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Abstract of thesis 

Chronic Lymphocytic Leukaemia (CLL) is a malignancy of mature B cells. The median age 

at diagnosis is 70-years old, mostly seen in Western Societies. Half of the patients show 

an indolent phenotype and watchful waiting is the recommended approach for their 

management. However, once treated, patients are heterogeneous in terms of response 

and relapse. Regarding prognosis, genetic testing, alongside current clinical staging, is 

important to guide treatment and prognosis. Deletion of the short arm of chromosome 

17 (17p) is one of the worst prognostic markers for CLL and usually involves loss of 

heterozygosity (LOH) and mutations in the TP53 gene. P53 is one of the cell-cycle 

regulators that activates senescence, cell-cycle arrest, DNA repair or apoptosis as part of 

the DNA damage response (DDR). In some severe cases of CLL with inactivated P53, the 

DDR is affected in favour of CLL survival. However, there is a little knowledge regarding 

the relationship between TP53 and mutations affecting other DNA repair genes and 

whether these could lead to a synergistic effect. It was, therefore, the aim of this study to 

address this important question.  

Genomic DNA was extracted from blood CLL cells of 10 patients, all of whom were 

bearing mutation(s) in TP53 as identified with Sanger sequencing and had progressive 

disease at the time of sampling. 194 known human DNA maintenance genes were 

identified and biotinylated-cRNA probes designed (Agilent SureSelect) to enrich DNA from 

their exons (2786 regions - total size = 500kb) for sequencing using an Ion Torrent 

Personal Genome Machine (PGM). In terms of coverage, about 99.92% of targeted 

regions were successfully enriched with 297x average coverage depth. Using the Torrent 



2 

 

Variant Caller (TVC), 365 candidate missense variants in 113 genes were identified from 

the samples. 268 were single nucleotide variants (SNVs), and 97 were previously unknown 

or novel (0.002 variants per 1kbp per patient). 90% sensitivity was achieved whereas 60% 

specificity resulted from a high rate of false positives (FP) found as homopolymer indels. 

Each of two out of the 10 samples (20%) had separate POLE novel missense mutations, 

which were validated by Sanger and Whole Genome Sequencing (WGS). This was further 

investigated with an expanded cohort of patients divided according to TP53 status into 

TP53 wild-type (n=28) and TP53 mutated (n=31). The results showed no further POLE 

mutation in the cohort (3.39%) and confirmed the independent role of TP53 pathogenesis 

in CLL.  

Whole genome Sequencing (WGS) to a lesser depth was also applied to the same primary 

cohort of ten CLL samples. Coverage analysis demonstrated there to be a 98.5% average 

base coverage and 29.7x average coverage depth. Data analysis found an average of 250 

novel missense variants (2.5x10-5 variants per 1kbp per sample).  The data also confirmed 

the 17p deletions and mutations. Genotyping data shows that many genes could be 

affected, involving signal transduction and immune response pathways that may 

participate in B cell development and CLL pathogenesis affected novel cells, supporting 

the possibility that oncogenes may initiate CLL carcinogenesis prior to TP53 mutation and 

chromosomal instability.     

Taken together, these results show that there are mutations in DNA repair genes but they 

are not common, at least for the samples examined. This suggests the independent role 

of P53 in deactivating DNA repairing mechanisms. Further validation should be applied 
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using a larger cohort. Furthermore, NGS proved to be a comprehensive tool for examining 

a group of genes or even genomes in a robust manner for characterising CLL.  
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1. Chapter 1. Literature Review 

1.1. Introduction to the Clinico-Biology of Chronic Lymphocytic 

Leukaemia 

Chronic lymphocytic leukaemia (CLL) is defined as a monoclonal B-cell malignancy, where 

B lymphocytes accumulate in the blood, bone marrow and lymphoid tissues. CLL is 

considered the most common leukaemia of adults in Western countries, accounting for 

up to 40% of all adult leukaemias (1). The disease’s annual incidence is 3-4 per 100,000 

and its likelihood increases with age with a median age at diagnosis of 71 years (2). The 

pathogenesis of CLL is unclear; environmental factors seemingly contribute to disease 

development. In a small proportion of patients (5-10%), familial predisposition is 

implicated (3)  but most cases of CLL are of sporadic origin.  

CLL can be a relatively indolent disease but its natural history is highly variable, and 

patient survival can range from 2 to 20 years after initial diagnosis (4). Although CLL is 

incurable, current treatment regimens can result in disease control and minimal residual 

disease. CLL’s systemic nature means that treatment is in the form of adjuvant 

chemotherapy, which more recently also includes immunotherapy. However, some 

patients are treatment resistant and for others, there is an elevated chance of relapse to 

a more aggressive form of the disease (5). 

Although a number of the factors that determine treatment response are understood, for 

example, defects in the pathways that lead to apoptosis, these are not sufficient in 

isolation to explain the highly variable nature of CLL. One “hallmark” of cancer is genetic 

instability. The purpose of the research project reported here was to investigate whether 
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there is evidence that genetic instability could contribute to the behaviour of the most 

aggressive forms of CLL. 

1.2. Aim of the Thesis 

The aim of this work is to target enriched DNA maintenance genes from a panel of 

aggressive forms of CLL with inactivated p53 and use Next-Generation Sequencing (NGS) 

at high depths to screen for mutations. In addition, a parallel study using low-pass Whole-

Genome Sequencing (WGS) would enable incidences of global patterns of genetic 

alterations to be identified and compared to the maintenance genes. 

1.3.  Normal B-Cell Maturation  

Normal B-cell differentiation is a complex and tightly regulated process. B-cell 

lymphocytes are differentiated from common lymphoid progenitor cells (CLPs), which are 

derived from haematopoietic stem cells (HSCs). Independent of antigens, these cells then 

pass through multiple stages in the following order: progenitor B-cells (proB), precursor 

B-cells (preB), immature B-cells and mature B-cells. They develop further into memory 

and plasma cells in secondary lymph tissues, such as spleen and lymph nodes, where 

through initial challenges by foreign antigens they recognise leads to their clonal selection 

through activation and proliferation or in the case of disease, by auto-antigens.  These 

end-stage B-cells are then released into circulation where they respond to stimulation by 

the same antigens to which they originally encountered that caused stimulation (Figure 1- 

1).  

