] to be strong NP-complete

problem. So, the rounding errors can not be removed while solving the knapsack

problem with rational values (weights and profits).

Algorithm 5 Dynamic Programming algorithm for the optimal cost problem
DP(M,∆πi,∆ti, tmax, cmax). where i ≤ |M |, and cmax is the maximum possible
cost where c ≤ cmax

1: initialize T (k) = 0 where k ∈ {1..dcmaxe};
2: while SOMETHING CHANGES IN T do
3: for k = MaxIndex downto 1 do
4: for h = 1 To n do
5: T (k) = max(T (k), T (k −∆πh) + ∆th);
6: end for
7: end for
8: end while
9: Return the minimum cost index c = k where T (k) ≥ tmax.

3.6.2 FPTAS Approximation Algorithm

Let c∗ be the α-approximation, which can be computed using Algorithm 4, of the

optimal cost o∗. Since α ≤ 2, to get an approximation to our optimal cost prob-

lem with a relative performance ρ, it suffices to find a solution with c∗ρ/2 absolute

performance. We split this into two equal parts of ε = c∗ρ/4. An optimal solution

to the knapsack instance that we produce will provide us with a schedule with

cost no greater than ε over the optimal one. Moreover, a solution to the knap-

sack instance with δ absolute error will provide a schedule with an ε+ δ absolute

error. Therefore, it suffices to set δ = ε to find a schedule with ρ relative perfor-

mance. In our reduction, the value of the resulting knapsack problem is at most

4|M | times the optimal cost for safe schedules, so by using ρ′ = ρ/(8|M |), for the

resulting knapsack problem, we will find a near optimal solution with a relative

performance ρ for multi-mode systems. The running time of this procedures is

in O(poly(1/ρ)poly(|M |)poly(size of the knapsack instance)). This suffices to es-

tablish the inclusion of the cost minimisation problem for multi-mode systems in

FPTAS.



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 42

Let σ be an optimal safe schedule consisting of a sequence of leaps where all

but possibly the last one are complete. Such a sequence exists due to Theorem

3.5. Let m∗ ∈ M+ be the mode used in the last leap in σ. Note that we can try

all modes as candidates for m∗.

As shown in Algorithm 6, we build the following items for this knapsack prob-

lem instance for each mode m ∈ M+: {(2i · ∆tm, 2i · ∆πm) | i ∈ N ∧ 2i · ∆πm ≤
c∗ ∧ 2i · ∆tm ≤ tmax}. Let i∗ ∈ N be the smallest natural number such that

2−i
∗ · (∆πm∗ − πd(m∗)) ≤ ε. For m∗ we add the following extra multiset of items:

{(2−i ·∆tm∗ , 2−i · (∆πm∗ −πd(m∗))) | i ∈ Z+ ∧ i ≤ i∗ ∧ 2−i · (∆πm∗ −πd(m∗)) ≤ c∗}
and additionally (2−i

∗ · ∆tm∗ , 2−i
∗ · (∆πm∗ − πd(m∗))), which is a copy of an ele-

ment already in the multiset. Let tΣ be the time span of all items in this knapsack

instance. We set the volume of this 0-1 knapsack instance to be tΣ − tmax.
The just produced knapsack problem has the following properties.

• The size of its description is polynomial in the size of the original problem,

including the relative performance

• If there is an incomplete leap of m∗ in σ, it can be overestimated by stringing

together the fractional copies of leaps (without start-up cost), so that we do

not exceed the volume by 2−i
∗ ·∆tm∗ or more, and if there is no incomplete

leap in σ, one complete leap of m∗ of σ can be replaced by all of these frac-

tional copies of leaps of m∗. The remaining complete leaps can be replaced

by sums of complete leaps of the respective type.

• The volume of these items is ≥ tmax. Let v∗ be the value of these items.

Then v∗ + πd(m
∗)− ε ≤ o∗ ≤ v∗ + πd(m

∗).

• Let VΣ be the value of all items in the multiset. For any solution to the

knapsack problem with value V we get a schedule σ′ with cost ≤ VΣ − V +

πd(m
∗).

Lemma 3.10. Solving this knapsack instance with a relative performance of ρ/(8|M |)
gives us a safe schedule with relative performance of ρ.

Corollary 3.11. Solving the optimal control problem for multi-mode systems with

relative performance ρ takes

O(poly(1/ρ)poly(size of the instance))

time and is therefore in FPTAS.



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 43

Algorithm 6 FPTAS approximation algorithm for the optimal cost problem
FPTAS(M, ∀i≤|M |∆πi,∀i≤|M |∆ti, tmax, ε, o∗) where o∗ is the optimal estimation
cost.

1: Create the array MinCost(1 . . . |M+|) and initialise all the items to ∞.

2: For each mode m ∈ M+ we build the following items for this knapsack
problem instance: {(2i·∆tm, 2i·∆πm) | i ∈ N∧2i·∆πm ≤ c∗∧2i·∆tm ≤ tmax}.

3: For every m∗ ∈ M+ which is the last incomplete leap mode do steps from
4 to 8.

4: Find the smallest i∗ ∈ N such that 2−i
∗ · (∆πm∗ − πd(m∗)) ≤ ε.

5: Form∗ we add the following extra multiset of items: {(2−i·∆tm∗ , 2−i·(∆πm∗−
πd(m

∗))) | i ∈ Z+ ∧ i ≤ i∗ ∧ 2−i · (∆πm∗ − πd(m∗)) ≤ c∗} and additionally
(2−i

∗ ·∆tm∗ , 2−i
∗ · (∆πm∗ − πd(m∗))), which is a copy of an element already

in the multiset.

6: Scale all the items’ costs using a scaling factor K, where ∆πm =
d∆πm/Ke, ∀m∈M+ where K = ε× (max∀m∈M+∆πm)/|M+| .

7: Run the DP Algorithm 5 for the 0-1 knapsack problem over the new instances
with horizontal cost line limit of (do∗/K2e) and store the result in MinCost(j)
where j is the index of m∗.

8: After obtaining the solution, do inverse scalling.

MinCost(j) = MinCost(j) ·K

9: Find the minimum cost over all the results stored in the array MinCost.

Running example 2 continues. For an FPTAS approximation with ε = 5%,

the reduction procedure into the 0-1 knapsack problem is shown in Figure 3.5. The

complete leap of type 1 shown in Figure 3.5-a has a time duration ∆t1 = 4 [h].

So, as shown in Figure 3.5-c we cannot fit two copies of the complete leaps into

the time horizon bounded by 7 [h]. The complete leap of type 2 shown in Figure

3.5-b has a time duration ∆t2 = 3 [h]. So, as shown in Figure 3.5-e we can fit

only two copies of the complete leaps (a → b → c → d → e) into the time

horizon bounded by 7 [h]. This extra item has a time duration of 6 [h] and a cost

of 100 [£]. The optimal solution as we calculated before is 110 [£] and for an

FPTAS with a precision ratio 5% precision, the precision value is ε = 5.5 [£]. The

fractions of the complete leap (partial leaps) of type 1 are shown in 3.5-d. The

smallest i∗ ∈ N such that 2−i
∗ · (∆π1 − πd(1)) ≤ ε is 3 which means that the set

of fractions are (1 → 2′′′ → 3′′′), (1 → 2′′ → 3′′) and (1 → 2′ → 3′) with values



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 44

{(2 [h], 15 [£]), (1 [h], 7.5 [£]), (1
2

[h], 3.75 [£])}, respectively where every element in

this set is a tuple (∆t,∆π). The fractions of the complete leap of type 2 is shown in

3.5-f. The smallest i∗ ∈ N such that 2−i
∗ · (∆π2−πd(2)) ≤ ε is 3 which means that

the set of fractions are (1 → 2′′′ → 3′′′), (1 → 2′′ → 3′′) and (1 → 2′ → 3′) with

values {(3
2

[h], 20 [£]), (3
4

[h], 10 [£]), (3
8

[h], 5 [£])} where every element in this set

is a tuple (∆t,∆π). So, the total number of elements in the reduced 0-1 knapsack

problem are 9 items. /

(a) (b)

0 t = 7h
(c) (d)

(e) (f)

Vmin

Vmin

Vmax

Vmax

Vmax

Vmin

t = 7h

1

2

3 4

5

6

1

2

33′′′

2′′′

3′′

2′′

3′

2′

a

b

c

d

e 1

2

33′′′

2′′′

3′′

2′′

3′

2′

Figure 3.5: An example for the reduction into 0-1 knapsack that results in an
FPTAS approximation with ε = 5%. The complete leaps of types 1 and 2 are
shown in (a) and (b), respectively.The multiples and fractions of the complete
leap of type 1 is shown in (c) and (d), respectively. The multiples and fractions

of the complete leap of type 2 is shown in (e) and (f), respectively.



Chapter 3. Optimisation in a Simple One Dimensional Multi-mode Systems 45

Running example 2 continues. The problem now can be considered as solving

a knapsack problem two times and pick the best answer. The two problems are

when we consider only the original items and all the multiples with the fractions

only from type 1 while the the other one with fractions only from type 2. After

running the FPTAS algorithm shown in Algorithm 6 over the instances shown in

Figure 3.5 we get the schedule that contains the complete leap which is shown by

(1 → 2 → 3) from Figure 3.5-a followed by another complete leap from Figure

3.5-b shown by (4 → 5 → 6). The cost of this schedule is 60 + 50 = 110 [£]

which is the same cost as the optimal schedule. Note that we add a discrete cost

πd(1) = 30 one time for all the fractional leaps we use from type 1 and similarly

for fractional leaps of type 2. /

3.7 Conclusions

Linear hybrid systems are computationally challenging. In particular, safety and

reachability are undecidable already for three variables. In this chapter, we have

identified the class of simple multi-mode systems as a class that arises naturally

when studying the optimal control of heating or cooling systems with only heaters

and the idle model can be used any time to cool the room down: there is only

one continuous variable (the temperature in our setting) in addition to the time.

Although it was to be expected that the optimal control for this model is decid-

able, the fact that this problem is both NP-complete and admits an FPTAS was

not. Only a small number of NP-hard problems admit an FPTAS, i.e. can be

approximated with relative precision ρ, in polynomial time in the size of the input

and 1/ρ. Most NP-hard problems can be shown to be inapproximable within a

constant relative performance in polynomial time unless P=NP. The existence of

FPTAS, besides offering a cheap approximation in every desired precision, often

indicates that good standard solvers will normally behave well.

Summing up, we have identified a simple subclass of linear hybrid automata

with an easy (LogSpace) optimal control problem over an infinite time horizon,

and an optimal control problem over a finite time horizon, which is fast to approx-

imate (FPTAS). We believe that this class is of interest because, broadly speaking,

it is just tractable enough. Adding to the collection of classes with de-facto efficient

algorithms it expands the set of problems that we can handle. As the next step,

the model where there can be multiple modes with negative slopes (i.e. A(i) < 0)

apart from the idle mode which is analysed in Chapter 4. Such a generalisation,

however, breaks down the existence of an optimal schedule consisting of leaps,

which was crucial for the development of an FPTAS algorithm for this problem.





Chapter 4

Optimisation in General One

Dimensional Multi-mode Systems

without an idle mode

4.1 Introduction

In this chapter, we still study the optimisation problem in multi-mode one dimen-

sional systems. We consider the general case where it is allowed to have modes

with negative slope (i.e, A(m) < 0) instead of having only one such mode (which

is the cost-free idle mode used in Chapter 3). Considering the motivating exam-

ple, we allow using heaters to heat the room up and air-conditioners to cool it

down. We first begin by showing an example where the optimal schedule form

we presented in Chapter 3 is not working anymore. We overcome this problem

by showing how the optimal schedule looks like. We present a cost non-increasing

operations that transform any safe schedule to the optimal shape. Based on this,

we propose FPTAS approximation as well as a 3-approximation algorithm that

runs in O(|A|7) time. We prove that the optimisation problem still NP-hard and

its decision version is NP-complete.

4.1.1 Motivation Example

Suppose we need to keep the temperature inside an office between 18◦C and 22◦C

for finite time horizon tmax = 9 hours. Assume the system has three modes with

the specifications shown in Table 4.1. Note that we do not have a cost-free idle

mode any more and this is the main reason of introducing this motivating example.

The optimal schedule shape presented in Chapter 3 consists of complete leaps

and possibly with the last one incomplete. In our example, a leap consists of

47



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 48

πd πc A(mi)

m1 1 [£] 40 [£/h] 0.5 [◦C/h]

m2 1 [£] 20 [£/h] 2 [◦C/h]

m0 100 [£] 20 [£/h] −4 [◦C/h]

Table 4.1: An example for the multi-mode one-dimensional system general
case.

a timed action that uses either modes m1 or m2 to heat the room up followed

by another timed action that uses modes m0 to cool it down. So, if we try to

generate schedules that follow the same form of the optimal schedules introduced

in Chapter 3, we may have schedules as follows

• Schedule σ1 = 〈(1, 8), (0, 1)〉 shown by (a → f → g) in Figure 4.1 uses a

complete leap of modes m1 followed by m0. The cost of this schedule is

π(σ1) = 1 + 40× 8 + 100 + 20× 1 = 441£.

• Schedule σ2 = 〈(2, 2), (0, 1), (2, 2), (0, 1), (2, 2), (0, 1)〉 shown by (a → b →
c→ d→ e→ f → g) in Figure 4.1 uses complete leaps of modes m2 followed

by m1 with average cost of π(σ2) = (1 + 20× 2 + 100 + 20× 1)× 3 = 483£.

• Any other schedule σ3 that contains leaps of modes m2 followed by m0 and

incomplete leap of mode m1 followed by mode m0 has an average cost of

π(σ3) > π(σ2).

But, as shown in Figure 4.2 we may have another schedule that has a different

shape from what was presented in Chapter 3 and it has lower cost. The schedule

σ4 = 〈(1, 4), (2, 1), (0, 1), (1, 3)〉 shown by (a → b → c → d → e) covers the same

time period tmax with an average cost of π(σ4) = 1 + 40× 4 + 1 + 20× 1 + 100 +

20 × 1 + 1 + 40 × 3 = 423£ which is smaller than the cost of all the schedules

presented before. This schedule has features.

• Because we pay cost not only for heating the room but also for cooling it,

the schedule does not have to end at Vmin.

• The switching point between the modes can be anywhere between Vmin and

Vmax.

This example makes the optimal schedule form shown in the simplifying case in

Chapter 3 not suitable for the general case and we have to find the form of optimal



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 49

Vmin

Vmax

0 tmax = 9h
a g

f

1
0

b

2

c

0

d

2

e

0

2

Figure 4.1: Schedules that follow the form of the optimal schedule introduced
in Chapter 3.

schedules that fits the general case of the optimisation in multi-mode 1-dimensional

systems.

Vmin

Vmax

0 tmax = 9h
a

b

1

c

2

d

0 e

1

Figure 4.2: Example of a schedule that violates the form of the optimal
schedule introduced in Chapter 3.

4.2 Preliminaries

Let M+ = {m | A(m) > 0} and M− = {m | A(m) < 0}. Recall that M0 =

{m | A(m) = 0}. We will call a mode an up mode, down mode, or zero-mode

if m ∈ M+, m ∈ M−, or m ∈ M0, respectively. Similarly, the trend of a timed

action (m, t) is up, down, flat if m is an up, down, zero-mode, respectively. For

any subsequence of timed actions σ′ = 〈(mi, ti), . . . , (mj, tj)〉 in a schedule σ,

whose run is run(σ) = 〈V0, V1, . . . , Vk〉, we say that σ′ starts at state v and ends at



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 50

state v′ iff v = Vi−1 and v′ = Vj. We use the same terminology for a single timed

action (in this case this subsequence has length 1).

4.3 Structure of Finite Control in One-dimension

We show in this section that any finite schedule in one-dimension can be trans-

formed without increasing its cost into a schedule, which follows one of finitely

many regular patterns. We redefine the “leap” component we introduced in Chap-

ter 3 as follows.

Definition 4.1. A partial leap is a pair of consecutive timed actions (mi, ti), (mi+1, ti+1)

in a schedule such that mi ∈M+, mi+1 ∈M−, and A(mi)ti +A(mi+1)ti+1 = 0. A

partial leap is complete if A(mi)ti = Vmax−Vmin. We will simply refer to complete

leaps as leaps.

There are |M+ ×M−| types of leaps. A leap is of type (m,m′) ∈ M+ ×M−

iff mi = m and mi+1 = m′. Let ∆tm and ∆πm denote the time and cost it takes

for an up mode m to get from Vmin to Vmax or a down mode m to get from Vmax

to Vmin. Note that ∆tm = |(Vmax− Vmin)/A(m)| and ∆πm = πd(m) + πc(m) ·∆tm.

By ∆tm,m′ and ∆πm,m′ we denote the time duration and the cost of a leap of

type (m,m′) ∈ M+ × M−, respectively. Note that ∆tm,m′ = ∆tm + ∆tm′ and

∆πm,m′ = ∆πm + ∆πm′ .

Any schedule σ can be decomposed into three sections that we will call its

head, leaps, and tail. The head section ends after the first timed action that ends

at Vmin. The leaps section contains only leaps of possibly different types following

the head section. Finally, the tail section starts after the last leap in the leaps

section has finished. Note that any of these sections can be empty and the tail

section can in principle contain further leaps. We show here that, for any schedule

of length at least three, there exists another one with the same or a smaller cost,

whose head and tail sections follow one of the 10 patterns presented in Section

4.3.2 (Figure 4.7 and Figure 4.8, respectively), where partial up/down means that

the next state is not at the border. For each of these patterns, there exists an

example which shows that an optimal schedule may need to use such a pattern

and hence it is necessary to consider it. In order to prove this, we first need

to define several cost-nonincreasing and safety-preserving operations that can be

applied to schedules. These will later be applied in Theorem 4.9 to transform any

schedule into one of the just mentioned regular patterns. The formal definition of

these operations are shown as well as figures explain the idea behind them in an

easy way.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 51

4.3.1 Operations

Let σ be any safe finite schedule. We show that while looking for an optimal finite

schedule of the multi-mode one dimensional systems, we can restrict our attention

to angular schedules only. The concept of angular schedule is defined as follows.

