
Establishing trusted Machine-to-Machine communications

in the Internet of Things

through the use of behavioural tests

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy by

Valerio Selis

April 2018

“Be less curious about people and more curious about ideas.”

Marie Curie

Abstract

Today, the Internet of Things (IoT) is one of the most important emerging technolo-
gies. Applicable to several fields, it has the potential to strongly influence people’s lives.
“Things” are mostly embedded machines, and Machine-to-Machine (M2M) communica-
tions are used to exchange information. The main aspect of this type of communication
is that a “thing” needs a mechanism to uniquely identify other “things” without human
intervention. For this purpose, trust plays a key role. Trust can be incorporated in the
smartness of “things” by using mobile “agents”.

From the study of the IoT ecosystem, a new threat against M2M communications
has been identified. This relates to the opportunity for an attacker to employ several
forged IoT-embedded machines that can be used to launch attacks. Two “things-aware”
detection mechanisms have been proposed and evaluated in this work for incorporation
into IoT mobile trust agents. These new mechanisms are based on observing specific
thing-related behaviour obtained by using a characterisation algorithm.

The first mechanism uses a range of behaviours obtained from real embedded ma-
chines, such as threshold values, to detect whether a target machine is forged. This
detection mechanism is called machine emulation detection algorithm (MEDA). MEDA
takes around 3 minutes to achieve a detection accuracy of 79.21%, with 44.55% of real
embedded machines labelled as belonging to forged embedded machines. These results
indicated a need to develop a more accurate and faster detection method. Therefore, a
second mechanism was created and evaluated. A dataset composed of behaviours from
real, virtual and emulated embedded systems that can be part of the IoT was created.
This was used for both training and testing classification methods. The results iden-
tified Random Forest (RF) as the most efficient method, recognising forged embedded
machines in only 5 seconds with a detection rate of around 99.5%. It follows that this
solution can be applied in real IoT scenarios with critical conditions.

In the final part of this thesis, an attack against these new mechanisms has been
proposed. This consists of using a modified kernel of a powerful machine to mimic
the behaviour of a real IoT-embedded machine, referred to as a fake timing attack
(FTA). Two metrics, mode and median from ping response time, have been found to
effectively detect this attack. The final detection method involves combining RF and
k -Nearest Neighbour to successfully detect forged embedded machines and FTA in only
40 seconds, with an overall detection performance (ODP) of 99.9% and 93.70% respec-
tively. This method also was evaluated using behaviours from embedded machines that
were not present in the training set. The results from that evaluation demonstrate that
the proposed solution can detect embedded machines unknown to the method, both real
and virtual, with an ODP of 99.96% and 99.92% respectively.

In summary, a new algorithm able to detect forged embedded machines easily,
quickly and with very high accuracy has been developed. The proposed method ad-
dresses the challenge of securing present and future M2M-embedded machines with
power-constrained resources and can be applied to real IoT scenarios.

v

Contents

Abstract v

Illustrations xi

Abbreviations xvii

Preface xxiii

Acknowledgements xxv

1 Introduction 1

1.1 Internet-connected Things . 1

1.2 Real-Life Scenarios . 4

1.2.1 Intelligent Transportation Systems 4

1.2.2 Intelligent Healthcare Systems . 5

1.2.3 Intelligent Building Systems . 6

1.3 Threats Against Things and the Internet of Things 7

1.4 Motivation, Aims and Objectives . 8

1.5 Contributions and Outline of the Thesis 11

1.6 Publication List . 13

2 Background and Related Work 15

2.1 Internet of Things . 15

2.2 Machine-to-Machine Communications . 18

2.3 Emerging Trends in the IoT . 19

2.3.1 Social Internet of Things (SIoT) 19

2.3.2 Virtualisation Continuum (VC) . 21

2.3.3 Fog Computing (FC) . 22

2.4 Information Security and Trust . 23

2.4.1 Encryption Techniques in the Internet of Things 26

2.4.2 Definition of Trust . 29

2.4.3 Trust Management Frameworks . 31

2.4.4 Attacks against Trust Management Frameworks 34

2.4.5 Trust Models for IoT . 35

vii

2.5 Limitations of Current Solutions . 36

2.6 Summary . 38

3 A New Threat and a Novel Solution: Machine Emulation Detection
Algorithm 43

3.1 Threat Model . 43

3.2 Real-Life Scenarios: Worst Cases . 45

3.2.1 Open Networks . 46

3.2.2 Closed Networks . 47

3.3 Virtualisation and Emulation Detection 48

3.3.1 CPU and Memory Tests . 49

3.3.2 Architecture-based Timing Tests 49

3.3.3 Remote Tests . 50

3.3.4 Fingerprinting Tests . 50

3.4 Solution and Algorithm Design . 51

3.4.1 Characterisation Algorithm . 53

3.4.2 Machine Emulation Detection Algorithm 57

3.5 Results and Discussion . 60

3.5.1 Comparison with Other Techniques 62

3.6 Summary . 64

4 A Classification Approach to Detecting Forged Embedded Machines 65

4.1 Background and Motivation . 65

4.2 Classification-based Algorithm . 67

4.2.1 Initial Dataset . 68

4.2.2 Feature Extraction . 69

4.2.3 Feature Selection . 71

4.2.4 Classification . 71

4.2.5 Performance Evaluation . 73

4.2.6 Overall Evaluation . 75

4.3 Simulation and Results . 77

4.3.1 Comparison with MEDA . 84

4.4 Summary . 84

5 Attack and Defence in Behavioural Tests 87

5.1 Threat Model . 87

5.2 Fake Timing Attack . 88

5.3 Detection Model . 91

5.4 Simulations, Results and Comparison with Other Algorithms 92

5.5 Classification of Unknown Devices . 97

5.6 Applicability of the Proposed Solution . 98

5.6.1 Architectural Reference Models . 98

5.6.2 Implementation Feasibility . 100

5.6.3 Real-Life Scenarios: Applicability 102

5.7 Summary . 102

6 Conclusions and Future Work 105

6.1 Conclusions . 105

viii

6.2 Contributions and Findings . 106

6.2.1 Introduction, Background and Related Work 106

6.2.2 A New Threat and a Novel Solution: Machine Emulation Detec-
tion Algorithm . 107

6.2.3 A Classification Approach to Detecting Illegitimate Embedded
Machines . 107

6.2.4 Attack and Defence in Behavioural Tests 107

6.3 Future Work . 108

6.4 Summary . 109

A Appendices 111

A.1 Characterisation Algorithm . 111

A.2 Characterisation Algorithm Outputs . 115

A.3 Machine Emulation Detection Algorithm 117

A.4 Classification-based Algorithm . 121

A.5 Architecture-based Timing Test on Raspberry Pi 2 model B 125

A.6 Architecture-based Timing Test: QEMU patch 127

B Appendices 129

B.1 Performance Results from MEDA, k -NN and RF 129

B.2 Performance Results from k -NN and RF without the Normalisation Step . 134

B.3 Cumulative Frequency Histograms for Timestamp Features used to Detect
FTA . 136

Bibliography 139

ix

Illustrations

List of Figures

1.1 Trend of top attack news against things and the IoT infrastructure. Attacks

against embedded things are highlighted. Attacks related to both things and

the IoT infrastructure are shown. In 2013, things and the IoT infrastruc-

ture were attacked for the first time and at the same time, while in 2015,

compromised embedded things were used to attack the IoT infrastructure. . 8

2.1 Forecast of connected Internet of Things (IoT) devices. 17

2.2 Social Internet of Things (SIoT) architecture. 20

2.3 Types of relationship in the SIoT paradigm. 21

2.4 Virtual Continuum in the IoT architecture. 22

2.5 Fog Computing in the Internet of Everything (IoE) system. 23

2.6 An Man-in-the-Middle (MITM) attack against Rivest-Shamir-Adleman (RSA). 27

2.7 Summary of information security and trust triads, showing CIA and DAD

triads for information security on the right and trust opinions triad on the

left. 30

2.8 Examples of trust aggregation with the node A as a trustor. 33

3.1 Threat model with a representation of multiple forged embedded machines

attacking the IoT in order to create Machine-to-Fake Machine (M2FM) com-

munications. (a) A’s view of the network, from which there are apparently

no issues. (b) The actual network topology, including the attacker forging

B, C and D. 45

3.2 Faked Central Processing Unit (CPU) information in the OpenWRT embed-

ded Linux system obtained from “/proc/cpuinfo”. 51

3.3 Representation of the detection model. The agency in “A” sends the IoT

Mobile Agent (IoT MA) to “B” (1). IoT MA runs the characterisation

algorithm locally in “B” (2) and then sends the results back to the agency

in “A” (3). “A” performs the final detection (4). 53

3.4 Representation of security mechanisms in Mobile Agents Platform (MAP)

for characterising IoT-embedded machines. 54

3.5 Hypothesis behind the characterisation algorithm concerning the difference

in time behaviours for translating and executing instruction in Real Em-

bedded Machines (REMs) and Virtual and Emulated Embedded Systems

(VESs). 55

3.6 Characterisation algorithm flowchart. The ping command is used locally and

information from ping response time (P.), timestamp (T.) and CPU usage

(C.) is stored. 55

xi

3.7 Test-bed used during the simulations for performing characterisation re-

quests and collect their results from REM and VES systems. 57

3.8 Pseudo code for the Machine Emulation Detection Algorithm (Machine Em-

ulation Detection Algorithm (MEDA)). 60

3.9 MEDA results for tests 1 and 2. 61

3.10 MEDA results for tests 3 and 4. 61

4.1 Modified characterisation algorithm for reducing the overall detection speed

by changing the number of pings, in which x is fixed to 0.2. 67

4.2 Steps required for selecting the best classification method. 68

4.3 Time required by feature selection methods to select the best features from

the training set and for different numbers of pings. 79

4.4 Time required by the best classification methods to classify all data present

in the training set for different numbers of pings. Missing values mean that

the classification method was not used for classifying a best tuple for that

number of pings. 79

4.5 Features ranked by how many times they were selected by the best feature

selection method for different numbers of pings. P. refers to ping response

time, T. to timestamp values, and the abbreviations for features from Table

4.6 are used. For example, P.L means lower bound value of ping response

time. 80

4.6 Feature selection methods used for selecting the best tuple of features. 81

4.7 Classification methods used for classifying the best tuple of features. 81

4.8 Overall Detection Performance (ODP) value related to best combination of

feature selection methods and classifiers that give the highest Final Evalua-

tion Score (FES) for different numbers of pings and features. 82

4.9 ODP value related to best combination of feature selection methods and

classifiers for different numbers of pings and for the (5P, 5T) tuple. 83

4.10 Time required to classify a sample using the best combination of feature

selection methods and classifiers for different numbers of pings and for the

(5P, 5T) tuple. The average of the time required with its standard deviation

is shown. 83

4.11 Comparison of ODP for MEDA and the best classification methods. 85

4.12 Comparison of the average classification time for MEDA and the best clas-

sification methods. 85

5.1 Attack scenario in which an attacker uses a powerful machine to mimic the

timing behaviours of a real embedded machine in order to create M2FM

communications. (a) A’s view about the network is represented, in which

the powerful machine is seen as a real embedded machine. (b) The actual

network is shown with the attacker “B” launching the attack against “A”

and “C”. 88

xii

5.2 Kernel modification of a powerful machine for the purpose of faking its timing

behaviours in order to mimic behaviours of a real embedded machine. 89

5.3 Characterisation Algorithm in which n is fixed to 200 and x is fixed to 0.2. . 91

5.4 Model used for detecting a Fake Timing Attack (FTA) in which n is fixed

to 200, x is fixed to 0.2 and TCh is fixed to 40 seconds. 93

5.5 Timing information related to the Arduino Yún and the FTA for 200 pings.

The ping response time of the Arduino Yún used as the reference REM is

shown in red. The estimation of the sum of ∆T0 and ∆T2 used by a possible

attacker to modify its ping response time is shown in orange. The estimated

delay introduced by the attacker in the kernel is shown in green. The ping

response time of the powerful machine is shown in light blue. The faked

ping response time obtained from the powerful machine launching the FTA

is shown in blue. 94

5.6 Cumulative frequency histograms for P. features obtained from the Arduino

Yún and FTA for 200 pings and 1000 characterisation tests. 95

5.6 (continued) Cumulative frequency histograms for P. features obtained from

the Arduino Yún and FTA for 200 pings and 1000 characterisation tests. . . 96

5.7 Summary of results for all behavioural tests for 200 pings. *Classification-based

algorithm presented in Chapter 4; **Random Forest (RF) and k -Nearest Neighbour

(k -NN) trained with P.mode and P.median features. 98

5.8 Final detection algorithm for detecting VESs, Unknown Embedded Systems

(UESs) and FTAs, in which n is fixed to 200, x is fixed to 0.2 and TCh is

fixed to 40 seconds. 99

5.9 Final detection algorithm in IoT trust agencies for both the IoT core and

IoT/Machine-to-Machine (M2M)-embedded devices, in which n is fixed to

200, x is fixed to 0.2 and TCh is fixed to 40 seconds. 100

B.1 Cumulative frequency histograms for T. features obtained from the Arduino

Yún and FTA for 200 pings and 1000 characterisation tests. 136

B.1 (continued) Cumulative frequency histograms for T. features obtained from

the Arduino Yún and FTA for 200 pings and 1000 characterisation tests. . . 137

List of Tables

1.1 Examples of characteristics of Internet-connected “things”. 3

1.2 Shodan results for IoT devices, companies, common ports and embedded

Operating Systems (OSs). Results were retrieved on the 28th of January 2017. 9

2.1 Forecasts of connected IoT devices in billions. 16

2.2 Examples of attacks against wireless networks used by Internet-connected

things. 23

2.3 Summary of Trust Management Frameworks (TMFs) for the IoT. 37

xiii

2.4 Summary of gaps, major assumptions and issues in the proposed TMFs for

the IoT. 39

3.1 Assigned trust weight values of published works, according to the computa-

tional capabilities of machines. 44

3.2 List of ping characterisation tests performed. 56

3.3 Characterisation metrics. 58

3.4 Range of behaviours of real embedded devices (REMs) obtained during the

characterisation. 59

3.5 List of virtualised and emulated embedded systems (VESs) tested. 60

3.6 Fingerprinting information from Genymotion, VirtualBox and VMware. . . . 63

4.1 Summary of methods available in the literature for detecting virtual and

emulated systems. 66

4.2 List of real, virtual and emulated embedded systems characterised. 69

4.3 Characterisation Features. 70

4.4 Summary of parameters used for each classifier in the Scikit-learn Python

module [1]. 74

4.5 Confusion Matrix. 74

4.6 Classification evaluation measures. 75

4.7 Evaluation scores for the Overall Detection Performance and Speed. 76

4.8 Values of ODP and Overall Detection Speed (ODS) depending on the security

level of the IoT application scenario. 76

4.9 Timing information related to the characterisation and features extraction

steps. 77

4.10 Summary of parameters used by the best feature selection methods and

classifiers for 25 and 200 pings in the Scikit-learn Python module [1]. 82

5.1 Characterisation features used by RF. 92

5.2 Comparison of methods for detecting forged embedded machines in the IoT. 97

5.3 List of unknown real and virtual embedded systems. 98

B.1 MEDA performance results on recognising REMs and VESs for 1000 pings

(dataset of REMs from Chapter 3, Section 3.4.2). 129

B.2 MEDA performance results on recognising REMs and VESs for 25 pings. . . 129

B.3 Extremely Randomized Trees (ERT)+k -NN performance results on recog-

nising REMs and VESs for 25 pings. 129

B.4 L1-based Feature Selection (L1-FS)+k -NN performance results on recognis-

ing REMs and VESs for 25 pings. 130

B.5 ERT+RF performance results on recognising REMs and VESs for 25 pings. . 130

B.6 L1-FS+RF performance results on recognising REMs and VESs for 25 pings. 130

B.7 MEDA performance results on recognising REMs and VESs for 200 pings. . 130

B.8 ERT+k -NN performance results on recognising REMs and VESs for 200 pings.130

xiv

B.9 L1-FS+k -NN performance results on recognising REMs and VESs for 200

pings. 131

B.10 ERT+RF performance results on recognising REMs and VESs for 200 pings. 131

B.11 L1-FS+RF performance results on recognising REMs and VESs for 200 pings.131

B.12 MEDA performance results on recognising unknown REMs and VESs for 25

pings. 131

B.13 ERT+k -NN performance results on recognising unknown REMs and VESs

for 25 pings. 131

B.14 L1-FS+k -NN performance results on recognising unknown REMs and VESs

for 25 pings. 132

B.15 ERT+RF performance results on recognising unknown REMs and VESs for

25 pings. 132

B.16 L1-FS+RF performance results on recognising unknown REMs and VESs

for 25 pings. 132

B.17 MEDA performance results on recognising unknown REMs and VESs for

200 pings. 132

B.18 ERT+k -NN performance results on recognising unknown REMs and VESs

for 200 pings. 132

B.19 L1-FS+k -NN performance results on recognising unknown REMs and VESs

for 200 pings. 133

B.20 ERT+RF performance results on recognising unknown REMs and VESs for

200 pings. 133

B.21 L1-FS+RF performance results on recognising unknown REMs and VESs

for 200 pings. 133

B.22 k -NN performance results on recognising REMs and FTAs for 200 pings. . . 133

B.23 RF performance results on recognising REMs and FTAs for 200 pings. 133

B.24 ERT+k -NN performance results on recognising REMs and VESs for 25 pings.134

B.25 L1-FS+k -NN performance results on recognising REMs and VESs for 25 pings.134

B.26 ERT+RF performance results on recognising REMs and VESs for 25 pings. . 134

B.27 L1-FS+RF performance results on recognising REMs and VESs for 25 pings. 134

B.28 ERT+k -NN performance results on recognising REMs and VESs for 200 pings.135

B.29 L1-FS+k -NN performance results on recognising REMs and VESs for 200

pings. 135

B.30 ERT+RF performance results on recognising REMs and VESs for 200 pings. 135

B.31 L1-FS+RF performance results on recognising REMs and VESs for 200 pings.135

xv

Abbreviations

k-NN k -Nearest Neighbour

AES Advanced Encryption Standard

AP Access Point

API Application Programming Interface

ARP Address Resolution Protocol

BI Business Insider

BLE Bluetooth Low Energy

BMA Bad-Mouthing Attack

BS Base Station

BSA Ballot-Stuffing Attack

CA Certification Authority

CCTV closed-circuit television

CM Characterisation Metric

CoI Community of Interest

CPU Central Processing Unit

CQI Channel Quality Indicator

CTS Clear to Send

DCH Dedicated CHannel

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

DT Decision Tree

EAP Extensible Authentication Protocol

EAPoL EAP over LAN

ERT Extremely Randomized Trees

ETSI European Telecommunications Standards In-

stitute

xvii

FC Fog Computing

FES Final Evaluation Score

FIPA Foundation for Intelligent Physical Agents

FN False Negatives

FP False Positives

FPGA Field-Programmable Gate Array

FTA Fake Timing Attack

GMA Good-Mouthing Attack

GPS Global Positioning System

GSM Global System for Mobile Communications

GSMA Global System for Mobile Communications

Association

GTS Guaranteed Time Slot

H2H Human-to-Human

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

IBM International Business Machines

IBS Intelligent Building Systems

iCore Internet Connected Objects for Reconfig-

urable Ecosystem

IDC International Data Corporation

IDT Interrupt Descriptor Table

IEEE Institute of Electrical and Electronics Engi-

neers

IHS Intelligent Healthcare Systems

IMS IP Multimedia Subsystem

IoE Internet of Everything

IoT Internet of Things

IoT MA IoT Mobile Agent

IoT-A Internet of Things - Architecture

IP Internet Protocol

IPP Internet Printing Protocol

ITS Intelligent Transportation Systems

ITU International Telecommunication Union

L-SVM Linear kernel-based SVM

L1-FS L1-based Feature Selection

LDA Linear Discriminant Analysis

xviii

LTE Long-Term Evolution

M2FH Machine-to-Fake Human

M2FM Machine-to-Fake Machine

M2H Machine-to-Human

M2M Machine-to-Machine

MAC Media Access Control

MAP Mobile Agents Platform

MEDA Machine Emulation Detection Algorithm

MITM Man-in-the-Middle

MMS Multimedia Messaging Service

MQTT Message Queue Telemetry Transport

MR Machina Research

NB Näıve Bayes

NCTA National Cable & Telecommunications Asso-

ciation

NFC Near Field Communication

NOP No Operation

NTP Network Time Protocol

ODP Overall Detection Performance

ODS Overall Detection Speed

OOA On-Off Attack

OS Operating System

OSA Opportunistic Service Attack

P-SVM Polynomial kernel-based SVM

PPUF Public PUF

PTO Pre-Trusted Object

PUF Physical Unclonable Function

QDA Quadratic Discriminant Analysis

QoS Quality of Service

R-SVM Radial kernel-based SVM

RAM Random Access Memory

REM Real Embedded Machine

RF Random Forest

RFE Recursive Feature Elimination

RFID Radio-Frequency IDentification

xix

RSA Rivest-Shamir-Adleman

RTOS Real-Time Operating System

RTS Request to Send

SAMME Stagewise Additive Modelling using a

Multi-class Exponential Loss Function

SCADA Supervisory Control and Data Acquisition

SHA Secure Hash Algorithm

SIDT Store Interrupt Descriptor Table

SIoT Social Internet of Things

SKB Select-K-Best

SKB-Chi2 Select-K-Best with Chi-squared stats of non-

negative features

SKB-F Select-K-Best with ANOVA F-value

SMS Short Message Service

SPA Self-Promoting Attack

SSH Secure Shell

ST Social Trust

SVC Support Vector Machine Classifier

SVM Support Vector Machine

T2T Thing-to-Thing

TCP Transmission Control Protocol

TKIP Temporal Key Integrity Protocol

TLS/SSL Transport Layer Security/Secure Sockets

Layer

TMF Trust Management Framework

TN True Negatives

TP True Positives

UES Unknown Embedded System

UMTS Universal Mobile Telecommunications System

V2H Vehicle-to-Human

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VC Virtual Continuum

VES Virtual and Emulated Embedded System

VM Virtual Machine

WPA Wi-Fi Protected Access

xx

WPA2 Wi-Fi Protected Access 2

WPS Wi-Fi Protected Setup

WSN Wireless Sensor Network

XMPP Extensible Messaging and Presence Protocol

xxi

Preface

This thesis is primarily my own work. The sources of other materials are identified.

xxiii

Acknowledgements

First and most importantly, I would like to express my deep gratitude to my wife,

Dr Alessandra Frau, for her unconditional support for my embarking on and most im-

portantly completing this journey. Her love, patience and research experience have

always been inestimable. Thanks a lot for your patience; I could not have done it with-

out you. Secondly, I would like to thank my supervisor, Prof Alan Marshall, for his

support and for believing in me during these four years. He gave me the opportunity

to begin and finish this journey and his guidance and suggestions have been invaluable.

Thirdly, I would like to thank Dr Jonny Milliken, who inspired me as a researcher. It is

after working with him in Belfast that I decided to pursue this path.

I would also like to thank Dr Andrew Bolster, a journey mate with whom I shared

a house and a lab for a while. Our conversations were a source of great ideas. I want

also to thank the guys of the Advanced Networks Research Group for their support

and companionship. A special thanks to all the EEE Department staff, including the

administrative and technical team, for their advice and help during this journey.

Thanks to the guys of TOM Ltd, in particular to Julian Watts for his friendship. It

was challenging but also great to have something else to think about during these years.

I would like to really thank my mother, Maria Consolata, my sister and brothers,

Jessica, Maurizio and Marco, and their family members, Epifanio, Lorenzo, Chiara

and Elisabetta. They were always present despite the physical distance between us to

support, encourage and believe in me. I also thank Mario, Bonaria, Gianmarco, Ilaria,

Thomas and Francesco for giving me the opportunity to be part of their family and for

their kindness. Thanks to all my friends in Liverpool and back home, who are always

there for me, even if we do not see each other so often.

Finally, I would like to dedicate this thesis to the memory of my beloved father,

Salvatore, who is a constant source of inspiration.

xxv

Chapter 1

Introduction

The number of Internet-connected “things” is increasing rapidly. It is estimated that to-

day there are already between 5 and 15 billion devices connected to the Internet. Around

35 billion “things” are expected to be connected by 2020, of which 13 billion are likely

to be wirelessly connected. These “things” connected to the Internet are part of the

Internet of Things (IoT) paradigm and their cooperation through Machine-to-Machine

(M2M) communications will be fundamental to achieving specific and complex goals.

This type of communication is characterised by the fact that there is no human inter-

vention.

The rapidly growing number of “things” connected to the Internet is leading to

security issues that have been highlighted by researchers and media news. As these

communications increase over time, there is also the opportunity for attackers to exploit

them and consequently attack the network or part of it. These attacks can lead to

several issues, from the loss of end-user privacy to a large-scale economic impact. It is

quite obvious that securing the communication among “things” must be a prioritised

factor before continuing to deploy them. In this scenario, trust has an important role in

assuring that the exchange of information is secure and reliable. Terms such as “thing”,

“object”, “device”, “node” and “machine” are used interchangeably throughout this

thesis. Moreover, the term “object” means everything that is not directly related to

human beings.

1.1 Internet-connected Things

Objects that will be part of the IoT must have access to the IoT infrastructure in order

to communicate with other objects. To do this, objects must have at least one network

interface. There are currently various networks that can be used to connect objects in

the IoT [2–4]:

• Wired networks: a network type in which all the components are connected using

cables;

1

Chapter 1. Introduction 2

• Wireless networks: a network type in which all the wireless components are con-

nected using radio waves such as:

– Cellular networks: a wireless network in which all the mobile components are

connected through cells;

– Body networks: a wireless network in which the components are body sensor

units;

– Vehicular networks: a wireless network specific for vehicles;

• Sensor networks: a wired or wireless network in which the components are sensor

nodes.

The general idea is that M2M communications use a wireless data connection as a

link between systems, remote devices or locations and individuals [5]. The standards for

wireless networks with an important role for connecting machines in the IoT are [2, 4]:

• Wi-Fi networks: IEEE 802.11;

• Bluetooth: IEEE 802.15.1;

• Wireless Sensor Network (WSN): IEEE 802.15.4 or ZigBee;

• Radio-Frequency IDentification (RFID) networks: ISO 18000;

• Cellular networks: Global System for Mobile Communications (GSM), Universal

Mobile Telecommunications System (UMTS), IEEE 802.16, Long-Term Evolution

(LTE) or 5G.

Table 1.1 shows the objects that can be part of the IoT along with their corresponding

features. When available, the main characteristics of these objects may be subdivided

as follows [6]:

• CPU: from embedded to high performance processor, such as ARM, MIPS, Pow-

erPC, AVR, x86, x86-64, etc.;

• OS: open source and proprietary, such as Linux-based, Windows-based, iOS-based,

Contiki, etc.;

• Data storage: from a few KB to a TB;

• Random Access Memory (RAM): from a few KB to a GB;

• Network interface: from one to multiple interfaces at the same time, such as wired,

RFID, Bluetooth, ZigBee, Wi-Fi, GSM, etc.;

• Power : from no power to high power, battery and/or wired;

• Type: mobile or static.

Chapter 1. Introduction 3

T
a
b
l
e
1
.1
:

E
x
a
m

p
le

s
o
f

ch
a
ra

ct
er

is
ti

cs
o
f

In
te

rn
et

-c
o
n

n
ec

te
d

“
th

in
g
s”

.

“
T

h
in

g
s”

T
y
p

e
P

o
w

e
r

P
ro

c
e
ss

o
r

N
e
tw

o
rk

In
te

rf
a
c
e
(s

)

S
m

a
rt

R
F

ID
d

ev
ic

es
(t

ag
s,

re
ad

er
s,

et
c.

)
M

,
S

N
A

/L
P

N
A

/L
C

P
U

C
el

lu
la

r,
R

F
ID

,
W

i-
F

i,
W

ir
ed

S
m

a
rt

b
o
d

y
ob

je
ct

s
(s

en
so

rs
,

w
at

ch
es

,
gl

as
se

s,
b
ra

ce
le

ts
,

et
c.

)
M

L
P

/M
P

L
C

P
U

B
lu

et
o
ot

h
,

W
i-

F
i,

Z
ig

B
ee

S
m

ar
t

lo
ca

ti
o
n

o
b

je
ct

s
(G

lo
b

al
P

os
it

io
n

in
g

S
y
st

em
(G

P
S

)
b

a
se

d
,

g
y
ro

sc
o
p

e
b

as
ed

,
a
cc

el
er

om
et

er
b

as
ed

,
et

c.
)

M
,

S
L

P
/M

P
L

C
P

U
/M

C
P

U
B

lu
et

o
ot

h
,

C
el

lu
la

r,
Z

ig
B

ee
,

W
i-

F
i,

W
ir

ed

R
o
b

o
ts

M
,

S
M

P
/H

P
M

C
P

U
/H

C
P

U
B

lu
et

o
ot

h
,

W
i-

F
i,

W
ir

ed
,

Z
ig

B
ee

P
o
rt

a
b

le
d

ev
ic

es
(s

m
ar

tp
h

on
es

,
ta

b
le

ts
,

et
c.

)
M

M
P

/H
P

M
C

P
U

/H
C

P
U

B
lu

et
o
ot

h
,

C
el

lu
la

r,
R

F
ID

,
W

i-
F

i,
W

ir
ed

S
m

a
rt

b
u

il
d

in
g

o
b

je
ct

s
(s

en
so

rs
,

sw
it

ch
es

,
d

im
m

er
s,

et
c.

)
S

L
P

L
C

P
U

B
lu

et
o
ot

h
,

W
i-

F
i,

W
ir

ed
,

Z
ig

B
ee

N
et

w
or

k
co

n
n

ec
ti

v
it

y
a
p

p
li

an
ce

s
(r

ou
te

rs
,

ga
te

w
ay

s,
sw

it
ch

es
,

et
c.

)
S

M
P

L
C

P
U

/M
C

P
U

C
el

lu
la

r,
W

i-
F

i,
W

ir
ed

,
Z

ig
B

ee

P
C

s/
se

rv
er

s/
N

A
S

s
S

M
P

/H
P

M
C

P
U

/H
C

P
U

B
lu

et
o
ot

h
,

C
el

lu
la

r,
W

i-
F

i,
W

ir
ed

,
Z

ig
B

ee

S
m

a
rt

v
eh

ic
le

s
(c

a
rs

,
b

ik
es

,
et

c.
)

M
L

P
/M

P
L

C
P

U
/M

C
P

U
B

lu
et

o
ot

h
,

C
el

lu
la

r,
W

i-
F

i

S
m

a
rt

ap
p

li
a
n

ce
s

(f
ri

d
g
es

,
te

le
v
is

io
n

s,
et

c.
)

S
L

P
/M

P
/H

P
L

C
P

U
/M

C
P

U
B

lu
et

o
ot

h
,

W
i-

F
i,

W
ir

ed
,

Z
ig

B
ee

S
m

a
rt

ci
ty

o
b

je
ct

s
(s

tr
ee

t
se

n
so

rs
,

st
re

et
li

gh
ts

,
tr

affi
c

li
g
h
ts

,
et

c.
)

S
L

P
/M

P
L

C
P

U
/M

C
P

U
C

el
lu

la
r,

W
i-

F
i,

W
ir

ed
,

Z
ig

B
ee

N
A

:
N

ot
A

va
il

ab
le

;
M

:
M

o
b

il
it

y
;

S
:

S
ta

ti
c;

L
P

:
L

ow
P

ow
er

(m
W

);
M

P
:

M
ed

iu
m

P
ow

er
(W

);
H

P
:

H
ig

h
P

ow
er

(>
k
W

);
L

M
:

L
ow

M
em

o
ry

(k
B

);
M

M
:

M
ed

iu
m

M
em

or
y

(M
B

);
H

M
:

H
ig

h
M

em
or

y
(>

G
B

);
L

C
P

U
:

L
ow

U
n

it
(M

H
z)

;
M

C
P

U
:

M
ed

iu
m

U
n

it
(G

H
z

si
n

g
le

-c
or

e)
;

H
C

P
U

:
H

ig
h

U
n

it
(≥

G
H

z
m

u
lt

i-
co

re
).

Chapter 1. Introduction 4

Most of these things are mainly embedded systems with different capabilities and

complexities, starting from a simple smart sensor to a more sophisticated device. These

have low-to-medium capabilities, and therefore could easily be compromised by attack-

ers.

Almost every object in the world could be part of the IoT, but every object is not

part of it a priori. An object can be part of the IoT if there are at least two main

capabilities: connectivity and smart capabilities. For example, a simple temperature

sensor cannot be part of the IoT, because there is a lack of intelligence. An object

can be defined smart when it has the capability to collect information, in many cases

elaborate it, and transfer it to other objects or to the IoT system, whereas connectivity

capability allows objects to be connected to and interact with the IoT infrastructure

and other IoT objects. In this example, a simple sensor becomes a smart sensor. The

intelligent capability can be included in the object by using IoT mobile agents, from

now on called “agents”. An agent is a piece of software that takes in input information,

mostly from the real-world environment, processes it and forwards it to the IoT system

or other agents for further processing. An agent can also receive information from the

IoT system or other agents with the aim of accomplishing a task. Agents are not like

other software applications that can run in objects; these allow objects to intelligently

communicate with each other for achieving specific goals. Agents aim to facilitate M2M

and Machine-to-Human (M2H) interactions by understanding the environment in which

objects are used and to give them the ability to speak the same language [7–9].

1.2 Real-Life Scenarios

At present, there are various applications of M2M communications that have started

to emerge in several fields, such as Intelligent Healthcare Systems (IHS), Intelligent

Transportation Systems (ITS), Intelligent Building Systems (IBS), smart robots, manu-

facturing systems and smart grids [3, 10, 11]. In this context, an unprecedented increase

in M2M data will occur. It is possible to envision that things will manage and control

part of human life in an autonomous way. We will interact with things and these will

adapt our environment based on predefined requirements. This will happen primarily in

a passive way and without a direct request from the user. The following subsections de-

scribe examples of real-life scenarios which highlight the importance of IoT and therefore

M2M devices.

1.2.1 Intelligent Transportation Systems

In this first scenario the aim is to reduce fuel consumption, reduce CO2 emissions, im-

prove vehicle and driving safety, improve traffic efficiency, enable drivers to receive exter-

nal information etc. In this, M2M devices can create three types of networks: Vehicle-to-

Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Human (V2H). In V2V,

Chapter 1. Introduction 5

information is exchanged among devices; in V2I, information is exchanged between de-

vices and the IoT infrastructure; and in V2H, information is exchanged between devices

and humans. This IoT system is composed of smart objects installed and configured in

“things” such as vehicles, roads, goods, service areas etc. [12, 13]

A possible ITS scenario involving cars is as follows:

• Improve navigation:

– Drivers choose to drive or to use the autopilot.

– The car suggests the fastest route by considering information obtained by

other vehicles and the ITS, i.e. traffic, accidents, weather conditions etc.

– The ITS uses roadside signs to alert vehicles of possible accidents, road con-

gestion etc. If appropriate, it suggests alternative routes and adjusts traffic

lights by considering the real-time traffic flow, choosing to change the timing

of red and green lights.

• Improve road safety:

– The car alerts the user to any problem with the vehicle, e.g. low fuel level,

low battery power, motor problems etc. It is able to suggest in real-time the

closest and cheapest petrol station, car repair garage etc.

– If the user is driving, sensors help them stay in the correct lane, give infor-

mation about distances, assist with parking etc.

– Pedestrians crossing the road may be advised about nearby cars that would

not be able to stop in time, suggest the closest cross-walk etc.

– The ITS alerts cars of any pedestrian crossing the street, especially when there

is poor street visibility caused by adverse weather conditions or obstacles such

as walls, parked cars etc.

– In case of an accident, cars can call emergency services automatically by

providing the current location, driver and passenger health status, number of

vehicles involved etc.

• Improve passenger entertainment:

– Access the Internet, for example, to download music, videos etc.

– Adjust audio and luminosity levels in the vehicle.

1.2.2 Intelligent Healthcare Systems

In this scenario, the aim is to improve patient-doctor relationships, increase human

health conditions, increase patients’ health monitoring, decrease spread of disease, el-

derly care etc. Here, M2M devices such as smart body sensors, local network devices

Chapter 1. Introduction 6

etc. would have an important role in reporting patients’ conditions and sending alerts

to the IoT system [14–16].

Possible future scenarios involving the IHS are as follows:

• Medical records of patients are available everywhere in case of emergency and

historical records can be used by the IHS to prevent future health problems.

• In the event of an emergency, information from smart body sensors of a patient

may be used to alert the nearest ambulance. Meanwhile, the IHS suggests the

fastest route to the nearest hospital.

• In case of a new disease, the IHS predicts its spread before it becomes a national

or global risk, alerting national competent authorities and the World Health Or-

ganization.

• By collecting information from body sensors, the IHS can advise the user what

action to take to prevent a disease.

1.2.3 Intelligent Building Systems

In this scenario, the aim is to optimize building energy consumption, improve building

safety and security, optimize building occupancy etc. In this, M2M devices such as

smart meters, smart sensors, smart LED lights, smart closed-circuit television (CCTV)

cameras, etc. provide specific information to the central system [17–19].

Possible IBS scenarios involving users of buildings are as follows:

• The IBS manages the lighting system to reduce energy consumption depending on

user location, external and internal light levels etc.

• The number and location of users in big buildings such as shopping centres, air-

ports, rail stations etc. are used to suggest the fastest way to reach a place of

interest (shop, gate, platform, etc.) by considering the flow of people, in which

floors the elevators are on, escalator status etc.

• In case of fire or an emergency, the IBS suggests to the user the nearest and safest

exit, alerts the fire station and ambulances, turns off all unnecessary equipment in

order to contain the fire, limit the damage caused, protect users etc.

• In domestic buildings, the IBS can automatically manage the entertainment system

by adjusting the lighting and volume, playing the user’s preferred music, suggesting

movies etc. It can alert the user when guests are arriving by recognizing their facial

features or by their location. It can also alert the user if there is a thief on the

premises or inside the home and automatically call the police.

Chapter 1. Introduction 7

1.3 Threats Against Things and the Internet of Things

The increase in deployment of the IoT is leading to a corresponding increase in attacks

against things and the IoT infrastructure. Figure 1.1 shows the trend in top news

on attacks against the system based on news websites, technology-based magazines and

companies including the BBC [20–33], CNN [34–36], The Guardian [37, 38], The Inquirer

[39–41], The Register [42, 43], The Washington Post [44], Technology Review [45–48],

Scientific American [49], Wired [50–54], Forbes [55–61], Computerworld [62–68], PC

World [69–74], Symantec [75], Trend Micro [76–90] and Sucuri [91, 92].

Starting from 2010, the year in which IoT began to emerge, things also began to be

attacked. The Stuxnet worm was used not only to attack nuclear centrifuges, but also

to destroy them. In 2011, embedded things began to be compromised by using wireless

connections. A car was attacked via Bluetooth and used to make unauthorised cell-phone

calls. Later, in 2013, the core of the IoT infrastructure began to be attacked. Domain

Name System (DNS) servers were attacked by using a Distributed Denial of Service

(DDoS) attack and the Internet was greatly slowed down. The followed year, both the

IoT infrastructure and things were attacked. Sony Pictures was attacked, causing gaming

consoles, TVs and smartphones to be disconnected from its entertainment network [56].

In May 2015, the first worst case scenario happened: Internet-connected embedded

things such as CCTV cameras were hacked and used to attack the IoT infrastructure

by launching a DDoS attack [73]. In the same year, other attacks took place in which

embedded things had a major role by being used to attack the IoT infrastructure.

As Figure 1.1 indicates, from 2012 on, embedded things were increasingly targeted

by attackers and then used to attack the IoT infrastructure or part of it. These attacks

happened because embedded systems are left mostly without any kind of protection.

This exposure gives attackers an opportunity to compromise and remotely use them for

malicious purposes. Recently, hackers compromised a fish tank in a North American

casino to attack its network and gather private information. It was used to send data to

another device in Finland [93]. Another news item showed how a security flaw, called

“Devil’s Ivy”, can be used to compromise IoT devices from large 24 companies, in-

cluding Bosch, Canon, Cisco, D-Link, Fortinet, Hitachi, Honeywell, Huawei, Mitsubishi,

Netgear, Panasonic, Sharp, Siemens, Sony and Toshiba [94]. This flaw allows access to

the IoT devices by giving attackers full remote control, which gives them the opportu-

nity to use these devices for perpetrating other attacks. It should be noted that Figure

1.1 shows only the reported attacks, therefore, the total number of attacks perpetrated

against the IoT may be greater. This could be because companies usually do not report

attacks in order to avoid reputational damage, therefore there could be attacks that,

although unreported, took place nevertheless.

Today, automated systems are present in the field for monitoring and scanning IoT

devices and their vulnerabilities, such as Masscan [95], Nmap [96], Shodan [97] etc.

In particular, Shodan gives the opportunity to search IoT devices by specifying their

type, location etc. Results are shown in a graphical interface with details of the devices

Chapter 1. Introduction 8

Figure 1.1: Trend of top attack news against things and the IoT infrastructure.
Attacks against embedded things are highlighted. Attacks related to both things and
the IoT infrastructure are shown. In 2013, things and the IoT infrastructure were
attacked for the first time and at the same time, while in 2015, compromised embedded

things were used to attack the IoT infrastructure.

including IP address, location, open ports, credentials etc. In 2013, more than 1.2 billion

Internet-connected machines were tracked down, with an average of 300 million new scan

probes per month [98]. Table 1.2 shows results from a Shodan search of IoT devices,

common services and ports, and major companies that provide networking equipment.

The results show that there are between 4 and 14 million possible IoT-embedded

devices present in the database considering major companies. There are also around

16,000 possible Supervisory Control and Data Acquisition (SCADA) systems and 24,000

devices using Message Queue Telemetry Transport (MQTT), a well-known connectivity

protocol for M2M communications accessible from the Internet.

1.4 Motivation, Aims and Objectives

The trend of attacks against the system and things is growing yearly, and security

measures are therefore paramount to ensure their protection. Securing the IoT must

be prioritised before continuing to deploy it in the real world and on a large scale. To

continue to create an insecure IoT system can lead to an increasing number of attacks

against the IoT infrastructure and IoT machines. This can affect human lives greatly;

in fact, corruption of IoT systems such as ITS, IHS and IBS can endanger people’s

Chapter 1. Introduction 9

Table 1.2: Shodan results for IoT devices, companies, common ports and embedded
OSs. Results were retrieved on the 28th of January 2017.