Antibody diversity is achieved during B-cell maturation by antigen receptor gene 

diversification. Initially, the recombinase-activating gene (RAG) induces V(D)J 
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recombination at pre-B-stage in bone marrow (6, 7). Further remodelling occurs in the 

germinal centres of lymph tissues via somatic hypermutation and class-switch 

recombination (CSR) whereby the constant region of one immunoglobulin gene (IG) is 

substituted with the constant region of another, thus modifying its effector function. 

Central to this process are DNA double-strand breaks (DSBs), intermediate created by 

activation-induced cytidine deaminase (AID) and subsequent repair of the distally-severed 

ends (8, 9). 

 

Figure 1- 1: Normal B-Cell Interactions in Germinal Centres (GC) and CLL Development. B-
cells enter the GC, which is established in B-cell follicles after a T-cell-dependent (TD) 
immune response, leading to massive clonal expansion. In parallel, somatic 
hypermutation (SHM) takes place in the GC dark zone, resulting in a very high rate of 
induced mutations within immunoglobulin (Ig) variable region genes (10). B-cells then 
migrate to the GC light zone where cell-cell interactions occur with CD4+ T-helper (Th) 
cells and follicular dendritic cells (FDCs). Following this interaction, B-cells acquire a B-cell 
receptor (BCR); cells with high-affinity receptors are processed by class switch 
recombination (CSR) to different cell types, while low-affinity cells undergo apoptosis. CSR 
affects Ig heavy-chain constant region genes. Usually, B-cells developed previously in the 
GC repeatedly migrate between dark and light zones (11). B-cells with high affinity 
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undergo multiple rounds of multiplication, mutation, selection and class switching into 
memory B-cells and plasma cells and exit the GC. The figure is taken with permission from 
Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment 
of chronic lymphocytic leukaemia. Nature Reviews Cancer. 2010;10(1):37-50 (12). 

 

1.3.1. B-Cell Precursors and the Development of CLL   

Current knowledge supports post-GC memory cells, which are T cell-dependent (TD) and 

antigen-activated as well as the likely source for IGHV-mutated CLL (see Figure 1- 1). 

Some argue that the antigenic specificities of CLL could originate from B-cells in both TD 

and T-cell-independent (TI) antigen activation (13-15). On the other hand, IGHV-

unmutated CLL is likely derived from antigen-activated B-cells, but it is still unclear 

whether they are from conventional naïve B-cells, CD5+ B-cells, or marginal zone (MZ)-

like B-cells.  

1.4.  Clinical Characterisation of CLL  

The International Workshop on Chronic Lymphocytic Leukaemia (IWCLL) 2008 Guidelines 

(16) base the clinical diagnosis of CLL on the presence of 5000 clonal matured B-cells per 

microliter of peripheral blood as confirmed by flow cytometry.  The detection of 

characteristic surface proteins for markers of CLL cells, which include CD5, B-cell antigens 

CD19 and CD23 and low levels of surface immunoglobulin (sIg), CD20 and CD79b (16-18) 

confirms the diagnosis. 

Clinical presentation of CLL is variable.  At the time of initial diagnosis, there are >25% of 

patients that are asymptomatic while others present features of advanced disease, 

including anaemia, infection and massive lymphadenopathy (19). Patients with the 

indolent disease have a lifespan similar to age- and sex-matched healthy controls while 
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others suffer from aggressive, therapy-resistant disease or one that transforms into a 

more aggressive disease (Richter Syndrome (RS)) and die within a few years of diagnosis 

(20, 21).  

There are two clinical staging systems for CLL: modified Rai and Binet. The Rai system 

defines three risk categories, low-risk, intermediate- and high-risk, based on the number 

of lymphocytes, lymph node enlargement and features of marrow involvement (22). The 

Binet staging system employs similar parameters, but the number of involved anatomical 

lymph node areas is also considered (23). These staging systems are simple and useful as 

guidance for starting CLL treatment (20) but fail to specifically predict disease progression 

and response to therapy, which usually requires molecular testing. Therefore, they are 

not helpful for tailoring specific therapies to individual patients (24). 

Regarding RS, and according to the World Health Organisation (WHO 2008), RS is defined 

as a pattern of aggressive lymphoma which is largely related to CLL with 0.5% incidence 

rate per annum. Using CD markers, CD30, CD15 and CD20, RS falls into two cellular types; 

diffuse large B-cell Lymphoma (DLBCL) or Hodgkin lymphoma (HL) (21). In general, many 

RS colonies have a relationship with CLL clones in the patient as detected after examining 

IGHV status (25). RS diagnosis is confirmed by the lymph node biopsy that is initially 

screened by Positron Emission Tomography (PET)- Computed Tomography (CT) (21). 

Furthermore, various prognostic markers are helpful in confirming the diagnosis, such as 

TP53, NOTCH1, MYC and cell cycle CDKN2A. RS usually has a severe prognosis owing to 

the fast infiltration of the cancer cells and chemo resistance (21).  
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1.5.  CLL Treatment  

1.5.1. Indications for treatment 

Asymptomatic or early-stage patients are usually monitored without therapy whereas 

chemotherapy is applied with the goal of eliminating excess B-cells in progressive or 

symptomatic disease cases.  Evidence that treatment prolongs survival in non-progressive 

disease is lacking (26), moreover chemotherapy may cause co-morbidity and can increase 

risks of secondary tumours (16). Patients having intermediate- or high-risk groups in the 

Rai system or at Binet Stage B and C do indeed require therapy. It can be in a form of a 

chemoimmunotherapy (CIT) regimen, novel agent and/or maintenance therapy, including 

bone marrow transplantation as an alternative option for high-risk patients (27). 

Regarding therapy outcomes, patients can achieve remission, minimal residual disease or 

disease control. Response rates up to 95% are possible with complete response in up to 

43% of cases and progression-free survival of more than 30 months. Treatments need to 

be balanced for patient fitness and side effects, in particular neutropenia and 

thrombocytopenia. Relapsed CLL is typically responsive to additional rounds of treatment 

but may become resistant thereafter.  

Given that CLL is an excess of B-cells, chemotherapy typically targets proliferation. Most 

therapies induce DNA damage, either through alkylating agents or incorporation of purine 

analogues, in an effort to trigger apoptosis. 