Definition 4.2. We call a finite schedule σ angular if there are no two consecutive

timed actions (mi, ti), (mi+1, ti+1) in σ such that A(mi) = A(mi+1).

We assume that all finite schedules are angular. If we have a schedule that has

more than one timed action with zero modes, we can just shift all timed actions

with the zero-modes to the beginning of the schedule and select only one zero-

mode out of them –the mode with the minimal cost per unit time– and use it for

all the times.

Proposition 4.3. For every finite safe schedule with time horizon tmax there exists

a safe schedule with the same or lower cost, in which at most one zero-mode is

used at the very beginning.

Proof. Let σ be a finite safe schedule with timed actions (m1, t1), (m2, t2), . . . , (ml, tl)

that use zero-modes (i.e. mi ∈M0 for all i ≤ l) for some timed actions inside the

schedule σ. If no such timed actions exist then σ is already in the form requested

and we are done. Let m0 = argmini≤l πc(mi) be the zero-mode among the ones

used by σ with the lowest continuous cost. We construct a new safe schedule σ′

by first removing from σ all timed actions that use a zero-mode. We then add at

the very beginning a single timed action (m0,
∑

i≤l ti). It is easy to see that such

defined σ′ is safe and its total cost is equal or lower than that of σ.

Henceforth, we assume that all finite schedules use at most one zero-mode

timed action and only at the very beginning.

Following that, we can assume that σ is angular and only contains at most

one timed action with a zero-mode, and if it contains one, this action occurs at

the very beginning. Unless explicitly stated, the operations below are defined for

timed actions with up or down trend only.

Rearrange Operation

The first operation that we need is the rearrange operation, which simply changes

the order of any subsequence of timed actions with the same trend. Figure 4.3

shows the rearrange operation applied to three timed actions 1-2-3 with modes

m1,m2,m3 results in 1’-2’-3’ with modes m2,m3,m1. The rearrange operation is

a cost non-increasing operation as we use the same modes for the same amount of

time.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 52

Definition 4.4 (Rearrange Operation). Let (mi, ti), . . . , (mj, tj) be any subse-

quence of σ such that either ∀ i≤ l ≤ jml ∈ M− or ∀ i≤ l ≤ jml ∈ M+ hold. Note

that any permutation of the timed actions (mi, ti), . . . , (mj, tj) will result in a new

schedule σ′ which is safe and has the same total cost as σ.

Vmax

Vmin
1

2

m1

3

m2

4m3

2′

m2

3′

m3

m1

Figure 4.3: Rearrange operation.

Shift Operation

The shift operation cuts any subsequence of timed actions that start and end at

the same state, V , and pastes this subsequence after any timed action that ends

at V . The effect of the shift operation can be seen in Figure 4.4 where the partial

leap 1-2-3 which will be moved after the (complete) leap 3-4-5.

Definition 4.5 (Shift Operation). Let the run of our finite schedule σ = 〈(m1,

t1), (m2, t2), . . . , (mk, tk)〉 be 〈V0, V1, ..., Vk〉. For any i ≤ j ≤ l such

that Vi = Vl = Vj holds, we can move the whole subsequence of timed actions

(mi, ti), . . . , (mj−1, tj−1) just after (ml−1, tl−1) in σ to obtain a new safe schedule

with the same cost. Specifically, the new schedule will look as follows: 〈(m1, t1),

. . . , (mi−1, ti−1), (mj, tj), . . . , (ml−1, tl−1), (mi, ti), . . . , (mj−1, tj−1), (ml,

tl), . . . , (mk, tk)〉 Analogously, in the same situation, we can also move the whole

subsequence of timed actions (mj, tj), . . . , (ml−1, tl−1) just after (mi−1, ti−1) in σ

to obtain a new safe schedule with the same cost.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 53

Vmax

Vmin

1

2

m1

3

m2

4

m3

5

m4

2′

m3

3′

m4 4′

m1
m2

Figure 4.4: Shift operation.

Shift-down Operation

The shift-down operation can rearrange any subsequence of timed actions that

start and end at the same state and move them after any timed action that ends

at Vmin. We can see an example of applying this operation in Figure 4.5. The

shift-down operation is applied to timed actions mi+1,mi+2. These actions are

rearranged to move after point 5, which becomes point 3’ (i.e. following timed

action mi+3).

Definition 4.6 (Shift-Down Operation). Let the run of our finite schedule σ =

〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 be 〈V0, V1, ..., Vk〉. For any i ≤ j and l such that

Vi = Vj+1 = Vmax and Vl+1 = Vmin, we can “rotate” the whole subsequence of timed

actions (mi, ti), . . . , (mj, tj) and move it just after (ml, tl) in σ to obtain a new safe

schedule σ′ with the same cost. Specifically, let d = argmin i≤ b < j Vb+1. Note that

if we rotate the subsequence of actions in the way to start with timed action

(md, td) then we will never encounter a lower state than the start state, because

d was the lowest point along this subsequence of timed actions. Specifically, the

new schedule σ′ will look as follows 〈(m1, t1), . . . , (mi−1, ti−1), (mj+1, tj+1), . . . ,

(ml, tl), (md, td), . . . , (mj, tj), (mi, ti), . . . , (md−1, td−1), (ml+1, tl+1), . . . , (mk, tk)〉.

Wedge Operation

The most complicated operation we define is the wedge operation. It acts on three

consecutive timed actions in a schedule and simultaneously shrinks the middle

action while extending the other two, or stretches the middle action while shrinking

the other two. We can see its behaviour in Figure 4.6. Intuitively, it moves the

timed action m2 parallelly up or down, until either the timed action m1 is removed



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 54

Vmin

Vmax

1

2

mi

3

mi+1

4

mi+2

5

mi+3

3’

mi+3 4’

mi+2

mi+1

Figure 4.5: Shift-down operation.

Vmin

Vmax

1

2

m1

3

m2

4

m3

7

6 m2

5

m2

Figure 4.6: Wedge operation.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 55

or m2 ends at Vmax. Figure 4.6 shows an example of applying the Wedge operation

to three timed actions m1,m2,m3. This operation is a (parallel) translation of

the action m2, which changes the time duration of each of theses actions. After

this operation either the m2 line touches Vmin, which would remove m1 from the

schedule, or the m2 line touches Vmax, which would change a state along the run

of the schedule to be at the border.

As we show later, the direction depends on the cost gradient, but as the

cost delta function of this operation is linear, one of these directions is cost-

nonincreasing.

Definition 4.7 (Wedge Operation). Let σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 be

a finite safe schedule whose run is 〈V0, V1, ..., Vk〉. Let τ = 〈(mi, ti), (mi+1,

ti+1), (mi+2, ti+2)〉 be any three consecutive timed actions in which exactly

two consecutive timed actions have the same trend. It suffices to consider the

case where A(i) > A(i + 1) > 0 and A(i + 2) < 0 as all other cases are very

similar. Notice that if A(i + 1) > A(i) then we can simply change the order of

(mi, ti), (mi+1, ti+1) using the rearrange operation defined earlier. Furthermore, we

only define this operation in the case where Vi−1 = Vi+2. This is the only situation

we need this operation for and it is easy to generalise this further.

Let α ∈ [0, . . . , αmax] where α represents the amount of time subtracted from

the time we use mode mi+1. The value of α = 0 when the time ti = 0 for the

mode mi (i.e. the starting point of the timed action (mi+1, ti+1) is Vmin) while

α = αmax when the ending point of the timed action (mi+1, ti+1) is Vmax. So, for

any α ∈ [0, . . . , αmax], consider the sequence of timed actions

τ ′ = 〈(mi, α
A(i+ 2)

A(i+ 2)− A(i)
), (mi+1, t−α), (mi+2, ti+ti+1+ti+2−(t+α)−α A(i+ 2)

A(i+ 2)− A(i)
)〉

Let us replace τ by τ ′ in σ to get σ′ whose run is 〈V ′0 , V ′1 , ..., V ′k〉. We

claim that Vi−1 = V ′i−1 = Vi+2 = V ′i+2, so the runs of σ and σ′ can only differ

at their i-th and i + 1-th states. At the same time notice that πc(σ
′) − πc(σ) is

a linear function of α as a sum of linear functions. As a result its minimum is

attained at the smallest or largest permissible value of α. Moreover, the value

of t can be calculated by studying the sequence 1 → 5 → 4 in Figure 4.6 where

t = (A(i + 2)(ti + ti+1 + ti+2)/(A(i + 2) − A(i + 1)). Similarly, the value of αmax

can be calculated by studying the sequence 1→ 6→ 7→ 4 in Figure 4.6 where

αmax =
Vmax(A(i+ 2)− A(i))/A(i+ 2)− A(i)(t+ ti + ti+1 + ti+2)− tA(i+ 1)

−A(i+ 1)− A(i)



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 56

Resize Operation

Finally, we define the resize operation that will be used the most in our procedure.

The resize operation requires one parameter t ∈ R and can act on any two con-

secutive timed actions in a schedule. Intuitively, if t < 0, this operation decreases

the total time of this pair of timed actions by |t| while changing only the middle

state between these two timed actions along the run of the schedule. If t > 0,

this operation increases the duration of this pair of timed actions by t while again

changing only the state between them along the run. If t > 0 then we will also

refer to this operation as the stretch operation and if t < 0 as the shrink operation

with parameter −t > 0. If the stretch and shrink operations are simultaneously

applied with the same parameter t to two non-overlapping pairs of timed actions,

the result is a schedule with the same time horizon as before, but with a possibly

different total cost. We will call a flexi any subsequence of length 2 in a schedule

such that both shrink and stretch operations can be applied to it for some t > 0.

The non-overlapping pairs of timed actions are flexis where each flexi contains

different timed actions which means that the intersection between the two flexis

can not be a timed action but it can be a common point. A simultaneous ap-

plication of these two operations to flexis is demonstrated in Figure 4.9 and 4.10.

Figure 4.9 shows the shrink and stretch operations being applied to two up-up

flexis. The 1-2-3 one is stretched by t, which results in 1-4-5, and 1’-2’-3’ is shrunk

by t, which results in 4’-5’-3’. Note that 3 and 5 (also, 1’ and 4’) are the same

states but shifted in time. In fact, all states along the run of the schedule stay the

same apart from 2 and 2’, and as a result the schedule stays safe. Also, Figure 4.9

presents the shrink and stretch operations being applied to two up-down flexis.

Definition 4.8 (Resize Operation). Let σ = 〈(m1, t1), . . . , (mk, tk)〉 whose

run is 〈V0, V1, . . . , Vk〉. For i < k and t ∈ R, let resize(σ, i, t) be a schedule

σ′ identical to σ apart from timed actions (mi, ti), (mi+1, ti+1) being replaced by

(mi, t
′
i), (mi+1, t

′
i+1) in the following way, where we distinguish among several cases.

If t > 0 then we will also refer to this operation as the stretch operation and if

t < 0 as the shrink operation.

(up-up) If 0 < A(mi) < A(mi+1) then let t′i = ti + βt+ t and t′i+1 = ti+1 − βt where

β =
A(mi)

A(mi+1)− A(mi)
≥ 0

Let resize-domain(σ, i) := [−ti/(β + 1), ti+1/β]. Note that πc(σ
′) − πc(σ) =

((β + 1)πc(mi)− βπc(mi+1)) · t.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 57

If 0 < A(mi+1) < A(mi) then let t′i = ti − β · t and t′i+1 = ti+1 + β · t + t

where

β =
A(mi+1)

A(mi)− A(mi+1)
≥ 0

Let resize-domain(σ, i) := [−ti+1/(β + 1), ti/β]. Note that πc(σ
′) − πc(σ) =

((β + 1)πc(mi+1)− βπc(mi)) · t.

(up-down) Here 0 < A(mi) and A(mi+1) < 0 holds. Let t′i = ti + βt and t′i+1 =

ti+1 − βt+ t where

β =
−A(mi+1)

A(mi)− A(mi+1)
≥ 0

Let resize-domain(σ, i) := [−min{ti/β, ti+1/(1−β)}, (Vmax−Vi)/(βA(mi))].

Note that πc(σ
′)− πc(σ) = (βπc(mi) + (1− β)πc(mi+1)) · t.

(down-up) Analogous to up-down case.

(down-down) Analogous to up-up case.

(flat) If (m1, t1) is a zero-mode action in σ, then let resize(σ, 0, t) be equal to σ

where the first action is replaced by (m1, t1 + t). Let resize-domain(σ, 0) :=

[−t1, tmax − t1] and notice that πc(σ
′)− πc(σ) = πc(m1) · t

(last-action) If (mk, tk) is the last action in σ, then let resize(σ, k, t) be equal to σ where

the last action is replaced by (mk, tk + t).

Let resize-domain(σ, k) := [−tk,max {(Vmax − V )/A(mk), (Vk − Vmin)/A(mk)}]
and notice that πc(σ

′)− πc(σ) = −πc(mk) · t

Consider two non-overlapping flexis at positions i and j in a safe schedule σ.

Let σ′ = resize(σ, i, t) be the resulting schedule of applying the resize operation

with parameter t to the i-th and i+1-th timed actions in σ and resize-domain(σ, i)

be the maximal closed interval from which t can be picked to ensure that σ′ is safe.

Similarly, let σ′′ = resize(σ, j,−t) and σ′′′ = resize(resize(σ, i, t), j,−t)). Note that

σ′′′ has the same time horizon as σ and is safe as long as t ∈ resize-domain(σ, i)∩
resize-domain(σ, j) and let us denote this closed interval by I. Furthermore,

π(σ′′′)−π(σ) = π(σ′)−π(σ)+π(σ′′)−π(σ) because the two flexis did not overlap.

As it is shown in the definition before, both π(σ′) − π(σ) and π(σ′′) − π(σ) are

linear functions in t in the interior of I. As a result, π(σ′′′)− π(σ) is also a linear

function in t and so its minimum value is achieved at one of the endpoints of I.

Also, at such an endpoint, one of the time actions in these two flexis will disappear

and as a result the total cost would be reduced even further. It follows, that there

is an endpoint of I such that selecting it as t will not increase the cost of the



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 58

schedule, but it will remove a flexi from σ. As the zero-mode timed action and

the last timed action in a schedule can have flexible time delay, we can also define

the resize operation for them in a similar way. As a result, we can apply the resize

operation with parameter t to any of these (including a flexi) and with parameter

−t to the other. Reasoning as above, there is a value for t such that the cost of

the resulting schedule does not increase, the schedule remains safe, and at least

one of the timed actions is removed from σ or one more state along the run of σ

becomes Vmin or Vmax.

4.3.2 Transforming Schedules into Optimal Ones

Theorem 4.9. For every safe schedule σ in a one-dimensional multi-mode system

there exists a safe schedule σ′ whose head section matches one of the patterns in

Figure 4.7, tail section matches one of the patterns in Figure 4.8, and π(σ′) ≤ π(σ)

holds. Furthermore, it suffices to consider only 44 combinations of these head and

tail patterns, and the length of all of them is at most five.

Proof. We will repeatedly apply combination of shrink and stretch operations to

flexis until we remove all non-overlapping ones. Note that after each such an

application either a timed action is removed or one more state along the run of σ

becomes equal to Vmax or Vmin.

We claim that the following steps will transform σ to a suitable σ′:

1. as long as there are at least one pair of non-overlapping flexis then shrink

one and stretch the other until a timed action is removed or a new state at

the border is created;

2. once there is only one flexi left or two overlapping ones, use the shift or

shift-down operation to move them to the end of the schedule;

3. if the first timed action is flat, pair it with the remaining flexi to remove one

of them using the shrink-stretch operation combination;

4. if the last state of run(σ) is not at the border and a flexi or flat timed action

remains after the previous step, they should be paired with each other for

the shrink-stretch operation combination;

5. if two overlapping flexis exist, use the wedge operation to resolve them;

6. finally, if the tail section still does not follow any of the patterns, apply the

shift-down operation to the (unique) segment that starts and ends at Vmax.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 59

Vmax

Vmax

Vmax

Vmax

Vmax

Vmin

Vmin

Vmin

Vmin

Vmin

t = 0t = 0

t = 0 t = 0

t = 0 t = 0

t = 0 t = 0

t = 0 t = 0
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

1

2

m1

3

m2

1

2

m1

4

3

m3

2

m2

1

m1

1

2

m1

3

m2

1

2

m1

3

m2

1

2

m1

3

m2

4

m3

1

2

m1

3

m2

4

m3

1

2

m1

3

m2

1

2

m1 3

m2

4

m3

Figure 4.7: Ten possible head patterns: (a) flat+down (b) down (c) partial-
up+down (d) flat+up+down (e) up+down (f) partial-down+up+down (g)
partial-up+up+down (h) partial-down+down (i) up+partial-down+down and

(j) empty.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 60

Vmax

Vmax

Vmax

Vmax

Vmax

Vmin

Vmin

Vmin

Vmin

Vmin
tmax

tmax

tmax

tmax

tmax

tmax

tmax

tmax

tmax tmax

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

3

4

2

3

4

4

5

1

1

2

m1

2

m1

m2

1

2

m1

3

m2

m3

1

2

m1 3

m2

1

m1

1

2

m1 m2

1

2

m1

3

m2

m3

1

2

m1

3

m2

m3

1

2

m1

3m2

4

m3

m4

Figure 4.8: Ten possible tail patterns: (a) partial-up (b) partial-up+up (c)
up+partial-down+down (d) up+partial-down (e) up (f) partial-up+down (g)
partial-up+up+down (h) partial-up+down+up (i) up+partial-down+down+up

and (j) empty.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 61

Vmin

Vmax

Stretch by Shrink by
1

2

m1

3

m2

1′

2′

m3

3′

m4

5

4

m2

t

4′

5′

m3

t

Figure 4.9: Shrink and stretch operations being applied to two up-up flexis.