Search Results
C

om
m

on
d

ev
ic

es

Camera 326,447

Dreambox 4,876

Firewall 101,169

NAS 72,666

Polycom 8,514

Printer 153,359

Switch 167,350

Router 2,352,549

Wireless 792,802

M
a

jo
r

co
m

p
an

ie
s

ASUS 71,102

Cisco 9,980,648

Hewlett-Packard 28,371

Huawei 525,838

Linksys 34,303

Netgear 246,236

Panasonic 19,800

Samsung 40,229

Sony 4,793

Synology 40,472

TP-Link 493,590

Ubiquiti 2,069,077

VMware 172,184

ZyXEL 522,041

C
om

m
on

T
C

P
p

or
ts

port:22 - Secure Shell (SSH) 13,392,387

port:23 - Telnet 6,842,709

port:80 - Hypertext Transfer Protocol (HTTP) 65,716,279

port:443 - HTTP Secure (HTTPS) 45,495,186

port:502 - Modbus-SCADA 15,926

port:631 - Internet Printing Protocol (IPP) 496,405

port:902 - VMware ESXi 169,671

port:1883 - Message Queue Telemetry Transport (MQTT) 24,314

port:5001 - Synology Inc. 457,176

port:5222 - Extensible Messaging and Presence Protocol (XMPP) 228,756

E
m

b
ed

d
ed

O
S

s

Android/2.2 52,660

Contiki 202

DD-WRT 52,287

OpenWRT 19,215

Raspbian 87,148

Real-Time Operating System (RTOS) 971

Tiny WebServer 2,617

Embedded 325,475

IoT 4,763

Chapter 1. Introduction 10

lives. Machines, and especially embedded machines, must have the capability to protect

themselves and their communications. In this scenario, trust has an important role in

assuring that the exchange of information is secure. Trust can be defined as “the belief

that another party will behave according to a set of well-established rules and thus meet

one’s expectations” [99].

In the IoT paradigm, there are several open issues. The first issue relates to the

security of data collected and transmitted by M2M devices inside the network. The

second issue is network security, which refers to the integrity of communication between

M2M devices and the core network. Another issue relates to the security scalability

of the system involving billion of devices exchanging information. A further issue is

the lack of a standardised framework for M2M communications in the IoT, including

a Trust Management Framework (TMF). Moreover, major attention needs to be paid

to the security of embedded machines and their communications due to their specific

characteristics, such as low capabilities that make them more susceptible to attacks and

easily compromised and most important, the fact that they manage a large amount of

data.

These issues are enhanced if several M2M devices misbehave inside the network at

the same time. In this situation, it will be difficult for other well-behaving M2M devices

to exchange information securely and detect and isolate attackers. Recently, attackers

have begun to use Virtual Machines (VMs) to launch attacks [100]. VMs allow an

attacker to:

• Generate multiple distributed attacks at the same time by using one or more

powerful machines;

• Be undetected by the victim, because each VM will be identified as a real machine;

• Remove attack traces easily by deleting a file or restoring the previous VM status.

At the moment, there are no mechanisms to properly detect VMs in a network,

which makes these types of devices extremely vulnerable to attacks. Instead, most

research efforts are focused on protecting VMs from attackers, as these are mostly used

in cloud-based systems. Another aspect is ensuring VMs are isolated to prevent an

attacker from seeing information belonging to other VMs in the same server. A third area

of research is focused on the use of VMs to analyse behaviours of computer malware. In

fact, these provide a perfect isolated environment for studying their behaviours without

compromising the host system. Furthermore, VMs are used by researchers to simulate

attackers and therefore launch attacks in a network [101–109]. However, there has been

no special efforts thus far to detect and prevent attackers from using VMs as an attack

vector. Table 1.2 shows that online there are at least 170,000 VMware ESXi Hypervisors

that theoretically could be used to run multiple embedded systems for attacking the IoT

network.

The aim of this thesis is to investigate new methodologies that permit machines

to reliably trust each other in order to securely exchange information in IoT M2M

Chapter 1. Introduction 11

communications, with special attention to embedded systems. The objectives are firstly,

to understand what the IoT architecture should be and how to establish reliable trust

metrics among machines, and secondly, to evaluate and compare TMFs adopted with

the goal of understanding their effectiveness. This will be achieved by considering the

proposed IoT standards and models. Finally, an important issue related to the security

in the IoT system will be identified and addressed. This consists of the opportunity for

an attacker to use multiple virtual and emulated embedded systems (VESs) to replicate

real embedded machines (REMs), and consequently to threaten the IoT system. This

represents a problem for (i) the security of data collected and transmitted by M2M

devices inside the network and (ii) the integrity of communication between M2M devices

and the core network. The lack of framework standardisations for M2M communications

in the IoT reduces the opportunity to find a solution to address this problem. Despite

this obstacle, in the course of this research, a solution that can be used in different

circumstances and is easily applicable to future IoT devices has been identified. The basis

for this solution is the employability of mobile agents used as vehicles of trust. Mobile

agents retrieve the information needed for performing the computation and evaluation

of trust, which is the main aspect studied in this thesis. This is one of the most reliable

mechanisms for creating M2M communications among IoT devices.

1.5 Contributions and Outline of the Thesis

Chapter 1: Introduction

A brief introduction to Internet-connected things and IoT was carried out by considering

real-life scenarios and the threats associated with them. A context-aware classification

and review of the capabilities of IoT devices was presented in Section 1.1, underlining

the importance of securing embedded systems.

This chapter highlights the importance of securing the IoT system by looking at

problems related to real-case scenarios (Section 1.2). In Section 1.3, an up-to-date review

of attacks against IoT devices and the IoT architecture was carried out by looking at top

news trends worldwide. In this way, the motivation, aims and objectives of this work

were highlighted (Section 1.4).

Chapter 2: Background and Related Work

Background information related to the current status of IoT (Section 2.1), M2M com-

munications (Section 2.2), emerging trends in IoT (Section 2.3) and TMFs (Section 2.4)

applied to them are outlined in this chapter.

In Section 2.5, a study of current issues associated with deploying available TMFs in

IoT/M2M scenarios is presented. Particular attention is paid to issues relate to deploy

these solutions by using IoT/M2M-embedded devices.

Chapter 1. Introduction 12

Chapter 3: A New Threat and a Novel Solution: Machine Emulation Detec-

tion Algorithm

In this chapter, a new threat against IoT/M2M devices is studied. A background analysis

of current approaches to detect this threat is provided. A novel detection method for

addressing this problem is proposed, along with a comparison with other techniques.

In Section 3.1 the threat model is presented in which multiple VESs are used to

attack the M2M communication. Moreover, worst-case scenarios applied to real life

scenarios are shown to highlight the real threats that could occur in unsecured situations

(Section 3.2). Section 3.3 provides a background of current solutions used for detecting

VESs. In Section 3.4, a novel solution, called Machine Emulation Detection Algorithm

(MEDA), to this problem is presented. Results are presented in Section 3.5, followed by

a comparison with current methods to detect VESs and MEDA.

Chapter 4: A Classification Approach to Detecting Forged Embedded Ma-

chines

A new classification-based approach to detect illegitimate embedded machines in IoT

M2M communications is described in this chapter. In order to choose the best solution,

several steps were carried out. These steps include the creation of a dataset, the evalu-

ation of several feature selection methods and classification algorithms, and a review of

results from a simulated attack.

The background to and motivation for designing a new approach to detecting VESs

in IoT is presented in Section 4.1. This approach resolves some issues related to the

MEDA by using and testing several classification methods. A new classification-based

approach is then studied and presented in Section 4.2. The detection of different VESs

is described and an extensive analysis of simulation results is proposed in Section 4.3,

followed by a comparison with MEDA.

Chapter 5: Attack and Defence in Behavioural Tests

An attack against the behaviour detection methods proposed in this work is shown in

this chapter. A defence method resilient against this attack is then illustrated. Finally,

the performance of this solution is tested using real and virtual embedded systems that

are not present in the dataset. This gives the opportunity to study the applicability of

the detection method to future IoT machines.

In Section 5.1, the threat model against behavioural tests is presented by highlighting

a potential attack. A simulated fake timing attack in which the kernel of a powerful ma-

chine is modified by using information from the dataset in order to mimic the behaviour

of an REM is studied and illustrated in Section 5.2. In Section 5.3, the detection model

is presented which makes improvements to the classification-based approach presented

in Chapter 4. Simulations and results obtained in detecting this attack are shown in

Section 5.4, alongside a comparison with behavioural tests. In order to evaluate the

Chapter 1. Introduction 13

performance of the final detection method, unknown embedded VESs and REMs are

tested (Section 5.5). This solution is proven to be applicable to different IoT M2M

scenarios; it operates with different standards and IoT devices independently by the

system architecture and the OS. It is also resilient against timing attacks and capable

of classifying unknown IoT devices, making it easily applicable to future IoT-embedded

systems. The applicability of the proposed solution to architectural reference models

proposed, the feasibility of its implementation and its benefits in real-life scenarios are

shown in Section 5.6.

Chapter 6: Conclusions and Future Work

Final conclusions and considerations in evaluating the applicability of the solution pro-

posed in Chapter 5 are presented in Section 6.1. In this chapter, the contribution and

findings of this thesis are shown (Section 6.2). In Section 6.3, further research directions

on the subject are proposed. Finally, a summary of the research is presented in Section

6.4. Additional information and bibliographic references are provided after this chapter.

1.6 Publication List

The following publications are the outputs of my research findings:

Valerio Selis and Alan Marshall, ‘MEDA: a Machine Emulation Detection Algorithm’,

in Proceedings of the 12th International Conference on Security and Cryptography

(SECRYPT 2015) [6].

Valerio Selis and Alan Marshall, ‘A classification-based algorithm to detect forged

embedded machines in IoT environments’, in IEEE Systems Journal (accepted for pub-

blication) [110].

Valerio Selis and Alan Marshall, ‘A Fake Timing Attack Against Behavioural Tests

Used in Embedded IoT M2M Communications’, in Proceedings of the 1st Cyber Security

in Networking Conference (CSNet’17) [111].

Chapter 2

Background and Related Work

In this chapter the background analysis related to the Internet of Things (IoT),

Machine-to-Machine (M2M) communications and trust is provided. Current work in

these fields is presented and the architectural reference models for IoT and M2M in

IoT, emerging trends in IoT and Trust Management Frameworks (TMFs) for IoT are

highlighted. An overview of the limitations of currently proposed solutions for trust in

IoT are then identified.

2.1 Internet of Things

The impact of the IoT began to be acknowledged in 2010, when the first estimate of

the number of Internet-connected devices was made by Ericsson, who envisaged that

50 billion devices would be connected to the Internet by 2020 [112]. In 2011, Cisco

confirmed this estimate [113], while Machina Research (MR) forecasted around 24 bil-

lion, less than half the number forecast in other estimations. The following year, the

International Business Machines (IBM) corporation expected 1 trillion “things” to be

connected by 2015 [114]. This last estimation was too optimistic and has proven to be

completely false, as shown in Table 2.1. Between 2013 and 2016, other organizations

such as Global System for Mobile Communications Association (GSMA), International

Data Corporation (IDC), Gartner, National Cable & Telecommunications Association

(NCTA), Business Insider (BI) and IHS Markit have tried to estimate the number of IoT

devices. The prediction of 50 billion devices connected by 2020 made by Ericsson and

Cisco became very popular. While Cisco stands by that expectation, Ericsson has been

adjusting their predictions yearly and reduced it by half in 2016. Today, the Cisco esti-

mate seems to be unrealistic. Meanwhile, a figure of around 30 billion by 2020 seems to

be more realistic. Recent estimates from IHS Markit [115], MR [116] and Ericsson [117]

are very different, ranging from 29 billion in 2022 to 27 or 75.4 billion in 2025. These

numbers underscore the high degree of uncertainty in relation to when the IoT will be

ready to work properly and to be deployed worldwide. Trendlines of these forecasts are

shown in Figure 2.1.

15

Chapter 2. Background and Related Work 16

T
a
b
l
e
2
.1
:

F
o
reca

sts
o
f

co
n

n
ected

Io
T

d
ev

ices
in

b
illion

s.

S
ou

rce
(D

ate)
Y

ear

20
1
0

201
1

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2022
2023

2024
2025

E
ricsson

(A
p

ril
201

0
)

[1
1
2]

50

C
isco

(A
p

ril
201

1
)

[1
1
3]

50

M
R

(O
cto

b
er

201
1
)

[118
]

9
24

IB
M

(M
ay

20
1
2)

[1
14]

1000

C
isco

(J
u

ly
201

3
)

[1
1
9]

8.7
10

50

G
S

M
A

an
d

M
R

(A
u

gu
st

20
1
3)

[1
20]

8
9

10.2*
11.7*

13*
14.8*

16.5*
18.5*

20.6*
22.9*

25.2*
27.9*

30.6*

ID
C

(M
ay

2
0
14)

[121
]

9.1
28.1

G
a
rtn

er
(N

ov
em

b
er

2
0
14)

[122
]

*
*

3
3.8

4.9
25

N
C

T
A

(M
arch

2
0
15)

[123
]

8.7
11.2

14.2
18.2

22.9
28.4

34.8
42.1

50.1

B
I

(A
p

ril
2
015

)
[12

4
]

5.8*
7.5*

10.7*
15*

20.1*
26.2*

34*

G
a
rtn

er
(N

ov
em

b
er

2
0
15)

[125
]

*
*

3.8
4.9

6.4
20.8

E
ricsson

(N
ovem

b
er

2
0
15)

[126
]

14
16*

17.7*
19.5*

21.5*
23.7*

26.2*
28

IH
S

M
ark

it
(A

p
ril

201
6
)

[1
1
5]

15.4
30.7

75.4

M
R

(A
u

g
u

st
201

6
)

[1
1
6]

6
27

B
I

(S
ep

tem
b

er
2
016

)
[12

7
]

4
7

10
13

19
24

E
ricsson

(N
ovem

b
er

2
0
16)

[117
]

12
14*

15.6*
17.4*

19.3*
21.5*

23.9*
26.5*

29

*
E

stim
ated

valu
es;

*
*

P
C

s,
sm

a
rtp

h
o
n

es
an

d
tab

lets
are

n
ot

in
clu

d
ed

Chapter 2. Background and Related Work 17

Figure 2.1: Forecast of connected IoT devices.

Currently, there is no agreed definition of the “Internet of Things” (IoT); the concept

is continuously evolving. The origins of the term are also in question. According to [128],

the term IoT was coined by Peter T. Lewis in 1985 and described as “the integration of

people, processes and technology with connectable devices and sensors to enable remote

monitoring, status, manipulation and evaluation of trends of such devices”. However,

most publications give credit to Kevin Ashton, who mentioned the term in association

with Radio-Frequency IDentification (RFID) technologies during a presentation in 1999,

in which he stated that “the IoT has the potential to change the world, just as the Inter-

net did. Maybe even more so”. Moreover, some researchers [129–132] emphasised that

the concept was not new and that it was envisioned by Nikola Tesla in 1926 during an

interview with Colliers magazine conducted by John B. Kennedy [133]. In that inter-

view, Tesla stated that:

when wireless is perfectly applied the whole earth will be converted into a huge brain,

which in fact it is, all things being particles of a real and rhythmic whole. [...] and the

instruments through which we shall be able to do this will be amazingly simple compared

with our present telephone. A man will be able to carry one in his vest pocket.

Today, the Oxford English Dictionary Online defines the IoT as “the interconnection

via the Internet of computing devices embedded in everyday objects, enabling them to

send and receive data” [134]. Tan and Wang [135] described the IoT as a system with

Chapter 2. Background and Related Work 18

new types of communication moving from a Human-to-Human (H2H) era to a Thing-

to-Thing (T2T) era. At every time and in every place, there will be connectivity for

everything, allowing information to be always available. Things will become smart in

order to process information, self-configure, self-maintain and self-repair, and especially

to make autonomous decisions. Authors in [136] described the IoT as a combination

of people, processes and devices with the capability to sense and act. This will enable

a variety of smart objects to make real-time decisions by using innovative addressing

schemes, secure communications and standardised frameworks for their interactions.

The Telecommunication Standardization Sector of the International Telecommunication

Union (International Telecommunication Union (ITU)) defines the IoT as “a global in-

frastructure for the information society, enabling advanced services by interconnecting

(physical and virtual) things based on existing and evolving interoperable information

and communication technologies” [137]. In 2015, the Institute of Electrical and Elec-

tronics Engineers (IEEE) imagined the IoT as “a self-configuring and adaptive complex

system made out of networks of sensors and smart objects whose purpose is to intercon-

nect ‘all’ things, including every day and industrial objects in such a way to make them

intelligent, programmable and more capable of interacting with humans” [138].

These definitions of the IoT imply several challenges that must be addressed such

as: real-time processing, information distribution, automated system management and

monitoring, interoperability of different systems, scalability, security, mobility, hetero-

geneity, service discovery and delivery etc. In this thesis, the ITU definition is used with

the extension that interconnected objects must be smart to be part of the IoT system.

2.2 Machine-to-Machine Communications

While the IoT is the future, its foundations are a form of enhanced Machine-to-Machine

(M2M) communications. An M2M communication refers to a type of communication

that enables machines to communicate with each other mainly without human interven-

tion. This type of communication allows machines to collect data from the real world;

thereafter, through applications, this data is made available to the end-user. An M2M

solution has four main components:

• M2M Device: this is a physical device used to collect data from the real world which

it then sends to the network or to other M2M devices. As discussed in Chapter

1, these devices can vary from a low-end sensor to a complex, high-end system.

However, not all M2M devices can be part of the IoT system, as emphasised

previously in this chapter;

• M2M Application: this is the application that collects and manages data from

M2M devices. This usually resides in a remote server;

• Network: this enables the connectivity among M2M devices and M2M applications;

Chapter 2. Background and Related Work 19

• M2M Service Enablement: provides identical functionalities among different ap-

plications.

The main differences between the IoT and M2M communications are that the latter

are mainly focused on point-to-point communications, while the former use the Internet

to exchange data among devices and cloud-based systems. Moreover, in M2M commu-

nications, the information collected is used for a specific solution and a specific location,

while in the IoT, information from several locations and devices are managed at the

same time, generating big data and analytics and serving various applications. Despite

these differences, in the IoT, machines communicate in an identical way as in the M2M

scenario. Therefore, securing M2M communications in IoT is the initial step for securing

the entire IoT system. In fact, if machines are not able to securely exchange informa-

tion among themselves and the IoT core, the IoT system or part of it can be easily

compromised.

2.3 Emerging Trends in the IoT

In the following subsections, an overview of emerging trends and extensions of the IoT,

architectural reference models and standards that have been proposed for the IoT are

presented. There are three main trends in the IoT that are influencing its evolution. The

first is an emerging paradigm called the Social Internet of Things (SIoT); the second is

the introduction of the Virtual Continuum (VC) and the last is the introduction of Fog

Computing (FC).

2.3.1 Social Internet of Things (SIoT)

The SIoT paradigm was introduced by Atzori et al. in 2011 and it had a significant

impact in the IoT area. This subdivide the IoT into social structures [139, 140] by

applying the social networks of human beings to the IoT system. The definition of

smart objects is enhanced by adding a social capability which enables objects not only

to manage information in a smart way, but also to create social relationships with other

objects. Each social object can be identified by its owner, a unique ID and a profile.

This paradigm is based only on relationships among things, not among their owners, so

things play a key role in the SIoT system. A representation of the SIoT architecture is

shown in Figure 2.2.

This is a typical client-server architecture, in which the server (SIoT Server) can

communicate with two types of clients, an IoT gateway and a social object. A social

agent is used in servers in order to communicate with the client and other gateways

and/or social objects. The SIoT architecture can be subdivided into different layers

for both server and clients (gateway and object). In terms of the server, there are two

layers:

1. Network layer: manages the physical communication;

Chapter 2. Background and Related Work 20

Cellular
networks

WLAN ... Internet

B
a
se

S
u
b
-l

a
y
e
r

C
o
m

p
o
n
e
n
t

S
u
b
-l

a
y
e
r

In
te

rf
a
ce

S
u
b
-l

a
y
e
r

N
e
tw

o
rk

L
a
y
e
r

SIoT Server

Cellular networks,
WLAN, ..., Internet

Short-range
communication

S
e
n

s
in

g
L
a
y
e
r

N
e
tw

o
rk

L
a
y
e
r

A
p

p
li
c
a
ti

o
n

L
a
y
e
r

O
p

ti
o
n

a
l

O
p

ti
o
n

a
l

Cellular networks,
WLAN, ..., Internet

Short-range
communication

S
e
n

s
in

g
L
a
y
e
r

N
e
tw

o
rk

L
a
y
e
r

A
p

p
li
c
a
ti

o
n

L
a
y
e
r

O
p

ti
o
n

a
l

O
p

ti
o
n

a
l

Gateway Object

Other
objects

Humans
3 -party
services

rd

Applications

Human
interfaces

Object
interfaces

Service
APIs

Profiling OC SD TM

ID
Mngt

RM SC

Data/
Metadata

Ontologies
Semantic
engines

Applications

Social
agent

Service
Mgmt

Applications

Social
agent

Service
Mgmt

A
p

p
li
c
a
ti

o
n

L
a
y
e
r

Figure 2.2: SIoT architecture.

2. Application layer: consists of three sub-layers:

• Base sub-layer: data storage and management;

• Component sub-layer: tools for component implementation;

• Interface sub-layer: interfaces with SIoT components (objects, human etc.);

In terms of clients, there can be three layers:

1. Sensing layer: a physical object;

2. Network layer: manages the physical communication;

3. Application layer: this is composed of (i) applications, (ii) a social agent that

manages the communication among objects and the server and (iii) a service man-

agement that provides the interface with humans.

In this scenario, there are new kinds of relationships, as shown in Figure 2.3.

These relationships are:

• Ownership: among objects that belong to the same user;

• Co-work: among objects that collaborate to provide common SIoT services;

• Co-location: among objects that are in the same place;

• Social: among objects that interact with each other;

Chapter 2. Background and Related Work 21

common
community

co-work

parental

co-location

social

co-owner

Ownership Social relationship among objects

Figure 2.3: Types of relationship in the SIoT paradigm.

• Parental: among objects that belong to the same manufacturer.

The main role of the owner of the objects is to register them in the SIoT system

(SIoT Server). Each object is assigned to a specific class according to its features:

• Class 1: mobile objects with large computational and communicational capabili-

ties;

• Class 2: static objects with significant computational and communicational capa-

bilities;

• Class 3: objects with only sensing capabilities;

• Class 4: Radio-Frequency IDentification (RFID) or Near Field Communication

(NFC)-based objects.

Another role of the owner of the objects is to define policies governing the operations

performed, i.e. what information to share, what relationships are permitted etc.

2.3.2 Virtualisation Continuum (VC)

In the same year that SIoT was introduced, Alam et al. [141] had the idea of introducing

the Virtualisation Continuum (VC) to the IoT. As initially conceived, this involved the

introduction of the IoT virtualisation framework that provides an interface between the

application layer and the real devices. Subsequently, virtual objects were introduced

in the Internet of Things - Architecture (IoT-A) European project; these were called

virtual entities, as highlighted previously in this chapter. A virtual object can represent

many real objects in the Internet, depending on how many functionalities these can

provide. In 2014, the European project Internet Connected Objects for Reconfigurable

Chapter 2. Background and Related Work 22

Ecosystem (iCore) [142] introduced into the architectural reference model the virtual

object level, in which many virtual objects can be represented by many real objects.

The VC allows a virtual representation of real objects in the digital world. Each virtual

object provides augmented functionalities of real objects, thereby increasing their com-

putational capabilities, data storage, network connectivity etc. The virtual object will

be able to support different devices independent of the vendor, thereby facilitating the

communication of real objects in the IoT system.

Figure 2.4 shows a possible IoT architecture within the virtualisation layer. The

virtualisation layer has two levels. The first enhances the functionalities of the vir-

tual object by providing authentication, addressing and naming, search and discovery,

and mobility management. The second is the virtualisation specific level, which pro-

vides cognitive management, context awareness and semantic description capabilities.

The virtual objects’ management block provides functionalities related to the creation,

maintenance and coordination, and deletion of virtual objects in the virtualisation layer.

Application Layer

Physical Layer

V
ir

tu
a
l
O

b
je

ct
M

a
n
a
g
e
m

e
n
t

Virtualisation Layer

VO VO VO VO

Virtualisation enhanced
functionalities

V
ir

tu
a
lis

a
ti

o
n

sp
e
ci
fi
c

Figure 2.4: Virtual Continuum in the IoT architecture.

2.3.3 Fog Computing (FC)

In 2012, Cisco Systems [143, 144] introduced the concept of integrating Fog Computing

(FC) into the so-called Internet of Everything (IoE). Cisco defines the IoE as an evolution

of the IoT in which everything can communicate with everything through the Internet.

The FC should help the scalability of the IoE system by decentralizing processes that

do not require information from the Cloud. An important aspect of the Fog is its

role in managing M2M interactions. It collects and processes the data and issues control

commands to the actuators. It also filters the data that needs to be used locally and sends

the rest to the Cloud. This solution aims to allow real-time operations and processing

in M2M interactions. A representation of the FC is shown in Figure 2.5.

Chapter 2. Background and Related Work 23

Fog

Cloud

Devices

Figure 2.5: Fog Computing in the IoE system.

2.4 Information Security and Trust

As highlighted in the introduction and suggested by different organizations and re-

searchers, security has an important role in M2M communications in the IoT. The main

role of information security is to protect the information in a communication system. It

refers to the conjunction of three components: confidentiality, integrity and availability.

Confidentiality and integrity refer to the fact that all the private information must be

protected from access and manipulation by unauthorised users, both internal or exter-

nal. Availability indicates that all information must be accessible to authorised users

during the normal activity of the system. Violations of these components caused by

malicious users are called respectively disclosure (i.e. data poisoning), alteration (i.e.

decryption and cracking) and denial (i.e. Denial of Service (DoS)) [145].

Attacks can be categorised as passive or active and the attacker can be inside or

outside the network. A summary of the potential attacks against wireless networks used

by Internet-connected things is shown in Table 2.2.

Table 2.2: Examples of attacks against wireless networks used by Internet-connected
things.

RFID [146]

Physical Layer

Tag and/or reader re-

moval/destruction

Passive and active interfer-

ence

Relay attacks KILL command

Network and

Transport Layer

Tag cloning and spoofing Network protocol attack

Reader impersonation and eavesdropping

Application Layer
Unauthorized tag reading Tag modification

Buffer overflows Malicious code injection

Chapter 2. Background and Related Work 24

Multilayer

Covert channel and DoS Traffic analysis

Crypto attacks Side channel attacks

Replay attacks

Wi-Fi [147–152]

Physical Layer
Passive and active scanning

Access Point (AP) removal/

destruction

Radio Frequency jamming attack

Data Link Layer

Association/ Authentication/ Deauthentication/ Disasso-

ciation/ Beacon/ PS Poll/ Clear to Send (CTS)/Request

to Send (RTS) flood

Michael (MIC) shutdown exploitation Temporal Key In-

tegrity Protocol (TKIP) attack

Unauthenticated association Chopchop attack

KoreK attack
Wi-Fi Protected Setup

(WPS) attack

Media Access Control

(MAC) address spoofing
4-Way handshake blocking

Network Layer

802.1X Extensible Authentication Protocol (EAP) Length

Attacks/ 802.1X EAP-of-Death

Ping of Death attack / LAND attack

EAP over LAN (EAPoL)-

Start/Logoff Attack

Internet Protocol (IP)/DNS

spoofing

SYN Flooding attack Smurf attack

Premature EAP Success/-

Failure attack
NULL data attack

Multilayer

Address Resolution Protocol (ARP) replay attack

Wi-Fi Protected Access (WPA)/WPA2 four-way hand-

shake - dictionary attack

Rogue AP/Evil Twin Chameleon attack

MITM attack 802.1X RADIUS cracking

ZigBee - IEEE 802.15.4 [153, 154]

Physical Layer
Jamming Eavesdropping

Node tampering Nodes removal/destruction

Data Link Layer

Injection and alteration

DoS and integrity protection

attack on Advanced Encryp-

tion Standard (AES)-CTR

Back off interval manipula-

tion

Guaranteed Time Slot

(GTS) attack

ACK attack PANId conflict

Chapter 2. Background and Related Work 25

Denial of sleep
CCMP known plaintext re-

covery

Network Layer

Routing attacks Hello floods

Network flooding attacks Wormhole attack

Compromised nodes on path suppress or alter packets

Transport Layer Desynchronization attack

Application Layer
Overwhelming sensors Path-based DoS attack

Deluge (reprogramming) attack

Multilayer
DoS battery-drainage (if battery is present)

Node replication

Cellular [155–159]

Mobile-Base

Stations

communications

MITM attack in GSM/UMTS scenario

Network bandwidth saturation with fake Channel Quality

Indicator (CQI)/Signalling attack

Mobile Station imperson-

ation

GSM Base Station imperson-

ation

Greedy handoffs attack
Proportional Fair based at-

tack

Transport Layer Dedicated CHannel (DCH) starvation DoS attack

IP Multimedia

Subsystem (IMS)

layer

Routing attacks DNS attacks

DoS attack

Multilayer

Multimedia Messaging Service (MMS) Battery draining

attacks

Short Message Service (SMS) flooding

Three key issues can be identified in relation to IoT security [160, 161]:

1. Privacy and data confidentiality: only authorised entities can access and modify

data according to defined rules under which data referring to individual users may

be accessed;

2. Security: refers to rules for securing the communication among IoT objects in

order to eliminate network-based threats;

3. Trust: refers to security policies regulating access to critical resources and the

credentials that are required to satisfy these policies.

Chapter 2. Background and Related Work 26

2.4.1 Encryption Techniques in the Internet of Things

The aim of using encryption techniques during data transmission is to prevent unau-

thorised access to the information transmitted. Cryptographic algorithms are used to

encrypt this information. Before encryption, this information is called plaintext; af-

ter encryption it is called ciphertext. There are two main layers in which encryption

techniques are used in the IoT [162, 163]:

1. Network layer : a by-hop encryption mechanism is used to provide an encrypted

network link among nodes. An example of link encryption for a Wi-Fi network is

the Wi-Fi Protected Access 2 (WPA2) based on the AES;

2. Application layer : an end-to-end encryption mechanism is used to provide en-

crypted information. The most common cryptographic protocol used in the In-

ternet for encrypting data at this layer is the Transport Layer Security/Secure

Sockets Layer (TLS/SSL).

Encryption at the network layer is commonly based on a symmetric encryption, in

which all nodes in the network use the same key to encrypt and decrypt the link, usually

called a pre-shared key. If only the network layer encryption is used, nodes inside the

network can read the plaintext. Commonly used to protect information from outsiders,

this method is used only when all nodes in the network are trustworthy.

Encryption at the application layer is commonly based on an asymmetric/public-key

cryptographic algorithm. This consists of different keys, called a private/public key pair,

for encrypting and decrypting the information. In particular, each node in the network

has a private key, which is known only by that node, and a public key, which can be

seen by all the other nodes and is correlated to the private key. The main aspect is that

nodes can obtain the public key of a node but not its private key. The most well-known

asymmetric algorithm is RSA based on a factorisation problem.

A simplified explanation of this is as follows. A node in the network, “A”, selects

two large prime numbers, p and q, with p 6= q. It will then calculate the product of these

prime numbers (n), which will be the common factor between the private and public

keys. Furthermore, it will calculate the Euler totient function as:

φ (n) = (p− 1) (q − 1) (2.1)

Next, “A” will select an integer (e) that is relatively prime to the result obtained by the

Euler totient function and is less than that result, as:

gcd (φ (n) , e) = 1; 1 < e < φ (n) (2.2)

Finally, “A” will determine a value d such that d ≡ e−1 (mod φ (n)). Therefore, “A”

will have as its private key a pair obtained by d and n (APRk
= {d, n}) and as its

public key a pair obtained by e and n (APUk
= {e, n}). At this point, a node “B” that

Chapter 2. Background and Related Work 27

would like to securely communicate with “A” will retrieve APUk
, encrypt a randomly

generated key (K) by calculating C = Ke modn and send it to “A”. “A” can use APRk

for decrypting C by calculating K = Cd modn. At this point, “A” and “B” can use K

as shared key to symmetrically encrypt the information exchanged [164, 165].

This type of encryption can be subject to a so-called MITM attack in which an

attacker node is between the communication of two nodes during the key exchange

process. This attack is shown in Figure 2.6 and allows the attacker to eavesdrop, inject

or alter the information exchanged.

Figure 2.6: An MITM attack against RSA.

This attack can be overcome by using digital signatures or keyed hash functions.

These mechanisms are used to provide proof of the origin of the message and its integrity

in order to protect the message against forgery. Commonly, the digital signature is

created by using the private key and the message. Therefore, as the private key is

correlated to the public key, only the real owner of the public key can generate the

signature of the message. The receiver of the message must know in advance the public

key of the sender to properly verify the authenticity of the message and the signature,

otherwise a different type of MITM attack can be perpetrated. This does not solve the

Chapter 2. Background and Related Work 28

problem of associating a specific key to a specific individual, however. All it confirms is

that the message is signed by that specific entity in the network.

This problem can be overcome by using trusted third parties such as Certification

Authorities (CAs). The role of CAs is to provide digital signed certificates in order to

associate the identity of an entity to its public key. For each entity to validate the public

key with the digital signed certificate, the public key of the CA must be known, accepted

and trusted. This will reduce the number of known public keys to be stored. A node

sends its public key with the certificate and the receiver uses the CA public key to verify

its authenticity.

These encryption mechanisms present some issues. First, they may require dedi-

cated processors for encrypting and decrypting information and are therefore time- and

power-consuming. Second, they can lead to attacks to retrieve the private key for de-

crypting the information. These performance issues are compounded in embedded sys-

tems at the base of IoT devices. Authors in [166–169] proposed a solution to these issues.

This solution uses a Physical Unclonable Function (PUF) that is a challenge-response

mechanism. In this, a specific challenge is mapped with a unique and specific response

dependent on the physical material. The same challenge given in input to two differ-

ent materials will produce to a different and unique response from each of them. The

uniqueness is based on physical variabilities in the hardware components introduced

during the manufacturing process. This makes the behaviour of each component unique

and difficult to predict, leading to unclonable results. A PUF is a low-power, high-speed

and low-cost solution. This can be used as a cryptographic mechanism in which the

public key is called Public PUF (PPUF) and the private key is generated by the PUF

itself.

For example, the PPUF (public key) of a node “A” is a set of well-known

challenge-response pairs of its PUF. Node “B”, which has the PPUF of “A” and would

like to communicate with it, will challenge “A” by using a challenge in “A”’s PPUF. “A”

will give the challenge in input to the PUF (private key), and its response will be sent

back to “B”. “B” can then verify “A”’s authenticity by comparing the obtained response

with the response in “A”’s PPUF. If the responses match, “A” will be authenticated

and marked as legitimate, otherwise the authentication will fail. It is clear that while

this solution can be easily implemented, it requires that each node in the network has

the PPUF of other nodes, otherwise MITM attacks can be performed using a similar

pathway to that shown in Figure 2.6. A possible solution is to use trusted third parties

with a database of PPUFs for each node in the network containing a large number of

challenge-response pairs for each node. This does not solve the problem completely,

however, as the trusted third parties must be trusted by using certificates.

Nodes using encryption only at the application layer can exchange information de-

pending on application-based policies. If only this method of encryption is used, nodes

can exchange information in unencrypted links, but this cannot hide the data traffic and

Chapter 2. Background and Related Work 29

metadata. In particular, the source and destination addresses can be clearly identified,

and can be used by malicious attackers to characterise the communication.

There are several limiting factors in relation to applying encryption techniques to

the IoT and specifically with embedded objects. Network encryption can be used if

nodes in the network are trustworthy, which is not always the case in IoT scenarios.

For example, network encryption can be applied to controlled environments in which

objects are owned by the same person/company, but its application is not feasible in

public environments in which objects have different owners and link encryption is not

feasible.

The application of digital signatures, certificates and/or PUF requires object to store

known public keys/PPUFs of nodes and/or CAs’ certificates. The certification process

is time consuming and it is costly to certify the large number of objects in the IoT. Cer-

tificates also have an expiration date, which necessitates a constant update of objects’

keys. This would lead to a large number of certificates, which would limit their applica-

tions into embedded objects with limited memory resources. Embedded objects using

certificates must also have additional mechanisms to protect stored keys from malicious

attackers. Moreover, a specific crypto-processor should be present in embedded objects

with limited processing capabilities, to support encryption and decryption techniques

when PUF are not used. A trusted third party is one point of failure, as if it is com-

promised, the entire network is also compromised. Digital signatures or certificates are

not suitable for IoT-embedded things because of the large computational overheads and

the low scalability of this method to billions of objects. Therefore, it is infeasible to

apply these techniques to identify which objects belong to the IoT network, especially

in uncontrolled and unmanaged environments.

Finally, authors in [170, 171] argued that authentication methods based on encryp-

tion only provide a binary authentication (i.e. accepted or not) and therefore are not

suitable for distributed systems, plus they have scalability issues. Another issue with

using these methods is that compromised nodes can actively be used to compromise the

network. Selfish nodes could also take advantage of such mechanisms to disrupt the

network. These authors highlight the importance of using trust instead of relying only

on encryption techniques to give a full authorisation to the system.

2.4.2 Definition of Trust

Trust is a primary factor for securing future communications and it should be adopted

as a standard. There is no unique definition of trust. Commonly, the word trust is

associated with the Internet-based authentication method used to access secure servers.

This method is based mainly on trust certificates provided by trusted CAs worldwide.

Nevertheless, the fact that someone uses the correct trusted certificate does not actually

mean that it is reliable a priori. In fact, an attacker can use the correct certificate, but

at the same time can misbehave, perpetrating attacks against the system.

Chapter 2. Background and Related Work 30

According to dictionary.com, “trust” is defined as the “reliance on the integrity,

strength, ability, surety, etc., of a person or thing” [172]. The Merriam-Webster Dic-

tionary defines trust as “assured reliance on the character, ability, strength, or truth of

someone or something” [173]. This thesis adopts the definition of trust presented in [99]:

“the belief that another party will behave according to a set of well-established rules and

thus meet one’s expectations”. Trust can be also represented as a triad of three opinions

belief, disbelief and uncertainty, which indicate the probability of trusting or distrusting

an entity and the probability of doubt about whether to trust an entity [174]. Figure

2.7 shows the corresponding triads for information security and trust.

Information
SecurityCo

nfi
de
nt
ia
lit
y

Integrity

Availability

D
is
cl
os
ur
e Alteration

Denial

TrustBe
lie
f

D
isbelief

Uncertainty

Figure 2.7: Summary of information security and trust triads, showing CIA and DAD
triads for information security on the right and trust opinions triad on the left.

The definition of trust derives from the Human-to-Human (H2H) trust definition

and is then applied to M2M communications. As in human societies, in a network there

are several ways to create trusted relationships among entities. A trust relationship can

be viewed as a set of characteristics about the relationship which is used to define how

to trust another party. In a trust relationship there is an entity, called trustor or agent,

which can create trust by providing a service to another entity, called the trustee. A

trustee that is perceived as highly reliable by the trustor is called a trustworthy entity

[175].

There are four ways to create trust relationships [175]:

i one-to-one: a relationship between two nodes,

ii one-to-many,

iii many-to-one: relationship between one node and a group of nodes and viceversa and

iv many-to-many: relationship between one group and another group of nodes.

There are also certain properties that a trust relationship has, such as reflexivity,

subjectivity, asymmetry, transitivity, context relativity, measurability, uncertainty, dy-

namism and time-ageing [176–180]. Trust is primarily reflexive, as each entity trusts

itself. Subjectivity refers to the fact that different parties can have different trust opin-

ions about the same context. Asymmetry describes the scenario in which a node A trusts

another node B, but this does not mean that B automatically trusts A. Transitivity is

Chapter 2. Background and Related Work 31

when a node A trusts B and B trusts another node C, but because trust typically is not

transitive, this does not necessarily mean that A trusts C. Typically a node A trusts

another node B within a specific context or related to a specific environment; this is

called context relativity. Measurability refers to the ability to specify the degree of trust

one node has in another based on its assessment of the honesty, competence and depend-

ability of the other node. When a node is not sure whether to trust another node, there

is an uncertainty area that prevents the trustor from trusting or distrusting the trustee.

Trust is dynamic and strictly dependent on the timing factor. In fact, a node A can

trust another node B to a certain degree at a specific time, but this degree can change

to uncertainty or distrust at another specific time. Finally, the trust is time-ageing, as

its value decreases with the passage of time.

Trust relationships can also be defined using mathematical notations [181–183]. A

relationship between an entity A and an entity B (A→ B) can be defined as TA,B with

T ∈ [0, 1]. The properties of trust relationships can therefore be defined as follows:

• Reflexivity: ∀A|G(TA,A = 1) where Gx means always x;

• Subjectivity: ∃TαA , TαB | (∃TαA ; ∃TαB) where α is the context in which parties are

creating their trust opinions;

• Asymmetry: ∃A,B| (∃TA,B ; ∃TB,A);

• Transitivity: ∃TA,B, TB,C ∧ @TA,C ∪ ∃P (A,B,C) where P (A,B,C) is the trust

path defined by the trust relationship between A and C through B. TA,C = RB ·
TA,B if there is only one B, otherwise TA,C = 1

n

∑i=1
n RBi · TA,Bi , where RB is B

recommendation trust value of C. These are valid only if B has some knowledge

about C (TB,C 6= 0) and A has some knowledge about B (RB 6= 0);

• Context relativity: ∃T ciA,B ; ∃T cjA,B where ci is the context i, cj is the context j

and i 6= j;

• Dynamic: (TA,B)new Q (TA,B)old , µ Q (TA,B)old where µ is the latest trust level;

• Time-ageing: ∀ci
((

T ciA,B

)
t
>
(
T ciA,B

)
t+∆t

)
where ci is the context i and i =

1, ..., k.

2.4.3 Trust Management Frameworks

In order to collect information and to create and maintain trust relationships, a Trust

Management Framework (TMF) is adopted. Blaze et al. [184] defined a TMF as a system

based on a unified mechanism in which policies, credentials and trust relationships can

be used in an algorithm to manage the security of the network. Jøsang et al. [185] used

a more elaborate definition of TMF. Their TMF creates systems and methods that allow

to entities in the network to decide and assess other parties on a specific critical subject.

This also permits parties and their owners to specify their own reliability and that of

Chapter 2. Background and Related Work 32

their systems. At the basis of a TMF there is a trust computation, through which trust

is mathematically evaluated in a way that can be used by machines in the network.