1.5.2. Front-line treatment 

Alkylating agents, such as cyclophosphamide, chlorambucil and bendamustine, have been 

used in first-line therapy regimens. Their mechanism of action is to alkylate DNA, RNA and 
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proteins of tumour cells, leading DNA crosslink formation on guanine nucleobases, DNA 

damage and subsequent activation of apoptosis (28). They have been utilised in 

combination with immunotherapy regimens to improve survival and prolong the 

response duration. Moreover, in a German CLL 11 trial, treated treatment-naïve patients 

with chlorambucil with anti-CD20 antibody provide longer ORR and overall survival (OS) 

than clorabmbucil alone (29). However, the majority of patients eventually develop 

resistance. There are two mechanisms for drug resistance in CLL; the first is alteration to 

the P53-dependent apoptotic pathways, such as genetic alterations to TP53 and ATM  

(30, 31)– (see section 1.11 TP53 Defects in CLL, page63), while the second is alteration to 

metabolism and transport of alkylating agents (26).   

Likewise, a purine analogue is another DNA damaging agent that is used in CLL treatment, 

such as fludarabine, cladribine and pentostatin.  It initiates elimination of CLL cells by 

damaging DNA via purine incorporation (32), leading to apoptosis via activation of p53 

(33) (see Section 1.9, P53-Dependent Apoptosis, page 54). In combination with alkylating 

agents, they are associated with longer overall survival, but with more adverse effects on 

patients (34, 35). Results from a UK CLL 4 trial showed that patients treated with 

treatment regimens including fludarabine plus cyclophosphamide (FC) had better overall 

response rate (ORR) than patients treated with fludarabine alone (34). Both F and C have 

a synergistic effect - they induce DNA damage by targeting purine nucleobases with 

different DNA damage mechanisms (36). Therefore, defects in the P53 pathway, either 

p53 itself or its upstream activator, ATM, are associated with resistance to these 

chemotherapies (32). 
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Monoclonal antibodies targeting the B-cell specific antigen CD20 have been introduced in 

the treatment of CLL in a treatment regimen combined with traditional chemotherapy. 

They exert their effects via complement-dependent cell cytotoxicity (CDC) and antibody-

dependent cellular cytotoxicity (ADCC) and therefore, they are not reliant on the p53 

pathway (37). Such antibodies include rituximab, ofatumumab (38) and obinutuzumab 

(GA-101) (39). The latter two antibodies have a different orientation and more stable 

binding to their targets, thereby achieving a better response than the first.  

1.5.3.  Second-Line Treatments 

As drug resistance has emerged in CLL, especially to chemotherapy and DNA damaging 

agents, second-line treatments are currently recommended in high-risk CLL cases. One of 

the common agents used as an initial therapy is the monoclonal antibody, ibrutinib; a 

Bruton gamma-globulinaemia tyrosine kinase (BTK) inhibitor which inhibits BCR signalling 

pathways and therefore has been preferably employed in patients with aberrant p53 

functioning and providing significantly longer Progression-Free Survival (PFS) and OS as a 

monotherapy in comparison to chlorambucil (40), or ofatumumab (30). It has been 

demonstrated to rapidly reduce lymadepathy accompanied by lymphocytosis owing to 

chemokine receptor inhibition by the agent that prevents lymphocyte migration to lymph 

nodes but not as a sign of disease progression (41). However, certain patients have 

acquired mutations in BTK and phospholipase Cγ2 (PLCG2), leading to ibrutinib resistance 

and adverse clinical outcomes (30, 42).  

Recently, lenalidomide (a thalidomide analogue), which is an immune-modulatory agent 

that acts to block the induction of cancer cell-induced T-cell tolerance and angiogenesis, 



Chapter 1. Literature Review 

39 

 

has been approved for treating different haematological malignancies. In CLL, 

lenalidomide works either as a monotherapy or as an adjuvant with anti-CD20 agent (43).  

Lenalidomide functions through activating p21 pathways that supress cell-cycle kinases 

and proliferation of CLL cells (187).  

Furthermore, idelalisib is a new agent for relapsed CLL patients. A combination of PI3K-

signalling inhibitors, such as idelalisib (CAL101) and rituximab, has been utilised in 

relapsed/refractory CLL patients with 17p deletion or TP53 mutations to elongate 

progression-free survival compared to rituximab monotherapy (44).  

Another treatment option is the BCL2 inhibitor, ABT-199 (Venetoclax), which acts by 

mimicking pro-apoptotic BH3 family proteins to suppress BCL2 anti-apoptotic proteins. It 

has been shown to be effective in patients with aberrant p53 mutations and chemo 

resistance (45). 

Several drugs have been released into the markets but are then discontinued based on 

severe side effects.  Alemtuzumab is an example of such a treatment - it acts 

independently of the P53 pathway. Alemtuzumab binds the protein, CD52, found on 

mature lymphocytes and targets them for destruction by the immune system (26). In the 

past, for patients with fludarabine resistance and defective p53 functioning, 

alemtuzumab had been employed with a combination of high dose steroids to mitigate 

adverse reactions (26, 46).  In addition, lenalidomide as an adjuvant agent has been 

included in treatment regimens for patients on alemtuzumab and dexamethasone and 

resulted in longer PFS . 
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Figure 1- 2: CLL Treatment Strategy. In progressive CLL cases, a BTK inhibitor is used for 
TP53 deleted/mutated cases or as a primary treatment in general. In wild-type TP53 
cases, a chemoimmunotherapy (CIT) regimen is recommended unless the patient is unfit 
for therapy or has non-mutated IGVH. Furthermore, PI3K inhibitor and Venetoclax (BCL2 
inhibitor) could be second to BTK and/or CIT inhibitors in case of resistance or 
intolerance. The figure is adapted with permission from Kipps TJ, Stevenson FK, Wu CJ, 
Croce CM, Packham G, Wierda W, et al. Chronic lymphocytic leukaemia (vol 3, 16096, 
2017). Nature Reviews Disease Primers. 2017;3:1. 

1.5.4.  NCRI CLL206 and NCRI CLL210 Trials  

In this research project, many CLL samples were obtained from the NCRI CLL206 and 

CLL210 trials. NCRI CLL206 was the National Cancer Research Institute CLL206 trial, 
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established as a UK multicentre trial using the induction regimen of alemtuzumab plus 

high-dose methylprednisolone for high-risk CLL with 17p deletions. The second phase 

showed that the regimen improves median PFS to 11.8 months (46, 47). NCRI CLL210 was 

also a UK multicentre trial and was established to improve upon the results of the CLL206 

trial with the drug regimen comprised of alemtuzumab, dexamethasone and lenalidomide 

followed by randomisation to lenalidomide maintenance. The regimen appeared to be 

effective and the addition of lenalidomide had an acceptable safety profile with 29.3 PFS 

(48).  