A graphical representation of this procedure when applied to an example schedule

can be seen in Example 4.1. It is easy to see that the first step of this procedure

will stop eventually because σ has a finite number of timed actions and states along

its run. The rest of the steps of this procedure just try to reduce the number of

possibilities for the head and tail sections. Note that, apart from the initial state,

there can be only one state, along the run of the resulting σ′, which is not at the

border. This is because otherwise a shrink-stretch or wedge operation could still

be applied. Drawing all possible patterns with one point not at the border and

eliminating the ones that are inter-reducible using one of these operations, results

in Figure 4.7 for the head section and Figure 4.8 for the tail section.

If we try to combine all these head and tail pattern together then this would

result in 10·10 = 100 possible combinations. However, as just mentioned, there can

be only one point not at the border or a zero-mode timed action in a schedule so

these combinations of head and tail patterns can be reduced further. In particular,

any head pattern can be combined with tail patterns (e) and (j), but only (b), (e),

(j) head patterns can be combined with the remaining tail ones. Therefore, there

are 10 · 2 + 3 · 8 = 44 combined patterns and it is easy to check that none of them

has length larger than five (important for Theorem 4.13).

Note that the schedule’s optimal form contains at most one point of flexibility

between Vmin and Vmax.

Example 4.1. Suppose that a safe-schedule is given in Figure 4.11, we use the

operations presented before in Section 4.3.1 to transform it into an optimal sched-

ule. For any two non-overlapping flexis, we try to shrink one by t and stretch the

other by t for the maximum possible time t > 0. We repeat this until there is at

most one flexi left.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 62

Stretch by Shrink by

Vmin

Vmax

1

2

mi

3

mi+1

4

5

mj 6

mj+1

2′

3′

mi+1

4′

5′

mj

t t

Figure 4.10: Shrink and stretch operations being applied to two up-down
flexis.

Vmax

Vmin
tmaxt = 0

1
7

10

11

9

12

133
4

5

62
8

Figure 4.11: The original safe-schedule.

Step 1: Here, we start off by shrinking flexi 1-2-3 (of type up-up) and stretching flexi

5-6-7 (of type up-down). This will result in straightening the 1-2-3 flexi and

removal of its midpoint 2. The result is shown in Figure 4.12.

Step 2: Next, for the schedule shown in Figure 4.12, we will apply the procedure to

flexis 2-3-4 (of type down-down) and 4-5-6 (of type up-down). This will

result in straightening the 2-3-4 flexi and removal of its midpoint 3. we can

see the end result in Figure 4.13.

Step 3: Next, in the schedule shown by Figure 4.13, we will apply the procedure to

flexis 5-6-7 (of type up-up) and 8-9-10 (of type down-down). This will result

in straightening of the 5-6-7 flexi and removal of its midpoint 6 (we can see

the end result in the Figure 4.14).



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 63

Vmax

Vmin
tmaxt = 0

1
6

9

10

8

11

12

7

2

3

4

5

Figure 4.12: The resulting safe-schedule after step 1.

Vmax

Vmin
tmaxt = 0

1
5

8

9

7

10

11

6

2

3

4

Figure 4.13: The resulting safe-schedule after step 2.

Vmax

Vmin
tmaxt = 0

1
5

7

8

9

10
2

3

4
6

Figure 4.14: The resulting safe-schedule after step 3.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 64

Step 4: Next, we will apply the procedure to flexis 1-2-3 (of type up-down) and 3-

4-5 (of type up-down) shown in Figure 4.14. This will result in moving the

midpoint 2 up until it reaches Vmax. The resulting safe-schedule is shown in

Figure 4.15.

Vmax

Vmin
tmaxt = 0

1
5

7

2

3

4

8

6

9

10

Figure 4.15: The resulting safe-schedule after step 4.

Step 5: Next, in the safe schedule shown in Figure 4.15, we will apply the procedure

to flexis 2-3-4 (of type down-up) and 7-8-9 (of type down-down). This will

result in moving the midpoint 3 down until it reaches Vmin. The resulting

safe schedule is shown in Figure 4.16.

Vmax

Vmin
tmaxt = 0

1

7

2

8

9

10

3

4

5

6

Figure 4.16: The resulting safe-schedule after step 5.

Step 6: Next, in the safe schedule shown in Figure 4.16, we will apply the procedure

to flexis 3-4-5 (of type up-down) and 7-8-9 (of type down-down). This will

result in moving the midpoint 4 up until it reaches Vmax. The output safe

schedule from this step is shown in Figure 4.17.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 65

Vmax

Vmin
tmaxt = 0

1

2

9

10

3

4

5

6
7

8

Figure 4.17: The resulting safe-schedule after step 6.

Step 7: Next,in the safe schedule shown in Figure 4.17, we will apply the procedure

to flexis 4-5-6 (of type down-up) and 7-8-9 (of type down-down). This will

result in moving the midpoint 5 down until it reaches Vmin. The resulting

safe schedule is shown in Figure 4.18.

Vmax

Vmin
tmaxt = 0

1

2

3

4

5

6
7

98

10

Figure 4.18: The resulting safe-schedule after step 7.

Step 8: Next, in the schedule shown by Figure 4.18, we will apply the procedure to

flexis 6-7-8 (of type up-down) and 8-9-10 (of type down-up). This will result

in straightening of the 8-8-10 flexi and removal of the midpoint 9. The new

safe-schedule is shown in Figure 4.19.

Step 9: Next, in the schedule shown by Figure 4.19 we will apply the procedure to

flexis 5-6-7 (of type up-up) and 7-8-9 (of type down-up). This will result in

moving the midpoint 8 down until it reaches Vmin. The resulting safe-schedule

is shown in figure 4.20.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 66

Vmax

Vmin
tmaxt = 0

1

2

3

4

5

6
7

8

9

Figure 4.19: The resulting safe-schedule after step 8.

Vmax

Vmin
tmaxt = 0

1

2

3

4

5

6 7

8

9

Figure 4.20: The resulting safe-schedule after step 9.

Step 10: Since there no more non-overlapping flexis in the schedule shown in Figure

4.20, we try to move the one that remains in the leaps section to the end of

the schedule. In this case, as all of them are already located after the leaps

section, this step is skipped. Next, we will apply the same procedure but with

the first timed action if it is a flat one or with the last timed action if it does

not reach neither Vmin nor Vmax (and so shrink and stretch operations can

be applied to it). In this case we apply this operation to flexi 6-7-8 (of type

up-down) and the last timed action 8-9. This results in moving point 9 up

until it reaches Vmax. The resulting safe schedule is shown in Figure 4.21.

Step 11: Our schedule shown in Figure 4.21 is already partitioned into three distinct

sections: head, leaps, and tail. However, the tail section does not follow any

of the 10 patterns in Figure 4.8. We cannot apply shrink/stretch operations

because the flexes 5-6-7 and 6-7-8 are overlapping. At the same time points

6 and 7 still have some flexibility in them. We apply the wedge operation to



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 67

Vmax

Vmin
tmaxt = 0

1

2

3

4

5

6 7

8

9

Figure 4.21: The resulting safe-schedule after step 10.

the 5-6-7-8 segment to resolve this. In this case, points 6 and 7 are moved

up until one of them reaches Vmax and the first one to do so is point 7. The

resulting safe schedule is shown in Figure 4.22.

Vmax

Vmin
tmaxt = 0

1

2

3

4

5 8

9
7

6

Figure 4.22: The resulting safe-schedule after step 11.

Step 12: In the schedule shown by Figure 4.22, there is only one point between Vmin

and Vmax left (point 6), but the tail still does not follow any of the 10 patterns.

We use the shift-down operation to segment 7-8-9 and move it after 5. The

resulting schedule is shown in Figure 4.23 with both the head section (1-2-3)

and tail section (7-8-9) follows one of the standard patterns. The head sec-

tion follows the partial-up+down pattern (Figure 4.7(e)) and the tail section

follows partial-up+up pattern (Figure 4.8(b)). The leaps section (3-4-5-6-7)

consists of two (complete) leaps. So, there exists an optimal schedule that

has the same shape as in Figure 4.23.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 68

Vmax

Vmin
tmaxt = 0

1

2

3

4

5

6

7

8
9

Figure 4.23: The resulting optimal safe-schedule after step 12.

4.4 Complexity of Optimal Control in One-dimension

We start with considering the easy case of infinite time horizons, before turning

to the interesting case of finite time horizons.

4.4.1 Infinite Time Horizon

First let us consider the case M0 = ∅. If also M+×M− = ∅ then there are no safe

schedules with infinite horizon at all. Otherwise, let (i′, j′) = argmin(i,j)∈M+×M− ∆πi,j/∆ti,j.

Let us pick any mode m− ∈ M− and denote t− := (Vmin − V0)/A(m−). Consider

the infinite schedule σ, which starts with the timed action (m−, t−) followed by in-

finitely many complete leaps of type (i′, j′). Obviously, at all times t = t−+k·∆ti′,j′
where k ∈ N, σ is more expensive by at most πd(m

−)+πc(m
−)t− from the cheapest

schedule with time horizon t. Consequently, as k →∞, this shows that the limit

superior of the average cost cannot be smaller than ∆πi′,j′/∆ti′,j′ . At the same

time, σ realises this long-time average.

If M0 6= ∅, then let m′ = minm∈M0 πc(m) be the zero-mode with the lowest

continuous cost to run. We claim that if πc(m
′) < ∆πi′,j′/∆ti′,j′ or M+×M− = ∅

then an optimal safe schedule is simply (m′,∞), whose limit-average cost is πc(m
′),

and otherwise σ defined above is an optimal safe schedule. This is because, if

πc(m
′) < ∆πi′,j′/∆ti′,j′ , then, at any time point of σ where a leap of some type

(i, j) is used, removing this leap and increasing the time m′ is used for by ∆ti,j

reduces the total cost up to this time point.

Taking into account that argmin(i,j)∈M+×M− ∆πi,j/∆ti,j can be computed using

logarithmic space (because multiplication, division and comparison can be [19])

we get the following theorem.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 69

Theorem 4.10. An optimal safe infinite schedule for one-dimensional multi-mode

systems can be computed in deterministic LogSpace.

4.4.2 Finite Time Horizon

As our one-dimensional model strictly generalises the simple linear hybrid au-

tomata considered in Chapter 3, referring to Theorem 3.7, we immediately obtain

the following result.

Theorem 4.11 (follows from Theorem 3.7). Given (one-dimensional) multi-mode

system A, constants tmax and C (both in binary), checking whether there exists a

safe schedule in A with time horizon tmax and total cost at most C is NP-hard.

So, we know that the decision problem for optimal schedules in one-dimensional

multi-mode systems is at least NP-hard. Here, we show that the problem is NP-

complete by showing that an optimal schedule exists and that each section of an

optimal schedule can be guessed.

Theorem 4.12. For any one-dimensional multi-mode systems A and tmax ≥ 0,

there exists an optimal schedule with time horizon tmax, and checking for the ex-

istence of an optimal schedule with cost ≤ C is NP-complete. (When tmax and C

are given in binary.)

Proof. First, we can simply iterate over all schedules of length one and directly

calculate their costs. Next, we can iterate over pairs of modes, m1 and m2, and for

each of them solve a linear program (LP) which will give us the cheapest schedule

of length two using these two modes. This LP finds the cheapest partition of tmax

between the two modes and has the following form:

Minimise πc(m1)t1 + πc(m2)(tmax − t1) + πd(m1) + πd(m2) Subject to: 0 ≤ t1 ≤ tmax,

Vmin ≤ V0 + A(m1)t1 ≤ Vmax and Vmin ≤ V0 + A(m1)t1 + A(m2)(tmax − t1) ≤ Vmax.

This can be done in O(|A|2) time.

Now, for schedules of length at least three, we showed in Section 4.3 that any

such a schedule can be transformed without increasing its cost into one that can be

split into three sections: the head section, the leaps section, and the tail section

(some of which may be empty). Due to Theorem 4.9, there are 44 combined

patterns for the tail and head sections. Note that, when considering only the cost

of the whole schedule, it suffices for us to know the number of leaps of each type

in the leaps section and not their precise order. Notice that a schedule with time

horizon tmax can contain at most btmax/∆πi,jc leaps of type (i, j). The size of this



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 70

number is polynomial in the size of the input A. There are O(|M |2) types of leaps

so the number of leaps of each type and the combined pattern of the schedule

can be guessed non-deterministically with polynomially many bits. This guess

uniquely determines the cost of the schedule. This is because, after the total time

of the leaps section is deducted from tmax, we get the exact time the head and tail

section have to last for. Each combined pattern has at most one of the following:

a flexi, a zero-mode, or the last state not at the border. The time remaining will

determinate exactly (if at all possible) the value of this single flexible point along

this schedule. Now, computing the cost of the resulting schedule and checking

whether it is lower than C can be done in polynomial time by guessing the modes

we use and when we use them. This shows that the problem is in NP. It also

shows that optimal schedules exist, because there are only finitely many options

to choose from.

4.5 Approximate Optimal Control in One-Dimension

4.5.1 Constant Factor Approximation

We show here an approximation algorithm with a 3-relative performance for the

cost minimisation problem in one-dimensional multi-mode systems, which runs in

O(|A|7) time. Our algorithm ,if the schedule is of length 2, checks all the possible

pairs that cover the time tmax and selects the cheapest. If the schedule’s length is

more than 2, thanks to Theorem 4.9, the schedule follows the shape of (head +

leaps + tail) and the maximum length of the (head + tail) part is 5 which means

that the algorithm tries all possible patterns as in the optimal schedule and for

the leaps section always picks leaps of the same type. It then adds, if necessary or

for cost efficiency, a partial leap to the leaps section and minimises the total cost

of the just constructed schedule by optimising the time duration of this partial

leap. This constant approximation algorithm is crucial for showing the existence

of an FPTAS for the same problem in the next subsection.

Theorem 4.13. Computing a safe schedule with total cost at most three times

larger than the optimal one for one-dimensional multi-mode system A can be done

in O(|A|7) time.

Proof. First, we iterate over all possible schedules of length at most two and find

the cheapest one. Next, thanks to Theorem 4.9, all optimal schedules longer than

two can be transformed into one of 44 different allowable patterns. Our algorithm

will simply iterate over all 44 possible combined patterns for the head and tail



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 71

section and within each pattern over all allowed combinations of modes that make

up the head and tail sections. (Due to Theorem 4.9 we know there are at most

five actions in each pattern.) As for the leaps section, the algorithm iterates over

all possible leap types. The algorithm then finds the cheapest schedule that uses

only leaps of the selected type (and potentially a partial leap if necessary). This

can be done in a constant number of arithmetic operations. For instance, for

the head pattern up+down (e), with m1,m2 as modes, and tail pattern partial-

up+down+up (h), with m3,m4,m5 as modes, and all leaps of type (i, j), the

algorithm does the following. Let t∗ = tmax − (Vmax − V0)/A(m1)−∆tm2 −∆tm5 .

Intuitively, t∗ is the total time left for all the leaps and the remaining partial-

up+down part whose exact timing is flexible. Note that the partial-down+up

part is a partial leap of type (m3,m4) and its cost can be expressed as πd(m3) +

πd(m4) +αt, where α = (∆πm3,m4 −πd(m3)−πd(m4))/∆tm3,m4 and t ≤ ∆tm3,m4 is

the total amount of time the partial-down+up part takes. Now if α < ∆πi,j/∆ti,j

then the number of leaps should be as small as possible, i.e. b(t∗−∆tm3,m4)/∆ti,jc,
to minimise the total cost. Otherwise, the number of leaps has to be the largest

possible, i.e. bt∗/∆ti,jc.
If the addition of a partial leap of type (i, j) is necessary, then we need to

compare α with β = (∆πi,j − πd(i)− πd(j))/∆ti,j, which is the cost per time unit

of using a partial leap of type (i, j) disregarding its discrete cost (as it is already

paid for anyway). If α < β then the partial leap of type (i, j) has to be the biggest

possible to minimise the cost, which results in either this partial leap becoming

complete (i.e. a leap) or the partial-up+down part disappearing, so changing the

tail to the up (e) pattern. Otherwise, if α ≥ β, the partial leap of type (i, j)

has to be the smallest possible to minimise the cost, which results in either this

partial leap disappearing or the partial-up+down part turning into a (complete)

leap of type (m3,m4). Essentially in the same way we can deal with the remaining

combined patter. In the end, we compare the total costs of all the constructed

schedules and return the cheapest one. It is easy to see now that this iterative

algorithm runs in time O(|A|7). If the schedule is of length 2, we check all the

possible pairs in time O(|A|2) and select the cheapest. If the schedule’s length

is more than 2, the schedule follows the shape of (head + leaps + tail). The

maximum length of the (head + tail) part is 5 which means that we go throw

all the possible combinations in time O(|A|5). For the leap part, we always use

leaps of the same time which means that we go throw all the possible leaps in time

O(|A|2). Now, the only thing left to do is to show that its performance ratio is 3.