Trust computations can be subdivided into five main parts, as described below.

Trust Composition

At the core of the trust computation, there are several components that can be used to

create trust, usually called trust metrics. A trust metric is specific information gath-

ered from the observation of the behaviours of entities that is used to determine how

one entity can trust another entity. An example of a trust metric is the Quality of

Service (QoS) trust, which refers to the belief that an entity will deliver a service to

a specified standard. In the IoT, authors in [186–192] measures the QoS trust using

competence, cooperativeness, reliability, end-to-end packet forwarding, packet delivery

ratio etc. Building on this approach, authors in [188–193] introduced the Social Trust

(ST) metric in the SIoT.

The ST includes:

• Friendship: representing the degree of intimacy;

• Honesty: indicating if an entity is honest;

• Cooperativeness: denoting if an entity is socially cooperative;

• Connectivity: specifying the network connection with an entity;

• Social contact: representing proximity;

• Community of Interest (CoI): in this scenario, the trustor and trustee are in the

same social communities/groups or have similar capabilities, such as the same

knowledge of and standards in relation to a specific subject.

Trust Propagation

There are two different ways to propagate trust in a TMF: centralised and decentralised.

In the first, trust relationships among entities are maintained and provided by a central

entity, whereas in the second, each entity creates and maintains trust information about

other entities [194, 195].

Trust Aggregation

In a TMF, trust aggregation is the method of combining trust information, which is

collected in three ways: (i) direct observation, (ii) indirect observation or (iii) through

recommendations. Direct trust is established by an entity through direct observation

of another entity; indirect trust is established when one entity trusts another entity

without directly observing it. In the case of three entities that can see each other, the

Chapter 2. Background and Related Work 33

trustor can use the recommendations (direct observations) of other entities to trust a

third entity.

A summary of these ways of collecting trust information in a network with the entity

A as a trustor is shown in Figure 2.8. In this figure, A trusts the entity B on the basis of

direct observations and C’s recommendations, while A trusts D on the basis of indirect

observations from B. Obviously, in order to use C’s recommendations for trusting B,

A must first evaluate the trustworthiness of C by using its direct observations and B’s

recommendations.

Indirect observationDirect observation Recommendation

A

C

D

B

A

C

D

B

A

C

D

B

A,BT A,D A,B B,DT = T T.

A,D A,BT < T
A,B A,C C,BT = T T.R

Figure 2.8: Examples of trust aggregation with the node A as a trustor.

There are different approaches presented in the literature to aggregating trust, includ-

ing weighted sum, evidence theory, probabilistic estimation, information theory, game

theory, fuzzy logic and grey theory [196–198]. As is evident from the discussion thus

far, trust aggregation is strictly dependent on the network topology. In fact, depending

on the network topology, some ways to collect information may not be available. For

example, in a linear topology, a trustor will be unable to use recommendations as there

will be no common neighbour entities.

Trust Update

The trust value of an entity can be updated in two different ways: event-driven and

time-driven. In the first method, the trust value is updated after a specific event occurs,

whereas in the second method, the value changes depending on the time. Usually in

a time-driven TMF, recent information about an entity is more important than past

information [199].

Trust Formation

Trust formation is the last step in evaluating trust in a relationship. Two aspects are

described in the literature; single-trust and multi-trust. In a single-trust TMF, a unique

trust value is used to create trust relationships, e.g. only QoS trust. In a multi-trust

Chapter 2. Background and Related Work 34

TMF, multiple trust values are used simultaneously for creating trust relationships [199].

In this case, these trust values can be used in three ways:

• One-by-one: each trust value is compared with a threshold value depending on the

application;

• Weighted sum: all trust values are summed by applying a weight factor to each

one depending on its importance;

• Scaled trust: the trust values are scaled from the most to the least important

property.

2.4.4 Attacks against Trust Management Frameworks

As with every networking-based system, TMFs may be vulnerable to several attacks,

called misbehaviour attacks, that can be carried out by malicious entities [186, 189, 190,

200]:

• Selfish misbehaviour attack: the entity preserves its resources by claiming to offer

some services without really providing them;

• On-Off Attack (OOA): an attacker behaves alternately well and badly for a period

of time;

• Selective behaviour attack: an entity can behave well when providing some services

and badly when providing others;

• Selective misbehaviour attack: the malevolent entity behaves well towards some

important entities and bad towards other, less important entities;

• Self-Promoting Attack (SPA): an attacker promotes itself by projecting a good

reputation in order to be used as service provider and then may provide bad

services or may block service requests;

• Bad-Mouthing Attack (BMA): a malicious entity provides bad recommendations

of other, well-trusted entities in order to reduce their trustworthiness;

• Ballot-Stuffing Attack (BSA) or Good-Mouthing Attack (GMA): the attacker in-

creases the reputation of malicious entities in order to augment their trustworthi-

ness;

• Opportunistic Service Attack (OSA): an attacker begins to provide good services

to improve its reputation opportunistically, especially if its reputation is low;

• Conflicting behaviour attack: an entity behaves well with a group of entities and

badly with another group;

Chapter 2. Background and Related Work 35

• Sybil attack: the malicious entity creates multiple false identities and use them to

manipulate the reputation of other entities;

• Newcomer or whitewashing attack: the attacker leaves the network and re-joins

with a new identity in order to reset its reputation;

• Masquerade attack: an entity changes its identity to that of another entity (im-

personation theft) and then uses its reputation (reputation theft) to behave badly.

2.4.5 Trust Models for IoT

Below, the main TMFs for the IoT proposed in the literature are listed. These are

subdivided by following the trust propagation:

• Centralised. Saied et al. [186] proposed a TMF based on QoS and context-aware

information such as service type and device capabilities (processing power, memory

and battery level) for the trust composition. The central trust manager stores all

the reputation reports sent by entities after a service is provided. When an entity

requests a specific service, the central trust manager gives information about those

trusted entities that can provide it;

• Distributed. D. Chen et al. [187], Z. Chen et al. [188], I-R Chen et al. and Bao et

al. [189–192] proposed different approaches to distributed TMFs. Authors in [187]

use QoS elements, such as end-to-end packet forwarding ratio, energy consumption

and packet delivery ratio, as the trust metric, while authors in [188–192] use both

QoS and ST metrics and relationships between IoT devices;

• Centralised and distributed. Nitti et al. [193] proposed a TMF based on QoS and

ST as trust metrics.

Authors in [187] proposed the first TMF for IoT which adopted a fuzzy reputation

mechanism to evaluate trust in the Wireless Sensor Network (WSN) of IoT systems.

This is based on enforcing cooperation among entities and by checking their behaviours.

They suggest that in IoT there will be smart nodes with resource constraints in terms

of hardware, computation and power capabilities and a limited range of communica-

tion for wireless nodes. For wireless nodes specifically, they underscored the need to

study mobility, dynamic topologies and limited physical security. Bao et al. [201] kept

working in this direction, but they adopted a hierarchical TMF based on QoS in WSN.

Consequently, in [189], authors suggested the first work in TMF for SIoT in which the

trustworthiness of users is used to assist the service composition between objects. This

is based on QoS and ST metrics. The same group of [189] adopted an enhanced TMF

which considered mobility and evolving of environment conditions in the network such

as increasing of nodes and attackers [190]. Moreover, they began to consider CoI of

SIoT systems, and authors in [191] proposed the first TMF for this paradigm. In [192],

authors considered a user-centric solution based on the SIoT paradigm, in which users

Chapter 2. Background and Related Work 36

are the trustors and the devices owned by other users are the trustees. All the solu-

tions proposed until [186] are based only on distributed TMF. In fact, authors of this

last work proposed the first centralised TMF for IoT based on QoS as the trust metric.

They underline the importance of considering the characteristics of the object during the

trust evaluation, such as processing power, memory and battery capabilities [186]. Nitti

et al. [193] suggested the first solution in which both centralised and distributed TMFs

are used and applied to SIoT. In this solution, each node maintains the trust value of

other objects. At the same time, a central Pre-Trusted Object (PTO) stores feedbacks

from each node in the network and these are used as recommendations by objects in

the network. Finally, authors in [188] proposed another TMF based on SIoT. They

highlighted the necessity of using trust values obtained from the object’s capabilities,

e.g. a sensor will have a lower trust value than a laptop etc. A summary of proposed

TMFs for IoT is shown in Table 2.3.

2.5 Limitations of Current Solutions

The works discussed in the previous section represent an important starting point in

trust management for the IoT, however there are some issues that limit their applicabil-

ity. First, a major assumption is made in [187, 190, 201]. In these works, each node in

promiscuous mode in the network can overhear the traffic of its neighbours and there-

fore can understand if they are actively forwarding the packets. The disadvantage of

detecting suspicious activities by snooping or overhearing a neighbour’s transmission is

that the nodes should keep track of every packet snooped to make sure that it was not

modified during the transit. This is an additional load, especially for battery-powered

devices. Moreover, node movements and node crashes will have a detrimental effect on

the system by affecting the flow of traffic, and thereby leading to false alarms. This

results in innocent nodes being mistakenly detected as intruders [202]. These works

consider only a specific IoT environment consisting of wireless sensors with a QoS trust

metric only (packet forwarding/delivery ratio and power consumption).

A second issue is that in some works [189, 190], only static environments are consid-

ered and thus the results are not applicable to many IoT applications in which environ-

mental conditions are evolving. Moreover, the scalability issue has not being addressed,

which hinders the applicability of this research to large-scale IoT systems.

A further assumption is made in [201], in which a hierarchical trust management for

WSNs is proposed. It is based on Sensor Nodes, Cluster Heads and Base Station (BS).

The BS is a Cluster Head commander and it is assumed to be infallible with physical

protection. However, this assumption is not realistic in real environments and if the BS

is compromised, the entire system will be compromised as well.

In addition, objects in [188–191, 193] use internal storage to save trust values and

information about other entities in the network. In these, past and new events are

Chapter 2. Background and Related Work 37

T
a
b
l
e
2
.3
:

S
u

m
m

a
ry

o
f

T
M

F
s

fo
r

th
e

Io
T

.

W
or

k
T

y
p

e
P

ar
ad

ig
m

T
ru

st
M

et
ri

c
A

tt
ac

k
s

co
n

si
d

er
ed

M
ai

n
co

n
tr

ib
u

ti
on

s

[1
87

]
D

is
tr

ib
u

te
d

W
S

N
in

Io
T

Q
oS

tr
u

st
S

P
A

F
ir

st
w

or
k

th
at

co
n

si
d
er

ed
Io

T
.

U
n

d
er

-
li

n
ed

:
sm

ar
t

w
ir

el
es

s
n

o
d

es
w

it
h

co
n

-
st

ra
in

ed
re

so
u

rc
es

an
d

li
m

it
ed

ra
n

ge
of

co
m

m
u

n
ic

at
io

n
,

m
ob

il
it

y
an

d
d

y
n

am
ic

to
p

ol
og

ie
s

[1
89

]
D

is
tr

ib
u

te
d

S
Io

T
Q

oS
an

d
S

T
S

P
A

,
B

M
A

,
B

S
A

F
ir

st
w

or
k

th
at

co
n

si
d

er
ed

th
e

S
Io

T
p

ar
ad

ig
m

[1
90

]
D

is
tr

ib
u

te
d

S
Io

T
Q

oS
an

d
S

T
S

P
A

,
B

M
A

,
B

S
A

C
on

si
d

er
at

io
n

of
m

ob
il

it
y

an
d

ev
ol

v
in

g
en

v
ir

on
m

en
ta

l
co

n
d

it
io

n
s

(i
n

cr
ea

si
n

g
of

n
o
d

es
an

d
at

ta
ck

er
s)

[1
91

]
D

is
tr

ib
u

te
d

C
oI

in
S

Io
T

Q
oS

an
d

S
T

S
P

A
,

B
M

A
,

B
S

A
,

O
S
A

F
ir

st
w

or
k

th
at

co
n

si
d

er
ed

C
oI

of
S
Io

T

[1
86

]
C

en
tr

al
is

ed
Io

T
Q

oS
tr

u
st

S
P

A
.

B
M

A
an

d
B

S
A

on
ly

w
it

h
so

m
e

re
co

m
-

m
en

d
er

s

F
ir

st
w

or
k

to
ad

op
t

a
ce

n
tr

al
is

ed
T

M
F

an
d

u
se

d
th

in
gs

ch
ar

ac
te

ri
st

ic
s

d
u

ri
n

g
th

e
tr

u
st

es
ta

b
li

sh
m

en
t

p
ro

ce
ss

[1
93

]
C

en
tr

a
li

se
d

a
n

d
d

is
tr

ib
u

te
d

S
Io

T
Q

oS
an

d
S

T
S

P
A

,
B

M
A

,
B

S
A

,
O

S
A

F
ir

st
w

or
k

to
ad

op
t

b
ot

h
ce

n
tr

al
is

ed
an

d
d

is
tr

ib
u

te
d

T
M

F
s

[1
88

]
D

is
tr

ib
u

te
d

S
Io

T
Q

oS
an

d
S

T
S

P
A

,
B

M
A

,
B

S
A

H
ig

h
li

gh
t

th
e

n
ee

d
to

co
n

si
d

er
th

e
ch

ar
ac

-
te

ri
st

ic
s

of
th

in
gs

Chapter 2. Background and Related Work 38

stored. If the network increases rapidly, this can be problematic for embedded devices

with constrained resources, e.g. limited memory storage.

Another work that is based on two major assumptions is proposed by authors in

[186]. First, during network initialization, all entities are assumed to be trusted and

behaving properly. Second, it is assumed that entities cannot dynamically join and

leave the network, in other words, that the topology is fixed. These assumptions are not

realistic in an actual IoT environment in which network formations are dynamic and

entities can join and leave the network at any time. Moreover, a centralised TMF is

proposed, which creates a unique point of failure. This means that if the central entity

is subverted, the entire network will be compromised.

The scope in [188] is to provide a QoS to end-users who own customised and spe-

cialised devices. An entity that requests a service will broadcast its request in the

network, leading to network congestion if there are a lot of malicious devices or requests

at the same time.

An equally important issue is evident in [193], whose authors introduced PTOs

(Pre-Trusted Objects) as part of the TMF. The role of PTOs is to maintain the trust

values of the entities in the network. However, an attacker can obtain its trust value

from a PTO and change its behaviours accordingly. Moreover, if an attacker successfully

impersonates a PTO, this can create false trust value entries, enabling it to attack entities

in the network.

Table 2.4 shows a summary of gaps, major assumptions and other issues in the TMFs

proposed in the literature for the IoT. It may be observed that none of them consider

how to protect the TMF from On-Off Attacks (OOAs). Moreover, they do not consider

worst case scenarios with linear topologies and virtual and emulated systems that can

pretend to be real devices with different capabilities.

Most of the TMFs proposed in the literature do not consider attacks against the

network communication, but only those against the TMF itself. A lot of basic assump-

tions are made to develop new TMFs. However, it is not possible to apply these in real

IoT systems based on M2M communications, as these may include resource-constrained

devices and have different network topologies. Moreover, no work has been done thus far

where different trust metrics are combined; for example, a trust metric may be effective

and efficient in Wi-Fi networks, but it will fail when applied in ZigBee networks [203].

Finally, these works do not address whether to distrust forged objects such as fake OSs,

fake capabilities, etc. This issue allows attackers to use these forged objects to gain the

trust of the TMF and hence to attack other nodes.

2.6 Summary

In this chapter an introduction to IoT was presented by looking at its evolution in terms

of Internet-connected machines and architectural reference models. An introduction to

M2M communications was also presented in conjunction with architectural reference

Chapter 2. Background and Related Work 39

T
a
b
l
e
2
.4
:

S
u

m
m

ar
y

of
ga

p
s,

m
a

jo
r

a
ss

u
m

p
ti

o
n

s
a
n

d
is

su
es

in
th

e
p

ro
p

o
se

d
T

M
F

s
fo

r
th

e
Io

T
.

W
or

k
T

ra
ffi

c
ov

er
-h

ea
ri

n
g

S
ta

ti
c

en
v
ir

o
n

m
en

t
an

d
fi

x
ed

to
p

ol
og

y

U
n

li
m

it
ed

st
or

ag
e

re
so

u
rc

es

N
et

w
or

k
co

n
ge

st
io

n
is

su
es

U
se

of
P

T
O

or
B

S
O

O
A

u
n

d
et

ec
te

d

T
ru

st
m

et
ri

cs
co

m
b

in
at

io
n

s
n
ot

p
ro

v
id

ed

D
is

tr
u

st
fo

rg
ed

ob
je

ct
s

n
ot

p
ro

v
id

ed

[1
8
7]

X
X

X
X

[1
8
9]

X
X

X
X

X
X

[1
9
0]

X
X

X
X

X
X

[1
9
1]

X
X

X
X

[1
8
6]

X
X

X
X

[1
9
3]

X
X

X
X

X

[1
8
8]

X
X

X
X

X

Chapter 2. Background and Related Work 40

models for IoT/M2M. Subsequently, emerging trends in IoT were shown. An overview

of information security and trust was presented specifically in relation to TMFs for IoT.

The limitations of current proposals to secure the IoT were highlighted.

It is important to note that the already high number of Internet-connected things

that will manage our lives is growing, and that these things must be secured. As can be

seen, having no standard architectural reference model within which to build security

functionalities is a major problem. This is compounded by the continuous evolution

of the IoT in that these models are changing, mainly guided by the current needs and

objectives.

However, some architectural reference models incorporate trust for securing the com-

munication of things. Trust is used by things to identify misbehaving machines in the

network that do not follow rules honestly and most importantly do not need human help.

After defining which information can be used to obtain trust values from the behaviour

of these machines, it will be easy to determine whether a node is trustworthy or not.

By evaluating these trust values, a measurement of the trustworthiness, reliability, and

capacity of individual entities can be calculated based on previous, direct and indirect

observations, and recommendations about their behaviours.

The continuous evolution of the IoT without a unique standard for managing M2M

communications makes the creation of a TMF a very challenging task. Machines that

look to compromise trust can perform various attacks against the TMF. Therefore, a

context-aware approach must be used that considers the characteristics and computa-

tional limitations of an IoT “thing”. The smartness of a thing must be improved by

adding the ability to create trust relationships with other things, and IoT mobile agents

could be fundamental in this role.

As highlighted previously, there are currently no complete solutions that can be

applied in the real IoT environment. Some works on TMFs for IoT discussed in this thesis

are focused only on a specific IoT paradigm, the SIoT, which limits their applicability.

In this new paradigm a scenario in which the owner of an object is a company is not

considered, making social relationships more difficult to apply in business-to-business

applications. Moreover, this paradigm relies on the owner of the object assigning the

object to the correct class representing its features, but an attacker may insert false

information in order to take some advantage from the system. Finally, the owner of

the object must define what relationships are allowed with other objects owned by

other humans, therefore trust relationships among owners must be considered. In this

situation, whether the owner of the object trusts other owners will affect whether his/her

object trusts other objects.

Another problem that we face today is the growth of proprietary objects. These will

be more difficult to integrate into an IoT system. Security is, unfortunately, the last

aspect that is currently considered when creating these objects, meaning that attacks

against them are easy and constantly increasing.

Chapter 2. Background and Related Work 41

In the next chapter a new threat against the IoT system and specifically against

M2M devices is presented. This attack can be used to subvert a network and obtain

private information. An initial method for detecting and protecting a machine from this

type of attack is also proposed.

Chapter 3

A New Threat and a Novel

Solution: Machine Emulation

Detection Algorithm

In this chapter, a new threat against M2M communications in the IoT is presented.

This threat is based on using virtualised and emulated embedded systems for attacking

the network or part of it. As shown in Chapter 2 (Section 2.5), current TMFs are not

able to distrust forged objects, therefore they cannot recognise if a machine is based on

a virtualised or emulated system. This attack is then applied to the real-life scenarios

presented in the introduction (Chapter 1), in order to highlight the system vulnera-

bilities and to show what could happen if this attack is not detected and prevented.

Existing works on detecting virtual and emulated embedded systems are shown later

in this chapter. It is shown that these cannot be used in IoT/M2M communications.

In this context, a novel solution is presented and evaluated, called Machine Emulation

Detection Algorithm (MEDA). This solution was published by Valerio Selis and Alan

Marshall as ‘MEDA: a Machine Emulation Detection Algorithm’ in Proceedings of the

12th International Conference on Security and Cryptography (SECRYPT 2015) [6].

3.1 Threat Model

Currently, an IoT-embedded object can use two main types of communications to ex-

change information with other objects, the Internet and the end user:

• Machine-to-Machine (M2M) communication;

• Machine-to-Human (M2H) communication.

These can be subverted by an attacker in order to create two types of communications:

• Machine-to-Fake Machine (M2FM) communication, and vice versa;

• Machine-to-Fake Human (M2FH) communication, and vice versa, where a fake

human is a machine that is able to mimic the behaviours of humans.

43

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 44

This thesis focuses on M2FM communications.

Currently, an IoT-embedded object communicates with other embedded objects in

the network on the assumption that these objects are real embedded machines (REMs).

Therefore, M2FM communications are not considered at all in current research works.

Of the works present in the literature focused on integrating trust mechanisms in the

IoT, some underlined the importance of trusting embedded systems in a different way.

These works use the characteristics of an object to weight their trust values as part of

the trust computation, as shown in Table 3.1 [186, 188, 193, 204].

Table 3.1: Assigned trust weight values of published works, according to the compu-
tational capabilities of machines.

Device Trust weight value

RFID 0.2 [193, 204]

Device
resources in
percentage
(0 to 100%)

[186] 1

Sensor 0.2 [188, 193], 0.4 [204]

Recorder 0.2 [188]

Set-top box 0.4 [188], 0.6 [204], 0.8 [193]

Smart video camera 0.4 [188], 0.6 [204]

Smart gateway and terminal 0.6 [188]

Smartphone and tablet 0.8 [188, 193, 204]

Laptop 0.8 [188]

However, a potential attacker may create M2FM communications by using virtualised

and emulated embedded systems. Thus, multiple forged objects can be simply created

with a powerful machine. Moreover, as Table 3.1 suggests, it will probably choose to

forge smartphones, tablets and/or laptops, because of the high initial trust weight value

assigned to these objects. This does not stop an attacker from also using REMs to create

M2FM communications, but this is outside the scope of this thesis as existent TMFs

can be used to detect them.

Figure 3.1 shows an example of a threat model in which multiple virtualised or emu-

lated embedded systems are used to compromise the M2M communication. In this case,

the real embedded object (A) will presume that it is creating an M2M communication

with other “real” embedded objects (B, C and D). These allow access to the Internet via

another real embedded object (E), as shown in Figure 3.1(a). The attacker uses a pow-

erful machine to forge “B”, “C” and “D” in order to create an M2FM communication,

as in Figure 3.1(b). This may lead to security issues in the communication, especially

for the data transmitted by “A” to the Internet via the attacker(s). After the attacker

successfully established the M2FM communication, it may begin to collect “A”’s data

and to send to “A” false recommendations about “E”.

1N.B. [186] uses the percentage of device resources for creating trust relationships rather than a
specific trust weight value depending on the device type.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 45

Figure 3.1 shows only an example of this threat, however; in fact, an attacker can

create a large number of forged embedded objects with which to attack the TMF. By

doing this, multiple forged embedded objects are able to attack the TMF and then the

IoT network simultaneously by launching several misbehaviour attacks, as highlighted

in Chapter 2 (Subsection 2.4.4). These can also send false information to “A” and/or

poison the information it sends or receives. For example, nodes “B” and “C” can increase

their reputations by sending good recommendations about each other to “A”, therefore

making “A” more prone to trust them.

A

R-HW

OS

App

E

R-HW

OS

App

Forged Embedded Machines

R-HW

B

OS

App

V-HW

C

OS

App

V-HW

D

OS

App

V-HW

(b) Actual Network

A

(a)A's network view

Embedded
System

B

Embedded
System

C

Embedded
System

D

Embedded
System

E

Embedded
System

Embedded
System

Embedded
System

Powerful System

M2M communication

M2FM communication

Figure 3.1: Threat model with a representation of multiple forged embedded machines
attacking the IoT in order to create M2FM communications. (a) A’s view of the
network, from which there are apparently no issues. (b) The actual network topology,

including the attacker forging B, C and D.

3.2 Real-Life Scenarios: Worst Cases

At the moment, there are several virtual and/or emulated embedded systems (VESs)

available, such as VMware Player and ESXi, VirtualBox, VirtualPC, QEMU etc., that

can be used by an attacker to create multiple forged objects. As shown in Table 1.2 in

Chapter 1, there are 169,671 servers on-line that use VMware ESXi. This virtualisation

system is a hypervisor that runs Virtual Machines (VMs) directly on the hardware with-

out relying on an OS. Each VMware ESXi server can run simultaneously a maximum

of 1,016 VMs by providing enhanced computational capabilities in respect of VMs run-

ning on top of an OS [205]. A possible attacker that uses all the VMware ESXi servers

available on-line may be able to create around 172 million forged embedded objects.

This number indicates a very high risk for the IoT infrastructure in the event that these

servers are compromised and used as an IoT botnet. An attacker using this large number

of forged embedded objects can launch a distributed attack simultaneously in several

places. For example, in the ITS application an attacker could disrupt the road safety of

an entire city, county or nation, with catastrophic economic impacts and loss of human

life. This could be achieved simply by creating forged vehicles by feeding information

into the ITS and ultimately causing chaos, i.e. real accidents, busy roads etc. Currently,

it is not possible to detect such an attack, leading to a high security risk for the IoT

system, as will be envisioned in the follow subsections.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 46

It also must be acknowledged that some attackers are not driven by a desire to profit

from the attack, but only by the fact that they can do it, in other words, by the pursuit

of personal gratification, increasing the security risk to such a powerful system.

This powerful attack is strictly dependent on the IoT scenario and on the information

the attacker can gather from the network. Moreover, the number of forged embedded

systems can change according to the scenario and this information. There are two main

categories of IoT scenarios in which an attack can occur: open or public networks and

closed or private networks. These are presented in the following subsections and applied

to real-life scenarios.

3.2.1 Open Networks

In this category, IoT objects can freely join and leave the network. Network encryptions

are not used to encrypt/decrypt the communication link leading to all objects in order

to see the traffic. Objects are also difficult to identify as a large number of them can

be present in different areas at the same time and they can move across areas. In

these real-life scenarios an attacker can easily create and masquerade multiple forged

embedded machines in order to attack the IoT system. In fact, it would be very difficult

to identify this kind of attack, especially in crowded areas. For example, real IoT

applications that can be easily attacked are the ITS and, in specific circumstances, the

IHS.

Intelligent Transportation Systems

In subsection 1.2.1, three possible future scenarios involving the ITS were presented,

using a vehicle as an example: in the first, it is used to improve navigation, in the

second, to improve road safety and in the third to improve passenger entertainment.

In the first scenario, vehicles communicate with the ITS and other vehicles in order

to calculate the fastest route. In this scenario, an attacker that aims to disrupt the

traffic can create a large number of forged vehicles in order to send fake information,

such as detail of an accident that has not happened, false traffic information etc., to

both the ITS and other vehicles. In response, the ITS will suggest alternative routes

to other vehicles, adjust traffic signals to reduce the traffic on what appears to be the

busiest road where in fact the attacker is, etc. In the meantime, other vehicles will avoid

using the attacker’s route, because it appears to be the worst and slowest route to be

used to reach their destination.

In the second scenario, the ITS receives information from vehicles and humans-owned

objects and sends recommendations to users for improving their road safety. In this

scenario, an attacker that aims to disrupt the safety of users can forge a large number

of vehicles and objects to send fake information to the ITS. These forged objects can

send fake positions to the ITS and automatically it will alert vehicles to stop or decrease

their speed because a human is crossing the street. Moreover, forged vehicles can send

fake accident information to the ITS that will react by alerting emergency services.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 47

Furthermore, in case of a real accident, forged vehicles can send false information to the

ITS in order to lower the reputation of the involved vehicles, thereby preventing and

therefore avoiding emergency services from being alerted.

In the final scenario, vehicles communicate with each other in order to improve the

Internet connectivity for downloading entertainment content such as film, music etc,

and adjusting audio and luminosity levels in the vehicle. An attacker can use forged

vehicles to act as an intermediate node between the Internet and the victim vehicle. It

can then inject a varying amount of fake information depending on the speed of the

vehicle, in order to misrepresent what the users in the vehicle under attack are watching

or listening to. In the case of music streaming, the attacker would need to inject only

a few inappropriate audio samples at a high volume to distract the user from driving,

possibly causing an accident.

Intelligent Healthcare Systems

In subsection 1.2.2, future scenarios involving the IHS were presented in which sensible

human information was used to improve humans’ health. Two main possible future

scenarios can be attached: alerting first aid services and spreading new diseases using

smart body sensors. In these scenarios, an attacker forges smart body sensors and send

fake information to the IHS, such as false human temperature, false heart rate and false

position, with the aim of alerting the nearest ambulance for provide assistance to a

subject that does not require it. Moreover, by using a large number of forged smart

body sensors, the attacker could replicate the severe symptoms caused by a pathogen

in the population of certain areas. When received by the IHS, this information will

be interpreted as the spreading of an infectious disease in these areas and competent

authorities will be alerted, causing an escalation of other issues such as alerting residents

in these areas to stay at home, alerting hospitals to get ready for a crisis, causing panic

in the population etc. These attacks can be perpetrated only if the forged body sensors

are connected to the open IoT network. In fact, real body sensors of patients that are

under critical conditions are likely to be connected to closed home networks in order to

access the IoT core.

3.2.2 Closed Networks

In this category, IoT objects are normally registered in a controlled central system. In

this, encryption mechanisms may be applied, and the number of nodes is mostly known.

Therefore, in order to communicate with other nodes, the attacker would need to attack

encryption mechanisms. As the network is mostly known by the administrator, a small

number of forged embedded machines should be used for launching the attack. Moreover,

it may be necessary to attack the network encryption in order to encrypt/decrypt the

communication link. It may also be necessary to tamper with objects in order to retrieve

encryption keys for encrypting/decrypting the communication at the application layer.

Depending on the type of environment, a large number of unknown (forged) embedded

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 48

machines appearing in the network may trigger an alarm, warning that the network is

under attack. A real IoT application with a closed network that can be attacked is the

IBS.

Intelligent Building Systems

In subsection 1.2.3, future scenarios involving the IBS were presented that included

improving the energy consumption, building occupancy and entertainment of humans

and protecting them in case of fire or other emergencies.

In the first and the second scenarios, the location of users and smart building sensors

can be used, for example, to reduce the energy consumption in unused building areas. In

this situation, after breaking the encryption, an attacker can use forged human devices

to send fake positions or forged smart movement sensors to provide false information to

the IBS. The IBS will adjust the room conditions in terms of luminosity, temperature

etc., on the assumption that there are people in the room. Moreover, the attacker can

also replicate a busy area in the building in order to concentrate people in specific areas.

The IBS will then alert all people to avoid that area if possible by suggesting alternative

areas.

In the third scenario, after breaking the encryption, an attacker uses forged smart

building sensors and human devices to send false requests for accessing to the enter-

tainment system in the building managed by the IBS. The IBS will then turn on the

entertainment system, adjust luminosity level in the room etc., although no person is

present to use the entertainment system.

In another scenario, after breaking the encryption, an attacker uses forged smart

building sensors to indicate the presence of a fire to the IBS. This will alert the nearest

fire station and will initiate the evacuation procedure.

3.3 Virtualisation and Emulation Detection

It is very clear now that the detection of forged machines and therefore virtualised

and emulated embedded systems in the IoT must be a priority for securing information

exchanged by IoT/M2M devices and the IoT core. To date, the detection mechanisms

available have been mostly applied to x86/x64 architectures. Only a few works have

focused on the detection of Android-based emulated environments. Considering the

heterogeneity of the IoT, it is obvious that the available detection methods cannot be

used to detect forged embedded devices. Moreover, most of them rely on the fact that

the detection is made by an application launched manually in the system and that most

of the time this requires a high level of privilege to be executed. Finally, none of them

was applied to M2M communications and IoT scenarios in which the trustor is not in

control of the machines running VESs. In the following subsections, a review of these

detection methods is presented that highlights why they cannot be used in the IoT.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 49

3.3.1 CPU and Memory Tests

This type of detection method gathers information from the memory and central process-

ing unit (CPU) registers to detect VESs. This method was first introduced by Rutkowska

in 2004 and it was named “The Red Pill”, derived from the film “The Matrix” [206].

It was based on using the Store Interrupt Descriptor Table (SIDT) instruction in a x86

single-core CPU to access the Interrupt Descriptor Table (IDT) register. This register

contains a unique value for each OS running in the system. The author discovered that

the value obtained from the system under consideration differed in REMs and VESs.

However, this is true only in a single-core machine, because there is only one IDT reg-

ister per CPU core, therefore the VES must create an IDT register in another address.

Obviously, this method cannot be applied in newer machines as these have a multi-core

CPU.

Authors in [207] developed an automated method for generating random red pills

by using CPU guided systems. This method was used for detecting emulators in x86

architectures such as QEMU and BOCHS. This method checks if a known instruction

(red-pill) with a known CPU state returns a known value in the memory. If there are

discrepancies when running this instruction in a system, it will submit a detection.

An enhanced method based on CPU and memory tests was proposed by authors

in [208] that involved using all definitions in the IA-32 manual for generating red-pills,

called the cardinal pill.

These detection mechanisms can fail to detect VESs that use real CPUs to execute

instructions instead of virtualising or emulating them. Moreover, these tests were only

applied to system architectures based on the Intel 32-bit architecture. Furthermore, in

the IoT there are several different architectures, such as embedded x86, MIPS, ARM,

PowerPC etc., and it is not reasonable to test all of them to find, if any, specific CPU

instructions and memory information that can lead to the detection of VESs. For these

reasons, CPU and memory tests cannot be used by IoT/M2M machines to detect VESs.

Finally, in future, system-on-chip with customised architectures can be used to create

IoT devices. Therefore, this detection method cannot be applied as it requires previous

knowledge of the architecture, which would be impossible with customised architectures.

3.3.2 Architecture-based Timing Tests

In this method, specific CPU instructions are used to perform a time analysis. Authors

in [209] and [210] showed that by timing the access to CPU control registers in x86/x64

architectures, such as CR0, CR2 and CR3, and the execution of a No Operation (NOP)

instruction, it is possible to detect if the machine is an REM or a VES. These timing

tests were performed in both REMs and VESs, and differences in time values lead to

a detection of VES. However, as noted in the previous section, in the IoT there can

be customised architectures, and as this detection method is architecture-dependent, it

cannot be used by IoT devices for detecting VESs.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 50

3.3.3 Remote Tests

A remote test involves collecting information from a machine in the network without

relying on running a specific application inside the machine itself. The authors in [211]

proposed a remote test based on a method created by [212] to remotely detect VESs.

The method proposed uses the Transmission Control Protocol (TCP) timestamp option,

defined in RFC 1323 [213], to determine the clock skew of the remote machine. The

clock skew of REMs is then compared with the clock skew of the machine under test;

discrepancies will indicate a VES. However, the TCP timestamp option is used only in

Linux-based systems, therefore, machines running other OSs, such as Windows-based

systems, cannot be evaluated. Moreover, authors in [214, 215] demonstrated that by

using the “ntp” daemon application in Linux-based systems it is possible to adjust the

TCP timestamp option value in order to remove the clock skew introduced by a virtual

or emulated system. Usually, a machine uses the “ntp” application based on the Network

Time Protocol (NTP) for synchronising its timestamp. This application retrieves the

time from an Internet-based NTP server with a very accurate external clock. Authors

in [216] demonstrated that it is possible not only to adjust the TCP timestamp option

value, but also to mimic the clock skew of a specific machine. For these reasons, remote

tests presented in the literature are not suitable for detecting VESs in the IoT.

3.3.4 Fingerprinting Tests

This is the most common and easy test used for detecting VESs and it is based on

collecting specific “signatures” from the system, such as driver names, running applica-

tions, system registry keys, hardware IDs (i.e. CPU ID, MAC addresses etc.), system

Application Programming Interfaces (APIs) access where available etc.

A fingerprinting method that uses the media access control (MAC) address of a

machine to obtain the vendor name was proposed by authors in [209]. However, it can

be easily faked, for example, by using an application such as MAC-Changer [217].

Further works improved on this solution by collecting information from system

drivers used for specific hardware devices, OS registry keys or applications running

[210, 211]. Another work shows that it is possible to use the APIs provided by a virtual

machine to detect it [218].

There have only been a few studies related that use the fingerprinting test for the

detection of embedded emulated environments, and these are focused on Android-based

devices. A heuristic detection method was proposed by [219]. It is based on combin-

ing the Android API, Android system properties and the system hardware information

and the detection takes around 20 minutes. An enhanced method was proposed by

[220] which uses information about the CPU and graphical performances to detect the

Android’s Dalvik virtual machine.

However, these “signatures” can be easily faked in VES, especially with open source

OSs. For example, I was able to modify the kernel of an embedded Linux OS in order to

display fake CPU information that can be obtained from “/proc/cpuinfo”, as shown in

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 51

Figure 3.2 in system type. This can also be done for every module, driver and application

by modifying their information and recompiling them.

Figure 3.2: Faked CPU information in the OpenWRT embedded Linux system ob-
tained from “/proc/cpuinfo”.

3.4 Solution and Algorithm Design

In the previous section, existing methods for detecting VESs were presented and eval-

uated. As highlighted previously, these methods cannot be applied to the IoT system,

leaving it unprotected when forged machines are used for perpetrating attacks. For this

reason, a new approach is needed to enable M2M-embedded devices to detect forged

systems.

VESs are normally used by developers, anti-virus companies and researchers as test

environments for testing applications without a real embedded hardware and for studying

malware behaviour. This is because the execution of a set of instructions in a VES

should be the same as the execution in an REM. When a VES is used, it translates all

instructions from the host architecture to the virtualised or emulated system, called the

guest. For example, if the VES is running in a 64-bit architecture and virtualising an

ARM embedded architecture, it must translate everything from the 64-bit to the ARM

architecture. Each part of the embedded system must be translated, including CPU

instructions, memory management, physical devices management etc., which requires

time.

Authors in [221, 222] identified that VESs introduce various behaviours that cause

differences in system resource availability, timing dependences and I/O device com-

munication. These behaviours were also exploited by architecture-based timing tests.

However, these tests are significantly limited by the fact that previous knowledge of the

architecture is required to compare timing access to specific CPU registers and memory

locations.

For these reasons, in this thesis, a new generalised and novel approach to detecting

forged embedded machines is presented. This is based on the premise that the machine

architecture should be treated as a black-box. The detection method uses the timing

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 52

behaviours of embedded machines. It can be subdivided into two parts: the characteri-

sation of embedded machine behaviours and the machine emulation detection algorithm

(MEDA), as presented in the following subsections.

The first part can be implemented securely by using a Mobile Agents Platform

(MAP), which is a system based on IoT Mobile Agents (IoT MAs) with the ability

to migrate from one device to other devices in the network in order to perform spe-

cific tasks. A MAP creates an opportunity to reduce the network load and latency,

encapsulate different protocols, act asynchronously and autonomously, be dynamically

adaptable, work in heterogeneous contexts, be robust and fault-tolerant, provide secu-

rity mechanisms and work in several application scenarios with different interactions

[223, 224].

The MAP architecture consists of several components according to the IEEE Foun-

dation for Intelligent Physical Agents (FIPA) standard [225]:

• Agent management or agency manages mobile agents and controls their creations

and operations within and across the MAP;

• Agent communication allows a mobile agent to communicate with its creator and

the agent management;

• Agent transport is responsible for managing the transportation of information,

including security mechanisms, across the MAP;

• Agent security manager is responsible for maintaining the security of the MAP;

• Applications provide the execution environment for a mobile agent and deal with

different application scenarios in which there could be several types of interactions.

Figure 3.3 shows the detection model which employs IoT MA. Specifically, the agency

in node “A” creates an IoT MA and sends it to node “B”. The IoT MA runs the

characterisation algorithm in node “B” and the results are sent back to the agency in

node “A”. “A” then runs MEDA to determine if “B” is a REM or VES. As trust is

asymmetrical, the agency in node “B” will perform the same steps to evaluate the trust

of node “A”.

For security reasons, the agency creates a secure environment, giving IoT mobile

agents the opportunity to perform only the characterisation test. This can be achieved by

implementing resources access control with limited privileges and limiting the execution

time [226]. A trusted third party can create an IoT MA with the capability to generate

random numbers and publicly release its hash sum value using, for example, Secure

Hash Algorithms (SHAs). This can then be included in agencies and used to verify the

authenticity of the IoT MA before its execution. In fact, if the IoT MA is modified by

an attacker, this will result in a different hash value.

Two steps are performed to create a secure connection between the agency that

created the IoT MA and the IoT MA: (i) the agency generates a public/private key pair

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 53

Figure 3.3: Representation of the detection model. The agency in “A” sends the IoT
MA to “B” (1). IoT MA runs the characterisation algorithm locally in “B” (2) and
then sends the results back to the agency in “A” (3). “A” performs the final detection

(4).

and (ii) the IoT MA carries the generated public key of the agency. This public key

will be used by the IoT MA to generate a shared key for encrypting and decrypting the

characterisation results by using, for example, RSA, as discussed in Subsection 2.4.1.

The steps to secure the communication are summarised in Figure 3.4. In order to be

effective, it is assumed that the MAP satisfies two basic requirements: (i) the target

agency allows the IoT MA to run the characterisation and (ii) the IoT MA must have a

connection with the originator agency. If these conditions are not satisfied, the trustor

will not trust the trustee and will stop the communication.

In this scenario, the communication between the agency and the IoT MA cannot be

eavesdropped by using MITM attacks as the IoT MA knows the agency’s public key.

Security policies should be applied to protect the system against DoS attacks and avoid

battery draining (if present) caused by multiple IoT MAs running the characterisation

algorithm. For example, an IoT-embedded machine can decide not to allow an IoT MA

to run if, for example, system resources (battery, CPU level etc.) are below a specific

threshold or if there are several IoT MAs running at the same time.

3.4.1 Characterisation Algorithm

The characterisation algorithm extracts timing behaviours from embedded machines. It

is based on Hypothesis 1 and represented in Figure 3.5.

Hypothesis 1. Every VES introduces delays caused by translating and executing in-

structions from the host to the guest architecture. This causes differences in timing

behaviours between a VES and an REM.

The characterisation algorithm is based on pinging the localhost (127.0.0.1)2 in the

system under consideration many times (e.g. 1000) in order to characterise behaviours

related to the ping response time (P.), timestamp values (T.) and CPU usage (C.) for

each ping, as shown in Figure 3.6. Timestamp values are used as control information;

2This is the default address for localhost for the IPv4 protocol [https://tools.ietf.org/html/rfc5735].