Despite steady and significant progress improving outcomes for CLL patients through the 

optimisation of chemotherapy regimens, treatment resistance is a major problem and 

effective solutions require the response of CLL cells to be taken into account. Cell-cycle 

checkpoints, DNA repair and the propensity for cell death all have a bearing on the 

treatment response for CLL. Chemotherapy for CLL in terms of damaging DNA invokes the 

DNA Damage response (DDR) to affect repair. Time to successfully accomplish the repair 

processes is obtained by integration of checkpoint signalling and cell-cycle control. This 

prevents permanent DNA damage that would otherwise occur during replication and 

mitosis. Cells whose DNA damage exceeds the threshold for satisfactory repair undergo 

cell death typically by programmed cell death or apoptosis. 

1.6. DNA Damage Response and Replicative Stress 

DNA naturally incurs damage on a constant basis by multiple influences. Oxidative DNA 

damage happens at least 10,000 times per cell per day in humans as a result of free 

radicals produced by endogenous metabolism and cellular processes (47). Protective 
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mechanisms, known as the DNA damage response (DDR), have therefore evolved to 

manage the consequences either to fix such damage or remove the affected cells. The 

DDR, therefore, protects the organism against genomic instability leading to cancer 

development (49). In addition to DNA damage, DNA replication stress, whereby the DDR 

and other cellular responses result in a collapse in ordered DNA replication, for example 

through stalled or failed replication forks and accumulation of unpaired single-stranded 

DNA (50, 51).  

1.7. DNA Repair Pathways 

1.7.1. Base Excision Repair (BER) and Single-Strand Break Repair 

1.8.  Single-strand breaks (SSBs) are one form of frequent damage to genomic DNA. 

The action of reactive oxygen species (ROS) and base excision enzymes acting at 

the sites of DNA damage caused by spontaneous deamination, ROS oxidation, or 

alkylation can result in SSBs. ROS induces 8-oxoguanine (8-oxoG) and 5-

hydroxycytosine (5hmC), which if left unchanged leads to transverse mutations 

with adenine and thymine, respectively, when they are copied during replication 

(52, 53). High levels of spontaneous DNA deamination are also observed that give 

rise to apurinic/apyrimidinic (AP) sites , which similarly will yield incorporation of 

incorrect bases if not repaired in advance of replication (52).  Although SSBs 

superficially appear to be a less significant problem than abasic sites, the former 

are often left with modified 3’ or 5’ ends that cannot support normal replication. 

Failure of topoisomerase I, for example, results in an SSB with the enzyme 

attached to the 3’ end of the break point. 
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Where present, ‘abasic’ sites (AP sites) are formed after removing damaged bases using 

BER glycosylases and BER endonucleases. Depending on the enzyme, a single-stranded 

nick is generated, if not already present. BER and single-strand break repair (SSBR) use 

overlapping components and have similar repair actions involving four main steps: 

detection, end processing, end filling and ligation. Lesions are detected primarily by a 

member of the poly (ADP-ribose) polymerase (PARP) family (54). A large number of 

possible enzymes then correct damage to 3’ and/ or 5’ termini depending on the lesion 

(55). The BER pathway is divided into short- or long-patch BER that either repair one or up 

to 13 nucleotide bases, respectively. The pathway relies on glycosylases, endonucleases, 

DNA ligases, DNA polymerases, poly (ADP-ribose) polymerase 1 (PARP1) and PARP2 to 

mediate the process (Figure 1.2). PARP1 is essential in BER and also participates in DSB 

repair (54). El-Kamisly et al. (2003) suggested that PARP1 activates DSB repair and recruits 

XRCC1 and other proteins during the BER process (55). Moreover, BER can repair DNA 

damage triggered by ionizing radiation (IR), topoisomerase I failure (56) or DNA 

methylating agents (57, 58).  
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Figure 1-3. DNA Repair by Base Excision Repair (BER). The affected base is removed by 
OGG1 or by a NEIL family protein. The AP site is hydrolysed by APE1 and repaired 
according to the lesion size by either short- or long-patch BERs. In long-patch repair, PNPK 
is sometimes necessary to modify the broken ends followed by FEN1, POLD, POLE and 
LIG1 to complete patch repair Subsequently, FEN1 is required for long-patch repair. In 
short- (single) patch repair, POLB and LIG3 are recruited to nucleotides to replace and re-
join the AP site. In addition, PARP1 and XRCC1 are involved to provide a scaffold for both 
long- and short-patch repairs (55). The figure is adapted with approval from Curtin et at. 
(2012) (59). Abbreviations: OGG1, 8-oxoguanine DNA glycosylase; NEIL, Nei-like protein; 
AP, apurinic or apyrimidinic; PNKP, Polynucleotide ki (60)nase phosphatase; PCNA, 
Proliferating cell nuclear antigen; FEN1, flap endonuclease 1; PolB, polymerase-B; LIG3, 
ligase 3; PARP1, Poly (ADP-ribose) polymerase 1; and TDP1, tyrosyl-DNA 
phosphodiesterase 1. 

1.8.1.  Nucleotide Excision Repair (NER) 

Carcinogens, such as environmental and endogenous DNA damaging agents can introduce 

DNA bulky adducts that stall replication forks and contribute to replication stress and 
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genomic instability (61). Examples include ultraviolet (UV) radiation and chemical 

mutagens found in tobacco, primarily polycyclic aromatic hydrocarbons (PAH) and the 

nicotine-derived nitrosamines. The cellular response to chemotherapy drugs mirrors 

many of the consequences of these agents. 

DNA adducts distort the helix and in response, cells activate the NER pathway, which 

removes them. Interstrand and intrastrand crosslinks (ICLs) also invoke NER, which in this 

case requires ERCC1 and xeroderma pigmentosum (XP) proteins (Figure 1-4).   