Let σ∗ be an optimal schedule with time horizon tmax. Let us focus again on the

up+down pattern with modes m1,m2 and the head partial-up+down+up pattern



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 72

with modes m3,m4,m5 for the tail; the reasoning is almost the same in all the

other cases. If σ∗ has no leaps at all then due to Theorem 4.9 it can have at most

five timed actions and our algorithm will return the optimal solution, because it

tries all such possibilities. So now assume that the cheapest leap (per time unit

as measured by ∆πi,j/∆ti,j) in σ∗ has type (i, j). Let us consider the iteration of

our approximation algorithm when the pattern and modes mentioned above, and

type (i, j) for the leaps section are considered. Let σ be the schedule constructed

by our algorithm in this iteration. We will show that π(σ) − π(σ∗) ≤ 2 · ∆πi,j.
and σ. Notice that both σ and σ∗ use modes m1,m2 and m3 for exactly the same

time in their head and tail sections, respectively, so we do not need to consider

these. Hence, the difference between them can only be in the amount of time these

schedules dedicate to the partial-up+down part (partial leap) that uses modes m4

and m5 and to the leaps section. Let us denote by t∗l , t
∗
e the time duration of the

leaps section and the partial-up+down part, respectively, in σ∗. Similarly, let tl

and te be these time durations in σ. Note that tl + te = t∗l + t∗e. We claim that

|t∗e − te| < ∆ti,j. If it was the case that t∗e − te ≥ ∆ti,j then we could have reduced

the total cost of σ∗ by shrinking the partial-up+down part by ∆ti,j and adding

another type (i, j)-leap to σ∗. This is because, the shrinking operation is safe for

any value from some closed interval (see Section 4.3.1), and we already know that

shrinking can be safely done for t∗e − te which is ≥ ∆ti,j. At the same time, the

cost of σ∗ would become lower, because otherwise the way σ was chosen would

imply that one less leap of type (i, j) should be in σ. Similarly we can reason that

if it was the case that te − t∗e ≥ ∆ti,j then we could have reduced the total cost of

σ∗ by stretching the partial-up+down part by ∆ti,j and removing a leap of type

(i, j) from σ∗ (we know at least one exists in σ∗).

Note that the cost of the leap section in σ is the same or lower than in σ∗ up

to time point t$ = bmin {tl, t∗l }/∆ti,jc ·∆ti,j, because the cheapest leap in σ∗ is of

type (i, j).

If tl ≥ t∗l then we know that tl − t$ ≤ 2 ·∆ti,j, so the cost of the leap section

is at most 2 · ∆πi,j more expensive in σ. At the same time, te ≤ t∗e holds. The

partial-up+down part therefore costs at least as much in σ∗ as it does in σ. On

the other hand, if tl < t∗l , then we know that the cost of the leaps section in σ∗ has

to be at least bt∗l /∆ti,jc · ∆πi,j. At the same time, the total cost of σ is at most

btl/∆ti,jc·∆πi,j+∆πi,j, where the last compound is the maximum cost of a partial

leap. Clearly the difference between these two costs is at most ∆πi,j. As for the

partial-up+down part in σ we claim that that c∗e + ∆πi,j ≤ ce. Recall that the

length of te was picked in a way to minimise the cost. Therefore, if c∗e + ∆πi,j > ce

then picking t∗e for the time duration of the partial-up+down part in σ would have



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 73

lowered the total cost. This time duration is achievable, because shrinking this

part by te− t∗e ≤ ∆ti,j while extending or introducing a (partial) leap of type (i, j)

is possible.

The two estimates, for the leaps section and partial-up+down part, give us

that π(σ∗)−π(σ) ≤ 2 ·∆πi,j. At the same time, π(σ∗) ≥ ∆πi,j holds, which shows

that σ is at most three times more expensive that σ∗. Note that the longer the

leaps section is in the optimal schedule, the better the performance ratio, e.g. if

bt∗l /∆ti,jc = k then the performance ratio is 1 + 2/k.

4.5.2 FPTAS Algorithm

We show here that the cost minimisation problem for the general case one di-

mensional multi-mode systems is in FPTAS by a polynomial time reduction to

the 0-1 Knapsack problem, for which many FPTAS algorithms are available (see

e.g. [32]). This is similar to the FPTAS construction in Section 3.6.2, but differs

in how the modes with fractional duration are handled. First we iterate over all

possible schedules of length at most two and find the cheapest one in polynomial

time. Next, thanks to Theorem 4.9, all optimal schedules longer than two can be

transformed into one of 44 different patterns. Each of these patterns results in a

slightly different FPTAS formulation. An FPTAS for the general model consists

of all of these individual FPTASes executed one after another.

Theorem 4.14. Solving the optimal control problem for multi-mode systems with

relative performance ρ takes O(poly(1/ρ)poly(size of the instance)) time and is

therefore in FPTAS.

Proof. We consider here only one of the 44 possible pattern cases, because all

these FPTAS algorithms will look essentially the same with a little bit difference

which will be explained in Section 4.5.2. We combine all these FPTASes into a

single FPTAS for the general model by running them one by one. The case we

will look at is up+down pattern, with modes m1,m2, for the head section and

partial-up+up+down, with modes m3,m4,m5, for the tail section. The schedule

is shown by Figure 4.24. We consider all combinations of these five modes mi

individually and select the cheapest one, and therefore consider them given. (Note

that there are only quintically many such combinations.) W.l.o.g. we assume that

∆tm3 > ∆tm4 , because otherwise we could swap the role of m3 with m4 in our

algorithm below. Note that any schedule with this pattern which picks m3 in the

tail for α∆tm3 amount of time, uses m4 for (1−α)∆tm4 amount of time in the tail

section.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 74

Let c∗ be the 3-approximation, which can be computed using the procedure

from Theorem 4.13, of the optimal cost o∗. To get an approximation to our optimal

cost problem with a relative performance ρ, it suffices to find a solution with c∗ρ/3

absolute performance. We split this into two equal parts of ε = c∗ρ/6. An optimal

solution to the knapsack instance that we produce will provide us with a schedule

with cost no greater than ε over the optimal one. Moreover, a solution to the knap-

sack instance with δ absolute error will provide a schedule with an ε+ δ absolute

error. Therefore, it suffices to set δ = ε to find a schedule with ρ relative perfor-

mance. In our reduction, the total value of all the items in the resulting knapsack

problem is at most 4|M |2 times the optimal cost for safe schedules, so by using

ρ′ = ρ/(12|M |2) for the resulting knapsack problem we will find a near optimal so-

lution with a relative performance ρ for multi-mode systems. The running time of

this procedures is O(poly(1/ρ)poly(|M |)poly(size of the knapsack instance)). This

suffices to establish the inclusion of the cost minimisation problem for multi-mode

systems in FPTAS.

For each type of leaps, (m,m′) ∈ M+ ×M−, we build the following items for

this knapsack problem instance: {(2i ·∆tm,m′ , 2i ·∆πm,m′) | i ∈ N ∧ 2i ·∆πm,m′ ≤
c∗ ∧ 2i · ∆tm,m′ ≤ tmax}. Let i∗ ∈ N be smallest such that 0 ≤ 2−i

∗ · (∆πm3 −
πd(m3) − ∆πm4 + πd(m4)) ≤ ε. For both m3 and m4 we add the following extra

multiset of items: {(2−i · (∆tm3 −∆tm4), 2
−i · (∆πm3 −πd(m3)−∆πm4 +πd(m4))) |

i ∈ Z+ ∧ i ≤ i∗ ∧ 2−i · (∆πm3 − πd(m3)−∆πm4 + πd(m4)) ≤ c∗} and additionally

(2−i
∗ · (∆tm3 − ∆tm4), 2

−i∗ · (∆πm3 − πd(m3) − ∆πm4 + πd(m4)), which is a copy

of an element already in the multiset. The reason behind using this constraint

2−i ·(∆πm3−πd(m3)−∆πm4 +πd(m4)) ≤ c∗ is that we do not want to add fractions

with the modes that are very expensive to run which exceeds the cost boundary

c∗. The removing of these unnecessary items increases the algorithm performance

as we consider solving the knapsack problem over a smaller time horizon which is

calculated using equation 4.4. Note that this models the fact that the more m3 is

used in the tail section the less mode m4 is used in tail section and with the same

proportion. Note that because of the assumption that ∆tm3 ≥ ∆tm4 , we are sure

that all the items produced have a positive time duration. Let tΣ be the time span

of all items in this knapsack instance. We set the volume of this 0-1 knapsack

instance to be

tΣ − tmax + (Vmax − V0)/A(m1) + ∆tm2 + ∆tm4 + ∆tm5 (4.1)

The just produced knapsack problem has the following properties:



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 75

Vmin

Vmax

tmax

Leaps

7

1

2

m1

3

m2

4

5

m3

6

m4

m5

Figure 4.24: FPTAS case with up+down pattern for the head section and
partial-up+up+down for the tail section.

• the size of its description is polynomial in the size of the original problem

including the relative performance;

• fractional time duration of m3 in the tail section can be overestimated by

joining together the fractional items for both m3 and m4 (which do not

include discrete costs), so that we do not exceed the volume by 2−i
∗ ·(∆tm3−

∆tm4) or more;

• n leaps of of type (m,m′) in σ can be achieved by picking the items for this

type and corresponding to the binary representation of n; and

• The volume of these items is≥ tmax−(Vmax−V0)/A(m1)−∆tm2−∆tm4−∆tm5 ,

which leaves enough space for modes m1 and m2 in the head section, and

mode m5 and the minimum amount of time for the m3 + m4 part (when

α = 0) in the tail section. Let v∗ be the value of the items in this knapsack

and o∗ denotes the optimal cost. Then

0 ≤ v∗+πd(m1)+πc(m1)(Vmax−V0)/A(m1)+∆πm2+πd(m3)+∆πm4+∆πm5−o∗ ≤ ε

The value v∗ contains the leaps part as well as the fractions of the mode

m3. The cost of the fraction is the difference between the running cost of m3

and m4 (without the discrete costs) which is always positive because of the

assumption we stated before. So, the discrete cost of m3 needs to be added

as well as the total cost (discrete and continuous) of m4 which is denoted by

∆πm4 . Note that, we always use modes m1 and m2 for the head section so,

the cost of using them (discrete and continuous) should be added and the

same for the mode m5 in the tail section.



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 76

• Let VΣ be the value of all items in the multiset. For any solution to the

knapsack problem with value V we get a schedule σ′ with cost ≤ VΣ − V +

πd(m1) + πc(m1)(Vmax − V0)/A(m1) + ∆πm2 + πd(m3) + ∆πm4 + ∆πm5.

All of this shows that solving this knapsack instance with a relative performance

of ρ/(12|M |2) gives us a safe schedule with relative performance of ρ.

FPTAS Other Cases

In the previous section, we introduced a formal proof of the FPTAS algorithm

based on a reduction into the 0-1 knapsack problem. We introduced only one case

out of 44 different cases. All the cases are the same except for the part when we

generate the fractions. For the case introduced before, we generated fractions of

an up-up segment which means that if we use the first mode for time α∆tm3 we

use the second mode for time (1−α)∆tm4 . We did not explained how we generate

fractions of a flat segment, an up-up segment or down-down segment. So, in this

sub-section, we discuss further 4 cases from the 44 possible cases.

• The case we will look at is flat+up+down pattern, with modes m1,m2,m3,

for the head section and up, with mode m4, for the tail section. The case is

shown in Figure 4.25. We consider all combinations of these four modes mi

individually, and therefore consider them given. (Note that there are only

quartically many such combinations.)

For each type of leaps, (m,m′) ∈ M+ ×M−, we build the following items

for this knapsack problem instance: {(2i ·∆tm,m′ , 2i ·∆πm,m′) | i ∈ N ∧ 2i ·
∆πm,m′ ≤ c∗ ∧ 2i · ∆tm,m′ ≤ tmax}. The flexible point that can be moved

in this schedule is point 2, because there exist a flat mode before it. We

consider the possibilities of extending (until tmax) or shrinking (until 0) the

timed action with a zero mode. The flat mode can be used until the end of

the time horizon tmax without affecting the schedule safety. So, let ∆πm1 =

min(tmax · πc(m1) + πd(m1), c∗) and ∆tm1 = (∆πm1 − πd(m1))/πc(m1). Let

i∗ ∈ N be smallest such that 2−i
∗ ·(∆πm1−πd(m1)) ≤ ε. For the mode m1 we

add the following extra multiset of items: {(2−i·∆tm1 , 2
−i·(∆πm1−πd(m1))) |

i ∈ Z+∧ i ≤ i∗} and additionally (2−i
∗ ·∆tm1 , 2

−i∗ · (∆πm1−πd(m1))), which

is a copy of an element already in the multiset.

Let tΣ be the time span of all items in this knapsack instance. We set the

volume of this 0-1 knapsack instance to be

tΣ − tmax + (Vmax − V0)/A(m2) + ∆tm3 + ∆tm4 (4.2)



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 77

The just produced knapsack problem has the following properties:

– The volume of the leaps part is ≥ tmax − (Vmax − V0)/A(m2)−∆tm3 −
∆tm4 , which leaves enough space for modes m2 and m3 in the head

section, and mode m4 in the tail section. Let v∗ be the value of the

items in this knapsack and o∗ denotes the optimal cost. Then

0 ≤ v∗+πd(m1)+πd(m2)+πc(m2)(Vmax−V0)/A(m2)+∆πm3+∆πm4−o∗ ≤ ε

The value v∗ contains the leaps part as well as the fractions of the mode

m1 (continuous cost only).

– Let VΣ be the value of all items in the multiset. For any solution

to the knapsack problem with value V we get a schedule σ′ with cost

≤ VΣ−V +πd(m1)+πd(m2)+πc(m2)(Vmax−V0)/A(m2)+∆πm3 +∆πm4 .

Vmin

Vmax

tmax

Leaps

6

4 5

1

2m1

3

m2

m3 m4

Figure 4.25: FPTAS case with flat+up+down pattern for the head section
and up for the tail section.

• In the next case, we will look at is the up+partial-down+down pattern, with

modes m1,m2,m3, for the head section and the up pattern, with mode m4,

for the tail section. The case is shown in Figure 4.26.

We consider all combinations of these four modes mi individually, and there-

fore consider them given. (Note that there are only quartically many such

combinations.)

For each type of leaps, (m,m′) ∈ M+ ×M−, we build the following items

for this knapsack problem instance: {(2i ·∆tm,m′ , 2i ·∆πm,m′) | i ∈ N ∧ 2i ·
∆πm,m′ ≤ c∗ ∧ 2i ·∆tm,m′ ≤ tmax}.

We assume that ∆tm2 ≥ ∆tm3 , because otherwise we could swap the role of

m2 with m3 in our algorithm below. Note that any schedule with this pattern

which picksm2 in the head for α∆tm2 amount of time, usesm3 for (1−α)∆tm3



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 78

amount of time in the head section. Let i∗ ∈ N be smallest such that

2−i
∗ ·(∆πm2−πd(m2)−∆πm3 +πd(m3)) ≤ ε. For both m2 and m3 we add the

following extra multiset of items: {(2−i ·(∆tm2−∆tm3), 2
−i ·(∆πm2−πd(m2)−

∆πm3+πd(m3))) | i ∈ Z+∧i ≤ i∗∧2−i·(∆πm2−πd(m2)−∆πm3+πd(m3)) ≤ c∗}
and additionally (2−i

∗ ·(∆tm2−∆tm3), 2
−i∗ ·(∆πm2−πd(m2)−∆πm3+πd(m3)),

which is a copy of an element already in the multiset. Note that this models

the fact that the more m2 is used in the head section the less mode m3 is

used in tail section and with the same proportion. Note that because of the

assumption that ∆tm2 ≥ ∆tm3 , we are sure that all the items produced have

positive time durations. Let tΣ be the time span of all items in this knapsack

instance. We set the volume of this 0-1 knapsack instance to be

tΣ − tmax + (Vmax − V0)/A(m1) + ∆tm3 + ∆tm4 (4.3)

Leaps

tmax
Vmin

Vmax
6

4 5

1

2

m1
3

m2

m3

m4

Figure 4.26: FPTAS case with up+partial-down+down pattern for the head
section and up for the tail section.

The produced 0-1 knapsack problem has the following properties:

– fractional time duration of m2 in the head section can be overestimated

by joining together the fractional items for both m2 and m3 (which do

not include discrete costs), so that we do not exceed the volume by

2−i
∗ · (∆tm2 −∆tm3) or more;

– n leaps of of type (m,m′) in σ can be achieved by picking the items for

this type and corresponding to the binary representation of n; and

– The volume of these items is ≥ tmax−(Vmax−V0)/A(m1)−∆tm3−∆tm4 ,

which leaves enough space for modes m1 and the minimum amount of

time for the m2 +m3 part (when α = 0) in the head section, and mode

m4 in the tail section. Let v∗ be the value of the items in this knapsack

and o∗ denotes the optimal cost. Then

0 ≤ v∗+πd(m1)+πc(m1)(Vmax−V0)/A(m1)+πd(m2)+∆πm3+∆πm4−o∗ ≤ ε



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 79

The value v∗ contains the leaps part as well as the fractions of the mode

m2 (with continuous cost only). .

– Let VΣ be the value of all items in the multiset. For any solution

to the knapsack problem with value V we get a schedule σ′ with cost

≤ VΣ−V +πd(m1)+πc(m1)(Vmax−V0)/A(m1)+πd(m2)+∆πm3 +∆πm4.

• The next case we consider is when we chose the empty pattern for the head

section and partial-up+down+up pattern, with modes m1,m2,m3, for the

tail section. The case is shown by Figure 4.27. We consider all combinations

of these four modesmi individually, and therefore consider them given. (Note

that there are many such combinations of the third order only.)

For each type of leaps, (m,m′) ∈ M+ ×M−, we build the following items

for this knapsack problem instance: {(2i ·∆tm,m′ , 2i ·∆πm,m′) | i ∈ N ∧ 2i ·
∆πm,m′ ≤ c∗ ∧ 2i ·∆tm,m′ ≤ tmax}.