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 54

Agency A Agency B

A = {e,n}PUk

A = {d,n}PRk

Calculate hash sum value of IoT MA
and compare with , if valid execute it

C = K ne mod

K = C nmod

Trusted
Third Party

IoT Mobile Agent (IoT MA)

IoT Mobile Agent A PUk

Create the IoT MA,
append the public key
and send it to node B

IoT Mobile Agent

Generate a
public/private key pair

Random generated key ()K

Perform characterisation

Encrypt results using K

Retrieve shared key

Decrypt characterisation
results

, K

d

Hash sum
value

Send an encrypted
request to perform
the characterisation

Figure 3.4: Representation of security mechanisms in MAP for characterising
IoT-embedded machines.

if an attacker tries to fake the ping response time, the algorithm will rely on changes in

timestamp values and vice versa. In fact, in order to fake both or one of these values,

an attacker must implement new functionalities. These functionalities will be executed

after they are translated from the host architecture to the virtualised or emulated system.

This translation will require some time, which will increase the time between two pings

(T.) and the characterisation time. These timing discrepancies can be used by the

trustee to detect that the attacker is trying to fake the characterisation result.

The ping response time was obtained by using the “ping” command, the timestamp

values were obtained by using the “date” command, and the CPU usage was determined

by extracting information from “/proc/stat” file or the “iostat” command depending on

the OS used. However, CPU usage is mentioned only for reference and is not used for

detecting forged embedded machines as this could be easily faked by running several

concurrent applications.

The “ping” command is used for several reasons. Firstly, it is available in almost

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 55

Real Embedded System

Real Embedded Hardware
(i.e. ARM, MIPS, etc.)

Embedded Operating System

Application

Execution

Execution

Host

Real Hardware
(i.e. x86, x86-64, etc.)

Operating System/Hypervisor

Instructions
Translation

Transparent
Execution

Virtualised or Emulated
Embedded System

Embedded Operating System

Application

Virtualised or Emulated
Embedded Hardware

Execution

Execution

Delays
introduced

by VESs

Figure 3.5: Hypothesis behind the characterisation algorithm concerning the differ-
ence in time behaviours for translating and executing instruction in REMs and VESs.

Start

ping localhost

Is it still
pinging?

Store ping
response time (ms)

Store
timestamp (s)

Finish

P.

T.

YesNo

Store
CPU usage (%)

C.

Figure 3.6: Characterisation algorithm flowchart. The ping command is used locally
and information from ping response time (P.), timestamp (T.) and CPU usage (C.) is

stored.

all systems with Internet connectivity, including IoT/M2M devices. It is obvious that it

cannot be applied to IoT-embedded devices that do not support the ping command. For

these devices a different method for extracting timing behaviour is required. Secondly,

it is used to obtain precise timing information that is strictly related to the networking

stack used by IoT/M2M devices. Another reason is that it will be difficult for attackers

to fake the timing information provided by pinging locally, as it uses network sockets

for managing the ping packets. These sockets reside in the kernel space of an OS and

only its modification may allow an attacker to fake the timing information. Attackers

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 56

that try to fake the ping characterisation results must actively modify part of the kernel

of a VES by checking when a network socket is created and handle it every time. This

task can increase the overall delay and decrease system performance, especially in the

presence of embedded environments. Furthermore, modifying the kernel is not always

possible, especially if the system is not open source.

In fact, when the system in a VES receives ping packets, it will automatically create

ping request and response packets, and manage these in both kernel and user space.

As described previously, these operations require translating every instruction from the

host to the guest architecture. Therefore, it is unlikely that the behaviours will be the

same in VESs and REMs.

Moreover, if the attacker tries to slow down the VES response time in order to fake

the characterisation, the agency that requests the characterisation can use its local time

to detect this. This can be achieved by measuring the difference between the request

(TReq) and the response (TResp) of the characterisation as follows:

TResp − TReq ≈ TCh + ∆TCh + ℮(∆TRTT) (3.1)

where TCh is the time required for the characterisation, ∆TCh is a very small amount of

time (around 2 seconds) in which the IoT mobile agent receives the request, launches the

characterisation, receives the results and sends them back to the trustor IoT agency, and

℮(∆TRTT) is the estimated round-trip times after TCh plus ∆TCh seconds are elapsed.

For example, if the characterisation is supposed to take 3 minutes, the difference should

not be longer than 3 minutes plus network communication delays and the trustee IoT

mobile agent delays, but not less than that.

For each target, eight tests were performed in which the ping command was tuned

with different options and stressing the CPU (whereby the CPU usage is maintained

around 100%), as shown in Table 3.2.

Table 3.2: List of ping characterisation tests performed.

Test# Ping option CPU stress

1 -c 1000 -i 0.2 No

2 -c 1000 -i 0.2 Yes

3 -c 1000 No

4 -c 1000 Yes

5 -c 1000 -s 20000 No

6 -c 1000 -s 20000 Yes

7 -c 1000 -s 20000 -i 0.2 No

8 -c 1000 -s 20000 -i 0.2 Yes

-c: stop after sending n ping packets
-i: wait n seconds between sending each packet
-s: specifies the number of data bytes to be sent

In order to stress the CPU, the “dd” command was employed using the random device

as input and the NULL device as output (dd if=/dev/urandom of=/dev/null). Multiple

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 57

instances of the “dd” command were executed in embedded machines with multi-core

CPU. This stressed not only the CPU but also the kernel, because in Linux, random and

NULL devices are managed in the kernel space. During the simulations, systems were

performing SSH connections with a server which was used to request the characterisation

and collect its results. The test-bed used during the simulation is shown in Figure 3.7.

In this, systems were connected to a switch via Ethernet cables. High-priority traffic

was not considered during the simulations, and it cannot be excluded that this may have

affected the kernel behaviour.

REM 1

REM 2

REM

VESs

N

Trustor

Ethernet connection

Switch

Figure 3.7: Test-bed used during the simulations for performing characterisation
requests and collect their results from REM and VES systems.

3.4.2 Machine Emulation Detection Algorithm

The task of the machine emulation detection algorithm (MEDA) is to use the output

of the characterisation algorithm that is applied to the target machine, and then to

predict it to be either an REM or VES. To do this, Characterisation Metrics (CMs) are

extracted from behaviours of REMs, as shown in Table 3.3.

The REMs used for obtaining the CMs are ALIX 6F2 [227], Google Nexus 5 and 7

[228, 229], Carambola [230], Arduino Yún [231] and Raspberry Pi [232]. A range for each

CM is obtained by applying the characterisation algorithm to every REM considered.

Results are shown in Table 3.4, and these ranges of CMs are then used as threshold

values for detecting VESs.

In this table, results from different tests were merged in order to evaluate the dif-

ferent behaviours of each machine. This was done because a machine can have several

applications running at the same time. Therefore, by merging results from tests 1 and

3 (normal operation after booting) and tests 2 and 4 (intensive operation), it is possible

to obtain useful data independently from the machine operational status. As the be-

haviours of the ping response time from all the tests were not very different (with and

without stressing the CPU, and with different delays between two pings), these were

merged to obtain a unique range. For the same reason, the results from tests 1 and 2,

and tests 3 and 4, in terms of timestamp values also were merged. Moreover, this was

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 58

Table 3.3: Characterisation metrics.

Metric Equation

Minimum (Min) min = min(xi)

Maximum (Max) max = max(xi)

Range range = min−max

Sum sum =
∑N

i=1 xi

Mean µ = 1
N

∑N
i=1 xi

Variance σ2 = 1
N

∑N
i=1(xi − µ)2

Standard deviation (SD) σ =
√

1
N

∑N
i=1(xi − µ)2

Mean-Standard deviation (Mean-SD) µ− σ

Mean+Standard deviation (Mean+SD) µ+ σ

xi = i -th sample; N = number of samples; freq = most frequent value;

sort = values in sorted order.

done also for CPU usage results, but only for tests in which the CPU was not under

stress.

As shown in Table 3.4, the results from test 1 to 4 show three behaviours: ping

response time (P.) for all tests; the behaviours of timestamp values (T.) when the same

interval between pings is chosen; and the behaviours of the CPU usage (C.) when the

CPU was not under stress conditions. Note that tests 5 to 8 are not shown in this

table; these were excluded because they do not give reliable results for detecting VESs.

Specifically, there was an issue related to the ping option used to specify the ping packet

size. In fact, large-sized ping packets require high computational resources and some

embedded systems are not able to handle them properly.

The behaviours of REMs shown in Table 3.4 are used by MEDA as a threshold value

for detecting VESs. Let TMinREMs (CMi) and TMaxREMs (CMi) be the minimum

and maximum value in the range for the i -th characterisation metric from Table 3.3.

Let TT (CMi) be the i -th characterisation metric obtained from the target system. A

VES is considered detected if one of the following equations is valid:

TT (CMi) < TMinREMs (CMi) (3.2)

TT (CMi) > TMaxREMs (CMi) (3.3)

MEDA is summarised in Figure 3.8.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 59

T
a
b
l
e
3
.4
:

R
an

ge
of

b
eh

av
io

u
rs

o
f

re
a
l

em
b

ed
d

ed
d

ev
ic

es
(R

E
M

s)
o
b

ta
in

ed
d

u
ri

n
g

th
e

ch
a
ra

ct
er

is
a
ti

o
n

.

C
h

a
ra

c
te

ri
sa

ti
o
n

P
.

(m
s)

T
.

(s
)

T
.

(s
)

C
.

(%
)

M
e
tr

ic
s

T
e
st

s
1

to
4

T
e
st

s
1

a
n

d
2

T
e
st

s
3

a
n

d
4

T
e
st

s
1

a
n

d
3

M
in

0.
06

7-
0.

19
3

0
0

0-
75

M
ax

0.
14

0-
2.

06
0

1-
2

1-
3

19
-1

00

R
an

g
e

0.
06

1-
1.

99
3

-
-

-

S
u

m
99

.0
64

-2
88

.1
17

19
9-

20
1

99
9-

10
01

-

M
ea

n
0.

09
9-

0.
28

8
0.

19
9-

0.
20

1
0.

99
9-

1.
00

1
5.

22
3-

79
.0

42

V
ar

ia
n

ce
0-

0.
03

4
0.

15
9-

0.
16

2
0.

00
1-

0.
05

9
4.

92
8-

45
9.

20
1

S
ta

n
d

ar
d

D
ev

ia
ti

on
(S

D
)

0.
00

2-
0.

18
3

0.
39

9-
0.

40
2

0.
03

2-
0.

24
3

2.
22

0-
21

.4
29

M
ea

n
-S

ta
n

d
a
rd

D
ev

ia
ti

on
(M

ea
n

-S
D

)
0.

06
0-

0.
21

5
-

-
-

M
ea

n
+

S
ta

n
d

ar
d

D
ev

ia
ti

on
(M

ea
n

+
S

D
)

0.
11

0-
0.

45
2

-
-

-

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 60

Input: set of characterisation metrics from the target system

Output: true or false

for each CMi ∈ CM :

if (TT (CMi) < TMinREMs (CMi) ||
TT (CMi) > TMaxREMs (CMi))

return true // illegitimate REM

return false // legitimate REM

Figure 3.8: Pseudo code for the Machine Emulation Detection Algorithm (MEDA).

3.5 Results and Discussion

To evaluate the capability of MEDA to detect forged embedded machines, several VESs

were tested; these are shown in Table 3.5. All the VESs were implemented using a

machine running Linux Mint 17 (qiana) with kernel 3.13.0-24-generic OS, an Intel(R)

Core(TM) i3-4130 CPU @ 3.40GHz CPU with 4 cores and 7897 MiB of RAM, with

default configurations.

Table 3.5: List of virtualised and emulated embedded systems (VESs) tested.

VES Notation Architecture OS

Android Emulator [233] AE ARMv7 Android 4.4.2
Genymotion [234] GN Embedded x86 Android 4.4.4

GXemul [235] GX1 MIPS NetBSD 5.0.2
GXemul [235] GX2 MIPS NetBSD 6.1.5
OVPsim [236] OVP MIPS Debian
QEMU [237] Q1 MIPS OpenWrt 12.09
QEMU [237] Q2 MIPSel OpenWrt 12.09
QEMU [237] Q3 ARMv6l Raspbian

VirtualBox [238] VB Embedded x86 OpenWrt 10.03
VMware [239] VM Embedded x86 OpenWrt 14.07

Results of MEDA are shown in Figures 3.9 and 3.10. In order to obtain each de-

tection, ranges of CMs from Table 3.4 are used. For example, results from tests 1 and

2 (Figure 3.9) show that behaviours of GXemul with NetBSD 6.1.5 (GX2) were out-

side ranges of P.Sum, P.Mean and P.Mean-SD. Therefore, the number of detections by

applying MEDA is three, giving as a final result, that GX2 is a VES.

Furthermore, these results show that the Android Emulator (AE) is more easily

detected than GX2. At the same time, it is possible to see that changing the OS version

can result in an easier detection, as shown by GX1 and GX2 results. Finally, it is clear

that all VESs can be detected by using only four CMs: P.Sum, P.Mean±SD and T.Sum.

Moreover, by comparing the results from Figures 3.9 and 3.10, it is possible to see that

MEDA works better with the information retrieved by the characterisation algorithm

during tests 3 and 4 rather than tests 1 and 2. Furthermore, tests 3 and 4 require

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 61

Figure 3.9: MEDA results for tests 1 and 2.

Figure 3.10: MEDA results for tests 3 and 4.

only around 3 minutes, while tests 1 and 2 require around 17 minutes to detect forged

embedded machines.

Therefore, by using the characterisation algorithm with a ping interval of 200 ms

(tests 3 and 4), MEDA can detect a forged embedded machine within 3 minutes with

a detection accuracy of 79.21%. Moreover, MEDA associates every item labelled as

REM belonging to REMs (precision = 1), but almost half of the items from REMs were

labelled as belonging to VESs (recall = 0.4455). While, almost every item labelled as

VES belongs to VESs (precision = 0.7504) and all of the items from VESs were labelled

as belonging to VESs (recall = 1). Detailed results can be found in Appendix B.1. From

these results, MEDA is capable of detecting VESs within a certain degree of accuracy,

but it has problems in recognising REMs. These aspects and detection time are very

important for minimising the power consumption of battery-powered embedded devices,

and also for enabling a system to be trusted easily and quickly.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 62

3.5.1 Comparison with Other Techniques

For the reasons explained in Section 3.3, methods available in the literature for de-

tecting VESs cannot be used in the IoT. In fact, these are mostly architecture- and

OS-dependent, and they cannot easily be applied in embedded devices due to their het-

erogeneity. IoT devices should be treated as black-boxes without previous knowledge of

their architectures and OSs. This is a very important aspect for two main reasons: (i) the

architecture can be hand-crafted using Field-Programmable Gate Array (FPGA)-based

boards, and (ii) future IoT devices may have a different or an improved architecture,

which may lead to different instruction sets, e.g. instructions used until ARMv4 were

not able to access half-word objects in the memory, although this is not true for newer

ARM versions [240]. However, the only detection method that could be used in all

situations is the fingerprinting test, but it can be easily attacked as demonstrated in

Subsection 3.3.4.

The fingerprinting test was able to extract “signatures” from only the Genymotion,

VirtualBox and VMware systems. Results from this test are shown in Table 3.6. The

“signatures” used for detecting these VESs are vbox, virtualbox, virtualized, oracle,

innotek, intel, genuineintel, genymotion, vmware and their variants.

Despite how difficult it is to use existing methods to detect VESs, the

architecture-based timing test [209, 210] has been successfully implemented in the Rasp-

berry Pi 2 system model B based on an ARM Cortex-A7 CPU. This has been tested in

both the real hardware and the QEMU v2.12.0-rc0 emulated system. This test has been

implemented as a loadable kernel module, as this is the only way to access the CPU

registers of the Raspberry Pi 2. As highlighted in Subsection 3.3.2, this test consists of

timing the access to CPU control registers and an NOP operation. In the Raspberry Pi

2, there is only one available system control register (SCTLR) [241], and this has been

used during the timing test. The timing information is retrieved with the cycle count

register (CCNT). Moreover, the QEMU has been modified in order to adjust the cycle

count register because the frequency of the ARM processor is not configurable. This

modification helped to defeat the timing test. The kernel module used to perform the

test and a patch for QEMU are available in Appendices A.5 and A.6. Results from the

Raspberry Pi 2 and QEMU were the same. The time required by an NOP operation is

equal to 1 clock cycle and the time required to access the SCTLR registers is equal to 2

clock cycles. These results show that the architecture-based timing test is not a viable

test for detecting VESs when embedded machines are used. The application of this test

is also limited by the fact that, in order to access the SCTLR and the CCNT registers,

super user access is required. This is very dangerous as an attacker can use this access

to destroy the system or gather all types of information.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 63

Table 3.6: Fingerprinting information from Genymotion, VirtualBox and VMware.

Signatures from files or
applications

Information GN VB VM

/proc/cpuinfo Real CPU characteristics Yes Yes Yes

/proc/version Linux version Yes No No

/proc/misc Virtual users Yes No No

/proc/ioports Virtual devices Yes No No

/proc/kcore Physical memory and
system message

Yes Yes Yes
dmesg

/sys/devices/pciXXXX :XX /XX
XX :XX :XX.X /XXXX :XX :XX.X /
usb1/1-2/product

Hard disk, USB and
CD-ROM devices

Yes Yes Yes

/sys/devices/pciXXXX :XX /XX
XX :XX :XX.X /XXXX :XX :XX.X /
usb1/1-2/configuration
/sys/devices/pciXXXX :XX /XX
XX :XX :XX.X /XXXX :XX :XX.X /
usb1/1-2/1-2:1.0/interface
/proc/scsi/scsi

/sys/sys/devices/virtual/dmi/id/
sys vendor

System vendor Yes No No

/sys/sys/devices/virtual/dmi/id/
board name

Board version Yes No No

/sys/sys/devices/virtual/dmi/id/
board vendor

Board vendor Yes No No

/sys/sys/devices/virtual/dmi/id/
bios vendor

BIOS vendor Yes No No

/sys/firmware/acpi/tables/DSDT
ACPI table information Yes Yes Yes/sys/firmware/acpi/tables/FACP

/sys/firmware/acpi/tables/SSDT

/fstab.vbox86 Virtual machine boot
files

Yes No No
/init.vbox86.rc

lsmod

Virtual modules Yes No No
/system/lib/vboxsf.ko
/system/lib/vboxguest.ko
/system/lib/vboxvideo.ko

/system/bin/androVM-prop
Virtual machine software Yes No No/system/bin/androVM-vbox-sf

/system/bin/androVM setprop

ps Virtual machine running
applications

Yes No No
/proc/XXX /mem

/system/build.prop Android information Yes No No

/system/etc/init.androVM.sh Boot scripts Yes No No

X is an integer value identifying the bus number or the process number.

Chapter 3. A New Threat and a Novel Solution - Machine Emulation Detection
Algorithm 64

3.6 Summary

In this chapter, a new threat was presented that uses forged embedded machines to attack

M2M communications in the IoT. Hypotheses of using this attack in real-life scenarios

were also given to underscore its dangerousness when applied to the IoT. A review of

methods for detecting forged embedded machines was carried out and this demonstrated

that current solutions cannot be used to detect this new threat. Therefore, a new

detection method based on embedded machines behaviours called MEDA was proposed

for detecting forged embedded machines in M2M communications. This method allows

M2M-embedded machines to perform the detection without relying on the machine

architecture and the OS. Finally, evaluation of the proposed method showed that it is

effective in detecting VESs. However, limitations related to the time required to identify

forged embedded machines and to properly detect REMs underline the toned for further

study this field. In the next chapter a new method will be proposed which aims to

address these limitations.

Chapter 4

A Classification Approach to

Detecting Forged Embedded

Machines

In Chapter 3, a threat against M2M-embedded machines in the IoT was presented. This

threat is based on the use of forged embedded machines to subvert M2M communications

and create M2FM communications. Several detection methods present in the literature

were reviewed, but these proved to be inapplicable to IoT/M2M-embedded machines.

Therefore, a novel detection method, called MEDA, was presented that uses a range of

behaviours obtained from REMs as threshold values for detecting VESs. In this chapter,

the limitations of MEDA are presented and a new detection method based on a classifi-

cation approach is proposed. This solution has been accepted for publication by Valerio

Selis and Alan Marshall in IEEE Systems Journal under the title, ‘A classification-based

algorithm to detect forged embedded machines in IoT environments’ [110].

4.1 Background and Motivation

In Chapter 3, the available methods for detecting VESs were categorised as:

• CPU and memory tests: memory states, CPU registers and instructions are used;

• Remote tests: information obtained from the network are used;

• Architecture-based timing tests: time analysis using CPU instructions;

• Fingerprinting tests: specific “signatures” from the system are extracted;

• Behavioural tests: system behaviours are used.

Research into detecting forged IoT/M2M-embedded machines is at an early stage.

As shown in Table 4.1, the method proposed in this thesis (MEDA) is the first to address

this specific problem.

65

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 66

T
a
b
l
e
4
.1
:

S
u

m
m

a
ry

of
m

eth
o
d

s
ava

ila
b

le
in

th
e

litera
tu

re
fo

r
d

etectin
g

v
irtu

al
an

d
em

u
lated

sy
stem

s.

R
e
fe

re
n

c
e

A
rch

ite
c
tu

re
/
O

S
/
V

E
S

D
e
te

c
tio

n
m

e
th

o
d

K
e
y

p
a
rt

S
u

ita
b

le
fo

r
Io

T
/
M

2
M

R
E

M
s

R
u

tkow
ska

(2
0
04)

[20
6
]

x
8
6

(sin
g
le

co
re)

C
P

U
an

d
m

em
ory

tests
“T

h
e

R
ed

P
ill”:

valu
e

of
th

e
ID

T
register

N
o

Q
u

ist
an

d
S

m
ith

(2
0
06)

[218
]

V
M

w
a
re/

V
irtu

a
lB

ox
F

in
gerp

rin
tin

g
tests

A
ccess

to
v
irtu

al
m

ach
in

e
A

P
Is

N
o

R
aff

etsed
er

et
a
l.

(2
0
07)

[209
]

x
8
6

A
rch

itectu
re-b

ased
tim

in
g

tests
T

im
e

to
access

con
trol

register
C

R
0

an
d

to
ex

ecu
te

a
N

O
P

in
stru

ction
N

o

O
S

in
fo

rm
a
tio

n
F

in
gerp

rin
tin

g
tests

M
A

C
ad

d
ress

u
sed

to
ob

tain
v
en

d
or

n
am

e
N

o

C
h

en
et

a
l.

(2
0
08)

[21
1
]

L
in

u
x
-b

a
sed

O
S

s
R

em
ote

tests
T

C
P

tim
estam

p
op

tion
to

d
etect

th
e

clo
ck

sk
ew

N
o

O
S

in
fo

rm
a
tio

n
F

in
gerp

rin
tin

g
tests

M
A

C
ad

d
ress

an
d

d
river

n
am

es
N

o

M
a
rtign

on
i

et
a
l.

(2
0
09)

[207
]

x
8
6

C
P

U
an

d
m

em
ory

tests
S

am
e

in
stru

ction
w

ill
give

sam
e

resu
lts

in
C

P
U

an
d

m
em

ory
states

N
o

J
ia-B

in
et

a
l.

(2
0
12)

[210
]

x
8
6-64

A
rch

itectu
re-b

ased
tim

in
g

tests
T

im
e

to
access

con
trol

registers
an

d
to

ex
ecu

te
a

N
O

P
in

stru
ction

N
o

O
S

in
fo

rm
a
tio

n
F

in
gerp

rin
tin

g
tests

M
A

C
ad

d
ress,

d
riv

er
n

am
es,

registry
key

s
an

d
ru

n
n

in
g

ap
p

lication
s

N
o

S
h

i
et

a
l.

(2
014

)
[20

8
]

x
8
6

C
P

U
an

d
m

em
ory

tests
“C

ard
in

al
P

ill”:
all

d
efi

n
ition

s
in

th
e

IA
-32

m
an

u
al

are
u

sed
to

gen
erate

p
ills

N
o

J
in

g
et

a
l.

(2
014

)
[21

9
]

A
n

d
roid

em
u

lato
r

F
in

gerp
rin

tin
g

tests
A

n
d

roid
A

P
Is,

sy
stem

p
rop

erties
an

d
h

ard
w

are
in

form
ation

(20
m

in
u

tes)
N

o

V
id

as
a
n

d
C

h
ristin

(2
0
14)

[220
]

A
n

d
roid

em
u

lato
r

C
P

U
an

d
m

em
ory

tests
C

P
U

an
d

grap
h

ical
p

erform
an

ces
N

o

A
n

d
roid

em
u

lato
r

F
in

gerp
rin

tin
g

tests
A

n
d

roid
A

P
Is,

sy
stem

p
rop

erties
an

d
h

ard
w

are
in

form
ation

N
o

S
elis

a
n

d
M

arsh
all

(2
0
15)

[6]
In

d
ep

en
d

en
t

B
eh

av
iou

ral
tests

B
eh

av
iou

rs
of

IoT
/M

2M
-em

b
ed

d
ed

m
a-

ch
in

es
Y

es

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 67

However, as highlighted in Section 3.5, MEDA requires approximately 3 minutes to

identify a forged embedded machine with an accuracy of roughly 79% and has prob-

lems recognising real embedded machines. These performances can lead to limitations

in the applicability of MEDA in IoT environments for three main reasons: (i) moderate

detection uncertainty, (ii) low recognition of real embedded machines and (iii) slowness

in the detection. These issues are related to the time required for the characterisation

and the fact that MEDA represents an embedded machine with a feature space of one

feature per unit time by applying pre-defined threshold values. This can be seen in the

accuracy value, which could include REMs misclassified and/or undetected VESs. For

these reasons, another approach for detecting forged embedded machines in M2M com-

munications in the IoT was developed. This approach consists of the implementation

of a new detection method based on a classification algorithm. In fact, using a classi-

fication algorithm provides an opportunity to represent an embedded machine with a

feature space of two or more features per unit time. In order to speed up the detection,

the characterisation algorithm, presented in Subsection 3.4.1, is tuned (Figure 4.1). The

main difference is that the number of pings for detecting VESs will be determined by

changing the n value. Also, as is expected, by reducing this number it is possible to

decrease the overall detection time.

Figure 4.1: Modified characterisation algorithm for reducing the overall detection
speed by changing the number of pings, in which x is fixed to 0.2.

4.2 Classification-based Algorithm

Classification methods provide an opportunity to assign an observation to a well-known

set of categories. In the case presented here, there are only two categories, real embed-

ded machines and forged embedded machines. This type of classification is well-known

as a binary classification problem. Classification methods use a dataset with a series

of features extracted from past observations for each category. However, choosing a

classifier for detecting forged embedded machines is not a trivial task as it is not pos-

sible to know a priori which one is best to use. Therefore, several supervised learning

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 68

classification methods are used and evaluated, as shown in Figure 4.2. The following

subsections highlight the steps required to efficiently choose the classification method in

order to properly detect forged embedded machines in the IoT. All these steps will be

performed for different numbers of pings, as noted later in this chapter.

Characterisation

Features Extraction

Metrics Normalisation

Feature Selection

SKB-F SKB-Chi2 ERT RFE L1-FS

Normalised Dataset

Initial Dataset

Cross-validation and Classification

DT NB SAMME RF L-SVM

P-SVM R-SVM k-NN LDA QDA

Training set Test set

Performance
Evaluation

Overall
Evaluation

Ti
m

in
g

 i
n
fo

rm
a
ti

o
n

Figure 4.2: Steps required for selecting the best classification method.

4.2.1 Initial Dataset

Creating the initial dataset is the first important step for detecting forged embedded

devices in the IoT and is the basis for the classification. It is composed of information

gathered from REMs and VESs using the modified characterisation algorithm. In order

to create a valuable dataset, other REMs and VESs are characterised compared to the

those used in Chapter 3, as summarised in Table 4.2.

An important aspect of creating a good dataset is the number of observations made

of each type of system in order to properly characterise them. Therefore, for each

system, 500 characterisation tests were performed with normal CPU usage and 500

characterisation tests with the CPU under stress (CPU level around 100%). This was

done in order to replicate different behaviours that could occur when a system is running.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 69

Table 4.2: List of real, virtual and emulated embedded systems characterised.

System Architecture Operating System Type

ALIX 6F2 Embedded x86 Debian REM

Android Emulator ARM Android VES

Arduino Yún MIPS OpenWRT REM

Carambola MIPS OpenWRT REM

Genymotion Embedded x86 Android VES

Google Nexus 5 ARM Android REM

Google Nexus 7 ARM Android REM

GXemul MIPS NetBSD VES

Netgear Centria WNDR4700 PowerPC OpenWRT REM

Open Mesh OM2P-LC MIPS OpenWRT REM

OVPsim MIPS Debian VES

QEMU ARM Debian VES

QEMU MIPS OpenWRT VES

QEMU MIPSel OpenWRT VES

QEMU PowerPC OpenWRT VES

Raspberry Pi ARM Debian REM

Samsung Chromebook Series 3 ARM Chrome OS REM

Samsung Galaxy Tab GT-P1000 ARM Android REM

VirtualBox Embedded x86 OpenWRT VES

VMware Embedded x86 OpenWRT VES

REM: real embedded machine; VES: virtual or emulated embedded system.

As this is a binary classification problem, there are 10,000 characterisation tests for

REMs associated to class 0 and 10,000 characterisation tests for VESs associated to

class 1. The dataset is composed of 20,000 observations in total. For each observation,

information about ping response time (P.) and timestamp value (T.) is collected.

4.2.2 Feature Extraction

The next step for classifying REMs and VESs is to extract features from each observation

in the dataset, and in particular from P. and T. measurements. These measurements

are related to the timing behaviours of each system under consideration. Therefore, in

order to calculate their variability, statistical methods are used, as shown in Table 4.3.

Features are extracted from central tendency, dispersion and distribution of the data

after considering Hypothesis 1 (Subsection 3.4.1), in which delays introduced by VESs

can change the timing behaviours over time.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 70

Table 4.3: Characterisation Features.

Feature Equation

Basic summary statistics

Minimum min = min(xi)

Maximum max = max(xi)

Sum sum =
∑N

i=1 xi

Range range = min−max

Central tendency

Mean µ = 1
N

∑N
i=1 xi

Mode mode = freq(X)

Median median = 1
2

(
xN

2
+ xN

2
+1

)
of sort(X)

Dispersion

Variance σ2 = 1
N

∑N
i=1(xi − µ)2

Standard deviation σ =
√

1
N

∑N
i=1(xi − µ)2

Shape

Upper/Lower bounds (95%) U/L = µ± 1.96σ

Skewness SKEW =
∑N

i=1(xi−µ)3

Nσ3

Kurtosis KURT =
∑N

i=1(xi−µ)4

Nσ4

Correlation

Pearson correlation coefficient r =
∑N

i=1(xi−µx)(yi−µy)√∑N
i=1(xi−µx)2

√∑N
i=1(yi−µy)2

X = all samples; xi = i -th sample; N = number of samples;

freq = most frequent value; sort = values in sorted order.

To avoid zero entries in sparse data and improve further steps against small standard

deviations of features, all features are pre-processed by using the Min-Max normalization

method:

x̃ji =
xji −minj

maxj −minj
(4.1)

where xji is the i -th value of the j -th feature and maxj and minj are respectively the

maximum and minimum values of the j -th feature. This method normalises the features

in a range between 0 and 1. Therefore, a new dataset is created, called the normalised

dataset, in which there are 14 features for P. and 14 features for T., with a total of 28

features available for characterising each observation.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 71

4.2.3 Feature Selection

At this stage, the dataset is ready to be used for classification and it contains 28 features,

half from P. and half from T. However, it is possible that not all these features are needed

to properly classify a forged embedded machine. Therefore, a feature selection step is

required. This step is used for selecting the most relevant features present in the dataset.

In fact, by selecting only some of the 28 features, the computational requirements needed

for the detection will be lower than it would be if all of them were used. This not only

reduces the complexity but also speeds up the detection. By looking to Hypothesis 1

(Subsection 3.4.1), it is possible to formulate Hypothesis 2, based on the importance of

features.

Hypothesis 2. REMs are expected to behave in a similar way during their functional

operation because these have analogous capabilities, as highlighted in Table 1.1 (Intro-

duction). Therefore, basic summary features can play an important role in detecting

VESs.

Several feature selection methods are used to create a rank of the best features in

the normalised dataset:

• Extremely Randomized Trees ERT: fits a number of randomized decision trees on

various sub-samples of the dataset [1, 242];

• L1-based Feature Selection L1-FS: removes features by selecting non-zero coeffi-

cients and by adopting a linear Support Vector Machine Classifier (SVC) penalised

with the L1 norm [1, 243];

• Recursive Feature Elimination (RFE): removes features with low weights by adopt-

ing a linear SVC [1, 244];

• Select-K-Best (SKB): selects features by looking to the k highest scores with both

Select-K-Best with ANOVA F-value (SKB-F) and Select-K-Best with Chi-squared

stats of non-negative features (SKB-Chi2) [1].

By applying these methods to the normalised dataset, the best k -th features from

P. and T. are extracted, where k is a value between 1 and 14. Obviously, as previously

noted, at least one feature from P. and T. will be used during the classification in order

to avoid misdetections caused by attackers faking P. or T.

4.2.4 Classification

This step is the core of the classification-based algorithm, in which observations from a

target embedded machine are assigned to a specific category or class of REM or VES.

The classification of a target embedded machine is carried out in two steps: learning

and testing.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 72

Firstly, the classifier is trained to learn how to identify whether the observation

belongs to a REM or a VES. This is done using pre-collected data (a training set)

in which for each sample the category is well-known. Classifiers can be tuned by using

specific parameters to improve the classification. The best way to select these parameters

is to estimate the classifier performances by using a cross-validation over the training

set. In this thesis, a stratified K-fold cross-validation is used with K equal to 10. It

consists of randomly subdividing the training set into k parts, with equal quantities of

samples in each category, then k − 1 parts are used to train the classifier, and one part

is used to test it. This step is then iterated k times in order to obtain a good estimation

of the classifier performances; in this case, k = 10.

Secondly, the classifier uses its training to classify new observations present in new

data collected (the test set). However, in order to test how well the classifier assigns

new observations to the correct category, the categories in the test set are known, but

these are not used by the classifier.

The normalised dataset is therefore subdivided in two parts: 75% is assigned to the

training set and 25% is assigned to the test set. At this stage, everything is ready for

the classification step. As noted previously, it is not possible to know a priori which

classifier is the best one for detecting forged embedded machines. Therefore, several

supervised learning algorithms for classification problems are used:

• Decision Tree (DT): this is a predictive modelling approach based on a flow

chart-like structure in which internal nodes contain classification rules and leaf

nodes contain class labels. The classification rules are obtained from the data fea-

tures. The predicted class is obtained by testing the value with the decision tree

starting from the root [1, 245–247];

• Näıve Bayes (NB): this is based on Bayes’ theorem with the “naive” independence

assumptions between every tuple of features [1, 248];

• k-Nearest Neighbour (k-NN): this method creates instances of the initial dataset

(normalised training set) by assigning a vote based on k neighbour tuples. An

unknown tuple is classified by using these instances and in particular by searching

the k neighbour tuples nearest to it [1];

• Linear Discriminant Analysis (LDA): finds a linear decision boundary that is suc-

cessively used to separate classes that are assumed to have the same covariance

[1, 247];

• Random Forest (RF): uses a collection of decision tree classifiers, termed a forest,

on random sub-samples of the dataset (normalised training set). This uses the

average of probabilistic predictions from classifiers to combine them in order to

control the over-fitting [1, 249];

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 73

• Stagewise Additive Modelling using a Multi-class Exponential Loss

Function (SAMME): this is based on the AdaBoost method for multiclass gen-

eralisation of the exponential loss. It consists of fitting a set of weak classifiers on

the dataset (normalised training set) and then it adjusts the weights depending on

the classification results, in order to achieve the best result for subsequent classifi-

cations. The base estimator used for building the boosted ensemble is the optimal

DT [1, 250];

• Support Vector Machine (SVM): this is an algorithm in which the initial dataset

(normalised training set) is transformed to a higher dimension by using non-linear

mapping. A hyperplane is then searched in order to properly separate the classes.

The tuples that fall on this hyperplane are called support vectors [1, 251, 252].

SVM is usually used by default to solve linear problems. However, it is not always

possible to separate data linearly and for this reason kernel methods can be used

to work in high-dimensional spaces. Three kernel methods were used with SVM:

Linear kernel-based SVM (L-SVM), Polynomial kernel-based SVM (P-SVM) and

Radial kernel-based SVM (R-SVM). SVM supports two parameters, C and γ, that

are respectively the penalty for misclassification and the deviation of the kernel;

• Quadratic Discriminant Analysis (QDA): this uses the same concept as LDA, but

a quadratic decision boundary is adopted to separate classes that could have a

different covariance [1, 247].

Table 4.4 shows the tuning parameters used during the classification step for each

classifier according to the Scikit-learn Python module [1].

4.2.5 Performance Evaluation

After classification, another step is required to evaluate the performances of each clas-

sifier in detecting VESs. Each classifier, when assigning samples in the test set to a

specific class, gives classification values. This is a binary classification problem with two

classes: REM, known as positive class (0), and VES, known as negative class (1). These

values are then compared to the real classes for each sample, from which it is possible

to create a confusion matrix (Table 4.5) where:

• True Positives (TP): positive samples that are classified as positive (correct result);

• True Negatives (TN): negative samples that are classified as negative (correct

absence of result);

• False Positives (FP): negative samples that are classified as positive (unexpected

result);

• False Negatives (FN): positive samples that are classified as negative (missing

result).

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 74

Table 4.4: Summary of parameters used for each classifier in the Scikit-learn Python
module [1].

Classifier Parameter Value

DT
criterion gini, entropy

max features 1, sqrt, log2, None

SAMME

base estimator the best DT for each feature tuple

algorithm SAMME, SAMME.R

n estimators 1, 5, 10, 50, 100, 200, 500, 1000

RF
max features 1, sqrt, log2, None

n estimators 1, 5, 10, 50, 100, 200, 500, 1000

SVM
C 10−2, 10−1, · · · , 103

γ 10−9, 10−8, · · · , 103

k -NN
k neighbours 1, 2, · · · , 30

weights uniform, distance

LDA
solver svd, lsqr, eigen

shrinkage None, auto

Table 4.5: Confusion Matrix.

Predicted class

Yes No

Actual
class

Yes TP FN

No FP TN

In order to evaluate each classifier, four performance measures are used:

• Accuracy : measures how well the classifier classifies the samples;

• Precision: measures how many samples are classified as positive and are actually

positive as a percentage,

• Recall : measures how many positive samples are classified as positive as a per-

centage;

• F1-score: measures the harmonic mean of precision and recall.

Results from these performance measures are between 0 (worst result) and 1 (best

result). The last three performance measures are calculated for both REMs and VESs

in order to understand how well each class is classified. To produce a final performance

value for each classifier, the average of these performance measures is calculated. This

is the Overall Detection Performance (ODP).

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 75

Another aspect to be considered when using classification methods is the time re-

quired to properly classify each observation as this can affect the detection speed. Times

that must be considered are the characterisation time (TCh), the feature extraction time

(TFE) and the classification time (TCl). The total time required is then calculated; this

is termed the ODS. A summary of the equations used are shown in Table 4.6.

Table 4.6: Classification evaluation measures.

Measure Equation

Accuracy A = TP+TN
TP+TN+FP+FN

Precision Pm = TP
TP+FP

Recall Rm = TP
TP+FN

F1-score F1m = 2Pm×Rm
Pm+Rm

Characterisation Time TCh = npings · 0.2s

Feature Extraction Time TFE = FTFE − STFE

Classification Time TCl = FTCl − STCl

Overall Detection Performance ODP ji =
Aj

i+
∑1

m=0 P
j
mi

+Rj
mi

+F1jmi
7

Overall Detection Speed ODSji = TCh +
T j
FE+T j

Cli
N

m = 0 (REM) or 1 (VES); i is the i -th combination of feature selection
method and classifier; j is the j -th tuple of features selected (kP, kT), where k
is the number of the k -th best features; npings is the number of pings used in
input to the characterisation algorithm; FT and ST are respectively the final
and the starting times for extracting or classify a tuple of features; N is the
number of samples in the test set.

4.2.6 Overall Evaluation

The overall evaluation is the final step needed to combine ODS and ODP and obtain a

final value for identifying the best classifier for different numbers of pings. To do this,

the minimum value of ODS and the maximum value of ODP are calculated for each

tuple of features (j) and each combination of feature selection methods and classifiers

(i) as:

ODPmaxji = max(ODP ji) (4.2)

ODSminji = min(ODSji) (4.3)

A score is assigned to ODS and ODP for each tuple of features and each combination

of feature selection methods and classifiers between 0 (worst result) and 5 (best result),

as shown in Table 4.7.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 76

Table 4.7: Evaluation scores for the Overall Detection Performance and Speed.

Ranges ODPscoreji

ODP ji = ODPmaxji 5

ODPmaxji < ODP ji ≤ ODPmax
j
i−0.01% 4

ODPmaxji−0.01% < ODP ji ≤ ODPmax
j
i−0.1% 3

ODPmaxji−0.1% < ODP ji ≤ ODPmax
j
i−1% 2

ODPmaxji−1% < ODP ji ≤ ODPmax
j
i−10% 1

ODP ji > ODPmaxji−10% 0

Ranges ODSscoreji

ODSji = ODSminji 5

ODSminji < ODSji ≤ ODSmin
j
i+0.001s 4

ODSminji+0.001s < ODSji ≤ ODSmin
j
i+0.01s 3

ODSminji+0.01s < ODSji ≤ ODSmin
j
i+0.1s 2

ODSminji+0.1s < ODSji ≤ ODSmin
j
i+1s 1

ODSji > ODSminji+1s 0

i = i -th combination of feature selection methods and classifiers; j = j -th
tuple of features selected (kP, kT), where k is the number of features.

Table 4.8: Values of ODP and ODS depending on the security level of the IoT appli-
cation scenario.

Security Level ODP ODS

Extreme 100% 0%

Very high 90% 10%

High 80% 20%

Medium 70% 30%

Low 60% 40%

Very low 50% 50%

It is important to note that it is preferable to give more importance to ODP than

to ODS, because it is better to properly detect forged embedded machines than be fast

and risk not detecting them properly. Towards this end, a ratio of 70% ODP to 30%

ODS was chosen. This corresponds to a medium level of security as per Table 4.8.