1.8.2. Translesional DNA Synthesis (TLS) 

Several DNA polymerase classes, for example, Pol X, Y and A  can synthesise DNA across 

and beyond the lesion site (known as translesion synthesis (TLS)), leading to the 

possibility of cell survival when the replication fork has otherwise stalled (61). However, 

many such polymerases have no DNA proofreading capability, thus error rates can be 

high. Commonly, a preferred, default nucleotide is inserted, for example, 

deoxyadenosine, regardless of the affected base (61). As a result, TLS is considered a DNA 

damage tolerance process in addition to a DNA repair mechanism(61). 
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Figure 1-4. Nucleotide Excision Repair (NER). There are two common initiation routes of 
NER: transcription-coupled nucleotide (TC-NER) and global genome NER (GG-NER) (62). 
TC-NER recruits CSA and CSB, whereas GG-NER involves XPC and RAD23B. Both routes 
subsequently recruit the same proteins including XPA, RPA and TFIIH. The downstream 
steps include nucleotide excision by XPG, ERCC1 and XPF. Thereafter, the damaged 
nucleotides are replaced and ligated by POLD, POLE and LIG3. The figure is adapted with 
permission from Curtin et al. (2012) (59). Abbreviations: CSA, Cockayne syndrome WD 
repeat protein A; XPC, Xeroderma pigmentosum group C-complementing protein; RPA, 
replication protein A; Pol D, DNA polymerase-D; LIG3, ligase 3; PCNA, proliferating cell 
nuclear antigen; ERCC: ERCC Excision Repair 1, Endonuclease Non-Catalytic Subunit; DDB; 
Damage Specific DNA Binding protein; and RFC, replication factor C.          

1.8.3.  Mismatch Repair (MMR)  

Despite its high fidelity, replication of genomic DNA can incorporate the wrong 

nucleotides at a low frequency, leaving mismatches. MMR targets such replication errors 

(Figure 1-5).  
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MMR must distinguish leading from lagging strand synthesis in order to identify the base 

that is in error. How this occurs in eukaryotes is unclear but PCNA, which acts as a clamp 

for DNA and a scaffold for DNA-modifying enzymes may have a role (59). Recent work has 

shown that Replication Factor C (RFC) depends on nicks to load the replication-sliding 

clamp PCNA. This takes place in an orientation-specific manner with one face of the 

doughnut-shape protein pointing towards the 3'-end at the nick. MMR proteins 

incorporated into the complex include MutLalpha to one strand in the presence of a 

mismatch and MutSalpha or MutSbeta (63). MutLalpha is an endonuclease and 

introduces strand breaks in the presence of a mismatch and these facilitate endonuclease 

that removes mismatched DNA and allows correct replacement by replication. Ligases 

and DNA polymerases are therefore amongst other essential proteins found in the 

complex (64). 

1.8.4. Non-Homologous End-Joining (NHEJ) 

Double-strand breaks (DSBs) may also occur in DNA and are difficult lesions to repair. It is 

estimated that each cell has about 50 DSBs daily. Most of them arise endogenously by the 

activity of ROS (65). NHEJ repairs DSBs by ligating lesions with a minimal processing, it 

works during all phases of the cell cycle, most predominantly in the G0 and G1 phases (66), 

yet it lacks proofreading abilities. NHEJ is responsible for about 85% of DSB fast repairs, 

which are induced by IR (67, 68). Essentially, three proteins form the NHEJ complex, 

namely KU70 (XRCC6), KU80 (XRCC5) and the catalytic subunit of DNA-dependant protein 

kinase (DNA-PKcs). These proteins form aggregates with ligase 4 (LIG4), Artemis and 

XRCC4-XLF (67). DSBs are then detected by ATM and MRN complexes, which include 
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MRE11, Nijmegen breakage syndrome protein 1 (NBS1) and RAD50. They can also 

function as an early repair event in NHEJ.  

 

Figure 1-5. Mismatch Repair System. a - The repair is triggered by MSH2-MSH6 or MSH2-
MSH3 complexes at a mismatched nucleotide or an indel, respectively. Thereafter, the 
repair continues interacting with a protein cluster of MultLalpha and MultLbeta (MLH1, 
PMS2 and MLH3 complex) and Endonuclease 1. The process then continues with PRA, 
PCNA, RFC, POLD, POLE and FEN1 to excise and resynthesize the affected regions. MMR is 
a strand-specific repair mechanism and therefore, is crucial for replication error repairs. b 
- When O6meG and 6TG cause DSBs by mistakenly repairing the normal strand, apoptosis 
is initiated by MMR signalling to the ATR-CHK1 complex, LIG1 and MGMT(69). The figure 
is adapted with permission from Curtin at al. (2012) (59). Abbreviations; RPA, replication 
protein A; PCNA, proliferating cell nuclear antigen; RFC, replication factor C; Pol D, DNA 
polymerase-D; FEN1, flap endonuclease 1; O6meG, O6-methylguanine; 6TG, 
6-thioguanine; ATR, ataxia-telangiectasia and Rad3-related; LIG1, DNA ligase 1; and 
MGMT, O6-methylguanine DNA alkyl transferase.              
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Figure 1-6. DNA Double-Stand Breaks (DSBs) by Non-Homologous End-Joining Repair 
(NHEJ) and Homologous Recombination Repair (HRR). At DSB sites, many DNA repair 
proteins are gathered, including MRN nuclease complex (consisting of MRE11, RAD50 and 
NBS1). In addition, KU70-KU80 complex, histone H2AX and DNA-PKcs are recruited to pair 
the lesion ends to the normal strand (70). Ligation is accomplished by involving Artemis, 
LIG4 and XLF (67). In HRR, the repair work of MRN proteins is facilitated by BRCA, PARP1, 
CTLp and EXO1. These proteins are joined together to resect the severed ends (71, 72). 
Next, MRN recruits and activates ATM, which subsequently activates MRE11, NBS1, EXO1 
and CTLp. ATM also phosphorylates H2AX, which aids in recruiting 53BP1 and BRCA1 (73). 
The RPA protein is then attached to the overhanging strand to inhibit degradation and the 
ATR-ATRIP complex is recruited to phosphorylate CHK1 for S and G2 cell cycle arrest (not 
presented). Subsequently, ATM and ATR recruit BRCA1 to activate ligation via E3 ubiquitin 
ligases. In addition, ATR activates RPA2 and CHK1, which phosphorylate RAD51. RAD51 
then displaces RPA to create a nucleoprotein filament and a Holliday junction by targeting 
the complementary DNA duplex (74, 75). Thereafter, the lesion site in the targeted strand 
is extended and re-joined by the action of DNA polymerase and therefore, the 
polymerase forms crossover and non-crossover repairs. During stalled replication events, 
ATR is activated rather than ATM (76), followed by cell-cycle signalling through the ATR-
CHK1 complex, RPA, BRCA1, FANCN and BRCA2, which are crucial in HRR. The figure is 
adapted with permission from Curtin at al. (2012) (59). Abbreviations; NBS1, Nijmegen 
breakage syndrome 1; DNA-PKcs, DNA-dependent protein kinase catalytic subunit; LIG4, 
DNA ligase 4; XLF, XRCC4-like factor; PARP1, poly (ADP) ribose polymerase 1; CTLp, CtBP-
interacting protein; EXO1, exonuclease 1; ATM, ataxia-telangiectasia mutated; 53BP1, p53 
binding protein 1; RPA, replication protein A; ATR, ataxia-telangiectasia and Rad3-related; 
ATRIP, ATR-interacting protein; FANC, Fanconi anaemia; and ICLs, interstrand crosslinks.  
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1.8.5. Homologous Recombination Repair (HRR) 