Note that any schedule with this pattern which picks m1 in the tail for α∆tm1

amount of time, uses m2 for α∆tm2 amount of time in the tail section. Let

i∗ ∈ N be smallest such that 2−i
∗ · (∆πm1 − πd(m1) + ∆πm2 − πd(m2)) ≤ ε.

For both m1 and m2 we add the following extra multiset of items: {(2−i ·
(∆tm1 + ∆tm2), 2

−i · (∆πm1 − πd(m1) + ∆πm2 − πd(m2))) | i ∈ Z+ ∧ i ≤
i∗ ∧ 2−i · (∆πm1 − πd(m1) + ∆πm2 − πd(m2)) ≤ c∗} and additionally (2−i

∗ ·
(∆tm1 + ∆tm2), 2

−i∗ · (∆πm1 − πd(m1) + ∆πm2 − πd(m2)), which is a copy of

an element already in the multiset. Note that this models the fact that the

less m1 is used in the tail section the less mode m2 is used in tail section

and with the same proportion. Let tΣ be the time span of all items in this

knapsack instance. We set the volume of this 0-1 knapsack instance to be

tΣ − tmax + ∆tm3 (4.4)

tmax

Vmin

Vmax

Leaps

4

1

2

m1

3

m2

m3

Figure 4.27: FPTAS case with empty pattern for the head section and partial-
up+down+up for the tail section.

The produced 0-1 knapsack problem has the following properties:



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 80

– n leaps of of type (m,m′) in σ can be achieved by picking the items for

this type and corresponding to the binary representation of n; and

– The volume of these items is ≥ tmax−∆tm3 , which leaves enough space

for mode m3 in the tail section. Let v∗ be the value of the items in this

knapsack and o∗ denotes the optimal cost. Then

0 ≤ v∗ + πd(m1) + πd(m2) + ∆πm3 − o∗ ≤ ε

The value v∗ contains the leaps part as well as the fractions of the

modes m1 and m2 (with continuous cost only).

– Let VΣ be the value of all items in the multiset. For any solution to

the knapsack problem with value V we get a schedule σ′ with cost

≤ VΣ − V + πd(m1) + πd(m2) + ∆πm3 .

• The last case we will look at is empty pattern for both the head and tail

sections. The schedule contains only leaps.

For each type of leaps, (m,m′) ∈ M+ ×M−, we build the following items

for this knapsack problem instance: {(2i ·∆tm,m′ , 2i ·∆πm,m′) | i ∈ N ∧ 2i ·
∆πm,m′ ≤ c∗ ∧ 2i ·∆tm,m′ ≤ tmax}.

The produced 0-1 knapsack problem has the following properties:

– n leaps of of type (m,m′) in σ can be achieved by picking the items for

this type and corresponding to the binary representation of n; and

– The volume of these items is ≥ tmax. Let v∗ be the value of the items

in this knapsack and o∗ denotes the optimal cost. Then

0 ≤ v∗ − o∗ ≤ ε

– Let VΣ be the value of all items in the multiset. For any solution to the

knapsack problem with value V we get a schedule σ′ with cost ≤ VΣ−V .

4.6 Conclusions

We have studied cost optimisation in the general case of multi-mode single-dimension

systems with discrete cost. We have identified this class as a class that arises natu-

rally when studying the optimal control of heating or cooling systems with heaters

and air-conditioners while the idle model can not be used to cool the room down.

There is only one continuous variable (the temperature in our setting) in addition



Chapter 4. Optimisation in General One Dimensional Multi-mode Systems 81

to the time. We showed that the decision problem NP-complete. We studied the

optimal schedules and showed that the optimal schedule can take any form out

of 44 cases and it can be divided into thee sections: head, leaps and tail sections.

Based on that, we proposed a three-approximation algorithm as well as an FPTAS

approximation algorithm. The three-approximation has a O(|A|7) running time

by choosing the same leap in the leap section of the optimal schedule form. The

FPTAS approximation tries different 44 cases (we presented only 5 cases while

the others are similar) that the schedule could take and picks the cheapest among

them.

Summing up, we have identified a simple subclass of linear hybrid automata

with an easy (LogSpace) optimal control problem over an infinite time hori-

zon, and an optimal control problem over a finite time horizon, which is fast to

approximate (FPTAS).





Chapter 5

Optimisation in Multiple

Dimensional Multi-mode Systems

5.1 Introduction

We studied in Chapter 3 and Chapter 4 the optimisation of the multi-mode system

in a one dimensional systems with and without a simplifying assumption, respec-

tively. This chapter introduces the optimisation problem in multiple dimensional

multi-mode systems with discrete costs. We start by showing that the optimal

solution may not exist by introducing an example of controlling the temperature

inside two rooms in which the optimal schedule can not be determined. So, we

change our focus to the approximation algorithms. We start by studying the

limit-safe and ε-safe finite control. We show that finding an optimal limit-safe

abstract schedule in A can be done in nondeterministic exponential time. We also

show that if a limit-safe abstract schedule exists, then finding an ε-safe ε-optimal

schedule can be done in deterministic polynomial space.

The following example shows that there may not be an optimal schedule for

multiple dimensional multi-mode systems with a finite time horizon.

Example 5.1. Consider a multi-mode system with three modes shown in Figure

5.1: m1,m2,m3. The slope vectors in these modes are A(m1) = (1, 1), A(m2) =

(1,−1) and A(m3) = (−1, 1), respectively. The continuous cost of using m1 is

πc(m1) = 1 and all the other costs are 0.

Let V0 = Vmin = 02 and Vmax = 12. Notice that we can only use m2 or m3 once

we get out of the initial corner V0. This can only be done using M1. Now let the

time horizon be tmax. Note that the following schedule σε = (m1, ε),
(
(m2, t), (m3, t)

)l
,

where t′ = tmax − ε, l = dt′/εe, and t = t′/2l, has time horizon tmax and total cost

83



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 84

m1

(−1, 1)

m2
(1,−1)

m3

(1, 1)

Figure 5.1: Example of MMS in multiple dimensions.

ε > 0. As ε can be made arbitrarily small but has to be > 0, σε is an ε-optimal

schedule for all ε > 0, but no optimal schedule exists.

5.2 ε-safe Schedules

The problem we face while searching for optimal schedules in multiple dimensional

multi-mode systems is that the starting points may be located on the safety bounds

and may only have modes like m2 and m3 in Example 5.1 using which we can not

generate any safe schedule from the staring points located at the boundaries. So,

we can overcome this problem by permitting a safety precision value ε and produce

ε-safe schedules.

Definition 5.1. An ε-safe schedule with a safety bounds Vmin and Vmax is a

schedule whose points V (t) satisfy the condition Vmin − ε ≤ V (t) ≤ Vmax + ε,

where 0 ≤ t ≤ tmax for finite schedules or 0 ≤ t ≤ ∞ for infinite schedules.

We may also be interested in finding an approximation solutions with ε preci-

sion

Definition 5.2. An ε-safe ε-optimal schedule is a schedule that permits a safety

deviation of ε and another cost deviation ε from the optimal schedule.

Note that in Example 5.1, for any ε > 0, there exists an optimal ε-safe schedule

σ with total cost 0: σ0 = 〈
(
(m2, t), (m3, t)

)l〉 where l is defined as in Example 5.1.

Our aim is to find an “abstract schedule” that, for any given ε > 0, can be used

to construct in polynomial time an ε-safe ε-optimal schedule.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 85

Let M∗ = {m ∈M | πd(m) = 0} be the subset of modes without discrete costs.

Note that, as shown in [9], the cost and safety of a schedule with M∗ modes only,

depends only on the total amount of time spend in each of the M∗ modes. This

motivates us to lump together any sequence of timed actions that only use M∗

modes and define an abstract timed action (over M∗) as a function t : M∗ → R≥0.

Definition 5.3. A finite abstract schedule with time horizon tmax (of length k) is

a finite sequence τ = 〈t1, (m1, t1), t2, (m2, t2), . . . , (mk−1, tk−1), tk〉 such that

∀i mi ∈M \M∗ and
∑

i≤k,m∈M∗ ti(m) +
∑

i<k ti = tmax.

The run of the abstract schedule τ is a sequence 〈V0, V1, . . . , V2k+1〉 such that,

for all i ≤ k, we have V2i = V2i−1 +A(mi)ti and V2i+1 = V2i +
∑

m∈M∗ A(m)ti(m).

We say that an abstract schedule is limit-safe if its run is safe. The total cost of

an abstract schedule τ is defined as∑
i≤k,m∈M∗

πc(m)ti(m) +
∑
i<k

(
πd(mi) + πc(mi)ti

)
.

Note that any safe schedule can be turned into a limit-safe abstract schedule with

the same cost by simply replacing any maximal subsequence of consecutive timed

actions that only use M∗ modes by a single abstract timed action. A limit-safe

abstract schedule σ is optimal if the total cost of all other limit-safe abstract

schedules is higher than π(σ). The following statement justifies the name “limit-

safe”.

Proposition 5.4. Given a limit-safe abstract schedule τ and ε > 0, we can con-

struct in polynomial time an ε-safe schedule σ such that π(τ) = π(σ).

Proof. Let M∗ = {m1,m2, . . . ,mj}. To obtain σ from τ , we replace each abstract

timed action
{(
m, tm) | m ∈M∗} by a sequence

(
(m1, tm1/l), . . . , (mj, tmj/l)

)l
for

a sufficiently large l ∈ N.

Sufficiently large means that, for t∗ =
∑

m∈M∗ tm, l > t∗ ·maxm∈M∗ ‖A(m)‖/ε.
This choice guarantees that

∑
m∈M∗ ‖A(m)‖·tm/l < ε. Thus, when the abstract ac-

tion
{(
m, tm) | m ∈M∗} joins two states V2i, V2i+1 along the run 〈V0, V1, . . . , . . . , V2k+1〉

of τ , we know that this concrete schedule will cover the l-th part of V2i, V2i+1 after

every sequence (m1, tm1/l), (m2, tm2/l), . . . , (mj, tmj/l). As the safe set is convex,

the start and end points of this sequence are safe points. Also,
∑

m∈M∗ ‖A(m)‖ ·
tm/l < ε implies that the points in the middle are ε-safe.

Example 5.1 continues. An example limit-safe abstract schedule of length 1 is

τ = {(m1, tmax/2), (m2, tmax/2)}. Based on τ we can construct an ε-safe schedule

〈
(
(m1, tmax/2l), (m2, tmax/2l)

)l〉 where l is any integer greater than tmax/ε.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 86

We show that while looking for an (ε-)safe (ε-)optimal finite schedule, we can

restrict our attention to angular schedules only where there are no two consecutive

timed actions (mi, ti), (mi+1, ti+1) in σ such that A(mi) = A(mi+1).

Proposition 5.5. For every finite (ε-)safe schedule with time horizon tmax there

exists an angular safe schedule with the same or lower cost.

Proof. Let σ be a finite safe schedule with two timed actions (mi, ti), (mi+1, ti+1)

in σ such that A(mi) = A(mi+1). (If no such timed actions exist then σ is angular

and we are done.) We can now replace these timed actions by a single timed action

(m, ti + ti+1) such that m is the mode from mi or mi+1 with the lower continuous

cost, and m′ the other mode. (I.e. {m,m′} = {mi,mi+1} and πc(m) ≤ πc(m
′)) For

the resulting safe schedule σ′, it now holds that π(σ′) ≤ π(σ)− πd(m′).

Henceforth, we assume that all finite schedules are angular.

5.3 Optimisation of Multiple dimensional Multi-

mode Systems without Discrete Costs

This section presents a simple case of the optimisation in the multiple dimensional

multi-mode systemA with a finite time horizon tmax where all the discrete costs for

all the modes equal to zero ∀m∈Mπd(m) = 0. As shown in Algorithm 7, we study

the safe reachability problem of the multiple dimensional multi-mode system with

finite time horizon tmax and return a Yes/No answer if a safe schedule exists. This

algorithm is based on an adaptation of [9, Algorithm 2]. We assume that the

starting points V0 belong to the interior safe set. If there exists a safe schedule,

the algorithm returns a safe schedule with the minimum continuous cost.

5.4 Complexity of Limit-safe and ε-safe Finite

Control

In the rest of this section we fix a (multi-dimensional) multi-mode system A and

time horizon tmax.

Theorem 5.6. If a limit-safe abstract schedule exists in A, then there exists one of

exponential length and its symbolic representation can be constructed in polynomial

time.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 87

Algorithm 7 An algorithm checking whether any safe schedule exists and if so
finding one with the minimal total continuous-cost.

Input: MMS A = (M = {m1, . . . ,mk}, N,A, πc, πd ≡ 0, Vmin, Vmax, V0), target
point Vend and t > 0 such that all modes of A are safe at V0 and Vend for time
t.

Output: NO, if no safe schedule from V0 to Vend exists, and a continuos-cost-
optimal schedule (of at most exponential length), otherwise.

1: Check whether the following linear programming problem with variables
{t(m)}m∈M has a solution.

Minimise
∑
m∈M

πc(m)t(m) subject to:

V0 +
∑
m∈M

A(m)t(m) = Vend and

t(m) ≥ 0 for all m ∈M.

2: if no satisfying assignment exists then
3: return NO
4: else
5: Find a polynomial sized assignment {t(m)}m∈M .
6: Let l be the smallest natural number greater or equal to

∑
m∈M t(m)/t.

(Note that this number is at most exponential in the size of the input and can
be written down using polynomially many bits. Also, t is the amount of time
where all the modes of A are safe.)

7: return the schedule
(
(m1, t

(m1)/l), (m2, t
(m2)/l), . . . , (mk, t

(mk)/l)
)l

.
8: end if

sketch. Before we formally prove this theorem, we need to introduce first a bit of

terminology. We call a mode m safe for time t > 0 at V ∈ S := {x ∈ RN : Vmin ≤
x ≤ Vmax} if V + A(m)t ∈ S. Also, m is safe at V if there exists t > 0 such that

m is safe for time t at V . We say that a coordinate of a state, V ∈ S, is at the

border if that coordinate in V is equal to the corresponding coordinate in Vmin or

Vmax.

Our algorithm first removes from M all modes that will never be safe to use in a

limit-safe schedule. This procedure can be found between lines 1 – 8 of Algorithm

8. This is an adaptation of [9, Theorem 7] where an algorithm was given for finding

safe modes that can ever be used in a schedule with infinite time horizon. The

main difference here is that the modes in M∗ can always be used in a limit-safe

abstract schedule even if they are not safe to use. We find here a sequence of sets

of modes M∗ = M0 ⊂ M1 ⊂ M2 ⊂ . . . such Mi+1 is the set of modes that are

safe at a state reachable from V0 via a limit-safe abstract schedule that only uses

modes from Mi. Note that at some step k ≤ |M | this sequence will stabilise, i.e.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 88

Mk = Mk+1. Similarly as in the proof of [9, Theorem 7], we can show that no

mode from M \Mk can ever be used by a limit-safe abstract schedule. As a result,

we can remove all these modes from M .

Next, we remove all modes that cannot be part of a limit-safe abstract schedule

with time horizon tmax. For this, for each m, we formulate a very similar linear

programme (LP) as above (cf. lines 9 – 11 of Algorithm 8) where we ask for the

time delay of m to be positive and the total time delay of all the modes to be tmax.

By a simple adaptation of the proof of [9, Theorem 4], if this LP is not satisfiable

then m can be removed from A.

Next, we look for the easiest possible target state Vend that can potentially be

reached using a limit-safe abstract schedule from V0 with time horizon tmax. For

this, Vend has to have the least number of coordinates at the border of the safe set.

Note that this is well-defined, because if V and V ′ are two points reachable from

V0 via a limit-safe abstract schedules τ and τ ′ with time horizon tmax, respectively,

then τ/2 (i.e. divide all abstract and timed actions delays in τ by 2) followed by

τ ′/2, is also a limit-safe abstract schedule with time horizon tmax, which reaches

(V + V ′)/2. However, (V + V ′)/2 has a coordinate at the border iff both V and

V ′ have it as well. This shows that there is a state with a minimum number of

coordinates at the border.

To find the coordinates that need to be at the border we will use the following

LP. We have a variable xi for each dimension i ≤ N and a constraint that requires

xi to be less or equal to the i-th coordinate of Vmax−Vend and Vend−Vmin. We also

add that
∑

m∈M tm = tmax and Vend = V0 +
∑

m∈M tm · A(m), with the objective

Maximise
∑

i xi. If the value of the objective is > 0, we will get to know a new

coordinate that does not have to be at the border. We then remove it from the LP

and run the LP again. Once the objective is 0, then all the remaining coordinates,

I, have to be at the border and the solution to this LP tells us, at which border

the solution has to be located (it cannot possibly be at the border of both Vmin

and Vmax as then we could reach the middle).

Next, in order to bound the length of a limit-safe abstract schedule by an

exponential in the size of the input, we not only need a state with the minimum

number of coordinates at the border, but also sufficiently far way from the border.

Otherwise, we may need super-exponentially (i.e. it means that we will need a

large number of consecutive timed-actions with small time periods) many timed

actions to reach it. In order to find such a point, we replace all xi-s in the previously

defined LP by a single variable x which is smaller or equal to all the coordinates

of Vmax − Vend and Vend − Vmin from I. We then set the objective to Maximise x,

which will give us a suitable easy target state Vend.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 89

Now, consider A′, which is the same as A but with all slopes negated (i.e.

A′(m) = −A(m) for all m ∈ M). We claim that Vend is reachable from V0 using

a limit-safe abstract schedule τ iff (V0 + Vend)/2 is reachable from V0 in A with

time horizon tmax/2 and (V0 + Vend)/2 is reachable from Vend in A′ with time

horizon tmax/2; this again follows by considering τ/2. Note that a coordinate of

(V0 + Vend)/2 is at the border iff it is at the border in both V0 and Vend.