Although other ratios were not tested in this work, the level of security can be adjusted

according to the IoT application scenario; for example, in a military application the

extreme security level is recommended, as it confers the highest detection rate. Using

the selected ratio, another measure is calculated, the Final Evaluation Score (FES), as

follows:

FESji =
ODPscoreji × 70

max(ODPscoreji)
+

ODSscoreji × 30

max(ODSscoreji)
(4.4)

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 77

where i is the i -th combination of feature selection methods and classifiers and j is the

j -th tuple of features selected.

FES will return a value between 0 (worst result) and 100 (best result). After obtain-

ing the final overall evaluation of feature selection and classification method, the rank

of the best features used is calculated by:

rank (Xi) =
⋃{

rank (y0 = 1)

rank (yj) = rank (yj−1) + 1
; for j = 1, ..., n (4.5)

where X is a sorted set composed by the sum of how many times each feature is selected,

by considering the i -th combination of feature selection and classifier methods which

return the highest FES, yj is the j -th element in Xi and n is the number of elements in

Xi.

4.3 Simulation and Results

Simulations have been performed by using the Scikit-learn module in Python [1]. To

evaluate the classification algorithm for detecting forged embedded machines, VESs were

used with default configurations under a machine running Linux Mint 17 (qiana) with

kernel 3.13.0-24-generic OS, an Intel(R) Core(TM) i3-4130 CPU @ 3.40 GHz CPU with

4 cores and 7897 MiB of RAM.

In this section, results from each step are presented by changing the number of pings

in the characterisation algorithm 7 times with values of 1000, 500, 200, 100, 50, 25 and

15.

Table 4.9 shows information related to the times required for extracting all features

from the initial dataset and for characterise a target embedded machine. As the timing

information shows, changing the number of pings decreases the detection time.

Table 4.9: Timing information related to the characterisation and features extraction
steps.

Number
of pings

Characterisation
time (s)

Extraction of all
features from the

dataset (s)

Extraction of all
features from a

target (s)

1000 200 43.229 0.002

500 100 29.558 0.001

200 40 21.304 0.001

100 20 18.778 0.001

50 10 18.100 0.001

25 5 17.651 0.001

15 3 16.651 0.001

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 78

The time required by feature selection methods for selecting the best tuple of features

and by changing the number of pings is shown in Figure 4.3. The fastest feature selection

method is SKB-F; the slowest is RFE. It is also possible to see that changing the number

of pings does not affect the time for selecting the tuple with the best features. The time

required by classification methods for classifying the best tuple for each number of pings

is shown in Figure 4.4. In this figure, only results from classifiers that return the best

classification for at least one tuple for the specified number of pings are shown. It is

possible to see that SAMME returns the best classification of only one best tuple for 50

pings. The fastest classification method and the slowest on average are k -NN and RF

respectively.

By summarising timing information from Table 4.9, Figure 4.3 and Figure 4.4, it

is clear that characterisation time is the liming factor. This is related to the number

of pings. Therefore, it is possible to drastically speed up the detection of forged em-

bedded devices and reduce the time by reducing the number of pings in input to the

characterisation algorithm.

The rank of the features selected using Equation 4.5 for different numbers of pings

is shown in Figure 4.5. Because the lower value means that the feature was selected by

the best combination of feature selection and classification methods, the features P.min

and T.sum are the best. Therefore, these features are key for detecting VESs, thus

confirming Hypothesis 2.

Important results are obtained from two main steps, feature selection and classifica-

tion. Results from the first step are shown in Figure 4.6. The feature selection method

that works well for selecting the best 2 and 4 features is SKB-F. L1-FS selects the best

features from 10 to 18. ERT works very well for all different numbers of pings in selecting

the best 2 to 26 features. SKB-Chi2 was used only to select the best 22 features. Finally,

RFE was able to select the best features only five times (2, 4, 6, 24 and 26 features) for

100 and 200 pings. Results are not shown for the (14P, 14T) tuple as all features are

used; therefore, in this case, this tuple is not necessary for the selection step.

In the second step, the best tuple of features selected from the first step and for

different numbers of pings is used by each classification method for the classification.

Results from this step are shown in Figure 4.7, in which the classification methods that

return the highest FES value are shown. For this reason, the classification methods

not present returned the lowest FES value and are not considered for classifying target

embedded machines. From Figure 4.7, it is possible to see that k -NN is able to classify

REMs and VESs by using the best 2 and 4 features for high and small number of pings.

Meanwhile, RF is the best classification method overall as it is able to properly recognise

REMs and VESs for a wide range of numbers of pings. SAMME and DT classify the

best tuple of features only sporadically.

The results for ODP obtained by the best classifier for different numbers of pings

are shown in Figure 4.8. These results show that a saturation point is reached when

the best (5P,5T) tuple is selected. In Figures 4.6 and 4.7, the best feature selection and

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 79

Figure 4.3: Time required by feature selection methods to select the best features
from the training set and for different numbers of pings.

Figure 4.4: Time required by the best classification methods to classify all data
present in the training set for different numbers of pings. Missing values mean that the
classification method was not used for classifying a best tuple for that number of pings.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 80

Figure 4.5: Features ranked by how many times they were selected by the best feature
selection method for different numbers of pings. P. refers to ping response time, T. to
timestamp values, and the abbreviations for features from Table 4.6 are used. For

example, P.L means lower bound value of ping response time.

classification methods for the best 10 features are ERT and L1-FS, and RF respectively.

Detailed results obtained by combining these methods are shown in Figure 4.9. In

this, k -NN is also shown as it is the second classification method that gave a good

classification. However, both ERT and L1-FS with RF perform better than ERT and

L1-FS with k -NN. It is very interesting to note that k -NN, with the 10 features selected

by L1-FS and for 15 pings, returns an ODP value of around 6 percentage points less

compared to RF. This may be related to the relatively small variations obtained from

15 pings. In this and subsequent figures, the relation between number of pings and time

is also shown for reference, which can be derived using:

time = n · x (4.6)

where n is the number of pings and x is the waiting seconds between sending each ping

that is equal to 0.2 seconds. Table 4.10 shows the parameters used by k -NN and RF

in the Scikit-learn Python module [1] for obtaining the best results for both ERT and

L1-FS feature selection methods and 25 and 200 pings. Information about the time

required for the combination of the best feature selection and classification method is

shown in Figure 4.10, in which k -NN is faster than RF, but RF is preferred over k -NN

because more weight is given to ODP than ODS.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 81

F
ig
u
r
e
4
.6
:

F
ea

tu
re

se
le

ct
io

n
m

et
h
o
d

s
u

se
d

fo
r

se
le

ct
in

g
th

e
b

es
t

tu
p

le
o
f

fe
a
tu

re
s.

F
ig
u
r
e
4
.7
:

C
la

ss
ifi

ca
ti

o
n

m
et

h
o
d

s
u
se

d
fo

r
cl

a
ss

if
y
in

g
th

e
b

es
t

tu
p

le
o
f

fe
a
tu

re
s.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 82

Figure 4.8: ODP value related to best combination of feature selection methods and
classifiers that give the highest FES for different numbers of pings and features.

Table 4.10: Summary of parameters used by the best feature selection methods and
classifiers for 25 and 200 pings in the Scikit-learn Python module [1].

Classifier Parameter

Feature Selection Method /

Number of pings

ERT L1-FS

25 200 25 200

RF
max features sqrt sqrt sqrt sqrt

n estimators 500 1000 1000 500

k -NN
k neighbours 4 2 1 1

weights distance uniform uniform uniform

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 83

Figure 4.9: ODP value related to best combination of feature selection methods and
classifiers for different numbers of pings and for the (5P, 5T) tuple.

Figure 4.10: Time required to classify a sample using the best combination of feature
selection methods and classifiers for different numbers of pings and for the (5P, 5T)

tuple. The average of the time required with its standard deviation is shown.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 84

As these results demonstrate, it is possible to clearly classify REMs and VESs with

an ODP value greater than 99.5% with only 25 pings by using L1-FS and RF. Meanwhile,

an ODP value of around 99.9% is reached with 200 pings using ERT and RF. The best

10 features selected by L1-FS are P.min, P.median, P.L, P.SKEW, P.KURT, T.sum, T.µ,

T.range, T.L and T.SKEW, whereas for ERT they are P.min, P.sum, P.µ, P.median, P.L,

T.sum, T.mode, T.median, T.U and T.r. These features are different because increasing

the number of pings generates more data, therefore, some features can increase accuracy

during classification, whilst other features can reduce it by introducing uncertainty.

4.3.1 Comparison with MEDA

To evaluate the improvements introduced by the classification methods that are able to

properly classify REMs and VESs, a comparison with MEDA is shown in Figure 4.11.

To obtain comparable results, the threshold values used by MEDA during the detection

are re-evaluated using behaviours from REMs in Table 4.2 (Section 4.2.1). It is quite

clear that the classification methods are much better than MEDA by a difference of

13 percentage points using 1000 pings, 21 percentage points using 200 pings and 28

percentage points using 25 pings. Despite the increasing percentage points, it is easy to

note that classification methods always give an ODP value above 99%, while MEDA is

lower, ranging from 86.5% to 68.7%.

Figure 4.12 compares the average classification time of the classification methods

with that of MEDA. While MEDA is shown to be faster than the classification methods

by changing the number of pings, the final evaluation score (FES) calculated for MEDA

is very low, as more importance is given to the detection of forged embedded machines.

For this reason, detection based on the classification methods presented in this chapter is

a better solution. This figure also shows that the average time required is dependent on

the number of pings. In fact, by using a small number of pings, features extracted could

have close values for both REMs and VESs. This aspect will require more computational

resources to classify properly forged embedded machines and therefore more time is

required. Furthermore, the trend of the average time required by RF using features

selected by ERT is logarithmic, while the trend from using features selected by L1-FS

is exponential. Features selected by L1-FS help to speed up the classification for almost

every number of pings compared to ERT, until the intersection point of 25 pings, at

which the time required doubled and increased rapidly.

4.4 Summary

In this chapter, a short summary of current solutions for detecting VESs was presented

and their current issues was highlighted. A novel solution based on classification methods

for detecting forged embedded machines in the network was presented. Each step needed

to properly classify REMs and VESs was described. Results show the high efficiency

of this approach in terms of time required for the detection and the high detection

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 85

Figure 4.11: Comparison of ODP for MEDA and the best classification methods.

Figure 4.12: Comparison of the average classification time for MEDA and the best
classification methods.

Chapter 4. A Classification Approach to Detect Illegitimate Embedded Machines 86

performance. A comparison with a previously proposed detection method showed that

this new approach is better.

It was demonstrated that it is possible for an IoT/M2M-embedded machine to

recognise forged embedded machines in only 5 seconds with a detection rate of around

99.5%. Moreover, this detection rate can be increased up to 99.9% by increasing the

wait to only 40 seconds. These aspects show that this solution can be easily used by

IoT/M2M-embedded machines to eliminate possible threats, especially in relation to

power-constrained machines and dynamic networks. Another important aspect of using

the proposed method is that it is completely agnostic from the machine architecture and

the OS used.

In the next chapter, an attack against these classification-based methods is presented

which involves using a powerful machine to mimic behaviours of embedded machines.

Moreover, a method of defence is studied and presented in order to detect the attack,

thereby enabling recognition of forged embedded machines in the IoT network. Finally,

the applicability of this solution to the IoT is discussed.

Chapter 5

Attack and Defence in

Behavioural Tests

In the previous chapters, the importance of securing M2M communications from attack-

ers using forged embedded machines in the IoT was presented. Available methods in the

literature for detecting virtual and/or emulated embedded systems in the IoT, such as

CPU and memory tests, remote tests, architecture-based timing tests and fingerprinting

tests, proved to be inapplicable in real scenarios. In this thesis, two behavioural tests

based on characterising behaviours of IoT/M2M-embedded machines, both real and

forged, were presented and studied. These methods extract timing behaviours from the

system using a characterisation algorithm. This algorithm retrieves information related

to ping response time (P.) and timestamp values (T.) provided by pinging localhost.

Statistical features from P. and T. are then extracted and used for detecting forged em-

bedded machines in the network. The method proposed in Chapter 4 has proven to be

efficient and quicker than the method proposed in Chapter 3. However, these methods

do not consider an attacker using machines with higher capabilities than embedded ma-

chines to mimic the behaviours of real embedded machines. This issue can be used by

an attacker to create M2FM communications in the IoT.

In the next sections, an attack against these methods is evaluated and a defence

mechanism is designed, tested and compared with existent methods for detecting forged

embedded machines. This solution was published by Valerio Selis and Alan Marshall in

Proceedings of the 1st Cyber Security in Networking Conference (CSNet’17), under title

‘A Fake Timing Attack Against Behavioural Tests Used in Embedded IoT M2M Com-

munications’ [111]. The applicability of the proposed solution to real-life IoT scenarios

is also discussed at the end of this chapter.

5.1 Threat Model

Thus far in this thesis, real embedded machines (REMs) have been able to properly

detect forged embedded machines in M2M communications by assuming that an at-

tacker uses virtual and/or emulated embedded systems (VESs). However, if an attacker

87

Chapter 5. Attack and Defence in Behavioural Tests 88

knows that behavioural tests are used for detection, instead of using VESs, it could use

a powerful machine to mimic the timing behaviours of an REM, as shown in Figure

5.1. Figure 5.1(a) shows an example of threat model in which the attacker is able to

create M2FM communications. In this example, real embedded machines (A and C)

will presume that they are communicating with another “real” embedded machine (B).

Therefore, these will begin to trust it and will establish an M2M communication. In

reality, as shown in Figure 5.1(b), the attacker is using a modified powerful machine in

order to be recognised as a real embedded machine without using VESs. This attack

is termed as a Fake Timing Attack (FTA) and it is explained in the following section.

This kind of attack is detected by following Hypothesis 3.

A

R-HW

OS

App

(b) Actual Network

A B

(a)A's network view

B

R-HW

OS

App

C

R-HW

OS

App

C

Embedded
System

Embedded
System

Embedded
System

Embedded
System

Embedded
System

Powerful System

M2M communication

M2FM communication

Figure 5.1: Attack scenario in which an attacker uses a powerful machine to mimic
the timing behaviours of a real embedded machine in order to create M2FM communi-
cations. (a) A’s view about the network is represented, in which the powerful machine
is seen as a real embedded machine. (b) The actual network is shown with the attacker

“B” launching the attack against “A” and “C”.

Hypothesis 3. An attacker, no matter how powerful his/her computing capabilities are,

is not able to perfectly replicate the timing behaviours of a machine.

5.2 Fake Timing Attack

As stated previously, behavioural tests are based on timing information obtained from P.

and T. Features from this information are then stored in a dataset and used for training

a classification-based algorithm for a later classification of target embedded machines.

In this scenario, a clever attacker could use one entry from the training set related to

an REM and replicate its ping response time and timestamp values.

The aim of the attacker is to conceal itself by pretending to be an REM in order

to create M2FM communications. The only way to achieve this attack is to have the

capability to actively modify the kernel of the powerful machine. This can be done by

using Linux-based OSs. The rationale behind this attack is to insert delays when a ping

request packet is received. This can be achieved because a powerful machine is faster

Chapter 5. Attack and Defence in Behavioural Tests 89

than an embedded machine, whereas this method cannot be used in VESs because these

have timing-related problems as per Hypothesis 1 (Subsection 3.4.1). For these reasons,

this attack is called an FTA. An FTA can be very dangerous in scenarios in which there

is a medium to extreme level of security (Table 4.8). In fact, information collected by

one attacker node may be used against businesses and/or governments, affecting their

reputations and security.

An attacker can modify the kernel for the purpose of changing the timing behaviours

of a powerful machine, as shown in Figure 5.2. In this figure, three delta times are

highlighted as follows:

• ∆T0: time required for the ping request packet to reach the kernel space from the

user space;

• ∆T1: time required by the kernel to receive and parse the request packet, cre-

ate a ping response packet, calculate and insert the delay for mimicking the real

embedded machine, and finally send the response packet to the user space;

• ∆T2: time required for the ping response packet to reach the user space from the

kernel space.

ICMP_ECHO

ICMP_ECHOREPLY

ΔT

ΔT ΔT

Characterisation Algorithm
(ping localhost)

Function that
receives the

packet

Function that
sends the

packet

Functions that create
the reply packet

Start timer Insert delay

0

1

2
User space

Kernel space

Figure 5.2: Kernel modification of a powerful machine for the purpose of faking its
timing behaviours in order to mimic behaviours of a real embedded machine.

As Figure 5.2 indicates, the attacker may change its ping response time (TpingEve)

by considering the ping response information of an REM (TpingREM) and following

these steps:

1. Start a timer when the ping request packet (ICMP ECHO) arrives in the kernel

space;

2. Stop the timer before sending the ping response packet

(ICMP ECHOREPLY) to the user space;

Chapter 5. Attack and Defence in Behavioural Tests 90

3. If TpingEve is smaller than TpingREM , delay sending the response packet by

delayEve milliseconds;

4. Send the ping response packet to the user space.

Therefore, the equations used by the attacker for mimicking the timing behaviours

for these steps are:

• The powerful machine response time shown in Figure 5.2 can be expressed as:

TpingEve = ∆T0 + ∆T1 + ∆T2 (5.1)

• If TpingEve < TpingREM , the delay that must be inserted before sending the

response packet must be:

delayEve = TpingREM − TpingEve = TpingREM − (∆T0 + ∆T1 + ∆T2) (5.2)

• However, the attacker can only manage ∆T1 as this is strictly related to the kernel

space. Meanwhile, ∆T0 and ∆T2 can vary for each ping, making their timing

values unknown and unmanageable. Therefore, a clever attacker will estimate

them, resulting in an estimated delay as follows:

℮ (delayEve) = TpingREM − [∆T1 + ℮ (∆T0 + ∆T2)] (5.3)

where:

℮ (∆T0 + ∆T2) = average (TpingEve −∆T1) (5.4)

• From the equations above, it follows that the faked ping response time that the

characterisation algorithm will receive is:

FakedTpingEve = TpingEve + ℮ (delayEve) (5.5)

It is clear that the attacker will be unable to fake its timing behaviours if TpingEve is

greater or equal to TpingREM . The equal condition is valid because the attacker needs

at least some microseconds to calculate its ∆T1, with the result that its FakedTpingEve

will always be greater than TpingREM . These discrepancies will cause the attack to fail,

giving the trustor node an opportunity to detect it. From Equation 5.5 it is possible

to show that theoretically Hypothesis 3 is valid, because the faked ping is based on an

estimation of ∆T0 and ∆T2.

Furthermore, it follows from Equation 5.5, the attacker will have an average trend of

ping response times close, but not identical, to the average trend of the REM. Therefore,

the data distribution obtained by the attacker will be different compared to that of the

REM. In particular, this issue will change the central tendency of the data distribution

obtained from the attacker timing behaviours. Specifically, the frequency of values with

Chapter 5. Attack and Defence in Behavioural Tests 91

the same time and the middle timing value will be different with a high probability, as

shown in Figures 5.6(E) and 5.6(F), which show the median and mode ping response

time respectively (see Section 5.4 for further details). This leads to Hypothesis 4:

Hypothesis 4. An FTA can be detected using statistical measurements of the central

tendency of a data distribution, such as median and mode.

5.3 Detection Model

The process of detecting an FTA can be subdivided into three main parts: (i) character-

isation of the behaviours of the target embedded machine, (ii) VES detection and (iii)

the actual FTA detection.

The first part involves of the agency in the trustor node “A” which creates an IoT

MA and sends it to the agency in the target embedded machine “B”. The IoT MA

runs the characterisation algorithm shown in Figure 5.3 upon the request is received

by the agency in “A”. This will provide information about ping response time (P.) and

timestamp values (T.) related to the target embedded machine. At the same time, the

agency in “A” will start a timer. After, it receives the information about P. and T. from

the IoT MA, it will stop the timer and will calculate the elapsed time as per Equation

3.1. If the elapsed time is around 40 seconds (200 pings at 0.2 seconds delay as per

Equation 4.6) plus ∆TCh and ∆TRTT , the second part will be used, otherwise B will be

distrusted.

Figure 5.3: Characterisation Algorithm in which n is fixed to 200 and x is fixed to
0.2.

The second part involves the classification-based detection algorithm presented in

Chapter 4. This uses an RF-trained classifier with the features presented in Table 5.1.

If the value of ODP obtained from the classifier is below a threshold value α, B will be

distrusted and targeted as VES, otherwise the third part will be used. It is important

Chapter 5. Attack and Defence in Behavioural Tests 92

Table 5.1: Characterisation features used by RF.

Feature Equation

Minimum (P) min = min(xi)

Sum (P and T) sum =
∑N

i=1 xi

Mean (P) µ = 1
N

∑N
i=1 xi

Lower bounds (95%) (T) L = µ− 1.96σ

Upper bounds (95%) (P) U = µ+ 1.96σ

Mode (P and T) mode = freq(X)

Median (P and T) median = 1
2

(
xN

2
+ xN

2
+1

)
of sort(X)

Pearson correlation coefficient (T) r =
∑N

i=1(xi−µx)(yi−µy)√∑N
i=1(xi−µx)2

√∑N
i=1(yi−µy)2

X = all samples; xi = i -th sample; N = number of samples;

freq = most frequent value; sort = values in sorted order.

to note that these features were normalised in respect to the normalised dataset used

in Chapter 4 (Subsection 4.2.2). This is not feasible in a real-life scenario, because it

requires that each machine in the IoT holds a copy of the normalised dataset. However,

the normalisation of the dataset is not essential for detecting VESs, as close results are

obtained when this step is not taken, as shown in Appendices B.1 and B.2.

Finally, the actual detection of the FTA is carried out using a classification-based

algorithm trained with median and mode features as per Hypothesis 4. Doing so, it

detects if a target embedded machine is faking its timing behaviours. If the value of

ODP obtained from the classifier is below a threshold value β, B will be identified as a

powerful machine launching an FTA and therefore will be distrusted. Otherwise, A will

begin to trust B with a trust value equal to β, and an M2M communication could be

established provided B trusts A.

The final detection algorithm used by an M2M-embedded machine to trust another

M2M-embedded machine in the IoT network is shown in Figure 5.4.

5.4 Simulations, Results and Comparison with Other Al-

gorithms

Simulations are used to determine if the proposed previous algorithms are able to detect

an FTA. They are also performed to evaluate if Hypotheses 3 and 4 are valid (Sections

5.1 and 5.2). The new detection model subsequently is tested and the results from the

simulations are shown. To evaluate the algorithms, a Linux-based OS with a modified

kernel running on a workstation with quad-core i7@2.70GHz CPU and 6 GB of RAM

is used. The kernel is modified by inserting delays, calculated using Equation 5.3,

Chapter 5. Attack and Defence in Behavioural Tests 93

Figure 5.4: Model used for detecting a FTA in which n is fixed to 200, x is fixed to
0.2 and TCh is fixed to 40 seconds.

before a response ping packet is sent to the user space, as shown in Figure 5.2. Before

modifying the kernel, Equation 5.4 was used to estimate ℮ (∆T0 + ∆T2) by performing

1000 characterisation tests. As a reference REM, a characterisation test present in the

dataset from an Arduino Yún was used for modifying the kernel.

Timing behaviours obtained by performing the characterisation tests from the pow-

erful system, with and without the kernel modifications, are shown in Figure 5.5. In

this figure, the timing behaviours of the reference REM are shown for completeness. As

expected, the average timing behaviour of the powerful machine with the modified kernel

is close to that of the Arduino Yún. It is also clear that the timing behaviours with the

modified kernel are very unstable with high standard deviation spikes in respect to the

mean, varying between 0.01 and 0.05 ms.

The characterisation test results obtained by launching an FTA were evaluated

against those produced by MEDA (Chapter 3), and RF and k -NN trained classifiers

with the best 10 features from ERT used in Chapter 4. Results obtained from these

evaluations show that none of the VES detection methods proposed is capable of de-

tecting an FTA. In fact, all these methods return a similarity value as output for a

VES equal to 0% for each characterisation test. Therefore, an attacker using a powerful

Chapter 5. Attack and Defence in Behavioural Tests 94

Figure 5.5: Timing information related to the Arduino Yún and the FTA for 200
pings. The ping response time of the Arduino Yún used as the reference REM is shown
in red. The estimation of the sum of ∆T0 and ∆T2 used by a possible attacker to
modify its ping response time is shown in orange. The estimated delay introduced by
the attacker in the kernel is shown in green. The ping response time of the powerful
machine is shown in light blue. The faked ping response time obtained from the powerful

machine launching the FTA is shown in blue.

machine and launching an FTA is recognised as an REM all the time and will receive a

trust value of 100%.

An extensive evaluation of the features (Table 4.3) extracted from P. after the char-

acterisation tests are carried out is presented in Figure 5.6. In this figure, cumulative

frequency histograms are shown for P. features from the Arduino Yún and the power-

ful machine launching the FTA. The corresponding histograms for T. features are not

shown here (see Appendix B.3) as these are similar for the Arduino Yún and the pow-

erful machine launching the FTA, meaning that the FTA does not affect the timestamp

values.

The histograms of most of the features obtained from the powerful machine launching

the FTA overlap the corresponding Arduino Yún histogram. Therefore, these features

cannot be used to detect an FTA. Meanwhile, histograms from P.mode and P.median

features mostly do not overlap each other, as shown in Figures 5.6(E) and 5.6(F). It is

clear that these features can be used to detect an FTA, as stated in Hypothesis 4.

From the information obtained, RF and k -NN are trained by using P.mode and

P.median features. The dataset and the same steps presented in Section 4.2 are used for

Chapter 5. Attack and Defence in Behavioural Tests 95

(a) Minimum value of P. (b) Maximum value of P.

(c) Sum of P. values. (d) Mean of P. values.

(e) Mode of P. values. (f) Median of P. values.

(g) Range of P. values. (h) Variance of P. values.

Figure 5.6: Cumulative frequency histograms for P. features obtained from the Ar-
duino Yún and FTA for 200 pings and 1000 characterisation tests.

Chapter 5. Attack and Defence in Behavioural Tests 96

(i) Standard deviation of P. values. (j) Upper bound (95%) of P. values.

(k) Lower bound (95%) of P. values. (l) Skewness of P. values.

(m) Kurtosis of P. values. (n) Pearson correlation coefficient of P. val-
ues.

Figure 5.6: (continued) Cumulative frequency histograms for P. features obtained
from the Arduino Yún and FTA for 200 pings and 1000 characterisation tests.

training these classifiers, as highlighted in Figure 4.2. Results obtained from algorithms

for detecting forge embedded machines are shown in Table 5.2. Here, the last four rows

show the results for detecting the FTA obtained by combining the classification-based

algorithm proposed in Chapter 4 and the trained classifiers with P.mode and P.median

features. It is possible to show that RF for step (ii) and k -NN for step (iii) (Section

5.3) give the best results for correctly detecting VESs and the FTA. This confirms that

Hypothesis 4 is correct and that it is possible to detect an FTA with a high accuracy.

Therefore, IoT/M2M-embedded machines can use the proposed solution to securely

exchange information in the network.

Chapter 5. Attack and Defence in Behavioural Tests 97

Table 5.2: Comparison of methods for detecting forged embedded machines in the
IoT.

Algorithm
Forged Embedded Machine Detection (%)

REM VES FTA

MEDA [6] 21.92 78.32 0

k -NN* [110] 0.68 99.32 0

RF* [110] 0.14 99.89 0

k -NN*+k -NN** [111] 0.68 99.32 93.70

k -NN*+RF** [111] 0.68 99.32 61.11

RF*+k -NN** [111] 0.14 99.89 93.70

RF*+RF** [111] 0.14 99.89 61.11

*Classification-based algorithm presented in Chapter 4;

**RF and k -NN trained with P.mode and P.median features.

5.5 Classification of Unknown Devices

The last point to be determined is if the proposed algorithm is capable of detecting REMs

and VESs that are unknown. This is the same as detecting black-box architectures. In

fact, all behavioural tests proposed in this thesis are based on trained algorithm within

input REMs and VESs behaviours. To determine if these are capable of detecting REMs

and VESs that are not present in the initial dataset, unknown embedded systems (UESs)

are tested (Table 5.3). These UESs are chosen on the basis of their difference from the

REMs and VESs present in the initial dataset. The Google Nexus 5X has a six-core CPU

with a 64-bit architecture, whereas other Android-based devices in the initial dataset

had fewer cores with a 32-bit architecture. Whereas other VESs in the initial dataset

run under a Linux-based host system, the VirtualPC runs under a Windows-based host

system. Meanwhile, the VMware EXSi does not run under another OS, but uses a

hypervisor which runs directly on the real physical hardware. Finally, the Zsun WiFi

Card Reader is a very simple card reader which shares files via Wi-Fi, whereas other

REMs in the initial dataset were mostly development boards, smartphones and tablets

with more resources and capabilities. Furthermore, this card reader has a completely

different OS compared to other REMs in the initial dataset.

Figure 5.7 shows a complete summary of results obtained from all behavioural tests

proposed by including the classification of UESs. Results show that the final detection

algorithm proposed is not only capable of detecting VESs and the FTA, but also is able

to recognize REMs and VESs that were not present in the initial dataset. This proves

that the final detection method shown in Figure 5.8 is completely independent of the

machine architecture and its OS.

Chapter 5. Attack and Defence in Behavioural Tests 98

Table 5.3: List of unknown real and virtual embedded systems.

System Architecture Operating System Type

Google Nexus 5X ARM Android REM

VirtualPC Embedded x86 OpenWRT VES

VMware EXSi Embedded x86 OpenWRT VES

Zsun WiFi Card Reader MIPS Zsun OS REM

REM: real embedded machine; VES: virtual or emulated embedded system.

Figure 5.7: Summary of results for all behavioural tests for 200 pings.
*Classification-based algorithm presented in Chapter 4; **RF and k -NN trained with

P.mode and P.median features.

5.6 Applicability of the Proposed Solution

In the follow subsections, the application of this solution with some architectural refer-

ence models for M2M communications in the IoT system is presented. How this solution

can protect M2M devices in IoT real-life scenarios is highlighted.

5.6.1 Architectural Reference Models

In the IoT there is necessity to incorporate trust management in all layers in the ar-

chitectural reference model. The final proposed solution presented in this thesis can be

applied in European Telecommunications Standards Institute (ETSI), oneM2M and ITU

as well as emerging trends in IoT such as Social IoT (SIoT), Virtualisation Continuum

(VC) and Fog Computing (FC).

Chapter 5. Attack and Defence in Behavioural Tests 99

Figure 5.8: Final detection algorithm for detecting VESs, UESs and FTAs, in which
n is fixed to 200, x is fixed to 0.2 and TCh is fixed to 40 seconds.

The final proposed solution can be easily included in the ETSI and oneM2M archi-

tectural reference models. This will require the use of IoT trust agencies in the M2M

Device and Gateway Domain as part of M2M Applications. In the M2M/ITU architec-

tural reference model, this solution can be incorporated as part of the Specific Security

Capabilities targeting the Device layer. The functionality to request/receive the charac-

terisation can also be included in both the M2M Network Domain (ETSI and oneM2M)

and Network layer (ITU). This allows the IoT core to understand if the M2M-embedded

machines that are communicating are real or forged.

The final proposed solution can also be applied to the SIoT as part of the Social

agents which are already in the Gateway and Object. Moreover, it also can be in-

corporated into the Object interface solely for the purpose of requesting/receiving the

characterisation. In the VC, the IoT trust agencies can be included in the Physical

layer inside objects. Virtual objects in the Virtualisation layer can request/receive the

characterisation to ensure that objects in the Physical layer are real. This will allow

Virtual objects to represent only functionalities of real embedded machines. Lastly, the

final proposed solution can also be part of the FC in the Device layer and Fogs can

request/receive the characterisation for trusting objects in the Device layer.

Chapter 5. Attack and Defence in Behavioural Tests 100

An overview of the IoT trust agencies that can request/receive the characterisation in

the IoT core and the IoT trust agencies and IoT mobile agents that can request/receive

and perform the characterisation in IoT/M2M devices is shown in Figure 5.9.

Figure 5.9: Final detection algorithm in IoT trust agencies for both the IoT core and
IoT/M2M-embedded devices, in which n is fixed to 200, x is fixed to 0.2 and TCh is

fixed to 40 seconds.

5.6.2 Implementation Feasibility

In this thesis, the proposed characterisation algorithms are based on the ping command.

This command is available in all IoT-embedded machines with the Internet protocol

suite implemented. These constitute the majority of embedded machines available in

the IoT. An example of IoT-embedded machines that do not support the characterisa-

tion algorithm are Bluetooth Low Energy (BLE)-based sensors. However, these devices

Chapter 5. Attack and Defence in Behavioural Tests 101

are currently not smart enough to implement advanced security mechanisms or to com-

municate directly to the IoT core.

For the purpose of this thesis, the characterisation algorithm presented is a bash

script running under Linux-based OSs (Appendix A.1), whereas MEDA, the

classification-based algorithm and the FTA detection algorithm are Python-based scripts

(Appendices A.3 and A.4). An example of output obtained by performing the charac-

terisation algorithm is shown in Appendix A.2.

In order to incorporate these algorithms in an IoT trust mobile agent and to use

them in real IoT scenarios, practical considerations are needed. Firstly, the proposed

final solution must be part of the IoT standard. Secondly, trusted third party entities will

be required to certify the agent. This will give IoT agencies the opportunity to validate

IoT mobile agents before performing the characterisation process. This procedure can

be implemented quite easily in embedded machines with an open-source OS, whereas for

proprietary embedded machines and OSs, each company must provide this certification

agent as part of their systems in order to be compatible with the standard.

The characterisation algorithm and MEDA can be easily used in almost all

IoT-embedded devices with a very small amount of memory, processing capability and

power. This is because these algorithms use basic mathematical functions and do not

require any previous knowledge to detect forged embedded machines.

The classification-based algorithm and the FTA detection algorithm are based on

pre-trained classifiers such as k -NN and RF. Authors in [253] proposed a k -NN algorithm

for an embedded machine with very low computation capabilities and resources, like a

microcontroller for real-time processing with a 32-bit ARM Cortex M3 processor at 72

MHz, with 512 KB of flash and 64 KB of RAM. This machine was also equipped with five

sensors: accelerometer, magnetometer, altimeter, temperature and force. Results from

their proposed solution show that the dimension of training and test sets is the key to

reducing the time and memory required for the classification. The latency introduced by

their proposed k -NN algorithm is 950 µsec with 9 KB of RAM, in which k is equal to 5.

A training set with 50 instances and a test set with 6 instances were used as parameters

for obtaining accuracy, which in this case was 92.7%. Authors in [254] showed an

implementation of RF for ARM- and FPGA-based architectures used in IoT-embedded

machines. Results for the embedded ARM show that for a pre-trained forest composed

of 50 decision trees, with 1349 nodes and around 675 paths between root and leaf nodes,

on 6000 training instances, 1 MHz CPU is needed to evaluate 300 samples per second

(around 3.3 kHz per sample). The flash memory required for storing the pre-trained

RF was in the order of a few megabytes. Therefore, it is clear that these classifiers

may require somewhat greater computational capabilities and relatively larger memory

resources compared to MEDA.

These aspects highlight that the proposed solution for detecting forged embedded

machines based on the characterisation algorithms, RF and k -NN, can be implemented

Chapter 5. Attack and Defence in Behavioural Tests 102

in IoT-embedded machines with low computational capabilities and a small amount of

memory.

5.6.3 Real-Life Scenarios: Applicability

The applicability of the final proposed solution to real-life scenarios allows Intelligent

Transportation Systems (ITS), Intelligent Healthcare Systems (IHS) and Intelligent

Building Systems (IBS) to establish trust relationships among IoT/M2M-embedded ma-

chines in both open and closed networks.

Intelligent Transportation Systems

Attackers that aim to disrupt the traffic by using multiple forged embedded machines can

be detected by using the final proposed solution. IoT mobile trust agents in vehicles and

IoT mobile trust agents in the ITS core will be able to detect these forged machines. This

detection can, for example, block false traffic information sent by an attacker to other

vehicles and the ITS. Therefore, by distrusting this information, the ITS will continue

to work properly, suggesting the best route, preserving road safety and providing the

best in-vehicle entertainment.

Intelligent Healthcare Systems

The IHS and IoT-embedded machines such as smart body sensors, emergency vehicles

etc., can be protected by using the final proposed solution. With this, smart body

sensors and their controllers could detect the forged embedded machines attackers use

to send false body information. The IHS core could also distrust health information

from forged embedded machines, and therefore could send alerts to hospitals, patients

and emergency vehicles only during actual emergencies.

Intelligent Building Systems

The final proposed solution can also be used by the IBS. Smart building sensors and

actuators, and the IBS core could be able to detect possible attackers and distrust their

information. By detecting attacks, the IBS could, for example, provide the perfect room

conditions and the perfect occupancy of specific areas in the building and it will only

alert in the case of a real fire.

5.7 Summary

In this chapter, an attack against behavioural tests was presented. This was termed a

Fake Timing Attack (FTA). This FTA involved using timing information from a real

embedded machine (REM) from the initial dataset in order to modify the kernel of a

powerful machine for the purpose of mimicking its timing behaviours.

Chapter 5. Attack and Defence in Behavioural Tests 103

A detection model for uncovering the FTA based on the theoretical analysis gath-

ered by observing the modified kernel behaviour was then outlined. Metrics available for

detecting virtual and/or emulated embedded systems (VESs) were further analysed to

determine if the theoretical analysis was correct. The mode and median features from

the ping response time were then used to detect the FTA. A comparison of two classi-

fiers, k -NN and RF, trained by using these features for detecting an FTA was provided.

Results show that k -NN gave the best detection, with an overall detection performance

(ODP) of 93.70%. The final detection algorithm is able to recognise VESs and de-

tect FTAs in around 40 seconds, making it easily applicable to IoT/M2M-embedded

machines.

Furthermore, the final detection algorithm was tested with newer REMs and VESs

with completely different capabilities from the REMs and VESs present in the initial

dataset. This was done in order to determine if the algorithm was capable of detect-

ing unknown embedded machines (UESs) without previous knowledge of them. Results

show that the final detection algorithm can recognise unknown REMs and VESs, with an

overall detection performance of 99.96% and 99.92% respectively. This proves that the

final detection algorithm is capable not only of recognising VESs and detecting FTAs,

but also of recognising UESs. This makes it easily applicable to the detection of embed-

ded devices with black-box architectures and therefore to future IoT/M2M-embedded

machines.

Finally, the applicability of the final proposed solution to proposed IoT/M2M archi-

tectural reference models, current trends in the IoT and real-life scenarios was shown.

This confirmed that it can be easily applied to the detection of forged embedded machines

in the IoT, and also underlines its benefits in terms of trusting information received by

M2M-embedded machines.

In the next chapter, the conclusions of this thesis are provided. Contributions

and findings are also presented. Moreover, future works required to improve the way

IoT/M2M-embedded machines can successfully trust each other are suggested.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The Internet of Things (IoT) is considered one of the most prominent Information and

Communication technologies to be used on a large scale. At its base there is the com-

munication among objects for achieving specific and complex goals. These objects rely

on Machine-to-Machine (M2M) communications in order to exchange information. The

nature of IoT/M2M devices is mostly embedded with low computational capabilities,

and this increases their vulnerability. Therefore, a lack of security can dramatically

degrade the operation of an application system. This may have very negative effects,

including putting peoples’ lives at risk. Trust has been studied and has been identified

as a mechanism for securing M2M communications in the IoT.

In this thesis, a new solution is proposed to increase IoT security that can be easily

applied to the existing architectural reference models. Unlike current research on incor-

porating trust into the IoT system, this new solution is applicable to real IoT scenarios.

Moreover, this new solution can address a new and emerging threat against M2M com-

munications. This new threat was identified in this thesis and consists of using forged

embedded machines. These machines can be used for launching several simultaneous

misbehaviour attacks against trust management systems in order to disrupt the net-

work. It has been shown that the new solution can be applied to existing and proposed

standards for incorporating trust in the IoT.

Several research outputs for improving the security of M2M communications in the

IoT have been presented in this work:

• A study of the IoT ecosystem, identifying embedded machines as its critical part;

• An investigation into previously unconsidered threats against M2M communica-

tions in the IoT;

• The development of a characterisation algorithm for collecting reliable embedded

machine behaviours;

105

Chapter 6. Conclusion and Future Work 106

• A study of embedded machine behaviours in order to obtain useful metrics for

creating trust relationships;

• The creation of two datasets with behaviours from real, virtual and emulated

embedded systems, which is the starting point for achieving reliable results;

• Implementation of methods for detecting newly discovered threats;

• A study of an attack against the proposed detection methods, along with a pro-

tection mechanism for its detection.

The results presented in Section 5.6 show that the final solution can be used in all the

proposed architectural reference models, making its applicability independent of them

and easily integrated during the standardisation process.

6.2 Contributions and Findings

A key contribution is that the methods proposed in this thesis are completely agnostic

to the machine type, its characteristics and the OS used. This is fundamental for their

application in present and future IoT-embedded systems, because it is not feasible to

know machine-related information a priori, as this can change and develop over time.

Furthermore, the adoption of these methods can be incorporated in IoT mobile trust

agents. This allows information to be secure directly as part of the smartness of the ob-

ject. In summary, findings from this thesis show that it is possible to establish reliable

communications among IoT/M2M-embedded machines in the presence of forged ma-

chines. Details of the main conclusions from this thesis are summarised in the following

subsections.

6.2.1 Introduction, Background and Related Work

This research began by identifying the characteristics of objects in the IoT in terms of

connectivity, computational capabilities etc. By analysing several network topologies

used for creating M2M communications, it became clear that linear topologies give

attackers the opportunity to easily intercept information.

The analysis of real-life scenarios with threats against “things” shows the impor-

tance of securing the system and protecting these objects. The study of architectural

reference models shows that there is a lack of standardisation in relation to the IoT.

This reduces adoption of the IoT in large-scale, real scenarios and makes implementing

security measures challenging.

An investigation of attacks against M2M devices has highlighted why security and

trust play an important role in M2M communications. The evaluation of current solu-

tions for incorporating trust in the IoT shows that these cannot be applied in real IoT

scenarios. There are several reasons why these solutions cannot be applied. Firstly, most

employ assumptions that are unrealistic in real environments, such as pre-trusted and

Chapter 6. Conclusion and Future Work 107

invincible objects, objects able to overhear the traffic of its neighbours etc. Secondly,

most of them can be applied only in static networks, which limit their applicability in

many real IoT scenarios. Furthermore, most require objects with memory capabilities

that are rarely present in real IoT-embedded machines. Finally, and most importantly,

none of these solutions is able to distrust forged objects in the IoT network.