HRR is a complex pathway that involves many proteins and acts against DSBs during the S 

and G2 cell-cycle phases (66). The severed ends of a DSB are resected, followed by 

introducing the single strands into the sister chromatid to accurately initiate the 

resynthesis of the broken DNA (Figure 1-4). The two chromatids are attached together by 

a cohesion complex prior to mitosis, which makes them accessible during the repair 

process (66). HRR is a high-fidelity repair mechanism and therefore considered the most 

crucial repair process for DSBs. It works on stalled replication forks, single-ended DSBs 

and ICLs (in conjunction with NER and Fanconi anaemia pathways) (77, 78). 

1.8.6. Cell-Cycle Checkpoints 

DNA repair processes are integrated with checkpoint signalling and cell-cycle control to 

reduce the risk of permanent DNA damage that could become fixed during replication 

and mitosis. DSBs, for example, are repaired by either EJ or HR pathways. The former is 

active during interphase but is inhibited during mitosis, whereas HR is restricted to the S 

and G2 phases of the cell cycle when suitable templates in the form of sister chromatids 

are available. ATM and ATR, members of Phosphatidylinositol 3-kinase-related kinases 

(PIKK) family, have vital roles coordinating DNA damage to the DNA repair pathways and 

cell-cycle checkpoints (79, 80). Hundreds of target proteins are phosphorylated in an 

ATM- or ATR-dependent manner. These include other protein kinases, in particular, Chk1, 

Chk2 and MK2, which are activated and cause a second wave of phosphorylation. DSBs 

activate ATM whereas DSBs and a variety of other types DNA damage activate ATR.  
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P53 protein accumulation is essential for complete G1 arrest and is activated by ATM 

through phosphorylation of Ser 15 (81). However, in the absence of ATM, ATR is able to 

compensate. The nature of DNA damage determines the Ser 15 phosphorylation 

dependency with IR, primarily acting through ATM and ATR when other forms of DNA 

damage or genotoxic stress predominate (81). Accumulation of p53 protein is regulated 

by indirect ATM pathways, including the phosphorylation of Chk2, which in turn 

phosphorylates Ser 20 on p53, facilitated by casein kinase I phosphorylation of Ser 18. 

ATM also phosphorylates Ser 395 of the p53 antagonist, protein MDM2 (82).  ATR 

additionally reinforces p53 activation by phosphorylating Chk1, which also acts on Ser 20 

of p53 (81). 

Unlike the G1 to S transition, S phase is not completely blocked by DNA damage but 

slowed. In response to IR, the ATM-dependent pathway functions as an S-phase inhibitor. 

Cdc25A is a protein tyrosine kinase, and G1 to S phase transition requires Cdc25A to 

activate cyclin A/cdk2 complexes. However, ATM phosphorylation of Chk2 allows the 

latter to target Cdc25A for ubiquitin-dependent proteasomal degradation by 

phosphorylation at its Ser 123 (83), slowing S phase as a result. ATM initiates HRR by 

recruiting BRCA2 to the DSBs, and it also activates BRCA1 and initiates NHEJ by recruiting 

p53-binding protein 1 (53BP1). Therefore, ATM regulates the cell cycle through its 

antagonistic functions (84). 

ATR and Chk1 are required for S phase slowing when other forms of genotoxic stress 

affect DNA, in particular when replication forks are affected or stalled (85). The damage is 

signalled to ATR through proteins, including Rad1 and 9 as well as Hus1 that forms a 

trimeric complex on DNA at the site of damage where failed replication leads to the 
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accumulation of ssDNA and is left unchecked, specifically SSBs and DSBs (86). 

Phosphorylation leads to the recruitment of additional proteins, HRR and ICL 

intermediaries, such as BRCA2, RAD51, Fanconi anaemia group E (FANCDE) and FANCD2. 

Cell-cycle consequences following ATM/ATR stimulation by NER junctions at resected 

DSBs and at stalled replication forks is depicted in Figure Figure 1-7(76).  

G2 to mitosis checkpoints are relatively insensitive compared to the G1 and S phase 

checkpoints (87). Similar to G1, the G2/M checkpoint is initially activated by ATM but ATR 

leads to a sustained block. ATM/ATR activates Chk1/2, which phosphorylates CDC25. 

Phosphorylated CDC25 is sequestered in the cytoplasm and cyclinB-CDK1 is kept inactive 

by Wee1, preventing entry into mitosis (88). Other kinases, in particular, the polo-like 

kinases, are also regulatory (89). Maintenance of the G2 checkpoint is p53 dependent, 

this being responsible for the transcription of cell-cycle inhibitors, including p21Cip1, 

GADD45 and 14-3-3sigma proteins, which act co-operatively. GADD45 dissociates CDK1 

from cyclin B, 14-3-3sigma sequesters CDK1 to the cytoplasm and p21Cip1 binds cyclinB-