This way we reduced our problem to just checking whether a limit-safe abstract

schedule exists from one point to another more permissive point (i.e. where the set

of safe modes is at least as big) within a given time horizon. Algorithm 8 solves

this problem and constructs (if there exists one) a limit-safe abstract schedule

of at most exponential length with these properties. It again reuses the same

constructions as above, e.g. constructs exactly the same sequence of sets of modes

M∗ = M0 ⊂ M1 ⊂ . . . ⊂ Mk. Its correctness follows by a similar reasoning as

above. We now need to invoke this algorithm twice: to check that (V0 +Vend)/2 is

reachable from V0 with time horizon tmax/2 and that (V0+Vend)/2 is reachable from

Vend with time horizon tmax/2 in A′. If at least one of these calls return NO, then

no limit-safe abstract schedule from V0 to Vend can exist. Otherwise, let σ and σ′

be the schedules returned by these two calls, respectively. Then the concatenation

of σ with the reverse of σ′ is a limit-safe abstract schedule that reaches Vend from

V0 with time horizon tmax.

Theorem 5.7. Finding an optimal limit-safe abstract schedule in A can be done

in nondeterministic exponential time.

Proof. The limit-safe abstract schedule constructed in Theorem 5.6 has exponen-

tial length. To establish a nondeterministic exponential upper bound, we can

guess the modes (and the order in which they occur). With them, we can produce

an exponentially sized linear program, which encodes that the run of the abstract

schedule is safe and minimises the total cost incurred.

Theorem 5.7 and Proposition 5.4 immediately give us the following.

Corollary 5.8. If a limit-safe abstract schedule exists in A, then for any ε > 0

an ε-safe schedule with the same cost can be found in nondeterministic exponential

time.

Moreover, from Theorem 5.6 and the fact that in the case of multi-mode sys-

tems with no discrete costs all abstract schedules have length 1, we get the follow-

ing.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 90

Corollary 5.9. Finding an optimal limit-safe abstract schedule for multi-mode

systems with no discrete costs can be done in polynomial time.

We can reduce the computational complexity in the general model if we are

willing to sacrifice optimality for ε-optimality.

Theorem 5.10. If a limit-safe abstract schedule exists, then finding an ε-safe

ε-optimal schedule can be done in deterministic polynomial space.

Proof. When reconsidering the linear programme from the end of the proof of

Theorem 5.7, we can guess the intermediate states in polynomial space (and thus

guess and output the schedule) as long as all states along the run (including the

time that passed so far) are representable in polynomial space.

Otherwise we use the opportunity to deviate by up to ε from the safe set by

increasing or decreasing the duration of each timed action up to some δ > 0, in

order to keep the intermediate values representable in space polynomial in |A|
and ε. However, we apply these changes in a way that the overall time remains

tmax. Clearly this is possible, because within δ/2 of the actual time point of

each state along the run, there is a value whose number of digits in the standard

decimal notation is at most equal to the sum of the number of digits in δ/2 and

tmax. Picking any such point for every interval would induce a schedule with the

required property and they can be simply guessed one by one.

The final imprecision introduced by this operation is at most b·δ·maxm∈M |A(m)|,
where b is a bound on the number of timed actions in a limit-safe schedule, which

is exponential in |A|. If we choose δ = ε/(b · maxm∈M |A(m)|), then we will get

the required precision.

Although our algorithm is nondeterministic, due to Savitch’s theorem, it can

be implemented in deterministic polynomial space.

5.5 Approximation Algorithms for the Multiple

Dimensional Multi-mode Systems with Dis-

crete Costs

The first idea of how we can produce approximation schedules is to limit the num-

ber of switches from paying only continuous costs to paying discrete costs as well.

The approximate schedules we produce limit the number of timed actions for the

modes that have discrete costs. We assume that the approximate schedules can use

as any number of the timed actions for the modes that do not have discrete costs.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 91

Algorithm 8 Finding a limit-safe schedule to target state Vend with time horizon
tmax.

Input: Multi-mode system A = (M,N,A, πc, πd, Vmin, Vmax, V0), set of modes M∗

with zero discrete costs, time horizon tmax, and target state Vend such that any
mode safe at V0 is safe as Vend.

Output: NO if no safe schedule with time horizon tmax exists from V0 to Vend,
and such a schedule, otherwise.

1: k := 0;M0 := M∗;
2: repeat
3: for each mode q ∈M \Mk−1 do
4: if the following set of linear constraints is satisfiable for some assign-

ment to the variables t, {t(m)
0 }m∈M0 , {t

(m)
1 }m∈M1 , . . . , {t(m)

k−1}m∈Mk−1
:

· t > 0

For all i = 0, . . . , k − 1 :

· t(m)
i ≥ 0 for all m ∈Mi

· Vi+1 = Vi +
∑
m∈Mi

A(m)t
(m)
i

· Vmin ≤ Vi+1 ≤ Vmax

· Vmin ≤ Vk + A(q)t ≤ Vmax (5.1)

then
5: Mk := Mk−1 ∪ {q};
6: end if
7: end for
8: until Mk = Mk−1

As we introduced before in Definition 5.3, the set of consecutive timed actions for

the modes without discrete costs produces an abstract schedule part. We enable

using abstract schedule parts where every one is followed by only one timed action

that uses a mode with discrete cost. As shown in Algorithm 9, we specify the

maximum number of allowed switches as smax. We use the concept of bounded

unfolding technique [40] to find an approximate solution that uses modes with

discrete costs at most smax number of times. If the multi-mode system A does not

have any mode m ∈M where πd(m) > 0, so the algorithm finds the minimal ε-safe

schedule (lines 1-3). If the multi-mode system A has at least only one mode with

discrete cost, lines (4-13) find the best approximation schedule with a maximum

discrete switches of smax and output it. So, what if the optimal schedule contains

too many timed-actions with discrete costs. The approximation solution gener-

ated from Algorithm 9 may be too far from the optimal one. However Algorithm 9

takes a long time to run as it test all the possibilities of using modes with discrete

costs when enabling a new switch from paying only continuous cost (when using



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 92

9: k := k − 1;
10: for each j = 0, . . . , k and q ∈Mj do
11: if the following set of linear constraints is not satisfiable for any assignment

to the variables t, {t(m)
0 }m∈M0 , {t

(m)
1 }m∈M1 , . . . , {t(m)

k }m∈Mk
:

· t(q)j > 0

For all i = 0, . . . , k − 1 :

· t(m)
i ≥ 0 for all m ∈Mi

· Vi+1 = Vi +
∑
m∈Mi

A(m)t
(m)
i

· Vmin ≤ Vi+1 ≤ Vmax

·
k∑
i=0

∑
m∈Mi

t
(m)
i = tmax

then
12: Mj := Mj \ {q};
13: end if
14: if the following set of linear constraints is not satisfiable for any assignment

to the variables {t(m)
0 }m∈M0 , {t

(m)
1 }m∈M1 , . . . , {t(m)

k }m∈Mk
:

For all i = 0, . . . , k :

· t(m)
i > 0 for all m ∈Mi

· Vi+1 = Vi +
∑
m∈Mi

A(m)t
(m)
i

· Vmin ≤ Vi+1 ≤ Vmax

·
k∑
i=0

∑
m∈Mi

t
(m)
i = tmax

then
15: return NO
16: end if
17: end for
18: Compute a polynomially sized solution to the linear program in step 14 and

use it in the next line.
19: return the schedule created by composing the following schedules obtained

by repeatedly calling [9, Algorithm 2] to find a safe schedule:

• from V0 to V1 using only modes in M0 with the safe time bound t =
minm∈M0 t

(m)
0 ,

• from V1 to V2 using only modes in M1 with the safe time bound t =
minm∈M1 t

(m)
1 ,

• from Vk to Vk+1 using only modes in Mk with the safe time bound t =

minm∈Mk
t
(m)
k .



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 93

the modes that do not have discrete costs) to discrete cost as well (when using

a mode that has a discrete cost), the approximation solutions generated are not

always good approximations.

Algorithm 10 overcomes the previous problem by using the idea behind the

greedy unfolding approximation technique. The idea is simply like finding the

best mode with discrete cost –that is used after the abstract schedule part– which

results in minimal average cost and fix it. So, when we add new switch (from

continuous paying to discrete paying) we use the same fixed modes with discrete

costs that belong to the old switches beside the new mode with discrete cost that

belongs to the new switch. So, every new switch the algorithm solves only |M∗|
linear programming problem instead of |M∗|s problems –where s is the switch

number– which improves the algorithm running time and gives us the opportunity

to discover more switches which results in finding a better approximation solution

than the one obtained from Algorithm 9. So, the algorithm keeps adding more

discrete-cost switches until the difference between the minimal costs produced from

the last two switches is smaller than ρo∗ where ρ is the approximation precision

and o∗ is the best approximation using only one discrete-cost switch with is an

upper bound of the optimal solution.

5.6 Conclusions

For the multiple dimensional multi-mode system, the optimal safe schedule may

not exist. This problem may occur if the initial point lies on the safe boundaries

and there is no mode that can be used to get rid of the boundary and preserve

the safety constrains. A solution for this is to enable ε-safety deviation where the

safety boundaries are extended from (Vmin, Vmax) to ((Vmin − ε), (Vmax + ε)). We

proved that if a limit-safe abstract schedule exists in A, then there exists one of

exponential length and it can be constructed in polynomial time. We also showed

that finding an optimal limit-safe abstract schedule in A can be done in nondeter-

ministic exponential time. Next, we showed that if a limit-safe abstract schedule

exists, then finding an ε-safe ε-optimal schedule can be done in deterministic poly-

nomial space and proposed an algorithm to find it.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 94

Algorithm 9 Finding ε-safe bounded unfolding approximation finite schedule
with time horizon tmax.

Input: Multi-mode system A = (M,N,A, πc, πd, Vmin, Vmax, V0), set of modes M∗

with zero discrete costs, time horizon tmax, safety precision parameter ε, max-
imum number of switches smax, time t > 0 where all the modes m ∈ M \M∗
are safe.

Output: The approximation schedule σ.
1: if (|M\M∗| = 0) then
2:

Minimise
∑
m∈M

πc(m)tm subject to:

Vmin − ε ≤ V0 +
∑
m∈M

A(m)tm ≤ Vmax + ε∑
m∈M

tm ≥ tmax

tm ≥ 0 for all m ∈M.
3:

• Find a polynomial sized assignment {tm}m∈M .

• Let l be the smallest natural number greater or equal to
∑

m∈M tm/t.
(Note that this number is at most exponential in the size of the input
and can be written down using polynomially many bits.)

• return the schedule σ =
(
(m1, tm1/l), (m2, tm2/l), . . . , (mk, tmk/l)

)l
.

4: else
5: for each i ∈ {1, . . . , smax} do
6:

∀j≤i,m∗j ∈M∗ and m ∈M \M∗

Minimise
∑
j≤i

∑
m∈M\M∗

(πc(m)tjm + πd(m
∗
j) + πc(m

∗
j)t

j
m∗j

), where m∗j ∈M∗

subject to:

Vmin − ε ≤ V0 +
∑
j<i

∑
m∈M\M∗

(A(m)tjm + A(m∗j)t
j
m∗j

)+

∑
m∈M\M∗;j:=i

A(m)tjm ≤ Vmax + ε

Vmin − ε ≤ V0 +
∑
j≤i

∑
m∈M\M∗

(A(m)tjm + A(m∗j)t
j
m∗j

) ≤ Vmax + ε

∑
j≤i

∑
m∈M\M∗

(tjm + tjm∗j ) ≥ tmax

tjm ≥ 0, tjm∗j ≥ 0 for all m ∈M \M∗ and m∗j ∈M∗ and j ≤ i.

7: end for
8: Save the values (tjm, t

j
m∗j
,m∗j) that result in the minimal total cost among

all the values generated from lines 5–7 and save its value of i∗ := i;



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 95

9: for each j ≤ i∗ do
10: Find

• A polynomially sized assignment {tjm}m∈M\M∗ .
• Let lj be the smallest natural number greater or equal to

∑
m∈M\M∗ t

j
m/t.

• Add to the output schedule σ the part(
((m1, t

j
m1
/lj), (m2, t

j
m2
/lj), . . . , (mk, t

j
mk
/lj)
)l
, (m∗j , t

j
m∗j

)).

11: end for
12: return the schedule σ.
13: end if



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 96

Algorithm 10 Finding greedy unfolding approximation ε-safe finite schedule
with time horizon tmax.

Input: Multi-mode system A = (M,N,A, πc, πd, Vmin, Vmax, V0), set of modes M∗

with zero discrete costs, time horizon tmax, safety precision parameter ε, ap-
proximation precision ρ, time t > 0 where all the modes m ∈ M \M∗ are
safe.

Output: The approximation schedule σ.
1: Initialise k := 1; πnew :=∞; πold :=∞; o∗ =∞
2: if (|M\M∗| = 0) then
3:

Minimise
∑
m∈M

πc(m)tm subject to:

Vmin − ε ≤ V0 +
∑
m∈M

A(m)tm ≤ Vmax + ε∑
m∈M

tm ≥ tmax

tm ≥ 0 for all m ∈M.

4:

• Find a polynomial sized assignment {tm}m∈M .

• Let l be the smallest natural number greater or equal to
∑

m∈M tm/t.
(Note that this number is at most exponential in the size of the input
and can be written down using polynomially many bits.)

• return the schedule σ =
(
(m1, tm1/l), (m2, tm2/l), . . . , (mk, tmk/l)

)l
.

5: else
6: Consider adding the first timed action with zero discrete cost. Solve these
|M∗| linear programming problem.

Minimise
∑

m∈M\M∗
πc(m)t1m + πd(m

∗) + πc(m
∗)t1m∗ , where m∗ ∈M∗

subject to:

Vmin − ε ≤ V0 +
∑

m∈M\M∗
(A(m)t1m + A(m∗)t1m∗) ≤ Vmax + ε

∑
m∈M\M∗

t1m + t1m∗ ≥ tmax

t1m ≥ 0 for all m ∈M \M∗

t1m∗ ≥ 0 for all m∗ ∈M∗.

7: Find the schedule with the minimal total cost from the |M∗| linear pro-
gramming problems solved in step 6. Find the mode with discrete mode m∗

that used with that minimal schedule and assign it to m∗k := m∗ where (k = 1).
Also, assign the minimal cost value to the variables πnew and o∗.



Chapter 5. Optimisation in Multiple Dimensional Multi-mode Systems 97

8: do
9: k := k + 1

10: Add one more timed action with discrete cost and solve the next |M∗|
linear programming problems.

∀j<k,m∗j is pre-setted, m∗k ∈M∗ and m ∈M \M∗

Minimise
∑
j≤k

∑
m∈M\M∗

(πc(m)tjm + πd(m
∗
j) + πc(m

∗
j)t

j
m∗j

), where m∗k ∈M∗

subject to:

Vmin − ε ≤ V0 +
∑
j<k

∑
m∈M\M∗

(A(m)tjm + A(m∗j)t
j
m∗j

)+

∑
m∈M\M∗

A(m)tkm ≤ Vmax + ε

Vmin − ε ≤ V0 +
∑
j≤k

∑
m∈M\M∗

(A(m)tjm + A(m∗j)t
j
m∗j

) ≤ Vmax + ε

∑
j≤k

∑
m∈M\M∗

(tjm + tjm∗j ) ≥ tmax

tjm ≥ 0 and tjm∗j ≥ 0 for all m ∈M \M∗,m∗k ∈M∗.

11: After solving the |M∗| integer programming problem considered in line
10 do.

• Find the schedule σ′ with the minimal total cost and save the mode with
discrete cost m∗k that was added recently. Also save the times tjm and tjm∗j
where 0 ≤ j ≤ k.

• Do the following updates

– πold := πnew;

– πnew = π(σ′);

12: while (πold − πnew) > ρ× o∗
13: for each j ≤ k do
14: Find

• A polynomially sized assignment {tjm}m∈M\M∗ .
• Find m∗j .

• Let lj be the smallest natural number greater or equal to
∑

m∈M\M∗ t
j
m/t.

• Add to the output schedule σ the part(
((m1, t

j
m1
/lj), (m2, t

j
m2
/lj), . . . , (mk, t

j
mk
/lj)
)l
, (m∗, tjm∗)).

15: end for
16: return the schedule σ.
17: end if





Chapter 6

Experiments, Comparisons and

Results

6.1 Introduction

In this chapter, we compare the performance of the several algorithms that we

devised in Chapter 3 for the optimal finite time horizon control problem for multi-

mode systems. Namely, we compare Algorithm 4 which is a constant factor ap-

proximation algorithm, Algorithm 3 for finding the optimal solution based on the

integer programming formulation of our optimisation problem stated explicitly in

this algorithm, and the FPTAS algorithm shown by Algorithm 6. All algorithms

were implemented in Java and all tests were conducted on a Lenovo ideapad 110

with AMD A8-7410 APU 2.20 GHz and 8GB of RAM. For integer linear program-

ming (ILP) we used the Gurobi Optimizer 7.0 with academic license.

We have conducted tests for two different categories of data instances. The first

category is the normal data instances, where the instances’ values generated with

small values. The other type is for the hard data instances, which are randomly

generated instances with various correlation characteristics between the coefficients

as defined in Section 5.5 of [32] for the 0-1 knapsack problem. Such instances are

some of the hardest to solve for most algorithms for the 0-1 knapsack problem.

6.2 Testing with Normal Instances

In this section, we tested our algorithms over weakly correlated instances with

small coefficient values, where for all i ∈M , we pick both ∆ti and ∆πi randomly

from the interval [1, R], where R is some constant with a small value (we used

R = 100). We also, run the test over a finite number of modes where M =

99



Chapter 6. Experiments, Comparisons and Results 100

Figure 6.1: Average execution time in microsecond for the Integer program-
ming algorithm, FPATS algorithm with ε = {0.1, 0.2, 0.3} and Two approxima-

tion algorithm for tmax,i = Ω×
∑
j≤i

∆tj and Ω ∈ {1, 10, 100}.