6.2.2 A New Threat and a Novel Solution: Machine Emulation Detec-

tion Algorithm

A new threat against M2M communications has been identified, showing a lack of pro-

tection in current TMFs in the IoT. This attack, which uses forged embedded machines,

gives attackers the opportunity to create a new subverted type of communication, iden-

tified as Machine-to-Fake Machine (M2FM) communication. This finding shows how

real-life scenarios can be attacked and how the IoT system can be compromised.

Therefore, a first detection mechanism against this attack has been identified by

studying embedded machine behaviours. Lack of previous studies and available datasets

show the urgency to protect the IoT system. The initial study of machine characteristics,

capabilities and network connectivities, were used for identifying trust metrics related

to the behaviours of machines rather than specific characteristics. This led to a new

method for characterising these behaviours and then using them as threshold values for

the detection. Results show that this mechanism is able to detect forged embedded

machines within 3 minutes with a detection accuracy of 79.21% [6].

6.2.3 A Classification Approach to Detecting Illegitimate Embedded

Machines

The long time required by the first detection method (MEDA) led to a search for an

alternative approach to improving the characterisation of embedded machine behaviours.

The moderate detection uncertainty and low recognition of real embedded machines also

led to the identification of a new approach for detecting forged embedded machines.

The new method employs machine learning algorithms, which can use more than one

behaviour metric per time, greatly improving detection. A new evaluation method for

understanding which algorithm behaves correctly was therefore proposed. This shows

that k -NN performs well when a few trust metrics are used and that RF performs well

in almost all the other cases. Results show that by using RF with 10 metrics, it is

possible to detect forged embedded machines with an overall detection performance

(ODP) greater than 99.5% within only 5 seconds; this can rise to around 99.9% within

40 seconds [110].

6.2.4 Attack and Defence in Behavioural Tests

The two detection methods proposed in this thesis collect behaviours from real embedded

machines and use these to detect forged embedded machines. This led to the study of

Chapter 6. Conclusion and Future Work 108

a possible attack in which real embedded machines are mimicked by replicating their

behaviour inside a modified powerful machine. This study shows that previous detection

methods can be defeated by perpetrating this attack, referred to as fake timing attack.

A detailed analysis of the trust metrics retrieved by launching the attack revealed that

two metrics, mode and median from ping response time, are critical in detecting this

attack. These metrics were used by k -NN for the detection, giving an ODP value of

93.70% within 40 seconds.

Further evaluations demonstrate that RF is able to recognise real and forged em-

bedded machines that were previously not present in the initial dataset. This aspect

shows that the proposed solution can be easily applied to future IoT/M2M-embedded

machines and that it is completely agnostic in relation to the machine’s architecture

and OS. Results show that the proposed solution can detect unknown forged embedded

machines with an ODP value of around 99.9% within 40 seconds.

Finally, the combination of RF and k -NN for detecting known and unknown forged

embedded machines, and the fake timing attack can be completed within 40 seconds

with an ODP value of 99.89%, 99.92% and 93.70% respectively. These results show that

this solution can be used to create reliable trust relationships among M2M devices in the

IoT. By using this solution as a method of pre-trust evaluation of IoT/M2M-embedded

machines, trustor machines will save energy and time [111].

6.3 Future Work

The findings in this thesis clearly indicate that the IoT is not yet ready to be deployed.

However, it clearly is being deployed, therefore attackers can exploit its lack of security

for malicious purposes. The trust management frameworks that are currently avail-

able are not capable of fully creating trust relationships among objects, which leads to

the need for further investigations in this direction. For this purpose, a standardised

architectural reference model for the IoT and M2M communications is needed. This

void prevents researchers from creating a proper security level in the IoT architecture,

nurturing the development of ad hoc solutions.

The solution proposed in this thesis for detecting forged embedded machines in the

IoT can be used as a method of pre-trust evaluation. However, it must be included as

part of a high-level trust management framework. This trust management framework

can use the proposed solution and at the same time detect other attacks. The combi-

nation of multi-layer metrics to detect attacks against trust mechanisms has not been

properly studied yet. Similarly, studies about propagating trust to other M2M devices

depending on the pre-trust evaluation must be carried out.

The binary classification approach used in this thesis can be modified to a multiclass

classification to recognise the specific system type used by REMs and VESs. In this

scenario, a further trust assessment can be created by exchanging the embedded machine

type during the initial interaction. The trustor will request details of the trustee’s system

Chapter 6. Conclusion and Future Work 109

type and will be able to detect if the trustee is providing the timing information that

corresponds to that system. Therefore, the trustor will be able to determine if the

trustee is using a specific embedded machine, such as Raspberry Pi, Arduino etc., or

a specific virtual or an emulated system to create forged embedded machines, such as

VirtualBox, QEMU etc.

This solution can also be modified for application to other fields. For example, it

can be used to detect the Android’s Dalvik virtual machine more quickly than existing

heuristic detection methods [219, 220], which require around 20 minutes. By contrast,

the proposed solution requires only circa 40 seconds, and is therefore more than 20 times

faster.

The application of IoT mobile trust agents could be further investigated by applying

the proposed solution to different IoT scenarios. Its application can also be evaluated

with both open and closed networks in order to properly appreciate the dangerousness of

the attack and the effectiveness of the solution. The ratio between ODP and ODS used

in Equation 4.4 (Section 4.2.6) should be changed in order to identify the best classifier

for each level of security required (Table 4.8). Further tests with high priority traffic

should be performed during the simulations of the proposed solution in order to check if

this affects the kernel behaviour and therefore detection results. Finally, other solutions

based on timing behaviours should be evaluated for M2M-embedded devices that do not

support the ping command locally, such as devices based only on IEEE 802.15.4, LoRa,

LTE etc.

6.4 Summary

In this thesis, an overview of the Internet of Things is provided. The focus is on is-

sues which prevent the creation of trusted relationships among IoT-embedded machines

in M2M communications. It has been shown that the lack of a standard architectural

reference model for incorporating trust prevents researchers from providing an optimal

Trust Management Framework for the IoT. A new threat consisting of forged embedded

machines used by attackers to subvert M2M communication has been identified. Sev-

eral new solutions were proposed as part of IoT mobile trust agents in order to allow

M2M-embedded machines and the IoT core to identify this attack. This is achieved by

performing a pre-trust evaluation in order to save energy and computational resources

when creating trust relationships.

Evaluations and results of the final proposed solution show its efficiency in terms

of overall detection speed, overall detection performance and resilience against attacks,

independent of the machine architecture and its OS. The detection of unknown embedded

machines demonstrates its easy applicability to future IoT-embedded machines and also

in a final standardised architecture reference model for M2M communications in the

IoT. Finally, as demonstrated, this trust evaluation can be used by IoT applications to

Chapter 6. Conclusion and Future Work 110

preserve their operations in real-life scenarios. These are very important aspects because

IoT does not connect only machines, but also people’s lives.

Appendix A

Appendices

A.1 Characterisation Algorithm

#!/bin/sh

#

Copyright 2015 Valerio Selis

#

This program is free software; you can redistribute it and/or

modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2 of the License ,

or

(at your option) any later version.

#

This program is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public

License

along with this program; if not , see <http ://www.gnu.org/

licenses/>.

#

Usage: characterisation.sh <sim_number > <ping_number > <

ping_interval > <ping_pkt_size >

#

Check if the OS is Android

check_android=$(ls /sdcard)

Check if the OS is NetBSD

check_netbsd=$(uname -a | grep "evb")

Check if WNDR4700 is the real embedded machine

111

Appendix A. Source Codes 112

check_WNDR4700=$(uname -a | grep "WNDR4700")

Select the folder for saving the log file

if ["$check_android" = ""];then

if ["$check_WNDR4700" = ""];then

main_log="/tmp/simping.log"

main_dir="/tmp/"

else

WNDR4700

main_log="/tmp/mnt/sda1/simping.log"

main_dir="/tmp/mnt/sda1/"

fi

else

Android OS

main_log="/sdcard/simping.log"

main_dir="/sdcard/"

fi

echo "Starting $(date) - $(date +%s)..."

echo "Starting $(date) - $(date +%s)..." >> $main_log

Retrieve number of CPUs and cores

if ["$check_netbsd" = ""];then

cpus=$(cat /proc/cpuinfo | grep processor | awk ’{print $NF}’)
else

cpus=$(sysctl -a | egrep -i ’hw.machine|hw.model|hw.ncpu ’ |

grep "hw.ncpu:" | awk {’print $NF ’})
fi

max_cpus=$(echo $cpus | awk {’print $NF ’})
if ["$max_cpus" = ""];then

cpus=0

max_cpus =0

fi

Number of simulation loops , minimum 1 loop

number_start =0

number_end =1

if ["$1" != ""];then

Number of loops given in input

number_end=$1
fi

Number of pings , default 1000

number_pings =1000

if ["$2" != ""];then

Number of pings given in input

number_pings=$2

Appendix A. Source Codes 113

fi

Interval number between pings , default 0.2

interval_pings =0.2

if ["$3" != ""];then

Interval number between pings given in input

interval_pings=$3
fi

Ping packet size , default 56 bytes

pkt_size =56

if ["$4" != ""];then

Ping packet size given in input

pkt_size=$4
fi

end_sim=’n’

while [$end_sim != ’y’];do

Execute 2 simulations

- Sim 0: ping

- Sim 1: ping and CPU under stress

echo "Simulation loop #$number_start $(date) - $(date +%s)" >>

$main_log
sim_count =0

ready=’n’

while [$ready != ’y’];do

ts=$(date +%s)

sim=""

sim_dir=""

Start the dd command if necessary for stressing the CPU

if [$sim_count -eq 1];then

for each in $cpus;do
dd if=/dev/urandom of=/dev/null &

done

sim="02_$ts"
sim_dir="ping_dd_$sim"
echo "Sim #$sim_count: ping -c $number_pings -i

$interval_pings -s $pkt_size 127.0.0.1 with dd ($ts)" >>

$main_log
else

sim="1000 _$ts"
sim_dir="ping_$sim"
echo "Sim #$sim_count: ping -c $number_pings -i

$interval_pings -s $pkt_size 127.0.0.1 ($ts)" >> $main_log
fi

Start the characterisation algorithm depending on the OS

Appendix A. Source Codes 114

if ["$check_netbsd" = ""];then

Start the characterisation algorithm

echo "Start characterisation: $(date) - $(date +%s)"

echo "Start characterisation: $(date) - $(date +%s)"

>> "/$main_dir/$sim_dir/log"
ping -c $number_pings -i $interval_pings -s $pkt_size

127.0.0.1 | while read LINE

do

Store ping response time

echo "$LINE"
Store timestamp value

echo "$(date +%s)" >> "/$main_dir/$sim_dir/lo_ts"
Store CPU usage

cat /proc/stat | grep ’^cpu ’ >> "/$main_dir/
$sim_dir/lo_cpu"

done > "/$main_dir/$sim_dir/lo_ping"
Stop the characterisation algorithm

echo "Characterisation finished! $(date) - $(date +%s)

"

echo "Characterisation finished! $(date) - $(date +%s)

" >> "/$main_dir/$sim_dir/log"
sleep 1s

else

Start iostat for retrieving the CPU usage

iostat -C 1 > "/$main_dir/$dir/iostat.txt" &

iostat_pid=$!
Make sure iostat.txt contains an up to date CPU

usage

sleep 1s

Start the characterisation for NetBSD

echo "Start characterisation: $(date) - $(date +%s)"

echo "Start characterisation: $(date) - $(date +%s)"

>> "/$main_dir/$sim_dir/log"
ping -c $number_pings -i $interval_pings -s $pkt_size

127.0.0.1 | while read LINE

do

Store ping response time

echo "$LINE"
Store timestamp value

echo "$(date +%s)" >> "/$main_dir/$sim_dir/lo_ts"
Store CPU usage

tail -1 "/$main_dir/$dir/iostat.txt" | tr "\n" " "

>> "/$main_dir/$sim_dir/lo_cpu"
done > "/$main_dir/$sim_dir/lo_ping"
Stop the characterisation algorithm for NetBSD

echo "Characterisation finished! $(date) - $(date +%s)

"

Appendix A. Source Codes 115

echo "Characterisation finished! $(date) - $(date +%s)

" >> "/$main_dir/$sim_dir/log"
Kill iostat

kill $iostat_pid
sleep 1s

fi

Kill all dd commands if it is Sim 1

if [$sim_count -eq 1];then

killall dd

fi

Increase the simulation number

sim_count=$(($sim_count +1))
Check if two simulations were executed

if [$sim_count -eq 2];then

echo "Finished two simulations for loop: $number_start
of $number_end!"

echo "Finished two simulations for loop: $number_start
of $number_end!" >> $main_log

Restart simulation counter

sim_count =0

ready=’y’

fi

done

Increase the simulation loop counter

number_start=$(($number_start +1))
Check if all simulation loops were executed

if [$number_start -eq $number_end];then

echo "Finished! Goodbye :)"

echo "Finished! Goodbye :)" >> $main_log
end_sim=’y’

fi

done

exit

A.2 Characterisation Algorithm Outputs

File with ping response time (lo ping)

Line# | Data

1 | PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

Appendix A. Source Codes 116

2 | 64 bytes from 127.0.0.1: icmp_req =1 ttl=64 time =0.260 ms

3 | 64 bytes from 127.0.0.1: icmp_req =2 ttl=64 time =0.216 ms

4 | 64 bytes from 127.0.0.1: icmp_req =3 ttl=64 time =0.210 ms

5 | 64 bytes from 127.0.0.1: icmp_req =4 ttl=64 time =0.209 ms

6 | 64 bytes from 127.0.0.1: icmp_req =5 ttl=64 time =0.211 ms

7 | 64 bytes from 127.0.0.1: icmp_req =6 ttl=64 time =0.213 ms

8 | 64 bytes from 127.0.0.1: icmp_req =7 ttl=64 time =0.201 ms

9 | 64 bytes from 127.0.0.1: icmp_req =8 ttl=64 time =0.210 ms

10 | 64 bytes from 127.0.0.1: icmp_req =9 ttl =64 time =0.207 ms

....

996 | 64 bytes from 127.0.0.1: icmp_req =995 ttl=64 time =0.194 ms

997 | 64 bytes from 127.0.0.1: icmp_req =996 ttl=64 time =0.216 ms

998 | 64 bytes from 127.0.0.1: icmp_req =997 ttl=64 time =0.212 ms

999 | 64 bytes from 127.0.0.1: icmp_req =998 ttl=64 time =0.200 ms

1000 | 64 bytes from 127.0.0.1: icmp_req =999 ttl =64 time =0.213 ms

1001 | 64 bytes from 127.0.0.1: icmp_req =1000 ttl =64 time =0.216

ms

1002 |

1003 | --- 127.0.0.1 ping statistics ---

1004 | 1000 packets transmitted , 1000 received , 0% packet loss ,

time 199796 ms

1005 | rtt min/avg/max/mdev = 0.184/0.213/0.339/0.010 ms

File with timestamp values (lo ts)

Line# | Data

1 | 1433860111

2 | 1433860111

3 | 1433860111

4 | 1433860111

5 | 1433860111

6 | 1433860112

7 | 1433860112

8 | 1433860112

9 | 1433860112

10 | 1433860112

11 | 1433860113

....

996 | 1433860310

997 | 1433860310

998 | 1433860310

999 | 1433860310

1000 | 1433860311

Appendix A. Source Codes 117

1001 | 1433860311

1002 | 1433860311

1003 | 1433860311

1004 | 1433860311

1005 | 1433860311

A.3 Machine Emulation Detection Algorithm

#!/usr/bin/python

-*- coding: utf -8 -*-

#

Copyright 2015 Valerio Selis

#

This program is free software; you can redistribute it and/or

modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2 of the License ,

or

(at your option) any later version.

#

This program is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public

License

along with this program; if not , see <http ://www.gnu.org/

licenses/>.

#

Usage: python MEDA.py <ping response time > <timestamp values >

#

Import Python modules

import timeit , sys , string

import numpy as np

Check inputs

if len(sys.argv) != 3:

print "Usage: python " + str(sys.argv [0]) + " <lo_ping > <lo_ts

>"

exit()

Initialise characterisation metrics for ping response time (P)

and timestamp values (T)

Appendix A. Source Codes 118

Min

PMinL = 0.067

PMinU = 0.193

TminL = 0.0

TminU = 0.0

Max

PMaxL = 0.140

PMaxU = 2.060

TMaxL = 1.0

TMaxU = 2.0

Range

PRangeL = 0.061

PRangeU = 1.993

Sum

PSumL = 99.064

PSumU = 288.117

TSumL = 199.0

TSumU = 201.0

Mean

PMeanL = 0.099

PMeanU = 0.288

TMeanL = 0.199

TMeanU = 0.201

Variance

PVarL = 0.0

PVarU = 0.034

TVarL = 0.159

TVarU = 0.162

Standard Deviation (SD)

PStdL = 0.002

PStdU = 0.183

TStdL = 0.399

TStdU = 0.402

Mean -Standard Deviation (Mean -SD)

PMeanStdL = 0.060

PMeanStdU = 0.215

Mean+Standard Deviation (Mean+SD)

PMeanStdpL = 0.110

PMeanStdpU = 0.452

Store the time

start_time = timeit.default_timer ()

Load ping response time and timestamp values from the target

machine in the dictionary

Ping response time

TargetP = []

Appendix A. Source Codes 119

with open(str(sys.argv [1]), ’rb’) as textfile:

pr = textfile.readlines ()

for row in pr:

ping = string.split(str(row), ’=’)

if len(ping) == 4:

TargetP.append(float(ping [3]. replace(’\r\n’, ’’).

replace(’ping’, ’’).replace(’ms’, ’’)))

Timestamp values

TargetT = []

with open(str(sys.argv [2]), ’rb’) as textfile:

pr = textfile.readlines ()

ts = []

i = 0

for row in pr:

ts.append(row.replace(’\n’, ’’))

if i == 1:

TargetT.append (0)

elif i <= 1001:

TargetT.append(int(ts[i])-int(ts[i-1]))

i += 1

Extract target characterisation metrics from ping response time

and timestamp values

Min

TargetPMin = min(TargetP)

TargetTMin = min(TargetT)

Max

TargetPMax = max(TargetP)

TargetTMax = max(TargetT)

Range

TargetPRange = TargetPMax - TargetPMin

Sum

TargetPSum = sum(TargetP)

TargetTSum = sum(TargetT)

Mean

TargetPMean = np.mean(TargetP)

TargetTMean = np.mean(TargetT)

Variance

TargetPVar = np.var(TargetP)

TargetTVar = np.var(TargetT)

Standard Deviation (SD)

TargetPStd = np.std(TargetP)

TargetTStd = np.std(TargetT)

Mean -Standard Deviation (Mean -SD)

TargetPMeanStd = TargetPMean - TargetPStd

Mean+Standard Deviation (Mean+SD)

TargetPMeanStdp = TargetPMean + TargetPStd

Appendix A. Source Codes 120

Detection thresholds

real = 0

virtual = 0

if PMinL <= TargetPMin <= PMinU:

real = real + 1

else:

virtual = virtual + 1

if PMaxL <= TargetPMax <= PMaxU:

real = real + 1

else:

virtual = virtual + 1

if PRangeL <= TargetPRange <= PRangeU:

real = real + 1

else:

virtual = virtual + 1

if PSumL <= TargetPSum <= PSumU:

real = real + 1

else:

virtual = virtual + 1

if PMeanL <= TargetPMean <= PMeanU:

real = real + 1

else:

virtual = virtual + 1

if PVarL <= TargetPVar <= PVarU:

real = real + 1

else:

virtual = virtual + 1

if PStdL <= TargetPStd <= PStdU:

real = real + 1

else:

virtual = virtual + 1

if PMeanStdL <= TargetPMeanStd <= PMeanStdU:

real = real + 1

else:

virtual = virtual + 1

if PMeanStdpL <= TargetPMeanStdp <= PMeanStdpU:

real = real + 1

else:

virtual = virtual + 1

if TminL <= TargetTMin <= TminU:

real = real + 1

else:

virtual = virtual + 1

if TMaxL <= TargetTMax <= TMaxU:

real = real + 1

else:

Appendix A. Source Codes 121

virtual = virtual + 1

if TSumL <= TargetTSum <= TSumU:

real = real + 1

else:

virtual = virtual + 1

if TMeanL <= TargetTMean <= TMeanU:

real = real + 1

else:

virtual = virtual + 1

if TVarL <= TargetTVar <= TVarU:

real = real + 1

else:

virtual = virtual + 1

if TStdL <= TargetTStd <= TStdU:

real = real + 1

else:

virtual = virtual + 1

if virtual == 0:

print "The target embedded machine is a REM"

else:

print "The target embedded machine is a VES"

Calculate the time required to detect if the target embedded

machine is a REMs or VESs

print "Time required by MEDA: " + str(timeit.default_timer () -

start_time) + " (s)\n"

exit()

A.4 Classification-based Algorithm

#!/usr/bin/python

-*- coding: utf -8 -*-

#

Copyright 2015 Valerio Selis

#

This program is free software; you can redistribute it and/or

modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation; either version 2 of the License ,

or

(at your option) any later version.

#

This program is distributed in the hope that it will be useful ,

Appendix A. Source Codes 122

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public

License

along with this program; if not , see <http ://www.gnu.org/

licenses/>.

#

Usage: python classification.py <dictionary.pkl > <FSM[ERT|L1FS]>

<CM[kNN|RF]> <num_pings [25|200] >

#

Import Python modules

import timeit , cPickle , sys

import sklearn

import sklearn.cross_validation as cv

import sklearn.neighbors as nb

from sklearn import metrics

from sklearn.ensemble import RandomForestClassifier

Classification of REMs and VESs by using k-NN or RF, where:

- X: target dataset (REMs and VESs) with features extracted by

the features selection method (FSM) for specified number of

pings

- y: target values (0: REM , 1: VES)

- FSM: features selection method (ERT or L1-FS)

- CM: classification method (k-NN or RF)

- num_pings: number of pings (25 or 200)

def Classification_algorithm(X, y, FSM , CM , num_pings):

if FSM == "ERT":

ERT

if num_pings == 25:

25 pings

k-NN

n_neighbors = 4

weights = ’distance ’

RF

max_features = ’sqrt’

n_estimators = 500

else:

200 pings

k-NN

n_neighbors = 2

weights = ’uniform ’

RF

max_features = ’sqrt’

Appendix A. Source Codes 123

n_estimators = 1000

else:

L1 -FS

if num_pings == 25:

25 pings

k-NN

n_neighbors = 1

weights = ’uniform ’

RF

max_features = ’sqrt’

n_estimators = 1000

else:

200 pings

k-NN

n_neighbors = 1

weights = ’uniform ’

RF

max_features = ’sqrt’

n_estimators = 500

start_time = timeit.default_timer ()

Split the dataset in two part: trainset (75%) and testset

(25%)

X_train , X_test , y_train , y_test = cv.train_test_split(X, y,

test_size =0.25 , random_state =0)

split_time = timeit.default_timer () - start_time

if CM == "kNN":

start_time = timeit.default_timer ()

knc = nb.KNeighborsClassifier(n_neighbors=n_neighbors ,

weights=weights)

knc.fit(X_train , y_train)

y_pred = knc.predict(X_test)

classification_time = timeit.default_timer () - start_time

A = metrics.accuracy_score(y_test , y_pred)

P, R, F1 , support = metrics.

precision_recall_fscore_support(y_test , y_pred)

ODP = float(A + P[0] + R[0] + F1[0] + P[1] + R[1] + F1[1])

/7.0)

Caclulate the time required to classify all machines (

REMs and VESs) in the dataset

print "Time required by k-NN: " + str(classification_time)

+ " (s)\n"

Display Accuracy , Precision , Recoll and F1-score for

both REMs and VESs

Appendix A. Source Codes 124

print "A: " + str(A)

print "P_REM: " + str(P[0])

print "R_REM: " + str(R[0])

print "F1_REM: " + str(F1[0])

print "P_VES: " + str(P[1])

print "R_VES: " + str(R[1])

print "F1_VES: " + str(F1[1])

print "Support REM: " + str(support [0])

print "Support VES: " + str(support [1])

Display ODP

print "ODP: " + str(ODP)

elif CM == "RF":

start_time = timeit.default_timer ()

rfc = RandomForestClassifier(n_estimators=n_estimators ,

max_features=max_features , random_state =0)

rfc.fit(X_train , y_train)

y_pred = rfc.predict(X_test)

classification_time = timeit.default_timer () - start_time

A = metrics.accuracy_score(y_test , y_pred)

P, R, F1 , support = metrics.

precision_recall_fscore_support(y_test , y_pred)

ODP = float(A + P[0] + R[0] + F1[0] + P[1] + R[1] + F1[1])

/7.0)

Caclulate the time required to classify all machines (

REMs and VESs) in the dataset

print "Time required by RF: " + str(classification_time) +

" (s)\n"

Display Accuracy , Precision , Recoll and F1-score for

both REMs and VESs

print "A: " + str(A)

print "P_REM: " + str(P[0])

print "R_REM: " + str(R[0])

print "F1_REM: " + str(F1[0])

print "P_VES: " + str(P[1])

print "R_VES: " + str(R[1])

print "F1_VES: " + str(F1[1])

print "Support REM: " + str(support [0])

print "Support VES: " + str(support [1])

Display ODP

print "ODP: " + str(ODP)

Check inputs

Appendix A. Source Codes 125

if len(sys.argv) != 5:

print "Usage: python " + str(sys.argv [0]) + " <dictionary.pkl >

<FSM[ERT|L1FS]> <CM[kNN|RF]> <num_pings [25|200] >"

exit()

Dictionary initialisation with list of all machines (REMs and

VESs) and their characterisations

with open(str(sys.argv [1]), ’rb’) as pklfile:

dictionary = cPickle.load(pklfile)

Retrieve from the dictionary the normilised X, which contains

features selected by FSM for specific number of pings

X = dictionary["X_" + str(sys.argv [2]) + str(sys.argv [4])]

Retrieve from the dictionary y

y = dictionary["y_" + str(sys.argv [2]) + str(sys.argv [4])]

Feature selection method used

FSM = str(sys.argv [2])

Classification method to be used for classifying REMs and VESs

CM = str(sys.argv [3])

Number of pings used by the characterisation algorithm

num_pings = str(sys.argv [4])

Launch the classification algorithm

Classification_algorithm(X, y, FSM , CM , num_pings)

exit()

A.5 Architecture-based Timing Test on Raspberry Pi 2

model B

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#define BCM2708_PERI_BASE 0x3F000000

// Read the cycle count register (CCNT)

static inline unsigned int get_cyclecount (void) {

unsigned int value;

asm volatile ("MRC p15 , 0, %0, C9 , C13 , 0\t\n": "=r"(value));

return value;

}

// Enable all counters (including cycle counter)

static inline void init_perfcounters (int32_t do_reset , int32_t

enable_divider) {

Appendix A. Source Codes 126

int32_t value = 1;

// Peform reset:

if (do_reset) {

value |= 2; // Reset all counters to zero

value |= 4; // Reset cycle counter to zero

}

if (enable_divider)

value |= 8; // Enable "by 64" divider for CCNT

value |= 16;

// Program the performance -counter control -register

asm volatile ("MCR p15 , 0, %0, c9 , c12 , 0\t\n" :: "r"(value));

// Enable all counters

asm volatile ("MCR p15 , 0, %0, c9 , c12 , 1\t\n" :: "r"(0 x8000000f

));

// Clear overflows

asm volatile ("MCR p15 , 0, %0, c9 , c12 , 3\t\n" :: "r"(0 x8000000f

));

}

// Perform the Architecture -based Timing Test

static int __init eacc_init(void) {

long int time_nop = 0;

long int time_access_sctlr;

long int difference_nop_sctlr;

// Disable counter overflow interrupts (just in case)

asm ("MCR p15 , 0, %0, C9 , C14 , 2\n\t" :: "r"(0 x8000000f));

printk(KERN_INFO "Architecture -based Timing Test kernel module

loaded\n");

init_perfcounters (1, 0);

// Measure the time of a NOP operation

time_nop = get_cyclecount ();

time_nop = get_cyclecount () - time_nop;

// Measure the time to access system control register (SCTLR)

time_access_sctlr = get_cyclecount ();

asm volatile ("MRC p15 , 0, %0, c1 , c0 , 0\t\n" : "=r"(c1) ::);

time_access_sctlr = get_cyclecount () - time_access_sctlr;

Appendix A. Source Codes 127

printk(KERN_INFO "Time of a NOP operation: %ld\n", time_nop);

printk(KERN_INFO "Time to access the SCTLR: %ld\n",

time_access_sctlr);

return 0;

}

static void __exit eacc_exit(void) {

printk(KERN_INFO "Architecture -based Timing Test kernel module

unloaded\n");

}

module_init(eacc_init);

module_exit(eacc_exit);

A.6 Architecture-based Timing Test: QEMU patch

// Patch for the ’qemu -2.12.0 - rc0/target/arm/helper.c’ file

...

uint64_t fake_counter = 0;

...

void pmccntr_sync(CPUARMState *env)

{

uint64_t temp_ticks;

temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),

ARM_CPU_FREQ , NANOSECONDS_PER_SECOND);

if (env ->cp15.c9_pmcr & PMCRD) {

/* Increment once every 64 processor clock cycles */

temp_ticks /= 64;

}

if (arm_ccnt_enabled(env)) {

env ->cp15.c15_ccnt = temp_ticks - env ->cp15.c15_ccnt;

}

fake_counter = 0;

}

Appendix A. Source Codes 128

static uint64_t pmccntr_read(CPUARMState *env , const ARMCPRegInfo

*ri)

{

uint64_t total_ticks;

if (! arm_ccnt_enabled(env)) {

/* Counter is disabled , do not change value */

return env ->cp15.c15_ccnt;

}

total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),

ARM_CPU_FREQ , NANOSECONDS_PER_SECOND);

if (env ->cp15.c9_pmcr & PMCRD) {

/* Increment once every 64 processor clock cycles */

total_ticks /= 64;

}

if (fake_counter == 0 || fake_counter == 3)

total_ticks = 2;

else if (fake_counter == 1)

total_ticks = 3;

else if (fake_counter == 2)

total_ticks = 0;

else if (fake_counter == 4)

total_ticks = 4;

fake_counter ++;

return total_ticks - env ->cp15.c15_ccnt;

}

...

Appendix B

Appendices

B.1 Performance Results from MEDA, k-NN and RF

Table B.1: MEDA performance results on recognising REMs and VESs for 1000 pings
(dataset of REMs from Chapter 3, Section 3.4.2).

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.4455 0.6164
0.7921 78.03%

VES 0.7504 1.0000 0.8574

Average 0.8752 0.7228 0.7369

Table B.2: MEDA performance results on recognising REMs and VESs for 25 pings.

Precision Recall F1-score Accuracy ODP

REM 0.5340 1.0000 0.6962
0.6728 71.78%

VES 1.0000 0.4764 0.6454

Average 0.7670 0.7382 0.6708

Table B.3: ERT+k -NN performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9878 0.9810 0.9844
0.9846 98.46%

VES 0.9815 0.9881 0.9848

Average 0.9847 0.9846 0.9846

129

Appendix B. Performance results and features from timestamp values 130

Table B.4: L1-FS+k -NN performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9842 0.9814 0.9828
0.9830 98.30%

VES 0.9818 0.9845 0.9832

Average 0.9830 0.9830 0.9830

Table B.5: ERT+RF performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9968 0.9952 0.9960
0.9960 99.60%

VES 0.9953 0.9968 0.9960

Average 0.9960 0.9960 0.9960

Table B.6: L1-FS+RF performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9968 0.9952 0.9960
0.9960 99.60%

VES 0.9953 0.9968 0.9960

Average 0.9960 0.9960 0.9960

Table B.7: MEDA performance results on recognising REMs and VESs for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 0.6083 1.0000 0.7564
0.7585 78.53%

VES 1.0000 0.6136 0.7605

Average 0.8041 0.8068 0.7585

Table B.8: ERT+k -NN performance results on recognising REMs and VESs for 200
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9900 0.9964 0.9932
0.9932 99.32%

VES 0.9964 0.9901 0.9932

Average 0.9932 0.9932 0.9932

Appendix B. Performance results and features from timestamp values 131

Table B.9: L1-FS+k -NN performance results on recognising REMs and VESs for 200
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9955 0.9899 0.9927
0.9928 99.28%

VES 0.9901 0.9956 0.9929

Average 0.9928 0.9928 0.9928

Table B.10: ERT+RF performance results on recognising REMs and VESs for 200
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9996 0.9976 0.9986
0.9986 99.86%

VES 0.9976 0.9996 0.9986

Average 0.9986 0.9986 0.9986

Table B.11: L1-FS+RF performance results on recognising REMs and VESs for 200
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9992 0.9976 0.9984
0.9984 99.84%

VES 0.9976 0.9992 0.9984

Average 0.9984 0.9984 0.9984

Table B.12: MEDA performance results on recognising unknown REMs and VESs
for 25 pings.

Precision Recall F1-score Accuracy ODP

REM 0.0000 0.5000 0.0000
0.5000 57.14%

VES 1.0000 1.0000 1.0000

Average 0.5000 0.7500 0.5000

Table B.13: ERT+k -NN performance results on recognising unknown REMs and
VESs for 25 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.8075 0.8821
0.9005 94.00%

VES 1.0000 0.9935 0.9967

Average 1.0000 0.9005 0.9394

Appendix B. Performance results and features from timestamp values 132

Table B.14: L1-FS+k -NN performance results on recognising unknown REMs and
VESs for 25 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.8960 0.9420
0.9360 96.26%

VES 1.0000 0.9760 0.9879

Average 1.0000 0.9360 0.9649

Table B.15: ERT+RF performance results on recognising unknown REMs and VESs
for 25 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.9585 0.9786
0.9750 98.56%

VES 1.0000 0.9915 0.9957

Average 1.0000 0.9750 0.9872

Table B.16: L1-FS+RF performance results on recognising unknown REMs and VESs
for 25 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.4008 0.5723
0.9850 99.14%

VES 1.0000 0.9935 0.9967

Average 1.0000 0.6972 0.7845

Table B.17: MEDA performance results on recognising unknown REMs and VESs
for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 0.7750 0.5005 0.2760
0.5003 72.17%

VES 1.0000 1.0000 1.0000

Average 0.8875 0.7503 0.6380

Table B.18: ERT+k -NN performance results on recognising unknown REMs and
VESs for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.9775 0.9885
0.9783 98.75%

VES 1.0000 0.9790 0.9893

Average 1.0000 0.9783 0.9889

Appendix B. Performance results and features from timestamp values 133

Table B.19: L1-FS+k -NN performance results on recognising unknown REMs and
VESs for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.9635 0.9811
0.9793 98.80%

VES 1.0000 0.9950 0.9975

Average 1.0000 0.9793 0.9893

Table B.20: ERT+RF performance results on recognising unknown REMs and VESs
for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.9995 0.9997
0.9990 99.94%

VES 1.0000 0.9985 0.9992

Average 1.0000 0.9990 0.9995

Table B.21: L1-FS+RF performance results on recognising unknown REMs and VESs
for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 1.0000 0.9410 0.9687
0.9700 98.26%

VES 1.0000 0.9990 0.9995

Average 1.0000 0.9700 0.9841

Table B.22: k -NN performance results on recognising REMs and FTAs for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 0.0000 0.0600 0.0011
0.9410 95.44%

FTA 1.0000 0.9400 0.9700

Average 1.0000 0.0600 0.1100

Table B.23: RF performance results on recognising REMs and FTAs for 200 pings.

Precision Recall F1-score Accuracy ODP

REM 0.0000 0.6500 0.2100
0.3480 53.97%

FTA 1.0000 0.3500 0.5200

Average 1.0000 0.6500 0.7900

Appendix B. Performance results and features from timestamp values 134

B.2 Performance Results from k-NN and RF without the

Normalisation Step

Table B.24: ERT+k -NN performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9818 0.9810 0.9814
0.9816 98.16%

VES 0.9814 0.9822 0.9818

Average 0.9816 0.9816 0.9816

Table B.25: L1-FS+k -NN performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9471 0.9608 0.9539
0.9540 95.40%

VES 0.9610 0.9473 0.9541

Average 0.9540 0.9541 0.9540

Table B.26: ERT+RF performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9956 0.9943 0.9950
0.9846 99.35%

VES 0.9945 0.9956 0.9950

Average 0.9950 0.9950 0.9950

Table B.27: L1-FS+RF performance results on recognising REMs and VESs for 25
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9919 0.9943 0.9931
0.9846 99.20%

VES 0.9944 0.9921 0.9933

Average 0.9932 0.9932 0.9932

Appendix B. Performance results and features from timestamp values 135

Table B.28: ERT+k -NN performance results on recognising REMs and VESs for 200
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9830 0.9802 0.9816
0.9818 98.18%

VES 0.9806 0.9834 0.9820

Average 0.9818 0.9818 0.9818

Table B.29: L1-FS+k -NN performance results on recognising REMs and VESs for
200 pings.

Precision Recall F1-score Accuracy ODP

REM 0.9783 0.9806 0.9794
0.9796 97.96%

VES 0.9809 0.9786 0.9798

Average 0.9796 0.9796 0.9796

Table B.30: ERT+RF performance results on recognising REMs and VESs for 200
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9996 0.9984 0.9990
0.9846 99.69%

VES 0.9984 0.9996 0.9990

Average 0.9990 0.9990 0.9990

Table B.31: L1-FS+RF performance results on recognising REMs and VESs for 200
pings.

Precision Recall F1-score Accuracy ODP

REM 0.9984 0.9976 0.9980
0.9846 99.61%

VES 0.9976 0.9984 0.9980

Average 0.9980 0.9980 0.9980

Appendix B. Performance results and features from timestamp values 136

B.3 Cumulative Frequency Histograms for Timestamp Fea-

tures used to Detect FTA

(a) Minimum value of T. (b) Maximum value of T.

(c) Sum of T. values. (d) Mean of T. values.

(e) Mode of T. values. (f) Median of T. values.

Figure B.1: Cumulative frequency histograms for T. features obtained from the Ar-
duino Yún and FTA for 200 pings and 1000 characterisation tests.

Appendix B. Performance results and features from timestamp values 137

(g) Range of T. values. (h) Variance of T. values.

(i) Standard deviation of T. values. (j) Upper bound (95%) of T. values.

(k) Lower bound (95%) of T. values. (l) Skewness of T. values.

(m) Kurtosis of T. values. (n) Pearson correlation coefficient of T. val-
ues.

Figure B.1: (continued) Cumulative frequency histograms for T. features obtained
from the Arduino Yún and FTA for 200 pings and 1000 characterisation tests.

Bibliography

[1] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-

peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-

learn: Machine Learning in Python. Journal of Machine Learning Research,

12:2825–2830, 2011. URL http://dblp.uni-trier.de/db/journals/jmlr/

jmlr12.html{#}PedregosaVGMTGBPWDVPCBPD11.

[2] The Internet of Things: A survey. Computer Networks, 54(15):2787–2805, October

2010. ISSN 13891286. doi: 10.1016/j.comnet.2010.05.010. URL http://www.

sciencedirect.com/science/article/pii/S1389128610001568.

[3] Min Chen, Jiafu Wan, and Fang Li. Machine-to-Machine Communications. KSII

Transactions on Internet and Information Systems (TIIS), 6(2):480–497, 2012.

ISSN 1976-7277. URL http://www.dbpia.co.kr/Article/1628958.

[4] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of Things (IoT): A vision, architectural elements, and fu-

ture directions. Future Generation Computer Systems, 29(7):1645–1660, Septem-

ber 2013. ISSN 0167739X. doi: 10.1016/j.future.2013.01.010. URL http:

//www.sciencedirect.com/science/article/pii/S0167739X13000241.

[5] Mahbubul Alam, Rasmus H Nielsen, and Neeli R Prasad. The evolution of M2M

into IoT. In 2013 1st International Black Sea Conference on Communications and

Networking (BlackSeaCom), pages 112–115. IEEE, July 2013.

[6] Valerio Selis and Alan Marshall. MEDA: A Machine Emulation Detection

Algorithm. In Proceedings of the 12th International Conference on Security

and Cryptography, pages 228–235. SCITEPRESS - Science and and Technology

Publications, 2015. ISBN 978-989-758-117-5. doi: 10.5220/0005535202280235.

URL http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/

0005535202280235.

[7] Anas M Mzahm, Mohd Sharifuddin Ahmad, and Alicia YC Tang. Agents of Things

(AoT): An intelligent operational concept of the Internet of Things (IoT). In

139

http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html{#}PedregosaVGMTGBPWDVPCBPD11
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html{#}PedregosaVGMTGBPWDVPCBPD11
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://www.dbpia.co.kr/Article/1628958
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005535202280235
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005535202280235

Bibliography 140

2013 13th International Conference on Intellient Systems Design and Applications,

pages 159–164. IEEE, December 2013.

[8] Andrea Giordano, Giandomenico Spezzano, and Andrea Vinci. Smart Agents and

Fog Computing for Smart City Applications. In International Conference on Smart

Cities, pages 137–146. Springer, 2016.

[9] Giancarlo Fortino. Agents Meet the IoT: Toward Ecosystems of Networked Smart

Objects. IEEE Systems, Man, and Cybernetics Magazine, 2(2):43–47, April 2016.

[10] George Lawton. Machine-to-machine technology gears up for growth. Computer,

37(9):12–15, September 2004.

[11] Gyu Myoung Lee, Noel Crespi, Jun Kyun Choi, and Matthieu Boussard. Internet

of Things. Evolution of Telecommunication Services, 7768:257–282, 2013. doi:

10.1007/978-3-642-41569-2 13. URL http://link.springer.com/chapter/10.

1007/978-3-642-41569-2_13.

[12] Juan Antonio Guerrero-ibanez, Sherali Zeadally, and Juan Contreras-Castillo. In-

tegration challenges of intelligent transportation systems with connected vehicle,

cloud computing, and internet of things technologies. IEEE Wireless Communi-

cations, 22(6):122–128, December 2015.

[13] Intel Corporation. Building an Intelligent Transportation System with the

Internet of Things (IoT), 2014. URL http://www.intel.co.uk/content/dam/

www/program/embedded/internet-of-things/blueprints/iot-building-

intelligent-transport-system-blueprint.pdf. Accessed: 14-10-2016.

[14] Rifat Shahriyar, Md Faizul Bari, Gourab Kundu, Sheikh Iqbal Ahamed, and

Md Mostofa Akbar. Intelligent mobile health monitoring system (IMHMS). In

International Conference on Electronic Healthcare, pages 5–12. Springer, Septem-

ber 2009.