CDK1 (90). Through p21-dependent suppression of CDK1 by p53, the pRB tumour 

suppressor is activated, sequestering E2Fs and reducing transcription of G2/M target 

genes required for cell-cycle progression, in particular, the anaphase-promoting complex 

genes, APC/C, to further cause G2/M arrest (91).    
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Figure 1-7. Cell-Cycle Checkpoints and DNA Damage Signalling. When DSBs arise, ATM is 
activated, triggering the G1 checkpoint, resulting in activation of CHK2 and p53. In a 
similar manner, ATR is activated by defective single- and double-stranded DNA events, 
such as stalled replication forks, resected DSBs and NER intermediates. By activating ATR, 
subsequent phosphorylation occurs on CHK1, WEE and CD25C; these proteins work as S 
phase and G2 checkpoints, which suppress cell-cycle progression by deactivating CDK 
activity (79). Generally, there is coordination between ATM and ATR to facilitate substrate 
sharing. Dashed arrows indicate other targets. The figure is adapted with permission from 
Curtin et al. (2012) (59). Abbreviations; ATM, Ataxia-telangiectasia mutated; DSBs, DNA 
double-strand breaks; ATR, Ataxia-telangiectasia and Rad3-related; NER, nucleotide 
excision repair; CDC25, cell division cycle 25; CDK, cyclin-dependent kinase; CHK 
Checkpoint Kinase:  and ATRIP, ATR-interacting protein.  
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1.9. P53-Dependent Apoptosis 

Multiple stress signals and all DDR pathways are integrated by p53, which in turn 

regulates a wide variety of antiproliferative responses that include cell-cycle arrest and 

apoptosis (92). Cell fate is determined by a balance of pro- and anti-survival signals from a 

wide variety of networks. There are two apoptotic pathways - the intrinsic or 

mitochondrial and the extrinsic or death receptor pathway. There is also a 

perforin/granzyme pathway that mediates T-cell cytotoxicity (93). p53 initiates apoptosis 

by transcribing pro-apoptotic proteins, including BAX, BID, PUMA and NOXA, which 

permeabilise the mitochondrial membrane and release additional pro-apoptotic factors. 

Although it is clear that ATM and downstream effectors like Chk1/2 are important for 

phosphorylating p53, leading to its activation by stabilisation, it is not clear precisely how 

p53 is central to apoptosis on a cell-by-cell basis (94). DNA repair proteins like Brca1 can 

also induce apoptosis by signalling to p53 (94). Shortly after induction of p53, apoptosis 

can be avoided. PARP localises to DNA damage and also signals to other repair proteins by 

synthesising poly(ADP-ribose) (PAR) chains. A rapid, transient parylation of nuclear 

proteins followed by the caspase-3 destruction of PARP is required for apoptosis to take 

place (95). Inactivation of PARP ensures adequate levels of NAD and ATP, which are 

required for later stages of apoptosis (96). Clearly, this represents only a few of the many 

fine-tuned factors that contribute to ultimate cell fate. P53/ATM are highly important for 

apoptosis of CLL.  
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1.9.1.  TP53 Structure and Function 

The human TP53 gene is located on the short arm of chromosome 17 (17p13.1) and has a 

length of 20 kb. It is composed of 10 coding exons and one non-coding exon, the first 

exon, 8-10 kb distance from exon 2 (97-99). TP53 encodes transcription factor p53 

protein, which is composed of 393 amino acids. p53 protein has several functional 

domains: two transcription activation domains ( 1: amino acids 1-42) (100); (2: amino 

acids 43-63) (101, 102), a proline-rich domain (spanning amino acids 64-91) (103), a DNA-

binding domain (within amino acids 100-300) (104), a nuclear localization signal (amino 

acids 316-325) (105), a tetramerisation domain (106), a nuclear export signal domain 

(107) (spanning residues 334-356) and a C-terminal basic domain (amino acids 364-393) 

(108). Primarily, four domains are essential for p53 function and protein-protein 

interactions: the transcriptional activation domain 1, DNA-binding domain, the 

tetramerisation domain and the C-terminal basic domain (109).        

p53 essential protein domains affect DNA binding by p53 and thus, the activity of the p53 

protein (108). The C-terminal domain is regulatory and controls p53 DNA-binding activity 

in response to p53 phosphorylation (108) and acetylation (110), which are all affected by 

its deletion (111). Association of anti-p53 antibodies (112) or peptides are able to 

enhance DNA-binding activity from the domain (113). The C-terminus of p53 is 

indispensable for transactivation or transrepression of the protein (114). In a normal 

physiological state, trace amounts of p53 protein are present because of its short half-life. 

Activation and stabilisation of the protein by upstream kinases, e.g., ATM- and ATR-

induced conformational changes, and release from negative controls like those mediated 
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by its ubiquitin ligase MDM2, which targets it for proteasomal destruction and therefore 

p53 half-life is risen (109).  

1.10. DNA Maintenance Gene Defects, Genomic Instability and Human 

Cancers 

DNA maintenance or caretaker genes are responsible for the maintenance of genomic 

stability (115). Essentially, they include DNA repair and cell-cycle checkpoint genes, 

termed “classical caretaker genes” as described in Sections 1.7 DNA Repair Pathways) to 

1.8.6 Cell-Cycle Checkpoints (116). Collectively, these act to detect DNA damage, provide 

an opportunity to influence its repair, complete the repair or program the cell for death if 

sufficient deviation from normality is reached. Defects in these genes, whether acquired 

or inherited, lead to genomic instability and the type of instability is characteristic of the 

nature of the “caretaker” gene affected. Genomic instability is defined as a cancer 

signature that is characterised by accumulation of DNA mutations and other lesions 

within cancer cells. Generally, there are different types of genomic instability. For 

example, chromosomal instability (CIN) is the most frequent form that is caused by high 

CNAs at the chromosome level. Another example is microsatellite instability (MSI), which 

increases the likelihood of lesions at genomic tandem repeats (117). However, all types of 

genomic instability are observed, ranging from single nucleotide changes to macroscopic 

alterations in DNA copy number and organisation (118). Defects in the caretaker genes 

can be inherited or acquired. 

Many different kind of hereditary cancers are known. Hereditary non-polyposis colon 

cancer (HNPCC) is linked to mutations in DNA mismatch repair genes, leading to a MSI 
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phenotype (119, 120). Another hereditary neoplasm affecting the fidelity of single 

nucleotides is MYH polyposis, which causes an increase in the ratio of G-C to T-A 

transversions and results from biallelic germline mutations in the MYH gene. In hereditary 

cancers that carry the CIN genotype, genomic instability can be directly affected by 

mutations in NHR or NHEJ DNA repair genes; examples include HR mutations in the breast 

cancer susceptibility 1 and 2 (BRCA1 and BRCA2) genes, partner and localizer of BRCA2 

(PALB2), BRCA 1-interacting protein 1 (BRIP1), Werner syndrome helicase (WRN), 

Nijmegen breakage syndrome protein 1 (NBS1 or NBN), Bloom syndrome helicase (BLM), 

RecQ protein-like 4 (RECQL4) and other genes belonging to the Fanconi anaemia 

pathway. These genes are associated with either DSBs or DNA interstrand linking that 

exacerbates the development of cancers, such as leukaemias and lymphomas (121, 122). 