{2, 4, 6, 8, 10}. For every mode i ∈ M , we generated 1000 knapsack problem with

different values. For each knapsack problem, we run the test for three different

knapsack volume values tmax. We refer to the volume for a knapsack problem

with i modes by tmax,i, where i ∈ M . We calculate tmax,i = Ω ·
∑
j≤i

∆tj and

Ω ∈ {1, 10, 100}.
Figure 6.1 shows the average execution time in logarithmic scale with different

tmax. The horizontal axis represents the Ω value. The vertical axis is a logarithmic

scale for the average time value in microseconds. The execution time is obtained

by T (measured in microsecond) and can be calculated as T =

∑
0≤i<1000,m∈M

tm,i

|M |·1000

where tm,i is the execution time for the test trial number i and the number of

modes is equal to m.

We can see that, for Ω with small value (Ω = 1), the integer programming

algorithm has the worst average execution time, while, for the other two values

(Ω = 10 and Ω = 100), the integer programming algorithm time is not too far

from the FPTAS algoithm execution time. It is unsurprising that the execution

time for the two approximation algorithm is the minimal and it is constant (ie. it

does not depend on the value of Ω).



Chapter 6. Experiments, Comparisons and Results 101

Figure 6.2: Average relative error for FPATS algorithm with ε = {0.1, 0.2, 0.3}
and Two approximation algorithm for knapsack problems with modes mi ∈
{2, 4, 6, 8, 10} and various tmax,i = Ω×

∑
j≤i

∆tj where Ω ∈ {1, 10, 100}.

Figures 6.2 and 6.3 show the average relative error and the maximum relative

error ,respectively, for the normal instances test with modes mi = {2, 4, 6, 8, 10}
of the FPTAS algorithm with ε ∈ {0.1, 0.2, 0.3} and the two approximation al-

gorithm. The horizontal axis represents the number of modes for the knapsack

problem (instances numbers) mi, while the vertical axis represents the average per-

centage error e for Figure 6.2 and the maximum percentage error emax for Figure

6.3. The average error e is calculated by e =
∑

1≤i≤1000,Ω∈{1,10,100}

A−O
O
∗ 100, where

i represents the testing trial number, O is the optimal answer generated by the

integer programming algorithm and A is the approximation answer generated from

the approximation algorithms shown before with the same testing conditions. We

can conclude that all the approximation algorithms have a very low average error

but the problem with the two approximation algorithm can be shown in Figure

6.3 as the maximum relative error reached 20% and can reach 100% in some cases

as shown in Section 3.5.

6.3 Testing with Hard Instances

In this section, we use strongly correlated, weakly correlated and uncorrelated

hard instances. Instances of different correlation types are defined as follows.



Chapter 6. Experiments, Comparisons and Results 102

Figure 6.3: Maximum relative error for FPATS algorithm with ε =
{0.1, 0.2, 0.3} and Two approximation algorithm for knapsack problems with
modes mi ∈ {2, 4, 6, 8, 10} and various tmax,i = Ω ×

∑
j≤i

∆tj where Ω ∈

{1, 10, 100}.

1. Strongly correlated instances. For all i ∈M , we pick ∆ti uniformly at random

from the interval [1, R], where R is some constant. We then assign ∆πi =

∆ti + R
10

for i ∈M .

2. Weakly correlated instances. For all i ∈ M , we pick both ∆ti and ∆πi

randomly from the interval [1, R], where R is some constant.

3. Uncorrelated instances. For all i ∈M , we pick ∆ti uniformly at random from

the interval [1, R], where R is some constant. We then pick ∆πi randomly

in the range [∆ti − R
10
,∆ti + R

10
] where ∆πi ≥ 1 for i ∈M .

Also, for all the types mentioned above, we pick πd(i) = γ∆πi, where γ is

picked uniformly at random from the [0.1, 0.4] interval. We also set Vmin = 18◦C,

Vmax = 22◦C, and A(0) = −3. Based on this information, we can reverse engineer

all the other parameters A(i) and πc(i) for all i ∈ M of this multi-mode system

instance.

We tested our algorithms on randomly generated instances with strongly cor-

related, weakly correlated, and uncorrelated coefficients as defined in Section 5.5

of [32] for the 0-1 knapsack problem.



Chapter 6. Experiments, Comparisons and Results 103

Q=0.1 Q=1 Q=10

Tmin T Tmax Tmin T Tmax Tmin T Tmax

n=2 10−6 0.007 0.03 10−6 0.008 0.03 10−6 0.015 0.05

n=4 10−6 0.013 0.032 0.015 0.035 0.078 0.015 0.038 0.094

n=6 10−6 0.021 0.079 0.031 0.063 0.125 0.031 0.613 1.141

n=8 10−6 0.03 0.11 0.047 0.091 0.141 0.047 0.105 1.479

n=10 0.015 0.043 0.125 0.078 0.122 0.266 0.062 0.147 2.316

n=20 0.062 0.163 0.343 0.172 0.830 7.028 0.203 1.556 20.993

n=30 0.313 0.467 0.672 0.406 2.188 11.677 0.328 2.400 28.602

n=40 0.688 0.946 1.453 0.516 — — 0.453 — —

n=50 0.961 — — 0.782 — — 0.578 — —

Table 6.1: Average running time over 100 random strongly correlated in-
stances for the optimal Integer Programming algorithm (in seconds), where mi

is the number of modes.

For each instance we consider various lengths of the time horizon tmax = h ·∑
i∈M ∆ti, where h = {0.1, 1, 10}. We tested our algorithm for different values of

R, but since there was no significant difference in the relative performance of the

algorithms, we only include the running times for R = 10, 000.

Tables 6.1, 6.3 and 6.5 show the average execution time of the optimal integer

linear programming (ILP) algorithm in milliseconds. As shown in Table 6.1, the

dashed red cells mean that the algorithm suffered from a time out with 30 minutes

execution period. It means that the integer programming algorithm could not find

a solution within 30 minutes for at least one instance out of the 100 trials that were

run every time. For these cells, we can not provide an average execution time or a

maximum execution time either. Because of that I was not able to generate nice

diagrams as in Section 6.2 and presented the results in tables form. Note that, for

all the time measurements we included in this chapter, the function responsible for

measuring the execution time of a program cannot measure time less than 10−6.

If the program’s execution time is less than 10−6, the function returns a value of

0. We replace every 0-value returned by the smallest execution time the function

can measure which is 10−6.



Chapter 6. Experiments, Comparisons and Results 104

Q=0.1 Q=1 Q=10

Tmin T Tmax Tmin T Tmax Tmin T Tmax

n=2 10−6 10−6 10−6 10−6 3 · 10−5 0.015 10−6 0.001 0.016

n=4 10−6 10−6 10−6 10−6 0.001 0.016 10−6 0.006 0.016

n=6 10−6 10−6 10−6 10−6 0.002 0.016 10−6 0.022 0.094

n=8 10−6 3 · 10−4 0.015 10−6 0.005 0.016 0.031 0.058 0.156

n=10 10−6 5 · 10−4 0.016 10−6 0.015 0.032 0.047 0.111 0.375

n=20 10−6 0.014 0.078 0.125 0.223 0.438 0.516 1.235 5.922

n=30 0.047 0.073 0.11 0.656 1.083 1.578 2.765 5.150 18.235

n=40 0.188 0.257 0.406 1.860 3.349 5.640 3.862 6.291 38.651

n=50 0.469 0.665 0.937 3.109 6.354 11.876 5.534 8.345 66.585

Table 6.2: Average running time over 100 random strongly correlated in-
stances for the FPTAS approximation algorithm with 10% precision (in sec-

onds), where mi is the number of modes.

Table 6.7 shows the average execution time of the two approximation algorithm

in milliseconds for all the strongly correlated, weakly correlated, and uncorrelated

data instances. The execution time is really small for all instances that we tried

it on. Although this algorithm in general can return a solution with twice the

optimal cost in the worst-case, by comparing its solutions with the optimal ones

found by the IP algorithm, we found that, for all observed instances, the relative

performance was below 10%. Moreover, as we showed in Section 3.5, the longer

the time horizon is, the better are the worst-case guarantees that this algorithm

provides. So if each heater has to be used at least 11 times by itself to cover the

whole time horizon (i.e. ki ≥ 11 for all i ∈ M), the cost of the solution returned

by this algorithm is at most 1/10 = 10% higher than the optimal one.

Finally, Tables 6.2, 6.6, and 6.4 show the average execution time in milliseconds

for the FPTAS approximation algorithm with ρ = 10% over the strongly corre-

lated, weakly correlated, and uncorrelated knapsack data respectively. We found

that the FPTAS quickly produces solutions to the instances, where the IP algo-

rithm suffers from time-outs. The explanation behind this is the use of the scaling

factors described in Section 4.5.2, which decreases the maximum cost considered



Chapter 6. Experiments, Comparisons and Results 105

Q=0.1 Q=1 Q=10

Tmin T Tmax Tmin T Tmax Tmin T Tmax

n=2 10−6 0.007 0.031 10−6 0.009 0.032 10−6 0.014 0.094

n=4 10−6 0.013 0.063 0.015 0.026 0.063 10−6 0.030 0.048

n=6 10−6 0.022 0.047 0.015 0.041 0.094 0.016 0.056 0.125

n=8 0.015 0.030 0.063 0.031 0.058 0.109 0.031 0.074 0.208

n=10 0.015 0.04 0.079 0.046 0.074 0.109 0.047 0.086 0.144

n=20 0.063 0.18 0.484 0.125 0.244 0.453 0.125 0.246 0.691

n=30 0.219 0.413 0.687 0.203 0.431 0.765 0.203 0.437 0.734

n=40 0.258 0.626 1.002 0.344 0.653 1.234 0.343 0.709 1.304

n=50 0.428 0.874 1.494 0.422 0.931 2.109 0.438 0.989 2.656

Table 6.3: Average running time over 100 random uncorrelated instances
for the optimal Integer Programming algorithm (in seconds), where mi is the

number of modes.

and so also decreases the computation time.

6.4 Conclusions

Based on these tests we can conclude that, for multi-mode systems with small

number of modes, the optimal integer programming algorithm as well as the FP-

TAS approximation algorithm run quickly and give the exact optimal schedule or

one which is very close to optimal (in the case of using the FPTAS approximation

algorithm), respectively. In all other instances, the constant factor approximation

algorithm is the best choice, as it runs really quickly and most of the time gives a

near-optimal solution.



Chapter 6. Experiments, Comparisons and Results 106

Q=0.1 Q=1 Q=10

Tmin T Tmax Tmin T Tmax Tmin T Tmax

n=2 10−6 10−4 0.002 10−6 2 · 10−4 0.003 10−6 3 · 10−4 0.002

n=4 10−6 2 · 10−4 0.001 10−6 8 · 10−4 0.01 10−6 0.003 0.014

n=6 10−6 2 · 10−4 0.001 10−6 0.002 0.012 10−6 0.009 0.034

n=8 10−6 2 · 10−4 0.002 10−6 0.003 0.025 0.001 0.032 0.167

n=10 10−6 3 · 10−4 0.002 10−6 0.002 0.017 10−6 0.064 0.273

n=20 10−6 0.002 0.016 10−6 0.042 0.203 10−6 0.514 2.485

n=30 10−6 0.005 0.11 10−6 0.195 1.078 0.016 2.357 17.624

n=40 10−6 0.005 0.062 10−6 0.621 3.984 0.062 5.485.22 44.052

n=50 10−6 0.011 0.187 10−6 1.355 4.954 0.343 15.094 84.658

Table 6.4: Average running time over 100 random uncorrelated instances for
the FPTAS approximation algorithm with 10% precision (in seconds), where mi

is the number of modes.



Chapter 6. Experiments, Comparisons and Results 107

Q=0.1 Q=1 Q=10

Tmin T Tmax Tmin T Tmax Tmin T Tmax

n=2 10−6 0.008 0.046 10−6 0.01 0.047 10−6 0.017 0.047

n=4 10−6 0.013 0.046 10−6 0.031 0.067 0.015 0.03 0.07

n=6 10−6 0.027 0.085 0.007 0.048 0.109 0.014 0.045 0.094

n=8 0.015 0.041 0.121 0.016 0.061 0.133 0.016 0.058 0.140

n=10 0.015 0.059 0.148 0.024 0.066 0.151 0.011 0.067 0.147

n=20 0.078 0.154 0.281 0.094 0.169 0.312 0.063 0.160 0.297

n=30 0.188 0.286 0.453 0.172 0.274 0.5 0.157 0.255 0.422

n=40 0.263 0.396 0.765 0.234 0.383 0.703 0.234 0.374 0.735

n=50 0.359 0.526 1.041 0.344 0.514 1.047 0.344 0.473 0.828

Table 6.5: Average running time over 100 random weakly correlated instances
for the optimal Integer Programming algorithm (in seconds), where mi is the

number of modes.



Chapter 6. Experiments, Comparisons and Results 108

Q=0.1 Q=1 Q=10

Tmin T Tmax Tmin T Tmax Tmin T Tmax

n=2 10−6 2 · 10−4 0.016 10−6 10−6 10−6 10−6 6 · 10−4 0.016

n=4 10−6 2 · 10−4 0.015 10−6 6 · 10−4 0.016 10−6 0.004 0.016

n=6 10−6 5 · 10−4 0.016 10−6 0.003 0.031 10−6 0.022 0.094

n=8 10−6 8 · 10−4 0.016 10−6 0.012 0.093 10−6 0.061 0.562

n=10 10−6 0.001 0.016 10−6 0.022 0.063 0.015 0.135 0.875

n=20 10−6 0.013 0.265 10−6 0.373 1.968 0.094 1.849 41.694

n=30 10−6 0.067 0.25 0.063 1.823 7.203 0.891 5.863 69.32

n=40 10−6 0.267 1.125 0.063 5.560 20.735 1.953 15.299 99.735

n=50 10−6 0.619 8.860 0.172 9.961 365.05 5.641 27.322 125.447

Table 6.6: Average running time over 100 random weakly correlated instances
for the FPTAS approximation algorithm with 10% precision (in seconds), where

mi is the number of modes.



Chapter 6. Experiments, Comparisons and Results 109

Q=0.1 Q=1 Q=10

Tmin T Tmax Tmin T Tmax Tmin T Tmax

n=2 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=4 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=8 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=10 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=20 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=30 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=40 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

n=50 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

Table 6.7: Average running time (in seconds) over 100 random strongly corre-
lated, uncorrelated, weakly correlated instances for the constant (Two) approx-

imation algorithm, where mi is the number of modes.





Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

Linear hybrid systems are computationally challenging. In particular, safety and

reachability are undecidable already for three variables. We have identified the

class of simple linear hybrid systems as a class that arises naturally when studying

the optimal control of heating or cooling systems: there is only one continuous

variable (the temperature in our setting) in addition to the time. Although it

was to be expected that the optimal control for this model is decidable, the fact

that this problem is both NP-complete and admits an FPTAS was not. Only a

small number of NP-hard problems admit an FPTAS, i.e. can be approximated

with relative precision ρ, in polynomial time in the size of the input and 1/ρ.

Most NP-hard problems can be shown to be inapproximable within a constant

relative performance in polynomial time unless P=NP. The existence of FPTAS,

besides offering a cheap approximation in every desired precision, often indicates

that good standard solvers will normally behave well.

The example we considered as an application for the multi-mode system is the

temperature control of one room (in the case of a single dimension system) or

multiple rooms (in the case of a multi-dimension system) using Heating, Ventila-

tion and Air-conditioning system (HVAC) while paying the lowest possible average

cost. So, the aim is to find schedules to maintain the temperature in the comfort

zone between Vmin and Vmax and select the schedule with the minimum average

cost. We also interested in designing approximation algorithms that produce ap-

proximation solutions that are not far from the optimal one with low execution

time.

We studied the optimisation problem of a simple subclass of multi-mode sys-

tems in only one dimension (one variable). We studied this simple subclass in

111



Chapter 7. Conclusions and Future Work 112

Chapter 3 with an idle mode (a cost free mode m with A(m) < 0) and generalised

this work in Chapter 4 where all kind of modes are permitted.

For the idle mode case, a motivating example is to maintain the temperature

of one room within a comfort zone using heaters only. In order to increase the

temperature, we turn on a heater and turn all the heaters off (idle mode) to

decrease the temperature. We showed that the optimal control problem over an

infinite time horizon has an easy (LogSpace) computational complexity. We

studied the optimal control problem over a finite time horizon in detail by first

proving the it is NP-hard problem using a reduction from the unbounded knapsack

problem which is NP-hard (its optimisation version) or NP-complete (its decision

version). Then we showed the optimal schedule pattern and proved that the

optimal schedule consists of complete leaps and possibly the last incomplete one.

We provided an optimal algorithm that uses the integer linear programming to

find the optimal safe schedules. Also, we proposed two approximation algorithms

that run in polynomial time. The first one is a constant factor approximation

algorithm (two approximation) that keeps using only the mode with the smallest

running cost per unit time to heat the room up from Vmin to Vmax followed by

the idle mode that cools the room down from Vmax to Vmin. This algorithm

generates solutions with average cost that could reach twice the optimal cost. We

proposed an FPTAS to be able to find arbitrary precise approximate solutions.

The FPTAS reduces the problem to the 0-1 knapsack problem and uses a dynamic

programming algorithm to solve it. The approximate solution generated by the

FPTAS has average cost greater than or equal the optimal cost and less than or

equal to (1 + ε) of the optimal cost where ε is the FPTAS precision. Solving the

optimal control problem for multi-mode systems with relative performance ρ takes

O(poly(1/ρ)poly(size of the instance)) time.