[15] M Brian Blake. An Internet of Things for Healthcare. IEEE Internet Computing,

19(4):4–6, July 2015.

[16] SM Riazul Islam, Daehan Kwak, MD Humaun Kabir, Mahmud Hossain, and

Kyung-Sup Kwak. The Internet of Things for Health Care: A Comprehensive

Survey. IEEE Access, 3:678–708, 2015.

[17] Chia-Fen Chi and Ratna Sari Dewi. Visual and auditory icons for intelligent

building. In 2014 International Conference on Intelligent Green Building and

Smart Grid (IGBSG), pages 1–5. IEEE, April 2014.

[18] Ahmad Shahi, Md Nasir Sulaiman, Norwati Mustapha, and Thinagaran Perumal.

Naive Bayesian decision model for the interoperability of heterogeneous systems in

an intelligent building environment. Automation in Construction, 54:83–92, 2015.

http://link.springer.com/chapter/10.1007/978-3-642-41569-2_13
http://link.springer.com/chapter/10.1007/978-3-642-41569-2_13
http://www.intel.co.uk/content/dam/www/program/embedded/internet-of-things/blueprints/iot-building-intelligent-transport-system-blueprint.pdf
http://www.intel.co.uk/content/dam/www/program/embedded/internet-of-things/blueprints/iot-building-intelligent-transport-system-blueprint.pdf
http://www.intel.co.uk/content/dam/www/program/embedded/internet-of-things/blueprints/iot-building-intelligent-transport-system-blueprint.pdf

Bibliography 141

[19] Rawlson O’Neil King. Cyber security for intelligent buildings. Engineering &

Technology Reference, 2016.

[20] BBC News Technology. Malware is making ATMs “spit cash”, 22 November

2016. URL http://www.bbc.co.uk/news/technology-38063142. Accessed: 14-

10-2016.

[21] BBC News Technology. $5 “Poison Tap” hacks locked computers, 17 November

2016. URL http://www.bbc.co.uk/news/technology-38012699. Accessed: 14-

10-2016.

[22] BBC News Technology. Def Con: Do smart devices mean dumb security?, 6 August

2016. URL http://www.bbc.co.uk/news/technology-36995288. Accessed: 14-

10-2016.

[23] BBC News Asia. South China Sea: Vietnam airport screens hacked, 29 July

2016. URL http://www.bbc.co.uk/news/world-asia-36927674. Accessed: 14-

10-2016.

[24] BBC News Technology. Osram Lightify light bulbs “vulnerable to hack”, 27 July

2016. URL http://www.bbc.co.uk/news/technology-36903274. Accessed: 14-

10-2016.

[25] BBC News Technology. Web baby-monitoring cameras open to hacking, study

warns, 3 September 2015. URL http://www.bbc.co.uk/news/technology-

34138480. Accessed: 14-10-2016.

[26] BBC News Technology. Breached webcam and baby monitor site flagged by

watchdogs, 21 November 2014. URL http://www.bbc.co.uk/news/technology-

30121159. Accessed: 14-10-2016.

[27] BBC News Technology. Smart TVs subverted by radio attack, 9 June 2014. URL

http://www.bbc.co.uk/news/technology-27761756. Accessed: 14-10-2016.

[28] BBC News Technology. “Contagious” wi-fi virus created by Liverpool researchers,

26 February 2014. URL http://www.bbc.co.uk/news/technology-26352439.

Accessed: 14-10-2016.

[29] BBC News Technology. Fridge sends spam emails as attack hits smart gadgets,

17 February 2014. URL http://www.bbc.co.uk/news/technology-25780908.

Accessed: 14-10-2016.

[30] Dave Lee. Global internet slows after “biggest attack in history”, 27 March

2013. URL http://www.bbc.co.uk/news/technology-21954636. Accessed: 14-

10-2016.

http://www.bbc.co.uk/news/technology-38063142
http://www.bbc.co.uk/news/technology-38012699
http://www.bbc.co.uk/news/technology-36995288
http://www.bbc.co.uk/news/world-asia-36927674
http://www.bbc.co.uk/news/technology-36903274
http://www.bbc.co.uk/news/technology-34138480
http://www.bbc.co.uk/news/technology-34138480
http://www.bbc.co.uk/news/technology-30121159
http://www.bbc.co.uk/news/technology-30121159
http://www.bbc.co.uk/news/technology-27761756
http://www.bbc.co.uk/news/technology-26352439
http://www.bbc.co.uk/news/technology-25780908
http://www.bbc.co.uk/news/technology-21954636

Bibliography 142

[31] BBC News Technology. Iranian oil terminal “offline” after “malware attack”,

23 April 2012. URL http://www.bbc.co.uk/news/technology-17811565. Ac-

cessed: 14-10-2016.

[32] Jonathan Fildes. Stuxnet worm “targeted high-value Iranian assets”, 23 September

2010. URL http://www.bbc.co.uk/news/technology-11388018. Accessed: 14-

10-2016.

[33] BBC News Technology. First human “infected with computer virus”, 27 May 2010.

URL http://www.bbc.co.uk/news/10158517. Accessed: 14-10-2016.

[34] Jose Pagliery. Trump Hotels attacked by hackers – again, 5 April 2016. URL http:

//money.cnn.com/2016/04/05/technology/trump-hotels-hacked/. Accessed:

14-10-2016.

[35] Ahiza Garcia. Pokemon Go crashes and hackers claim responsibility, 18

July 2016. URL http://money.cnn.com/2016/07/16/technology/pokemon-go-

crash-game/. Accessed: 13-02-2017.

[36] Jose Pagliery. Trump hotels hacked, credit card data at risk, 30 September

2015. URL http://money.cnn.com/2015/09/30/technology/trump-hotels-

hack/. Accessed: 14-10-2016.

[37] Sam Thielman and Elle Hunt. Cyber attack: hackers “weaponised” everyday

devices with malware, 22 October 2016. URL https://www.theguardian.com/

technology/2016/oct/22/cyber-attack-hackers-weaponised-everyday-

devices-with-malware-to-mount-assault. Accessed: 14-10-2016.

[38] Charles Arthur. What the New York Times Chinese hack tells us about the

layer cake of hacking, 1 February 2013. URL https://www.theguardian.

com/technology/2013/jan/31/new-york-times-hacking-china-lessons. Ac-

cessed: 14-10-2016.

[39] Carly Page. BlackBerry hacks a kettle to demonstrate IoT security strain,

20 July 2016. URL http://www.theinquirer.net/inquirer/news/2465342/

blackberry-hacks-a-kettle-to-demonstrate-iot-security-strain. Ac-

cessed: 14-10-2016.

[40] Lee Bell. Apple advises users on iCloud security in response to China cyber attack

reports, 22 October 2014. URL http://www.theinquirer.net/inquirer/news/

2376697/china-targets-apples-icloud-with-man-in-the-middle-cyber-

attacks. Accessed: 14-10-2016.

[41] Lee Bell. Belkin fixes home fire and blackout vulnerabilities in its Wemo

systems, 19 February 2014. URL http://www.theinquirer.net/inquirer/

news/2329796/belkin-fixes-home-fire-and-blackout-vulnerabilities-

in-its-wemo-systems. Accessed: 14-10-2016.

http://www.bbc.co.uk/news/technology-17811565
http://www.bbc.co.uk/news/technology-11388018
http://www.bbc.co.uk/news/10158517
http://money.cnn.com/2016/04/05/technology/trump-hotels-hacked/
http://money.cnn.com/2016/04/05/technology/trump-hotels-hacked/
http://money.cnn.com/2016/07/16/technology/pokemon-go-crash-game/
http://money.cnn.com/2016/07/16/technology/pokemon-go-crash-game/
http://money.cnn.com/2015/09/30/technology/trump-hotels-hack/
http://money.cnn.com/2015/09/30/technology/trump-hotels-hack/
https://www.theguardian.com/technology/2016/oct/22/cyber-attack-hackers-weaponised-everyday-devices-with-malware-to-mount-assault
https://www.theguardian.com/technology/2016/oct/22/cyber-attack-hackers-weaponised-everyday-devices-with-malware-to-mount-assault
https://www.theguardian.com/technology/2016/oct/22/cyber-attack-hackers-weaponised-everyday-devices-with-malware-to-mount-assault
https://www.theguardian.com/technology/2013/jan/31/new-york-times-hacking-china-lessons
https://www.theguardian.com/technology/2013/jan/31/new-york-times-hacking-china-lessons
http://www.theinquirer.net/inquirer/news/2465342/blackberry-hacks-a-kettle-to-demonstrate-iot-security-strain
http://www.theinquirer.net/inquirer/news/2465342/blackberry-hacks-a-kettle-to-demonstrate-iot-security-strain
http://www.theinquirer.net/inquirer/news/2376697/china-targets-apples-icloud-with-man-in-the-middle-cyber-attacks
http://www.theinquirer.net/inquirer/news/2376697/china-targets-apples-icloud-with-man-in-the-middle-cyber-attacks
http://www.theinquirer.net/inquirer/news/2376697/china-targets-apples-icloud-with-man-in-the-middle-cyber-attacks
http://www.theinquirer.net/inquirer/news/2329796/belkin-fixes-home-fire-and-blackout-vulnerabilities-in-its-wemo-systems
http://www.theinquirer.net/inquirer/news/2329796/belkin-fixes-home-fire-and-blackout-vulnerabilities-in-its-wemo-systems
http://www.theinquirer.net/inquirer/news/2329796/belkin-fixes-home-fire-and-blackout-vulnerabilities-in-its-wemo-systems

Bibliography 143

[42] The Register Security. Samsung smart fridge leaves Gmail logins open to attack,

24 August 2015. URL http://www.theregister.co.uk/2015/08/24/smart_

fridge_security_fubar/. Accessed: 14-10-2016.

[43] The Register Security. Infosec geniuses hack a Canon PRINTER and install

DOOM, 15 September 2014. URL http://www.theregister.co.uk/2014/09/

15/hacking_printers_to_pla_doom/. Accessed: 14-10-2016.

[44] Katie Mettler. Somebody keeps hacking these Dallas road signs with messages

about Donald Trump, Bernie Sanders and Harambe the gorilla, 6 June 2016.

URL https://www.washingtonpost.com/news/morning-mix/wp/2016/06/

06/somebody-keeps-hacking-these-dallas-road-signs-with-messages-

about-donald-trump-bernie-sanders-and-harambe-the-gorilla/. Ac-

cessed: 14-10-2016.

[45] Jamie Condliffe. Ransomware Took San Francisco’s Public Transit for a

Ride, 28 November 2016. URL https://www.technologyreview.com/s/602979/

ransomware-took-san-franciscos-public-transit-for-a-ride/. Accessed:

14-10-2016.

[46] Jamie Condliffe. The Internet of Things Goes Rogue, 30 September

2016. URL https://www.technologyreview.com/s/602519/the-internet-of-

things-goes-rogue/. Accessed: 14-10-2016.

[47] Tom Simonite. The Hackers’ New Weapons: Routers and Printers, 28 April

2015. URL https://www.technologyreview.com/s/537031/the-hackers-new-

weapons-routers-and-printers/. Accessed: 14-10-2016.

[48] Erica Naone. Taking Control of Cars From Afar, 14 March 2011. URL

https://www.technologyreview.com/s/423292/taking-control-of-cars-

from-afar/. Accessed: 14-10-2016.

[49] Dina Fine Maron. A New Cyber Concern: Hack Attacks on Medical Devices,

25 June 2013. URL https://www.scientificamerican.com/article/a-new-

cyber-concern-hack/. Accessed: 14-10-2016.

[50] Kim Zetter. Hacker Can Send Fatal Dose to Hospital Drug Pumps, 8

May 2015. URL https://www.wired.com/2015/06/hackers-can-send-fatal-

doses-hospital-drug-pumps/. Accessed: 14-10-2016.

[51] Kim Zetter. A Cyberattack Has Caused Confirmed Physical Damage for the

Second Time Ever, 8 January 2015. URL https://www.wired.com/2015/01/

german-steel-mill-hack-destruction/. Accessed: 14-10-2016.

[52] Andy Greenberg. Hackers Can Disable a Sniper RifleOr Change Its Target, 26 July

2015. URL https://www.wired.com/2015/07/hackers-can-disable-sniper-

rifleor-change-target/. Accessed: 14-10-2016.

http://www.theregister.co.uk/2015/08/24/smart_fridge_security_fubar/
http://www.theregister.co.uk/2015/08/24/smart_fridge_security_fubar/
http://www.theregister.co.uk/2014/09/15/hacking_printers_to_pla_doom/
http://www.theregister.co.uk/2014/09/15/hacking_printers_to_pla_doom/
https://www.washingtonpost.com/news/morning-mix/wp/2016/06/06/somebody-keeps-hacking-these-dallas-road-signs-with-messages-about-donald-trump-bernie-sanders-and-harambe-the-gorilla/
https://www.washingtonpost.com/news/morning-mix/wp/2016/06/06/somebody-keeps-hacking-these-dallas-road-signs-with-messages-about-donald-trump-bernie-sanders-and-harambe-the-gorilla/
https://www.washingtonpost.com/news/morning-mix/wp/2016/06/06/somebody-keeps-hacking-these-dallas-road-signs-with-messages-about-donald-trump-bernie-sanders-and-harambe-the-gorilla/
https://www.technologyreview.com/s/602979/ransomware-took-san-franciscos-public-transit-for-a-ride/
https://www.technologyreview.com/s/602979/ransomware-took-san-franciscos-public-transit-for-a-ride/
https://www.technologyreview.com/s/602519/the-internet-of-things-goes-rogue/
https://www.technologyreview.com/s/602519/the-internet-of-things-goes-rogue/
https://www.technologyreview.com/s/537031/the-hackers-new-weapons-routers-and-printers/
https://www.technologyreview.com/s/537031/the-hackers-new-weapons-routers-and-printers/
https://www.technologyreview.com/s/423292/taking-control-of-cars-from-afar/
https://www.technologyreview.com/s/423292/taking-control-of-cars-from-afar/
https://www.scientificamerican.com/article/a-new-cyber-concern-hack/
https://www.scientificamerican.com/article/a-new-cyber-concern-hack/
https://www.wired.com/2015/06/hackers-can-send-fatal-doses-hospital-drug-pumps/
https://www.wired.com/2015/06/hackers-can-send-fatal-doses-hospital-drug-pumps/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/07/hackers-can-disable-sniper-rifleor-change-target/
https://www.wired.com/2015/07/hackers-can-disable-sniper-rifleor-change-target/

Bibliography 144

[53] Andy Greenberg. Hackers Remotely Kill a Jeep on the HighwayWith Me in It, 21

July 2015. URL https://www.wired.com/2015/07/hackers-remotely-kill-

jeep-highway/. Accessed: 14-10-2016.

[54] Andy Greenberg. The Unpatchable Malware That Infects USBs Is Now on

the Loose, 2 October 2014. URL https://www.wired.com/2014/10/code-

published-for-unfixable-usb-attack/. Accessed: 14-10-2016.

[55] Dave Thier. Blizzard And “World of Warcraft” Taken Down By DDoS Attacks,

14 April 2016. URL www.forbes.com/sites/davidthier/2016/04/14/lizard-

squad-blizzard-and-world-of-warcraft-hit-my-multiple-attacks/. Ac-

cessed: 14-10-2016.

[56] John Archer. Sony Pictures Hack Could Also Impact Sony’s PS4, Phone And TV

Business, 18 December 2014. URL http://www.forbes.com/sites/johnarcher/

2014/12/18/why-the-sony-pictures-hack-could-wreak-havoc-on-sonys-

ps4-phone-and-tv-sales/. Accessed: 14-10-2016.

[57] Parmy Olson. The Largest Cyber Attack In History Has Been Hitting Hong Kong

Sites, 20 November 2014. URL http://www.forbes.com/sites/parmyolson/

2014/11/20/the-largest-cyber-attack-in-history-has-been-hitting-

hong-kong-sites/. Accessed: 14-10-2016.

[58] Elise Ackerman. The U.S. Department Of Homeland Security Warns

iPhone, iPad Owners To Beware Of “Masque Attack”, 13 November 2014.

URL http://www.forbes.com/sites/eliseackerman/2014/11/13/the-u-

s-department-of-homeland-security-warns-iphone-ipad-owners-to-

beware-of-masque-attack/. Accessed: 14-10-2016.

[59] Leo King. Smart Home? These Connected LED Light Bulbs Could Leak Your

Wi-Fi Password, 9 July 2014. URL http://www.forbes.com/sites/leoking/

2014/07/09/smart-home-these-connected-led-light-bulbs-could-leak-

your-wi-fi-password/. Accessed: 14-10-2016.

[60] Tamlin Magee. Trustwave Demonstrates Malware That Logs Touchscreen Swipes

To Record Your PIN, 27 January 2014. URL http://www.forbes.com/sites/

tamlinmagee/2014/01/27/trustwave-demonstrates-malware-that-logs-

touchscreen-swipes-to-record-your-pin/. Accessed: 14-10-2016.

[61] Andy Greenberg. Hackers Reveal Nasty New Car Attacks–With Me Behind The

Wheel, 24 July 2013. URL http://www.forbes.com/sites/andygreenberg/

2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-

the-wheel-video/. Accessed: 14-10-2016.

[62] Lucian Constantin. Attackers hijack CCTV cameras to launch DDoS attacks,

22 October 2015. URL http://www.computerworld.com/article/2996079/

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2014/10/code-published-for-unfixable-usb-attack/
https://www.wired.com/2014/10/code-published-for-unfixable-usb-attack/
www.forbes.com/sites/davidthier/2016/04/14/lizard-squad-blizzard-and-world-of-warcraft-hit-my-multiple-attacks/
www.forbes.com/sites/davidthier/2016/04/14/lizard-squad-blizzard-and-world-of-warcraft-hit-my-multiple-attacks/
http://www.forbes.com/sites/johnarcher/2014/12/18/why-the-sony-pictures-hack-could-wreak-havoc-on-sonys-ps4-phone-and-tv-sales/
http://www.forbes.com/sites/johnarcher/2014/12/18/why-the-sony-pictures-hack-could-wreak-havoc-on-sonys-ps4-phone-and-tv-sales/
http://www.forbes.com/sites/johnarcher/2014/12/18/why-the-sony-pictures-hack-could-wreak-havoc-on-sonys-ps4-phone-and-tv-sales/
http://www.forbes.com/sites/parmyolson/2014/11/20/the-largest-cyber-attack-in-history-has-been-hitting-hong-kong-sites/
http://www.forbes.com/sites/parmyolson/2014/11/20/the-largest-cyber-attack-in-history-has-been-hitting-hong-kong-sites/
http://www.forbes.com/sites/parmyolson/2014/11/20/the-largest-cyber-attack-in-history-has-been-hitting-hong-kong-sites/
http://www.forbes.com/sites/eliseackerman/2014/11/13/the-u-s-department-of-homeland-security-warns-iphone-ipad-owners-to-beware-of-masque-attack/
http://www.forbes.com/sites/eliseackerman/2014/11/13/the-u-s-department-of-homeland-security-warns-iphone-ipad-owners-to-beware-of-masque-attack/
http://www.forbes.com/sites/eliseackerman/2014/11/13/the-u-s-department-of-homeland-security-warns-iphone-ipad-owners-to-beware-of-masque-attack/
http://www.forbes.com/sites/leoking/2014/07/09/smart-home-these-connected-led-light-bulbs-could-leak-your-wi-fi-password/
http://www.forbes.com/sites/leoking/2014/07/09/smart-home-these-connected-led-light-bulbs-could-leak-your-wi-fi-password/
http://www.forbes.com/sites/leoking/2014/07/09/smart-home-these-connected-led-light-bulbs-could-leak-your-wi-fi-password/
http://www.forbes.com/sites/tamlinmagee/2014/01/27/trustwave-demonstrates-malware-that-logs-touchscreen-swipes-to-record-your-pin/
http://www.forbes.com/sites/tamlinmagee/2014/01/27/trustwave-demonstrates-malware-that-logs-touchscreen-swipes-to-record-your-pin/
http://www.forbes.com/sites/tamlinmagee/2014/01/27/trustwave-demonstrates-malware-that-logs-touchscreen-swipes-to-record-your-pin/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.computerworld.com/article/2996079/internet-of-things/attackers-hijack-cctv-cameras-to-launch-ddos-attacks.html
http://www.computerworld.com/article/2996079/internet-of-things/attackers-hijack-cctv-cameras-to-launch-ddos-attacks.html

Bibliography 145

internet-of-things/attackers-hijack-cctv-cameras-to-launch-ddos-

attacks.html. Accessed: 14-10-2016.

[63] Darlene Storm. Researchers hack a pacemaker, kill a man(nequin), 8 September

2015. URL https://www.computerworld.com/article/2981527/cybercrime-

hacking/researchers-hack-a-pacemaker-kill-a-man-nequin.html. Ac-

cessed: 14-10-2016.

[64] Darlene Storm. MEDJACK: Hackers hijacking medical devices to create back-

doors in hospital networks, 8 June 2015. URL https://www.computerworld.

com/article/2932371/cybercrime-hacking/medjack-hackers-hijacking-

medical-devices-to-create-backdoors-in-hospital-networks.html. Ac-

cessed: 14-10-2016.

[65] Gregg Keizer. Garden-variety DDoS attack knocks North Korea off the In-

ternet, 23 December 2015. URL https://www.computerworld.com/article/

2862652/garden-variety-ddos-attack-knocks-north-korea-off-the-

internet.html. Accessed: 14-10-2016.

[66] Jaikumar Vijayan. Target attack shows danger of remotely accessible HVAC

systems, 7 February 2014. URL https://www.computerworld.com/article/

2487452/cybercrime-hacking/target-attack-shows-danger-of-remotely-

accessible-hvac-systems.html. Accessed: 14-10-2016.

[67] Darlene Storm. Hackers exploit SCADA holes to take full control of critical infras-

tructure, 15 January 2014. URL https://www.computerworld.com/article/

2475789/cybercrime-hacking/hackers-exploit-scada-holes-to-take-

full-control-of-critical-infrastructure.html. Accessed: 14-10-2016.

[68] Lucian Constantin. Researcher hijacks unsecure embedded devices en masse for

Internet scanning project, 19 March 2013. URL https://www.computerworld.

com/article/2495541/security0/researcher-hijacks-unsecure-embedded-

devices-en-masse-for-internet-scanning-project.html. Accessed: 14-10-

2016.

[69] Michael Kan. Upgraded Mirai botnet disrupts Deutsche Telekom by infect-

ing routers, 28 November 2016. URL http://www.pcworld.com/article/

3145449/security/upgraded-mirai-botnet-disrupts-deutsche-telekom-

by-infecting-routers.html. Accessed: 14-10-2016.

[70] Jared Newman. The Internet of Things is all fun and games un-

til a racist takes over your printer, 28 March 2016. URL http:

//www.pcworld.com/article/3048794/security/the-internet-of-things-

is-all-fun-and-games-until-a-racist-takes-over-your-printer.html.

Accessed: 14-10-2016.

http://www.computerworld.com/article/2996079/internet-of-things/attackers-hijack-cctv-cameras-to-launch-ddos-attacks.html
http://www.computerworld.com/article/2996079/internet-of-things/attackers-hijack-cctv-cameras-to-launch-ddos-attacks.html
http://www.computerworld.com/article/2996079/internet-of-things/attackers-hijack-cctv-cameras-to-launch-ddos-attacks.html
https://www.computerworld.com/article/2981527/cybercrime-hacking/researchers-hack-a-pacemaker-kill-a-man-nequin.html
https://www.computerworld.com/article/2981527/cybercrime-hacking/researchers-hack-a-pacemaker-kill-a-man-nequin.html
https://www.computerworld.com/article/2932371/cybercrime-hacking/medjack-hackers-hijacking-medical-devices-to-create-backdoors-in-hospital-networks.html
https://www.computerworld.com/article/2932371/cybercrime-hacking/medjack-hackers-hijacking-medical-devices-to-create-backdoors-in-hospital-networks.html
https://www.computerworld.com/article/2932371/cybercrime-hacking/medjack-hackers-hijacking-medical-devices-to-create-backdoors-in-hospital-networks.html
https://www.computerworld.com/article/2862652/garden-variety-ddos-attack-knocks-north-korea-off-the-internet.html
https://www.computerworld.com/article/2862652/garden-variety-ddos-attack-knocks-north-korea-off-the-internet.html
https://www.computerworld.com/article/2862652/garden-variety-ddos-attack-knocks-north-korea-off-the-internet.html
https://www.computerworld.com/article/2487452/cybercrime-hacking/target-attack-shows-danger-of-remotely-accessible-hvac-systems.html
https://www.computerworld.com/article/2487452/cybercrime-hacking/target-attack-shows-danger-of-remotely-accessible-hvac-systems.html
https://www.computerworld.com/article/2487452/cybercrime-hacking/target-attack-shows-danger-of-remotely-accessible-hvac-systems.html
https://www.computerworld.com/article/2475789/cybercrime-hacking/hackers-exploit-scada-holes-to-take-full-control-of-critical-infrastructure.html
https://www.computerworld.com/article/2475789/cybercrime-hacking/hackers-exploit-scada-holes-to-take-full-control-of-critical-infrastructure.html
https://www.computerworld.com/article/2475789/cybercrime-hacking/hackers-exploit-scada-holes-to-take-full-control-of-critical-infrastructure.html
https://www.computerworld.com/article/2495541/security0/researcher-hijacks-unsecure-embedded-devices-en-masse-for-internet-scanning-project.html
https://www.computerworld.com/article/2495541/security0/researcher-hijacks-unsecure-embedded-devices-en-masse-for-internet-scanning-project.html
https://www.computerworld.com/article/2495541/security0/researcher-hijacks-unsecure-embedded-devices-en-masse-for-internet-scanning-project.html
http://www.pcworld.com/article/3145449/security/upgraded-mirai-botnet-disrupts-deutsche-telekom-by-infecting-routers.html
http://www.pcworld.com/article/3145449/security/upgraded-mirai-botnet-disrupts-deutsche-telekom-by-infecting-routers.html
http://www.pcworld.com/article/3145449/security/upgraded-mirai-botnet-disrupts-deutsche-telekom-by-infecting-routers.html
http://www.pcworld.com/article/3048794/security/the-internet-of-things-is-all-fun-and-games-until-a-racist-takes-over-your-printer.html
http://www.pcworld.com/article/3048794/security/the-internet-of-things-is-all-fun-and-games-until-a-racist-takes-over-your-printer.html
http://www.pcworld.com/article/3048794/security/the-internet-of-things-is-all-fun-and-games-until-a-racist-takes-over-your-printer.html

Bibliography 146

[71] Jared Newman. Internet-connected Hello Barbie doll can be hacked, 7 December

2015. URL http://www.pcworld.com/article/3012220/security/internet-

connected-hello-barbie-doll-can-be-hacked.html. Accessed: 14-10-2016.

[72] Lucian Constantin. Over 100 DDoS botnets built using Linux malware

for embedded devices, 30 June 2015. URL http://www.pcworld.com/

article/3090430/over-100-ddos-botnets-built-using-linux-malware-

for-embedded-devices.html. Accessed: 14-10-2016.

[73] Lucian Constantin. Thousands of hacked CCTV devices used in DDoS attacks,

28 June 2015. URL http://www.pcworld.com/article/3089346/security/

thousands-of-hacked-cctv-devices-used-in-ddos-attacks.html. Accessed:

14-10-2016.

[74] Lucian Constantin. Authentication bypass bug exposes Foscam webcams

to unauthorized access, 24 January 2014. URL http://www.pcworld.com/

article/2091180/authentication-bypass-bug-exposes-foscam-webcams-

to-unauthorized-access.html. Accessed: 14-10-2016.

[75] Kaoru Hayashi. Linux Worm Targeting Hidden Devices, 27 Novem-

ber 2013. URL https://www.symantec.com/connect/blogs/linux-worm-

targeting-hidden-devices. Accessed: 14-10-2016.

[76] Trend Micro Security News. Security Team Exposes Vulnerabilities in Drones,

14 June 2016. URL http://www.trendmicro.com/vinfo/us/security/news/

internet-of-things/security-team-exposes-vulnerabilities-in-drones.

Accessed: 14-10-2016.

[77] Trend Micro Security News. Surveillance Cameras Found Embedded with Mal-

ware, 12 April 2016. URL http://www.trendmicro.com/vinfo/us/security/

news/internet-of-things/surveillance-cameras-found-with-malware. Ac-

cessed: 14-10-2016.

[78] Trend Micro Security News. Nissan Leaf Can be Hacked via Mobile App and

Web Browser, 26 February 2016. URL http://www.trendmicro.com/vinfo/

us/security/news/internet-of-things/nissan-leaf-can-be-hacked-via-

mobile-app-and-web-browser. Accessed: 14-10-2016.

[79] Trend Micro Security News. Researchers Discover a Not-So-Smart Flaw In

Smart Toy Bear, 4 February 2016. URL http://www.trendmicro.com/vinfo/

us/security/news/internet-of-things/researchers-discover-flaw-in-

smart-toy-bear. Accessed: 14-10-2016.

[80] Trend Micro Security News. Carjacking by CD? Researcher Shows How

a Spiked Song Can Be Used to Hack a Car, 2 February 2016. URL

http://www.trendmicro.com/vinfo/us/security/news/internet-of-

http://www.pcworld.com/article/3012220/security/internet-connected-hello-barbie-doll-can-be-hacked.html
http://www.pcworld.com/article/3012220/security/internet-connected-hello-barbie-doll-can-be-hacked.html
http://www.pcworld.com/article/3090430/over-100-ddos-botnets-built-using-linux-malware-for-embedded-devices.html
http://www.pcworld.com/article/3090430/over-100-ddos-botnets-built-using-linux-malware-for-embedded-devices.html
http://www.pcworld.com/article/3090430/over-100-ddos-botnets-built-using-linux-malware-for-embedded-devices.html
http://www.pcworld.com/article/3089346/security/thousands-of-hacked-cctv-devices-used-in-ddos-attacks.html
http://www.pcworld.com/article/3089346/security/thousands-of-hacked-cctv-devices-used-in-ddos-attacks.html
http://www.pcworld.com/article/2091180/authentication-bypass-bug-exposes-foscam-webcams-to-unauthorized-access.html
http://www.pcworld.com/article/2091180/authentication-bypass-bug-exposes-foscam-webcams-to-unauthorized-access.html
http://www.pcworld.com/article/2091180/authentication-bypass-bug-exposes-foscam-webcams-to-unauthorized-access.html
https://www.symantec.com/connect/blogs/linux-worm-targeting-hidden-devices
https://www.symantec.com/connect/blogs/linux-worm-targeting-hidden-devices
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/security-team-exposes-vulnerabilities-in-drones
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/security-team-exposes-vulnerabilities-in-drones
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/surveillance-cameras-found-with-malware
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/surveillance-cameras-found-with-malware
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/nissan-leaf-can-be-hacked-via-mobile-app-and-web-browser
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/nissan-leaf-can-be-hacked-via-mobile-app-and-web-browser
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/nissan-leaf-can-be-hacked-via-mobile-app-and-web-browser
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-flaw-in-smart-toy-bear
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-flaw-in-smart-toy-bear
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-flaw-in-smart-toy-bear
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/carjacking-by-cd-research-shows-how-spiked-song-can-hack-a-car
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/carjacking-by-cd-research-shows-how-spiked-song-can-hack-a-car

Bibliography 147

things/carjacking-by-cd-research-shows-how-spiked-song-can-hack-

a-car. Accessed: 14-10-2016.

[81] Trend Micro Security News. Israel’s Electric Authority “Hack” Caused by

Ransomware, 29 January 2016. URL http://www.trendmicro.com/vinfo/us/

security/news/cyber-attacks/israels-electric-authority-hack-caused-

by-ransomware. Accessed: 14-10-2016.

[82] Trend Micro Security News. First Malware-Driven Power Outage Reported

in Ukraine, 6 January 2016. URL http://www.trendmicro.com/vinfo/

us/security/news/cyber-attacks/first-malware-driven-power-outage-

reported-in-ukraine. Accessed: 14-10-2016.

[83] Trend Micro Security News. Car Hacking: The Very Real Possibility of Hackers

Driving Your Car, 29 August 2015. URL http://www.trendmicro.com/vinfo/

us/security/news/vulnerabilities-and-exploits/car-hacking-the-very-

real-possibility-of-hackers-driving-your-car. Accessed: 14-10-2016.

[84] Trend Micro Security News. The Gaspot Experiment: How Gas-Tank-

Monitoring Systems Could Make Perfect Targets for Attackers, 6 Au-

gust 2015. URL http://www.trendmicro.com/vinfo/us/security/news/

cybercrime-and-digital-threats/the-gaspot-experiment. Accessed: 14-10-

2016.

[85] Trend Micro Security News. Seagate NAS Unpatched Vulnerabilities Put

Thousands of Users at Risk, 2 March 2015. URL http://www.trendmicro.com/

vinfo/us/security/news/vulnerabilities-and-exploits/seagate-nas-

unpatched-vulnerability-puts-thousands-of-users-at-risk. Accessed:

14-10-2016.

[86] Trend Micro Security News. Researchers Discover Weak Security in Many

Home Security Systems, 17 February 2015. URL http://www.trendmicro.

com/vinfo/us/security/news/internet-of-things/researchers-discover-

weak-security-in-home-security-systems. Accessed: 14-10-2016.

[87] Trend Micro Security News. Tampered US Gas Pumps Point to Anonymous

Group, 13 February 2015. URL http://www.trendmicro.com/vinfo/us/

security/news/internet-of-things/tampered-us-gas-pumps-point-to-

anonymous-group. Accessed: 14-10-2016.

[88] Trend Micro Security News. Threats at Sea: A Security Evaluation of AIS, 16

December 2014. URL http://www.trendmicro.com/vinfo/us/security/news/

cybercrime-and-digital-threats/a-security-evaluation-of-ais. Ac-

cessed: 14-10-2016.

http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/carjacking-by-cd-research-shows-how-spiked-song-can-hack-a-car
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/carjacking-by-cd-research-shows-how-spiked-song-can-hack-a-car
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/carjacking-by-cd-research-shows-how-spiked-song-can-hack-a-car
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/israels-electric-authority-hack-caused-by-ransomware
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/israels-electric-authority-hack-caused-by-ransomware
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/israels-electric-authority-hack-caused-by-ransomware
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/first-malware-driven-power-outage-reported-in-ukraine
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/first-malware-driven-power-outage-reported-in-ukraine
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/first-malware-driven-power-outage-reported-in-ukraine
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/car-hacking-the-very-real-possibility-of-hackers-driving-your-car
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/car-hacking-the-very-real-possibility-of-hackers-driving-your-car
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/car-hacking-the-very-real-possibility-of-hackers-driving-your-car
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-gaspot-experiment
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-gaspot-experiment
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/seagate-nas-unpatched-vulnerability-puts-thousands-of-users-at-risk
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/seagate-nas-unpatched-vulnerability-puts-thousands-of-users-at-risk
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/seagate-nas-unpatched-vulnerability-puts-thousands-of-users-at-risk
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-weak-security-in-home-security-systems
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-weak-security-in-home-security-systems
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-weak-security-in-home-security-systems
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/tampered-us-gas-pumps-point-to-anonymous-group
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/tampered-us-gas-pumps-point-to-anonymous-group
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/tampered-us-gas-pumps-point-to-anonymous-group
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-security-evaluation-of-ais
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/a-security-evaluation-of-ais

Bibliography 148

[89] Trend Micro Security News. About the Shellshock Vulnerability: The Basics

of the “Bash Bug”, 26 September 2014. URL http://www.trendmicro.com/

vinfo/us/security/news/vulnerabilities-and-exploits/the-shellshock-

vulnerability-bash-bug. Accessed: 14-10-2016.

[90] Kyle Wilhoit and Marco Balduzzi. Vulnerabilities Discovered in Global Ves-

sel Tracking Systems, 15 October 2013. URL http://blog.trendmicro.

com/trendlabs-security-intelligence/vulnerabilities-discovered-in-

global-vessel-tracking-systems/. Accessed: 14-10-2016.

[91] Daniel Cid. IoT Home Router Botnet Leveraged in Large DDoS Attack, 1

September 2016. URL https://blog.sucuri.net/2016/09/iot-home-router-

botnet-leveraged-in-large-ddos-attack.html. Accessed: 14-10-2016.

[92] Daniel Cid. Large CCTV Botnet Leveraged in DDoS Attacks, 27

June 2016. URL https://blog.sucuri.net/2016/06/large-cctv-botnet-

leveraged-ddos-attacks.html. Accessed: 14-10-2016.

[93] Selena Larson. A smart fish tank left a casino vulnerable to hackers , 19 July

2017. URL http://money.cnn.com/2017/07/19/technology/fish-tank-hack-

darktrace/index.html. Accessed: 26-07-2017.

[94] Andy Greenberg. Hack Brief: ’Devil’s Ivy’ Vulnerability Could Afflict Millions of

IoT Devices, 18 July 2017. URL https://www.wired.com/story/devils-ivy-

iot-vulnerability/. Accessed: 26-07-2017.

[95] Robert Graham. MASSCAN: Mass IP port scanner. URL http://tools.kali.

org/information-gathering/masscan. Accessed: 24-01-2017.

[96] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide

to network discovery and security scanning. Insecure, 2009. URL https://nmap.

org/.

[97] John Matherly. Complete Guide to Shodan. Shodan, LLC, 2016. URL https:

//www.shodan.io/.

[98] Robert McMillan. Tour the World’s Webcams With the Search Engine for the

Internet of Things, 7 August 2013. URL https://www.wired.com/2013/07/

shodan-search-engine/. Accessed: 24-01-2017.

[99] Levente Buttyan and Jean-Pierre Hubaux. Security and cooperation in wireless

networks: thwarting malicious and selfish behavior in the age of ubiquitous com-

puting. Cambridge University Press, 2007.

[100] Microsoft Corporation. Microsoft security intelligence report. Microsoft Secur.

Intell. Rep, 22:1–74, 2017.

http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/the-shellshock-vulnerability-bash-bug
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/the-shellshock-vulnerability-bash-bug
http://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/the-shellshock-vulnerability-bash-bug
http://blog.trendmicro.com/trendlabs-security-intelligence/vulnerabilities-discovered-in-global-vessel-tracking-systems/
http://blog.trendmicro.com/trendlabs-security-intelligence/vulnerabilities-discovered-in-global-vessel-tracking-systems/
http://blog.trendmicro.com/trendlabs-security-intelligence/vulnerabilities-discovered-in-global-vessel-tracking-systems/
https://blog.sucuri.net/2016/09/iot-home-router-botnet-leveraged-in-large-ddos-attack.html
https://blog.sucuri.net/2016/09/iot-home-router-botnet-leveraged-in-large-ddos-attack.html
https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html
https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html
http://money.cnn.com/2017/07/19/technology/fish-tank-hack-darktrace/index.html
http://money.cnn.com/2017/07/19/technology/fish-tank-hack-darktrace/index.html
https://www.wired.com/story/devils-ivy-iot-vulnerability/
https://www.wired.com/story/devils-ivy-iot-vulnerability/
http://tools.kali.org/information-gathering/masscan
http://tools.kali.org/information-gathering/masscan
https://nmap.org/
https://nmap.org/
https://www.shodan.io/
https://www.shodan.io/
https://www.wired.com/2013/07/shodan-search-engine/
https://www.wired.com/2013/07/shodan-search-engine/

Bibliography 149

[101] Bill Nelson, Amelia Phillips, and Christopher Steuart. Guide to Computer Foren-

sics and Investigations. Cengage Learning, 2014. ISBN 9781305176089.

[102] Erwin Adi, Zubair A Baig, Philip Hingston, and Chiou-Peng Lam. Distributed

denial-of-service attacks against HTTP/2 services. Cluster Computing, 19(1):79–

86, 2016.

[103] Yasir Mehmood, Muhammad Awais Shibli, Ayesha Kanwal, and Rahat Masood.

Distributed intrusion detection system using mobile agents in cloud computing

environment. In 2015 Conference on Information Assurance and Cyber Security

(CIACS), pages 1–8. IEEE, 2015.

[104] Primož Cigoj and Borka Jerman Blažič. An Innovative Approach in Digital Foren-

sic Education and Training. In IFIP World Conference on Information Security

Education, pages 101–110. Springer, 2015.

[105] Marwan Darwish, Abdelkader Ouda, and Luiz Fernando Capretz. Cloud-based

DDoS attacks and defenses. In 2013 International Conference on Information

Society (i-Society), pages 67–71. IEEE, 2013.

[106] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and

Herbert Bos. Flip feng shui: Hammering a needle in the software stack. In

Proceedings of the 25th USENIX Security Symposium, 2016.

[107] Prachi Deshpande, Aditi Aggarwal, SC Sharma, P Sateesh Kumar, and Ajith

Abraham. Distributed port-scan attack in cloud environment. In 2013 5th In-

ternational Conference on Computational Aspects of Social Networks (CASoN),

pages 27–31. IEEE, 2013.

[108] Zahra Jadidi, Vallipuram Muthukkumarasamy, Elankayer Sithirasenan, and

Kalvinder Singh. Flow-based anomaly detection using semisupervised learning.

In 2015 9th International Conference on Signal Processing and Communication

Systems (ICSPCS), pages 1–5. IEEE, 2015.

[109] Kai Axford. Security in a Virtual World, 2016. URL https://technet.

microsoft.com/en-gb/library/cc974514.aspx. Accessed: 20-10-2016.

[110] Valerio Selis and Alan Marshall. A classification-based algorithm to detect forged

embedded machines in IoT environments. IEEE Systems Journal, 2017. (Accepted

with minor revisions).

[111] Valerio Selis and Alan Marshall. A Fake Timing Attack Against Behavioural Tests

Used in Embedded IoT M2M Communications. In 2017 1st Cyber Security in

Networking Conference (CSNet’17), Rio de Janeiro, Brazil, October 2017. IEEE.

[112] Hans Vestburg. CEO to shareholders: 50 billion connections 2020, 13 April

2010. URL https://www.ericsson.com/thecompany/press/releases/2010/

04/1403231. Accessed: 16-10-2016.

https://technet.microsoft.com/en-gb/library/cc974514.aspx
https://technet.microsoft.com/en-gb/library/cc974514.aspx
https://www.ericsson.com/thecompany/press/releases/2010/04/1403231
https://www.ericsson.com/thecompany/press/releases/2010/04/1403231

Bibliography 150

[113] Dave Evans. The Internet of Things, April 2011. URL https://www.cisco.com/

c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf. Accessed:

16-10-2016.

[114] Jon Iwata. Making Markets: Smarter Planet, May 2012. URL http://www.ibm.

com/investor/events/investor0512/presentation/05_Smarter_Planet.pdf.

Accessed: 16-10-2016.

[115] IHS Markit. Making Markets: Smarter Planet, 11 April 2016. URL

http://news.ihsmarkit.com/press-release/technology/tech-companies-

creating-strategic-platforms-support-internet-things-ihs-say. Ac-

cessed: 16-10-2016.

[116] Buckland Emma, Margaret Ranken, Matt Arnott, and Pierce Owen. IoT Global

Forecast & Analysis 2015-25, 5 August 2016. URL https://machinaresearch.

com/news/press-release-global-internet-of-things-market-to-grow-

to-27-billion-devices-generating-usd3-trillion-revenue-in-2025/.

Accessed: 21-10-2016.

[117] Ericsson. Ericsson Mobility Report, November 2016. URL https://www.

ericsson.com/assets/local/mobility-report/documents/2016/ericsson-

mobility-report-november-2016.pdf. Accessed: 16-10-2016.

[118] Jim Morrish and Matt Hatton. The Connected Life, 11 October

2011. URL https://machinaresearch.com/static/media/uploads/machina_

research_press_release_gsma_2010_20.pdf. Accessed: 21-10-2016.

[119] Cisco Systems. Connections Counter: The Internet of Everything in Motion, 29

July 2013. URL https://newsroom.cisco.com/feature-content?articleId=

1208342. Accessed: 16-10-2016.

[120] Jim Morrish. The Connected Life, 24 June 2013. URL http://www.gsma.

com/connectedliving/wp-content/uploads/2013/03/JimMorrish_GSMA-

Connected-Life-20130624-v4.pdf. Accessed: 21-10-2016.

[121] Vernon Turner Denise Lund, Carrie MacGillivray and Mario Morales. Worldwide

and Regional Internet of Things (IoT) 2014-2020. Forecast: A Virtuous Circle of

Proven Value and Demand, May 2014. URL https://www.business.att.com/

content/article/IoT-worldwide_regional_2014-2020-forecast.pdf. Ac-

cessed: 16-10-2016.

[122] J. Rivera and R. van der Meulen. Gartner Says 4.9 Billion Connected “Things”

Will Be in Use in 2015, 11 November 2014. URL http://www.gartner.com/

newsroom/id/2905717. Accessed: 16-10-2016.

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.ibm.com/investor/events/investor0512/presentation/05_Smarter_Planet.pdf
http://www.ibm.com/investor/events/investor0512/presentation/05_Smarter_Planet.pdf
http://news.ihsmarkit.com/press-release/technology/tech-companies-creating-strategic-platforms-support-internet-things-ihs-say
http://news.ihsmarkit.com/press-release/technology/tech-companies-creating-strategic-platforms-support-internet-things-ihs-say
https://machinaresearch.com/news/press-release-global-internet-of-things-market-to-grow-to-27-billion-devices-generating-usd3-trillion-revenue-in-2025/
https://machinaresearch.com/news/press-release-global-internet-of-things-market-to-grow-to-27-billion-devices-generating-usd3-trillion-revenue-in-2025/
https://machinaresearch.com/news/press-release-global-internet-of-things-market-to-grow-to-27-billion-devices-generating-usd3-trillion-revenue-in-2025/
https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016.pdf
https://machinaresearch.com/static/media/uploads/machina_research_press_release_gsma_2010_20.pdf
https://machinaresearch.com/static/media/uploads/machina_research_press_release_gsma_2010_20.pdf
https://newsroom.cisco.com/feature-content?articleId=1208342
https://newsroom.cisco.com/feature-content?articleId=1208342
http://www.gsma.com/connectedliving/wp-content/uploads/2013/03/JimMorrish_GSMA-Connected-Life-20130624-v4.pdf
http://www.gsma.com/connectedliving/wp-content/uploads/2013/03/JimMorrish_GSMA-Connected-Life-20130624-v4.pdf
http://www.gsma.com/connectedliving/wp-content/uploads/2013/03/JimMorrish_GSMA-Connected-Life-20130624-v4.pdf
https://www.business.att.com/content/article/IoT-worldwide_regional_2014-2020-forecast.pdf
https://www.business.att.com/content/article/IoT-worldwide_regional_2014-2020-forecast.pdf
http://www.gartner.com/newsroom/id/2905717
http://www.gartner.com/newsroom/id/2905717

Bibliography 151

[123] NCTA The Internet & Television Associatio. Behind The Numbers:

Growth in the Internet of Things., 20 March 2015. URL https:

//www.ncta.com/platform/broadband-internet/behind-the-numbers-

growth-in-the-internet-of-things/. Accessed: 22-10-2016.

[124] BI Intelligence. The Internet of Everything: 2015, 8 April 2015. URL http://uk.

businessinsider.com/internet-of-everything-2015-bi-2014-12. Accessed:

19-10-2016.

[125] Rob van der Meulen. Gartner Says 6.4 Billion Connected “Things” Will Be in

Use in 2016, Up 30 Percent From 2015, 10 November 2015. URL http://www.

gartner.com/newsroom/id/3165317. Accessed: 16-10-2016.

[126] Ericsson. Ericsson Mobility Report, November 2015. URL http:

//www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-

report-nov-2015.pdf. Accessed: 16-10-2016.

[127] BI Intelligence. Here’s how the Internet of Things will explode by 2020, 1 Septem-

ber 2016. URL http://uk.businessinsider.com/iot-ecosystem-internet-

of-things-forecasts-and-business-opportunities-2016-2. Accessed: 19-

10-2016.

[128] Chetan Sharma. Correcting the IoT History. URL http://www.chetansharma.

com/IoT_History.htm. Accessed: 25-01-2017.

[129] Sabina Jeschke, Christian Brecher, Houbing Song, and Danda B Rawat. Industrial

Internet of Things.

[130] Luigi Atzori, Antonio Iera, and Giacomo Morabito. Understanding the Internet

of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad

Hoc Networks, 2016.

[131] Faisal Karim Shaikh, Sherali Zeadally, and Ernesto Exposito. Enabling technolo-

gies for green internet of things. IEEE Systems Journal, 2015.

[132] Ivan Stojmenovic. Machine-to-machine communications with in-network data ag-

gregation, processing, and actuation for large-scale cyber-physical systems. IEEE

Internet of Things Journal, 1(2):122–128, 2014.

[133] John B. Kennedy. When Woman Is Boss: An interview with Nikola Tesla, 1926.

URL http://www.tfcbooks.com/tesla/1926-01-30.htm. Accessed: 17-02-2017.

[134] Internet of Things. URL https://en.oxforddictionaries.com/definition/

internet_of_things. Accessed: 25-01-2017.

[135] Lu Tan and Neng Wang. Future internet: The internet of things. In 2010 3rd Inter-

national Conference on Advanced Computer Theory and Engineering (ICACTE),

volume 5, pages V5–376. IEEE, 2010.

https://www.ncta.com/platform/broadband-internet/behind-the-numbers-growth-in-the-internet-of-things/
https://www.ncta.com/platform/broadband-internet/behind-the-numbers-growth-in-the-internet-of-things/
https://www.ncta.com/platform/broadband-internet/behind-the-numbers-growth-in-the-internet-of-things/
http://uk.businessinsider.com/internet-of-everything-2015-bi-2014-12
http://uk.businessinsider.com/internet-of-everything-2015-bi-2014-12
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://uk.businessinsider.com/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities-2016-2
http://uk.businessinsider.com/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities-2016-2
http://www.chetansharma.com/IoT_History.htm
http://www.chetansharma.com/IoT_History.htm
http://www.tfcbooks.com/tesla/1926-01-30.htm
https://en.oxforddictionaries.com/definition/internet_of_things
https://en.oxforddictionaries.com/definition/internet_of_things

Bibliography 152

[136] Daniel Giusto, Antonio Iera, Giacomo Morabito, and Luigi Atzori. The internet

of things: 20th Tyrrhenian workshop on digital communications. Springer Science

& Business Media, 2010.

[137] ITU-T Y.4000/Y.2060. Overview of the Internet of things, 2012. URL http:

//www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559. Accessed: 27-

01-2017.

[138] Roberto Minerva, Abyi Biru, and Domenico Rotondi. Towards a def-

inition of the Internet of Things (IoT). IEEE Internet Initiative,

2015. URL http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_

Definition_Internet_of_Things_Revision1_27MAY15.pdf. Accessed: 13-02-

2017.

[139] Luigi Atzori, Antonio Iera, Giacomo Morabito, and Michele Nitti. The social

internet of things (siot)–when social networks meet the internet of things: Concept,

architecture and network characterization. Computer networks, 56(16):3594–3608,

2012.

[140] Luigi Atzori, Antonio Iera, and Giacomo Morabito. Siot: Giving a social structure

to the internet of things. IEEE communications letters, 15(11):1193–1195, 2011.

[141] Sarfraz Alam, Mohammad MR Chowdhury, and Josef Noll. Interoperability of

security-enabled internet of things. Wireless Personal Communications, 61(3):

567–586, 2011.

[142] iCore Empowering IoT through Cognitive Technologies. Internet Connected Ob-

jects for Reconfigurable Ecosystem D2.5 – Final architecture reference Model.

2014. URL http://www.iot-icore.eu/attachments/article/89/20141031_

final_architecture.pdf. Accessed: 08-03-2017.

[143] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing

and its role in the internet of things. In Proceedings of the 1st edition of the MCC

workshop on Mobile Cloud Computing, pages 13–16. ACM, 2012.

[144] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing:

A platform for internet of things and analytics. In Big Data and Internet of Things:

A Roadmap for Smart Environments, pages 169–186. Springer, 2014.

[145] Gert De Laet and Gert Schauwers. Network Security Fundamentals. Cisco Press,

2005.

[146] Aikaterini Mitrokotsa, Melanie R Rieback, and Andrew S Tanenbaum. Classifying

RFID attacks and defenses. Information Systems Frontiers, 12(5):491–505, 2010.

[147] Jonny Milliken, Valerio Selis, and Alan Marshall. Detection and analysis of the

Chameleon WiFi access point virus. EURASIP Journal on Information Security,

2013(1):2, 2013.

http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
http://www.iot-icore.eu/attachments/article/89/20141031_final_architecture.pdf
http://www.iot-icore.eu/attachments/article/89/20141031_final_architecture.pdf

Bibliography 153

[148] Changhua He John C Mitchell. Security Analysis and Improvements for IEEE

802.11i. In The 12th Annual Network and Distributed System Security Symposium

(NDSS’05), Stanford University, Stanford, pages 90–110. Citeseer, 2005.

[149] Kemal Bicakci and Bulent Tavli. Denial-of-Service attacks and countermeasures in

IEEE 802.11 wireless networks. Computer Standards & Interfaces, 31(5):931–941,

2009.

[150] Erik Tews and Martin Beck. Practical attacks against WEP and WPA. In Pro-

ceedings of the 2nd ACM conference on Wireless Network Security, pages 79–86.

ACM, 2009.

[151] Thomas dOtreppe. Aircrack-ng, 2013.

[152] Kristopher Kendall. A database of computer attacks for the evaluation of intrusion

detection systems. Technical report, DTIC Document, 1999.

[153] David R Raymond and Scott F Midkiff. Denial-of-service in wireless sensor net-

works: Attacks and defenses. IEEE Pervasive Computing, 7(1), 2008.

[154] Bjorn Stelte and Gabi Dreo Rodosek. Thwarting attacks on ZigBee-Removal of the

KillerBee stinger. In 2013 9th International Conference on Network and Service

Management (CNSM), pages 219–226. IEEE, 2013.

[155] Ulrike Meyer and Susanne Wetzel. A man-in-the-middle attack on UMTS. In

Proceedings of the 3rd ACM workshop on Wireless security, pages 90–97. ACM,

2004.

[156] Radmilo Racic, Denys Ma, Hao Chen, and Xin Liu. Exploiting Opportunistic

Scheduling in Cellular Data Networks. In NDSS. Citeseer, 2008.

[157] Soshant Bali, Sridhar Machiraju, Hui Zang, and Victor Frost. A measurement

study of scheduler-based attacks in 3G wireless networks. In International Con-

ference on Passive and Active Network Measurement, pages 105–114. Springer,

2007.

[158] Radmilo Racic, Denys Ma, and Hao Chen. Exploiting MMS vulnerabilities to

stealthily exhaust mobile phone’s battery. In 2006 Securecomm and Workshops,

pages 1–10. IEEE, 2006.

[159] Andreas Berger, Ivan Gojmerac, and Oliver Jung. Internet security meets the IP

multimedia subsystem: an overview. Security and Communication Networks, 3

(2-3):185–206, 2010.

[160] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.

Internet of things: Vision, applications and research challenges. Ad Hoc Networks,

10(7):1497–1516, 2012.

Bibliography 154

[161] Khaled Abdulla Al Rabaiei and Saad Harous. Internet of things: Applications and

challenges. In 2016 12th International Conference on Innovations in Information

Technology (IIT), pages 1–6. IEEE, 2016.

[162] Zhihua Hu. The research of several key question of internet of things. In 2011 Inter-

national Conference on Intelligence Science and Information Engineering (ISIE),

pages 362–365. IEEE, 2011.

[163] Gang Gan, Zeyong Lu, and Jun Jiang. Internet of things security analysis. In

2011 International Conference on Internet Technology and Applications (iTAP),

pages 1–4. IEEE, 2011.

[164] G.A. Duckett. Encryption: Questions and Answers. CreateSpace Independent

Publishing Platform, 2016. ISBN 9781533418395. URL https://books.google.

co.uk/books?id=UrX5jwEACAAJ.

[165] William Stallings. Cryptography and network security: principles and practice.

Pearson Education India, 2003.

[166] Miodrag Potkonjak, Saro Meguerdichian, Ani Nahapetian, and Sheng Wei. Dif-

ferential public physically unclonable functions: architecture and applications. In

2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 242–

247. IEEE, 2011.

[167] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim Tuyls. Physical

unclonable functions and public-key crypto for FPGA IP protection. In Field

Programmable Logic and Applications, 2007. FPL 2007. International Conference

on, pages 189–195. IEEE, 2007.

[168] G Edward Suh and Srinivas Devadas. Physical unclonable functions for device

authentication and secret key generation. In Proceedings of the 44th annual design

automation conference, pages 9–14. ACM, 2007.

[169] Nathan Beckmann and Miodrag Potkonjak. Hardware-based public-key cryptog-

raphy with public physically unclonable functions. In International Workshop on

Information Hiding, pages 206–220. Springer, 2009.

[170] Jian Yin and Sanjay Kumar Madria. Sybil attack detection in a hierarchical

sensor network. In 2007 Third International Conference on Security and Privacy

in Communications Networks and the Workshops (SecureComm 2007), pages 494–

503. IEEE, 2007.

[171] Gustaf Ouvrier, Michel Laterman, Martin Arlitt, and Niklas Carlsson. Character-

izing the HTTPS trust landscape: a passive view from the edge. IEEE Commu-

nications Magazine, 55(7):36–42, 2017.

[172] Trust. URL http://www.dictionary.com/browse/trust. Accessed: 02-04-2017.

https://books.google.co.uk/books?id=UrX5jwEACAAJ
https://books.google.co.uk/books?id=UrX5jwEACAAJ
http://www.dictionary.com/browse/trust

Bibliography 155

[173] Trust. URL https://www.merriam-webster.com/dictionary/trust. Accessed:

02-04-2017.

[174] Audun Jøsang. Artificial reasoning with subjective logic. In Proceedings of the 2nd

Australian workshop on commonsense reasoning, volume 48, page 34. Citeseer,

1997.

[175] Tyrone Grandison and Morris Sloman. A survey of trust in internet applications.

IEEE Communications Surveys & Tutorials, 3(4):2–16, 2000.

[176] Jin-Hee Cho, Ananthram Swami, and Ray Chen. A survey on trust management

for mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 13(4):

562–583, 2011.

[177] Wanita Sherchan, Surya Nepal, and Cecile Paris. A survey of trust in social

networks. ACM Computing Surveys (CSUR), 45(4):47, 2013.

[178] Guo Ya-Jun, Hong Fan, Zhang Qing-Guo, and Li Rong. An access control model

for ubiquitous computing application. 2005.

[179] Ji Guo, Alan Marshall, and Bosheng Zhou. A Multi-Parameter Trust Framework

for Mobile Ad Hoc Networks. In Security, Privacy, Trust, and Resource Manage-

ment in Mobile and Wireless Communications, pages 245–277. IGI Global, 2014.

[180] D Harrison McKnight and Norman L Chervany. The meanings of trust. 1996.

[181] Florina Almenárez, Andrés Maŕın, Celeste Campo, and Carlos Garcia. PTM:

A pervasive trust management model for dynamic open environments. In First

Workshop on Pervasive Security, Privacy and Trust (PSPT), volume 4, pages 1–8,

2004.

[182] Yan Lindsay Sun, Wei Yu, Zhu Han, and KJ Ray Liu. Information theoretic

framework of trust modeling and evaluation for ad hoc networks. IEEE Journal

on Selected Areas in Communications, 24(2):305–317, 2006.

[183] Munirul M Haque and Sheikh I Ahamed. An omnipresent formal trust model

(FTM) for pervasive computing environment. In 31st Annual International Com-

puter Software and Applications Conference (COMPSAC 2007), volume 1, pages

49–56. IEEE, 2007.

[184] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173.

IEEE, 1996.

[185] Audun Jøsang, Claudia Keser, and Theo Dimitrakos. Can we manage trust? In

International Conference on Trust Management, pages 93–107. Springer, 2005.

https://www.merriam-webster.com/dictionary/trust

Bibliography 156

[186] Yosra Ben Saied, Alexis Olivereau, Djamal Zeghlache, and Maryline Laurent.

Trust management system design for the Internet of Things: A context-aware and

multi-service approach. Computers & Security, 39:351–365, November 2013. ISSN

01674048. doi: 10.1016/j.cose.2013.09.001. URL http://www.sciencedirect.

com/science/article/pii/S0167404813001302.

[187] Dong Chen, Guiran Chang, Dawei Sun, Jiajia Li, Jie Jia, and Xingwei Wang.

TRM-IoT: A trust management model based on fuzzy reputation for internet of

things, 2011. ISSN 1820-0214.

[188] Zhikui Chen, Ruochuan Ling, Chung-Ming Huang, and Xu Zhu. A scheme of access

service recommendation for the Social Internet of Things. International Journal of

Communication Systems, February 2015. ISSN 10745351. doi: 10.1002/dac.2930.

URL http://doi.wiley.com/10.1002/dac.2930.

[189] Fenye Bao and Ing-Ray Chen. Trust management for the internet of things

and its application to service composition. In 2012 IEEE International Sym-

posium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),

pages 1–6. IEEE, June 2012. ISBN 978-1-4673-1239-4. doi: 10.1109/WoWMoM.

2012.6263792. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6263792.

[190] Fenye Bao and Ing-Ray Chen. Dynamic trust management for internet of things

applications. In Proceedings of the 2012 international workshop on Self-aware

internet of things (Self-IoT ’12), page 1, New York, New York, USA, September

2012. ACM Press. ISBN 9781450317535. doi: 10.1145/2378023.2378025. URL

http://dl.acm.org/citation.cfm?id=2378023.2378025.

[191] Fenye Bao, Ing-Ray Chen, and Jia Guo. Scalable, adaptive and survivable

trust management for community of interest based Internet of Things sys-

tems. In 2013 IEEE 11th International Symposium on Autonomous Decentral-

ized Systems (ISADS), pages 1–7. IEEE, March 2013. ISBN 978-1-4673-5070-9.

doi: 10.1109/ISADS.2013.6513398. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6513398.

[192] Ing-Ray Chen, Jia Guo, and Fenye Bao. Trust Management for SOA-based

IoT and Its Application to Service Composition. IEEE Transactions on Ser-

vices Computing, PP(99):1–1, 2014. ISSN 1939-1374. doi: 10.1109/TSC.2014.

2365797. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6940301.

[193] Michele Nitti, Roberto Girau, and Luigi Atzori. Trustworthiness Management in

the Social Internet of Things. IEEE Transactions on Knowledge and Data En-

gineering, 26(5):1253–1266, May 2014. ISSN 1041-4347. doi: 10.1109/TKDE.

http://www.sciencedirect.com/science/article/pii/S0167404813001302
http://www.sciencedirect.com/science/article/pii/S0167404813001302
http://doi.wiley.com/10.1002/dac.2930
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6263792
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6263792
http://dl.acm.org/citation.cfm?id=2378023.2378025
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6513398
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6513398
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6940301
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6940301

Bibliography 157

2013.105. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6547148.

[194] Ruidong Li, Jie Li, Peng Liu, and Hsiao-Hwa Chen. An objective trust manage-

ment framework for mobile ad hoc networks. In IEEE 65th Vehicular Technology

Conference (VTC2007), pages 56–60. IEEE, 2007.

[195] Girish Suryanarayana, Mamadou H Diallo, Justin R Erenkrantz, and Richard N

Taylor. Architectural support for trust models in decentralized applications. In

Proceedings of the 28th International Conference on Software Engineering, pages

52–61. ACM, 2006.

[196] Ji Guo, Alan Marshall, and Bosheng Zhou. A New Trust Management Framework

for Detecting Malicious and Selfish Behaviour for Mobile Ad Hoc Networks. In

10th International Conference on Trust, Security and Privacy in Computing and

Communications, pages 142–149. IEEE, November 2011. ISBN 978-1-4577-2135-

9. doi: 10.1109/TrustCom.2011.21. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6120813.

[197] Mohammad Karami and Mohammad Fathian. A robust trust establishment frame-

work using Dempster-Shafer theory for MANETs. In International Conference for

Internet Technology and Secured Transactions (ICITST 2009), pages 1–7. IEEE,

2009.

[198] Laurent Eschenauer, Virgil D Gligor, and John Baras. On trust establishment in

mobile ad-hoc networks. In International Workshop on Security Protocols, pages

47–66. Springer, 2002.

[199] Jia Guo, Ray Chen, and Jeffrey JP Tsai. A survey of trust computation models

for service management in internet of things systems. Computer Communications,

97:1–14, 2017.

[200] Yan Sun, Zhu Han, and KJ Ray Liu. Defense of trust management vulnerabilities

in distributed networks. IEEE Communications Magazine, 46(2):112–119, 2008.

[201] Fenye Bao, Ing-Ray Chen, MoonJeong Chang, and Jin-Hee Cho. Hierarchical

Trust Management for Wireless Sensor Networks and its Applications to Trust-

Based Routing and Intrusion Detection, 2012. ISSN 1932-4537.

[202] S Prasanna and V Vetriselvi. An improved intrusion detection technique for mo-

bile adhoc networks. In International Conference on Distributed Computing and

Internet Technology, pages 364–376. Springer, 2005.

[203] Jia Guo and Ing-Ray Chen. A Classification of Trust Computation Models for

Service-Oriented Internet of Things Systems, 2015. URL http://people.cs.vt.

edu/{~}irchen/ps/Guo-scc15.pdf.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6547148
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6547148
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6120813
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6120813
http://people.cs.vt.edu/{~}irchen/ps/Guo-scc15.pdf
http://people.cs.vt.edu/{~}irchen/ps/Guo-scc15.pdf

Bibliography 158

[204] Michele Nitti, Roberto Girau, Luigi Atzori, Antonio Iera, and Giacomo Mora-

bito. A subjective model for trustworthiness evaluation in the social Internet

of Things. In 2012 IEEE 23rd International Symposium on Personal, Indoor

and Mobile Radio Communications (PIMRC), pages 18–23. IEEE, September

2012. ISBN 978-1-4673-2569-1. doi: 10.1109/PIMRC.2012.6362662. URL http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6362662.

[205] VMware, Inc. Configuration Maximums - vSphere 6.0, 2017. URL https://www.

vmware.com/pdf/vsphere6/r60/vsphere-60-configuration-maximums.pdf.

[206] Joanna Rutkowska. Red Pill: Detect VMM using (almost) One CPU In-

struction, 2004. URL http://web.archive.org/web/20041130172213/http:

//invisiblethings.org/papers/redpill.html.

[207] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.

Testing CPU Emulators. Proceedings of the 18th International Symposium on Soft-

ware Testing and Analysis, pages 261–272, 2009. doi: 10.1145/1572272.1572303.

URL http://doi.acm.org/10.1145/1572272.1572303.

[208] Hao Shi, Abdulla Alwabel, and Jelena Mirkovic. Cardinal Pill Testing of System

Virtual Machines. In USENIX Security, pages 271–285, 2014. URL http://dblp.

uni-trier.de/db/conf/uss/uss2014.html{#}ShiAM14.

[209] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting System

Emulators. Information Security, pages 1–18, 2007. ISSN 0302-9743. doi: http:

//dx.doi.org/10.1109/SAINT.2010.108.

[210] Jia-Bin Wang, Yi-Feng Lian, and Kai Chen. Virtualization detection based on

data fusion. In 2012 International Conference on Computer Science and Infor-

mation Processing (CSIP), pages 393–396. IEEE, August 2012. ISBN 978-1-4673-

1411-4. doi: 10.1109/CSIP.2012.6308876. URL http://ieeexplore.ieee.org/

articleDetails.jsp?arnumber=6308876.

[211] Xu Chen, Jon Andersen, Z. Morley Mao, Michael Bailey, and Jose Nazario. To-

wards an understanding of anti-virtualization and anti-debugging behavior in mod-

ern malware. Proceedings of the International Conference on Dependable Systems

and Networks, pages 177–186, 2008. ISSN 1530-0889. doi: 10.1109/DSN.2008.

4630086.

[212] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote physical device finger-

printing. IEEE Transactions on Dependable and Secure Computing, 2(2):93–108,

2005. ISSN 15455971. doi: 10.1109/TDSC.2005.26.

[213] Van Jacobson, Robert Braden, and David Borman. TCP extensions for high

performance. 1992.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6362662
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6362662
https://www.vmware.com/pdf/vsphere6/r60/vsphere-60-configuration-maximums.pdf
https://www.vmware.com/pdf/vsphere6/r60/vsphere-60-configuration-maximums.pdf
http://web.archive.org/web/20041130172213/http://invisiblethings.org/papers/redpill.html
http://web.archive.org/web/20041130172213/http://invisiblethings.org/papers/redpill.html
http://doi.acm.org/10.1145/1572272.1572303
http://dblp.uni-trier.de/db/conf/uss/uss2014.html{#}ShiAM14
http://dblp.uni-trier.de/db/conf/uss/uss2014.html{#}ShiAM14
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6308876
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6308876

Bibliography 159

[214] Libor Polčák and Barbora Franková. On Reliability of Clock-skew-based Re-

mote Computer Identification. In Proceedings of the 11th International Con-

ference on Security and Cryptography, pages 291–298. SCITEPRESS - Science

and and Technology Publications, 2014. ISBN 978-989-758-045-1. doi: 10.

5220/0005048502910298. URL http://dblp.uni-trier.de/db/conf/secrypt/

secrypt2014.html{#}PolcakF14.

[215] Libor Polčák, Jakub Jirasek, and Petr Matousek. Comment on Remote Physical

Device Fingerprinting. IEEE Transactions on Dependable and Secure Comput-

ing, 11(5):494–496, September 2014. ISSN 1545-5971. doi: 10.1109/TDSC.2013.

26. URL http://www.computer.org/csdl/trans/tq/preprint/06547150-abs.

html.

[216] Libor Polčák and Barbora Franková. Clock-Skew-Based Computer Identifica-

tion: Traps and Pitfalls. Journal of Universal Computer Science, 21(9):1210–

1233, 2015. URL http://dblp.uni-trier.de/db/journals/jucs/jucs21.

html{#}PolcakF15.

[217] A. L. Ortega. MAC Changer, 2013. URL http://www.gnu.org/software/

macchanger.

[218] Danny Quist and Val Smith. Further down the VM spiral. Offensive Computing,

2006. URL http://dl.packetstormsecurity.net/papers/general/dquist_

valsmith_further_down_the_vm_spiral.pdf.

[219] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Morpheus. In

Proceedings of the 30th Annual Computer Security Applications Conference (AC-

SAC’14), pages 216–225, New York, New York, USA, December 2014. ACM Press.

ISBN 9781450330053. doi: 10.1145/2664243.2664250. URL http://dl.acm.org/

citation.cfm?id=2664243.2664250.

[220] Timothy Vidas and Nicolas Christin. Evading android runtime analysis via

sandbox detection. In Proceedings of the 9th ACM symposium on Information,

computer and communications security (ASIA CCS’14), pages 447–458, 2014.

ISBN 9781450328005. doi: 10.1145/2590296.2590325. URL http://dl.acm.org/

citation.cfm?doid=2590296.2590325.

[221] Cynthia E Irvine, John Scott Robin, et al. Analysis of the Intel Pentium’s ability

to support a secure virtual machine monitor. Proceedings of the 9th USENIX

Security Symposium, Denver, CO., 2000.

[222] Samuel T. King, Peter M. Chen, Yi Min Wang, Chad Verbowski, Helen J. Wang,

and Jacob R. Lorch. SubVirt: Implementing malware with virtual machines. In

Proceedings of the IEEE Symposium on Security and Privacy, volume 2006, pages

314–327, 2006. ISBN 0769525741. doi: 10.1109/SP.2006.38.

http://dblp.uni-trier.de/db/conf/secrypt/secrypt2014.html{#}PolcakF14
http://dblp.uni-trier.de/db/conf/secrypt/secrypt2014.html{#}PolcakF14
http://www.computer.org/csdl/trans/tq/preprint/06547150-abs.html
http://www.computer.org/csdl/trans/tq/preprint/06547150-abs.html
http://dblp.uni-trier.de/db/journals/jucs/jucs21.html{#}PolcakF15
http://dblp.uni-trier.de/db/journals/jucs/jucs21.html{#}PolcakF15
http://www.gnu.org/software/macchanger
http://www.gnu.org/software/macchanger
http://dl.packetstormsecurity.net/papers/general/dquist_valsmith_further_down_the_vm_spiral.pdf
http://dl.packetstormsecurity.net/papers/general/dquist_valsmith_further_down_the_vm_spiral.pdf
http://dl.acm.org/citation.cfm?id=2664243.2664250
http://dl.acm.org/citation.cfm?id=2664243.2664250
http://dl.acm.org/citation.cfm?doid=2590296.2590325
http://dl.acm.org/citation.cfm?doid=2590296.2590325

Bibliography 160

[223] Danny B Lange and Mitsuru Oshima. Seven good reasons for mobile agents.

Communications of the ACM, 42(3):88–89, 1999.

[224] Bo Chen, Harry H Cheng, and Joe Palen. Mobile-C: a mobile agent platform

for mobile C/C++ agents. Software: Practice and Experience, 36(15):1711–1733,

2006.

[225] IEEE Foundation for Intelligent Physical Agents. The Foundation for Intelligent

Physical Agents. URL http://www.fipa.org/. Accessed: 07-04-2018.

[226] Alexandru Suna and Amal El Fallah-Seghrouchni. A mobile agents platform:

architecture, mobility and security elements. In International Workshop on Pro-

gramming Multi-Agent Systems, pages 126–146. Springer, 2004.

[227] PC Engines GmbH. ALIX 6F2 System Board, 2007. URL http://www.

pcengines.ch/alix6f2.htm. Accessed: 21-04-2017.

[228] Google and LG Electronics. Nexus 5 Tech Specs, 2013. URL https://support.

google.com/nexus/answer/6102470?hl=en. Accessed: 21-04-2017.

[229] Google and Asus. Nexus 7 (2012) Tech Specs (32GB + Mobile Data), 2012.

URL https://support.google.com/nexus/answer/6102470?hl=en. Accessed:

21-04-2017.

[230] 8devices. Carambola, 2012. URL http://www.8devices.com/products/

carambola. Accessed: 21-04-2017.

[231] Arduino. Arduino Board Yún, 2013. URL http://arduino.cc/en/Main/

ArduinoBoardYun. Accessed: 21-04-2017.

[232] Raspberry Pi Foundation. Early versions of the Raspberry Pi Model B, 2012.

URL https://www.raspberrypi.org/documentation/hardware/raspberrypi/

bcm2836/README.md. Accessed: 21-04-2017.

[233] Android Developers. SDK Tools - Android Emulator, 2014. URL https:

//developer.android.com/studio/run/emulator.html. Accessed: 23-04-2017.

[234] Genymobile. Genymotion, 2014. URL https://docs.genymotion.com/Content/

Home.htm. Accessed: 23-04-2017.

[235] A. Gavare. GXemul, 2014. URL http://gxemul.sourceforge.net/gxemul-

stable/doc/index.html. Accessed: 23-04-2017.

[236] Open Virtual Platform. OVPsim, 2014. URL http://www.ovpworld.org/

technology_ovpsim.php. Accessed: 23-04-2017.

[237] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX

Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

http://www.fipa.org/
http://www.pcengines.ch/alix6f2.htm
http://www.pcengines.ch/alix6f2.htm
https://support.google.com/nexus/answer/6102470?hl=en
https://support.google.com/nexus/answer/6102470?hl=en
https://support.google.com/nexus/answer/6102470?hl=en
http://www.8devices.com/products/carambola
http://www.8devices.com/products/carambola
http://arduino.cc/en/Main/ArduinoBoardYun
http://arduino.cc/en/Main/ArduinoBoardYun
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://developer.android.com/studio/run/emulator.html
https://developer.android.com/studio/run/emulator.html
https://docs.genymotion.com/Content/Home.htm
https://docs.genymotion.com/Content/Home.htm
http://gxemul.sourceforge.net/gxemul-stable/doc/index.html
http://gxemul.sourceforge.net/gxemul-stable/doc/index.html
http://www.ovpworld.org/technology_ovpsim.php
http://www.ovpworld.org/technology_ovpsim.php

Bibliography 161

[238] Oracle Corporation. VirtualBox, 2014. URL https://www.virtualbox.org/

manual/UserManual.html. Accessed: 23-04-2017.

[239] VMware Inc. VMware Player, 2015. URL http://www.vmware.com/uk/

products/player/faqs.html. Accessed: 23-04-2017.

[240] Free Software Foundation. GNU Compiler Collection - ARM Options. URL https:

//gcc.gnu.org/onlinedocs/gcc-3.3.6/gcc/ARM-Options.html. Accessed: 20-

08-2017.

[241] Arm Holdings. ARM7 processors. URL http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.set.arm7/index.html. Accessed: 07-04-2018.

[242] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.

Machine Learning, 63(1):3–42, 2006. ISSN 08856125. doi: 10.1007/s10994-006-

6226-1.

[243] Re Fan, Kw Chang, and Cj Hsieh. LIBLINEAR: A library for large linear clas-

sification. The Journal of Machine Learning, 9(2008):1871–1874, 2008. ISSN

15324435. doi: 10.1038/oby.2011.351. URL http://dl.acm.org/citation.cfm?

id=1442794.

[244] Gene Selection for Cancer Classification using Support Vector Machines. Machine

Learning, 46:389–422, 2002. ISSN 08856125. doi: 10.1023/A:1012487302797.

[245] Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. Classification

and Regression Trees, volume 19. 1984. ISBN 0412048418.

[246] J. Ross Quinlan. C4.5: Programs for Machine Learning, volume 1. 1993. ISBN

1558602380. doi: 10.1016/S0019-9958(62)90649-6. URL http://portal.acm.

org/citation.cfm?id=152181.

[247] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction. Number 2. 2009. ISBN

9780387848570. doi: 10.1007/b94608. URL http://www.springerlink.com/

index/D7X7KX6772HQ2135.pdf.

[248] Harry Zhang. The Optimality of Naive Bayes. Proceedings of the 17th International

Florida Artificial Intelligence Research Society Conference (FLAIRS 2004), 1(2):

1 – 6, 2004. ISSN 01678655. doi: 10.1016/j.patrec.2005.12.001. URL http:

//www.aaai.org/Papers/FLAIRS/2004/Flairs04-097.pdf.

[249] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001. ISSN

08856125. doi: 10.1023/A:1010933404324. URL http://portal.acm.org/

citation.cfm?id=570182{%}5Cnhttp://www.springerlink.com/content/

u0p06167n6173512.

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
http://www.vmware.com/uk/products/player/faqs.html
http://www.vmware.com/uk/products/player/faqs.html
https://gcc.gnu.org/onlinedocs/gcc-3.3.6/gcc/ARM-Options.html
https://gcc.gnu.org/onlinedocs/gcc-3.3.6/gcc/ARM-Options.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.arm7/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.arm7/index.html
http://dl.acm.org/citation.cfm?id=1442794
http://dl.acm.org/citation.cfm?id=1442794
http://portal.acm.org/citation.cfm?id=152181
http://portal.acm.org/citation.cfm?id=152181
http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf
http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf
http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-097.pdf
http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-097.pdf
http://portal.acm.org/citation.cfm?id=570182{%}5Cnhttp://www.springerlink.com/content/u0p06167n6173512
http://portal.acm.org/citation.cfm?id=570182{%}5Cnhttp://www.springerlink.com/content/u0p06167n6173512
http://portal.acm.org/citation.cfm?id=570182{%}5Cnhttp://www.springerlink.com/content/u0p06167n6173512

Bibliography 162

[250] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class Ad-

aBoost. Statistics and Its Interface, 2(3):349–360, 2009. ISSN 19387989. doi:

10.4310/SII.2009.v2.n3.a8. URL http://www.stat.lsa.umich.edu/{~}jizhu/

pubs/Zhu-SII09.pdfhttp://www.intlpress.com/site/pub/pages/journals/

items/sii/content/vols/0002/0003/00024013/http://www.intlpress.com/

site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/.

[251] I Guyon, B Boser, and V Vapnik. Automatic Capacity Tuning of Very Large VC-

Dimension Classifiers. Advances in Neural Information Processing Systems, 5:147–

155, 1993. URL http://www.clopinet.com/isabelle/Papers/autocapa.ps.

[252] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995. ISSN 08856125. doi: 10.1007/BF00994018.

[253] Marco Benocci, Elisabetta Farella, and Luca Benini. A context-aware smart seat.

In 2011 4th IEEE International Workshop on Advances in Sensors and Interfaces

(IWASI), pages 104–109. IEEE, 2011.

[254] Sebastian Buschjäger and Katharina Morik. Decision Tree and Random Forest

Implementations for Fast Filtering of Sensor Data. IEEE Transactions on Circuits

and Systems I: Regular Papers, 2017.

http://www.stat.lsa.umich.edu/{~}jizhu/pubs/Zhu-SII09.pdf http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/00024013/ http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/
http://www.stat.lsa.umich.edu/{~}jizhu/pubs/Zhu-SII09.pdf http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/00024013/ http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/
http://www.stat.lsa.umich.edu/{~}jizhu/pubs/Zhu-SII09.pdf http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/00024013/ http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/
http://www.stat.lsa.umich.edu/{~}jizhu/pubs/Zhu-SII09.pdf http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/00024013/ http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/
http://www.clopinet.com/isabelle/Papers/autocapa.ps

	Abstract
	Illustrations
	Abbreviations
	Preface
	Acknowledgements
	1 Introduction
	1.1 Internet-connected Things
	1.2 Real-Life Scenarios
	1.2.1 Intelligent Transportation Systems
	1.2.2 Intelligent Healthcare Systems
	1.2.3 Intelligent Building Systems

	1.3 Threats Against Things and the Internet of Things
	1.4 Motivation, Aims and Objectives
	1.5 Contributions and Outline of the Thesis
	1.6 Publication List

	2 Background and Related Work
	2.1 Internet of Things
	2.2 Machine-to-Machine Communications
	2.3 Emerging Trends in the IoT
	2.3.1 Social Internet of Things (SIoT)
	2.3.2 Virtualisation Continuum (VC)
	2.3.3 Fog Computing (FC)

	2.4 Information Security and Trust
	2.4.1 Encryption Techniques in the Internet of Things
	2.4.2 Definition of Trust
	2.4.3 Trust Management Frameworks
	2.4.4 Attacks against Trust Management Frameworks
	2.4.5 Trust Models for IoT

	2.5 Limitations of Current Solutions
	2.6 Summary

	3 A New Threat and a Novel Solution: Machine Emulation Detection Algorithm
	3.1 Threat Model
	3.2 Real-Life Scenarios: Worst Cases
	3.2.1 Open Networks
	3.2.2 Closed Networks

	3.3 Virtualisation and Emulation Detection
	3.3.1 CPU and Memory Tests
	3.3.2 Architecture-based Timing Tests
	3.3.3 Remote Tests
	3.3.4 Fingerprinting Tests

	3.4 Solution and Algorithm Design
	3.4.1 Characterisation Algorithm
	3.4.2 Machine Emulation Detection Algorithm

	3.5 Results and Discussion
	3.5.1 Comparison with Other Techniques

	3.6 Summary

	4 A Classification Approach to Detecting Forged Embedded Machines
	4.1 Background and Motivation
	4.2 Classification-based Algorithm
	4.2.1 Initial Dataset
	4.2.2 Feature Extraction
	4.2.3 Feature Selection
	4.2.4 Classification
	4.2.5 Performance Evaluation
	4.2.6 Overall Evaluation

	4.3 Simulation and Results
	4.3.1 Comparison with MEDA

	4.4 Summary

	5 Attack and Defence in Behavioural Tests
	5.1 Threat Model
	5.2 Fake Timing Attack
	5.3 Detection Model
	5.4 Simulations, Results and Comparison with Other Algorithms
	5.5 Classification of Unknown Devices
	5.6 Applicability of the Proposed Solution
	5.6.1 Architectural Reference Models
	5.6.2 Implementation Feasibility
	5.6.3 Real-Life Scenarios: Applicability

	5.7 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Contributions and Findings
	6.2.1 Introduction, Background and Related Work
	6.2.2 A New Threat and a Novel Solution: Machine Emulation Detection Algorithm
	6.2.3 A Classification Approach to Detecting Illegitimate Embedded Machines
	6.2.4 Attack and Defence in Behavioural Tests

	6.3 Future Work
	6.4 Summary

	A Appendices
	A.1 Characterisation Algorithm
	A.2 Characterisation Algorithm Outputs
	A.3 Machine Emulation Detection Algorithm
	A.4 Classification-based Algorithm
	A.5 Architecture-based Timing Test on Raspberry Pi 2 model B
	A.6 Architecture-based Timing Test: QEMU patch

	B Appendices
	B.1 Performance Results from MEDA, k-NN and RF
	B.2 Performance Results from k-NN and RF without the Normalisation Step
	B.3 Cumulative Frequency Histograms for Timestamp Features used to Detect FTA

	Bibliography