In Chapter 4 we studied the same problem in a more general setting. As a

motivating example, the aim is to control the room temperature using heaters

–to rise the temperature– and air-conditioners –to decrease the temperature. We

showed that the optimisation problem still is NP-hard while the decision problem

is NP-Complete. We also studied the pattern for optimal schedules. We showed

that there always exists an optimal schedule that takes any form out of 44 differ-

ent cases. Any schedule consists of three parts: head, leaps and tail sections. We

presented cost-nonincreasing and safety-preserving operations that convert any

schedule into one of 44 patterns. We showed that the head and tail parts to-

gether can not be longer than 5 timed actions. Like the system with the idle

mode, we proved that finding an optimal safe infinite schedule for one-dimensional

multi-mode systems can be computed in deterministic LogSpace. We presented



Chapter 7. Conclusions and Future Work 113

a constant factor approximation algorithm (three-approximation) which runs in

O(|A|7) time. The algorithm tries all possible patterns for an optimal schedule

and for the leaps section always picks leaps of the same type. It then adds, if

necessary or for cost efficiency, a partial leap to the leaps section and minimises

the total cost of the just constructed schedule by optimising the time duration of

this partial leap. We showed that the cost minimisation problem for the general

case one dimensional multi-mode systems has an FPTAS by a polynomial time

reduction to the 0-1 Knapsack problem, for which many FPTAS algorithms exist.

We then try all the 44 patterns and simply select the one with the minimal cost.

Going from the single dimension to the multi-dimension multi-mode system,

we showed first that the optimal safe schedule may not exist. We overcome this

problem by permitting a safety deviation ε from the comfort zone. We showed that

finding an optimal limit-safe abstract schedule in A can be done in nondeterminis-

tic exponential time. We also showed that if a limit-safe abstract schedule exists,

then finding an ε-safe ε-optimal strategy can be done in deterministic polynomial

space and implemented an algorithm to find the ε-safe ε-optimal solution.

An implementation in Java was done for the the algorithms presented in Chap-

ter 3 which studies the optimisation for the multi-mode single dimension system

with an idle mode. We tested the performance of the integer programming, the

two approximation algorithm and the FPTAS algorithms. We tested the algo-

rithms performance over normal instances and hard knapsack instances. Based on

these tests with the normal instances, we can conclude that, for multi-mode sys-

tems with a small number of modes, the optimal integer programming algorithm

as well as the FPTAS approximation algorithm run quickly and give the exact

optimal schedule or a very near optimal one (in the case of using the FPTAS ap-

proximation algorithm), respectively. In all other instances, the constant factor

approximation algorithm is the best choice, as it runs really quickly and most of

the time gives a near-optimal solution.

We have tested the three algorithms over hard knapsack instances: the strongly

correlated, weakly correlated and uncorrelated instances. We found that the in-

teger programming solver suffers from a time out with a time-out set to 30 min-

utes when we consider multi-mode systems with a large number of modes. So,

we conclude that the integer programming solver is not suitable for solving the

multi-mode systems with large number of modes and it is better to use the two-

approximation algorithm which always produces an answer with a very low ex-

ecution time while the FPTAS approximation produces better approximation in

longer time.



Chapter 7. Conclusions and Future Work 114

7.2 Future Work

In the short term, we are going to design a tool using Java that implements the

FPTAS approximation for the optimisation in the multi-mode multi-dimension

system with discrete cost. The tool will be evaluated by considering a study case

for controlling the temperature in multi-zone building. For the temperature control

using HVAC system, we intend to study the problem more accurately by taking

into account the parameters that affect the room temperature while modelling the

systems such as the outside temperature and the heat transfer between rooms.

In the long term, we aim to modify our work to be suitable for minimising

not only the average cost but also the peak demand in multi-dimensional systems.

The cost of every mode will not be fixed any more. There will be categories for the

cost being paid which depend on the peak power being consumed at every time t.

Finally, we want to address the problem of the day/night scheduling in which

there exist two time sections (in the 24 hours). The system behaves differently in

each time section. Each mode has different slopes and costs (the night electricity

prices may be cheaper than the day prices) in each time section. Also, the comfort

zone could be different. All these challenges make the problem harder and more

challenging than what we solved in this thesis.



Bibliography

[1] EnergyPlus: Building energy simulation program, https://energyplus.

net/.

[2] IBPT: International Building Physics Toolbox in Simulink, http://www.

ibpt.org/.

[3] TRaNsient SYstems Simulation Program, http://sel.me.wisc.edu/

trnsys/.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, The algorithmic analysis

of hybrid systems, Theoretical Computer Science 138 (1995), no. 1, 3–34.

[5] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho,

Hybrid automata: An algorithmic approach to the specification and verifica-

tion of hybrid systems, Hybrid systems, Springer, 1993, pp. 209–229.

[6] Rajeev Alur and David L. Dill, A theory of timed automata, Theoretical

Computer Science 126 (1994), no. 2, 183–235.

[7] Rajeev Alur, Vojtech Forejt, Salar Moarref, and Ashutosh Trivedi, Safe

schedulability of bounded-rate multi-mode systems, HSCC, ACM, 2013,

pp. 243–252.

[8] Rajeev Alur, Vojtěch Forejt, Salar Moarref, and Ashutosh Trivedi, Schedu-

lability of bounded-rate multimode systems, ACM Transactions on Embedded

Computing Systems (TECS) 16 (2017), no. 3, 85.

[9] Rajeev Alur, Ashutosh Trivedi, and Dominik Wojtczak, Optimal scheduling

for constant-rate multi-mode systems, Proceedings of the 15th ACM interna-

tional conference on Hybrid Systems: Computation and Control, ACM, 2012,

pp. 75–84.

115

https://energyplus.net/
https://energyplus.net/
http://www.ibpt.org/
http://www.ibpt.org/
http://sel.me.wisc.edu/trnsys/
http://sel.me.wisc.edu/trnsys/


Bibliography 116

[10] Sanjeev Arora, Polynomial time approximation schemes for euclidean travel-

ing salesman and other geometric problems, Journal of the ACM (JACM) 45

(1998), no. 5, 753–782.

[11] Eugene Asarin, Venkatesh P. Mysore, Amir Pnueli, and Gerardo Schneider,

Low dimensional hybrid systems – decidable, undecidable, don’t know, Infor-

mation and Computation 211 (2012), 138–159.

[12] Richard Bellman, Dynamic programming, Courier Corporation, 2013.

[13] Devendra Bhave, Sagar Jha, Shankara Narayanan Krishna, Sven Schewe, and

Ashutosh Trivedi, Bounded-rate multi-mode systems based motion planning,

Proceedings of the 18th International Conference on Hybrid Systems: Com-

putation and Control, ACM, 2015, pp. 41–50.

[14] Patricia Bouyer, Weighted Timed Automata: Model-Checking and Games,

Electronic Notes in Theoretical Computer Science 158 (2006), 3–17.

[15] Patricia Bouyer, Thomas Brihaye, Marcin Jurdziński, Ranko Lazić, and

Micha l Rutkowski, Average-Price and Reachability-Price Games on Hybrid

Automata with Strong Resets, Formal Modeling and Analysis of Timed Sys-

tems (Franck Cassez and Claude Jard, eds.), Lecture Notes in Computer

Science, no. 5215, Springer Berlin Heidelberg, September 2008, pp. 63–77

(en).

[16] Mary Ann Branch and Andy Grace, Matlab: Optimization toolbox: Compu-

tation, visualization, programming: User’s guide, version 1.5, MathWorks,

1996.

[17] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine, Jean-

François Raskin, and James Worrell, On reachability for hybrid automata

over bounded time, International Colloquium on Automata, Languages, and

Programming, Springer, 2011, pp. 416–427.

[18] Peter Bulychev, Alexandre David, Kim Gulstrand Larsen, Marius Mikučionis,

Danny Bøgsted Poulsen, Axel Legay, and Zheng Wang, UPPAAL-SMC: Sta-

tistical Model Checking for Priced Timed Automata, Electronic Proceedings

in Theoretical Computer Science, vol. 85, July 2012, pp. 1–16 (en).

[19] Andrew Chiu, George Davida, and Bruce Litow, Division in logspace-uniform

nc, RAIRO-Theoretical Informatics and Applications 35 (2001), no. 3, 259–

275.



Bibliography 117

[20] Stephen Cook, The p versus np problem, The millennium prize problems

(2006), 87–104.

[21] Stephen A Cook, The complexity of theorem-proving procedures, Proceedings

of the third annual ACM symposium on Theory of computing, ACM, 1971,

pp. 151–158.

[22] George Dantzig, Linear programming and extensions, Princeton university

press, 2016.

[23] Alexandre David, Dehui Du, Kim Guldstrand Larsen, Axel Legay, and Mar-

ius Mikučionis, Optimizing Control Strategy Using Statistical Model Checking,

NASA Formal Methods (Guillaume Brat, Neha Rungta, and Arnaud Venet,

eds.), Lecture Notes in Computer Science, no. 7871, Springer Berlin Heidel-

berg, May 2013, pp. 352–367 (en).

[24] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius

Mikučionis, and Jakob Haahr Taankvist, Uppaal Stratego, Tools and Algo-

rithms for the Construction and Analysis of Systems (Christel Baier and

Cesare Tinelli, eds.), Lecture Notes in Computer Science, no. 9035, Springer

Berlin Heidelberg, April 2015, pp. 206–211 (en).

[25] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and Zheng

Wang, Time for Statistical Model Checking of Real-Time Systems, Computer

Aided Verification (Ganesh Gopalakrishnan and Shaz Qadeer, eds.), Lecture

Notes in Computer Science, no. 6806, Springer Berlin Heidelberg, July 2011,

pp. 349–355 (en).

[26] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-completeness, W. H. Freeman, San Francisco, April 1979

(English).

[27] Oded Goldreich, P, np, and np-completeness: The basics of computational

complexity, Cambridge University Press, 2010.

[28] I Gurobi Optimization, Gurobi optimizer reference manual, URL http://www.

gurobi. com (2015).

[29] Thomas A Henzinger, The theory of hybrid automata, Verification of Digital

and Hybrid Systems, Springer, 2000, pp. 265–292.

[30] John E Hopcroft, Introduction to automata theory, languages, and computa-

tion, Pearson Education India, 2008.



Bibliography 118

[31] Hans Kellerer, Ulrich Pferschy, and David Pisinger, Introduction to np-

completeness of knapsack problems, Knapsack problems, Springer, 2004,

pp. 483–493.

[32] , Knapsack Problems, Springer Berlin Heidelberg, Berlin, Heidelberg,

2004 (en).

[33] Jon Kleinberg and Eva Tardos, Algorithm design, Pearson Education India,

2006.

[34] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Em-

manuel Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L

Montgomery, Dag Arne Osvik, et al., Factorization of a 768-bit rsa modulus,

Annual Cryptology Conference, Springer, 2010, pp. 333–350.

[35] François Laroussinie, Nicolas Markey, and Ph Schnoebelen, Model checking

timed automata with one or two clocks, CONCUR 2004-Concurrency Theory,

Springer, 2004, pp. 387–401.

[36] Kim G Larsen, Marius Mikučionis, Marco Muniz, Jǐŕı Srba, and Jakob Haahr

Taankvist, Online and compositional learning of controllers with application

to floor heating, International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, Springer, 2016, pp. 244–259.

[37] Bin Li and Andrew G. Alleyne, Optimal on-off control of an air conditioning

and refrigeration system, American Control Conference (ACC), 2010, IEEE,

2010, pp. 5892–5897.

[38] CPLEX Users Manual, Ibm ilog cplex optimization studio, 1987.

[39] George B Mathews, On the partition of numbers, Proceedings of the London

Mathematical Society 1 (1896), no. 1, 486–490.

[40] Kenneth L. McMillan and David K Probst, A technique of state space search

based on unfolding, Formal methods in system design 6 (1995), no. 1, 45–65.

[41] Mahmoud AA Mousa, Sven Schewe, and Dominik Wojtczak, Optimal control

for simple linear hybrid systems, 23rd International Symposium on Temporal

Representation and Reasoning (TIME), IEEE, 2016, pp. 12–20.

[42] , Optimal control for multi-mode systems with discrete costs, Inter-

national Conference on Formal Modeling and Analysis of Timed Systems,

Springer, 2017, pp. 77–96.



Bibliography 119

[43] Truong X. Nghiem, Madhur Behl, Rahul Mangharam, and George J. Pap-

pas, Green scheduling of control systems for peak demand reduction, Decision

and Control and European Control Conference (CDC-ECC), 2011 50th IEEE

Conference on, IEEE, 2011, pp. 5131–5136.

[44] Truong X Nghiem, Madhur Behl, George J Pappas, and Rahul Mangharam,

Green scheduling for radiant systems in buildings, Decision and Control

(CDC), 2012 IEEE 51st Annual Conference on, IEEE, 2012, pp. 7577–7582.

[45] Truong X. Nghiem, George J. Pappas, and Rahul Mangharam, Event-based

green scheduling of radiant systems in buildings, American Control Conference

(ACC), 2013, IEEE, 2013, pp. 455–460.

[46] Frauke Oldewurtel, Andreas Ulbig, Alessandra Parisio, Göran Andersson, and

Manfred Morari, Reducing peak electricity demand in building climate control

using real-time pricing and model predictive control, Decision and Control

(CDC), 2010 49th IEEE Conference on, IEEE, 2010, pp. 1927–1932.

[47] Christos H Papadimitriou, The euclidean travelling salesman problem is np-

complete, Theoretical computer science 4 (1977), no. 3, 237–244.

[48] Luis Pérez-Lombard, José Ortiz, and Christine Pout, A review on buildings

energy consumption information, Energy and buildings 40 (2008), no. 3, 394–

398.

[49] Alexander Schrijver, Theory of linear and integer programming, John Wiley

& Sons, 1998.

[50] Lieven MK Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S

Yannoni, Mark H Sherwood, and Isaac L Chuang, Nmr quantum computing:

Realizing shors algorithm, Nature 414 (2001), 883–887.

[51] Vijay V Vazirani, Approximation algorithms, Springer Science & Business

Media, 2013.

[52] Dominik Wojtczak, Optimal Control for Linear-Rate Multi-mode Systems,

Formal Modeling and Analysis of Timed Systems (Vı́ctor Braberman and

Laurent Fribourg, eds.), Lecture Notes in Computer Science, no. 8053,

Springer Berlin Heidelberg, August 2013, pp. 258–273 (en).

[53] , On strong np-completeness of rational problems, arXiv preprint

arXiv:1802.09465 (2018).


	Notations
	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Hybrid Systems
	1.1.1 Hybrid Automata
	1.1.2 Multi-mode Systems

	1.2 Problem Statement
	1.2.1 Motivation
	1.2.2 Motivating Example

	1.3 Optimal Solution
	1.4 Approximate Solution
	1.5 Related Work
	1.6 Contributions
	1.7 Thesis Outline

	2 Preliminaries
	2.1 Knapsack Problem
	2.1.1 Introduction to Knapsack Problem
	2.1.2 Types of Knapsack Problems
	Binary Decision Knapsack Problem
	Linear Decision Knapsack Problem
	Knapsack Problem in Multiple Dimensions

	2.1.3 Knapsack Problem Algorithms
	Dynamic Programming Algorithm
	Greedy Algorithm


	2.2 Complexity Classes
	2.2.1 Time Complexity Classes
	2.2.2 Space Complexity Classes
	2.2.3 Reductions

	2.3 System Dynamics
	2.3.1 Differential Dynamics
	2.3.2 Behaviour Linearisation

	2.4 System Formalisation
	2.4.1 Preliminaries
	2.4.2 Formal Definition

	2.5 Schedules and their Cost
	2.6 Conclusions

	3 Optimisation in a Simple One Dimensional Multi-mode Systems
	3.1 Preliminaries
	3.2 Optimal Schedules
	3.2.1 Infinite Time Horizon
	3.2.2 Finite Time Horizon

	3.3 NP-Completeness of Finite Time Horizon Optimal Control
	3.4 Optimal Algorithms
	3.4.1 Integer Linear Programming Algorithm

	3.5 Constant Factor Approximation Algorithm
	3.6 FPTAS Algorithm
	3.6.1 Dynamic Programming for 0-1 Knapsack
	3.6.2 FPTAS Approximation Algorithm

	3.7 Conclusions

	4 Optimisation in General One Dimensional Multi-mode Systems without an idle mode
	4.1 Introduction
	4.1.1 Motivation Example

	4.2 Preliminaries
	4.3 Structure of Finite Control in One-dimension
	4.3.1 Operations
	Rearrange Operation
	Shift Operation
	Shift-down Operation
	Wedge Operation
	Resize Operation

	4.3.2 Transforming Schedules into Optimal Ones

	4.4 Complexity of Optimal Control in One-dimension
	4.4.1 Infinite Time Horizon
	4.4.2 Finite Time Horizon

	4.5 Approximate Optimal Control in One-Dimension
	4.5.1 Constant Factor Approximation
	4.5.2 FPTAS Algorithm
	FPTAS Other Cases


	4.6 Conclusions

	5 Optimisation in Multiple Dimensional Multi-mode Systems
	5.1 Introduction
	5.2 -safe Schedules
	5.3 Optimisation of Multiple dimensional Multi-mode Systems without Discrete Costs
	5.4 Complexity of Limit-safe and -safe Finite Control
	5.5 Approximation Algorithms for the Multiple Dimensional Multi-mode Systems with Discrete Costs
	5.6 Conclusions

	6 Experiments, Comparisons and Results
	6.1 Introduction
	6.2 Testing with Normal Instances
	6.3 Testing with Hard Instances
	6.4 Conclusions

	7 Conclusions and Future Work
	7.1 Summary and Conclusions
	7.2 Future Work

	Bibliography