Low levels of DNA telomerase are also associated with cancer development as the ends of 

chromosomes cannot be maintained, leading to exposed double-stranded ends that may 

undergo multiple rounds of breakage along with end re-joining cycles, accumulating 

damage and chromosomal rearrangements as they proceed (123). An analysis of nearly 

five million mutational events from over 7000 different cancers found at least 20 different 

types of mutational signatures, some of which are found in most cancer types and others 

in only a single type(124). The APOBEC family of cytidine deaminases are the most 

prevalent type and the origin of certain forms of damage have yet to be discovered. 

Hypermutation, localised to small, discrete genomic regions, was also found to occur. 

DNA strand bias was an additional feature, illustrating the importance of transcription for 

the repair process. Signatures of mutagens, for example, bulky adducts as found in 

tobacco smoke, were also prevalent.  
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Many of the genes that are involved in hereditary forms of cancer are also known to be 

altered by spontaneous mutations or DNA methylation in sporadic cancers. Sporadic 

cancers can be broadly classified into two types, those with predominantly multiple, 

single-base alterations and those with CIN (118). DNA maintenance, cell-cycle and 

chromosome organisation pathways are associated with each. NGS (See Section 1.14.3 

Massively Parallel (Next-Generation) Sequencing, page 69) and other post-genomic 

technologies have allowed detailed analysis of cancer genomes and associated 

macromolecules to be performed. A comparison of over 3000 different cancers from 12 

different, common types showed a mutation (M) class and a copy number (C) class (125). 

The M class was associated with defects in control of G1, the TP53 pathway and DNA DSB 

repair whereas the C class was associated with enhanced RAS signalling, Wnt signalling, 

PI3K/PTEN/AKT signalling, DNA mismatch repair and gene defects for the chromosomal 

organisation (SWI/SNF) (125). 

The presence of germline mutations in maintenance genes supports the mutator 

hypothesis, which states that genomic instability occurs in precancerous lesions and 

cancers are able to arise because of their increased mutation rate. However, in sporadic 

neoplasms, genomic instability is rarely exhibited despite the presence of CIN in the 

majority of cancers (126). Two potential models for CIN in sporadic cancers are 

speculated - the first is the mutator hypothesis and the second is the replication stress 

(see Section 1.8.1 Nucleotide Excision Repair (NER), page 44) model for cancer 

development (50, 51, 127). CIN is initiated by oncogene-induced DNA replication stress, 

which is DNA damage that usually disrupts replication machinery, and is followed by DNA 

DSBs and genomic instability. Replication stress has been shown to accumulate in 
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precancerous lesions and tumours when compared to normal cells, supporting a role in 

contributing to genomic instability (127). It has been estimated that an approximately 

100-fold increase in 8-oxoG is observed in cancer relative to normal tissues as a result of 

cancer-induced inflammation, which generates more ROS. (128). This could only become 

significant once cancer has developed, making it less likely that it is the initial cause of 

genomic instability. 

DSBs are part of the essential mechanism to achieve antibody diversity (See Section 1.3 

 Normal B-Cell Maturation, page 32) and provide an opportunity for genotoxic damage, 

which could be considered to contribute significantly to the development of 

haematological malignancies, including CLL. CLL shares a mutational signature with other 

malignant B-cell lymphomas, essentially T>G transversions at ApTpN and TpTpN 

trinucleotides, and this signature is restricted to cancers that have undergone somatic 

immunoglobulin gene hypermutation (IGHV-mutated) associated with cytidine deaminase 

(AID) activation (124). The signature, however, lacks the known mutational features of 

AID and has therefore been proposed to be because of an error-prone polymerase 

(polymerase η) involved in processing AID-induced cytidine deamination (129). 

The existence of characteristic mutational signatures and their association with 

underlying defects in pathways for cell-cycle control or DNA maintenance has supplied an 

opportunity for targeted therapies.  
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Figure 1-8. Genomic Instability as a Cancer Hallmark. a - Hallmarks of cancer include 
genomic instability. In this figure, activated growth-signalling hallmarks include self-
sufficiency and insensitivity to anti-growth signals. The secondary hallmarks, such as 
oxidative stress and proteotoxic stress, are separate from the cancer hallmarks circle. b - 
In hereditary cancers, genomic instability is probably the initiation event, which later 
facilitates the initiation of other hallmarks. c - The temporal order of hallmark 
establishment in sporadic cancers. It is initiated by deregulation of growth-regulating 
genes. This causes DNA damage and DNA replication stress followed by genomic 
instability and the selective pressure of p53 inactivation and its tumour suppressor role. 
Subsequently, cancer cells become capable of evading cell death. Based on genomic 
instability, other hallmarks can be activated as seen in the hereditary cancers model. 
Figure is taken with permission from Negrini et al. (2010) (130, 131). 
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1.10.1. Therapeutic Targeting of Genomic Instability 

In cancer, if one DNA repair pathway is deactivated, the other pathway(s) may work in 

favour of cancer survival. An example of this mechanism that may compromise 

chemotherapy efficacy is the up-regulation of DNA repair pathways which render cancer 

chemo-refractory. However, these pathways can also be targeted by inhibitors as a 

potential cancer therapy (59). 

Germline defects in the Xeroderma pigmentosum genes are associated with hereditary 

skin cancer development and  UV sensitivity (62). NER is defective and therefore platinum 

therapy is a worthwhile option because the ICL repair capacity is already reduced (132, 

133). 

MIN associated with MMR defects can increase mutation rates up to 1000-fold (134). 

Several DDR genes contain microsatellite sequences, for example ataxia-telangiectasia 

(ATM) and MER11, and therefore are susceptible to damage in high-MSI cancers. It is not 

uncommon for MMR defects to be associated with sensitivity to some DNA-damaging 

agents (135, 136) and resistance to others, such as temozolomide (TMZ), platinum agents 

and certain nucleotide analogues (69, 137). 

Germline aberrations in the associated NHEJ repair proteins are found in cancers such as 

breast cancer (with KU70 SNPs) (138) and glioma (with SNPs in DNA-PKcs) (139). Many 

anti-tumour agents target NHEJ.A portion of them initiate DSBs directly by IR and 

topoisomerase II inhibitors, and indirectly via stalled replication forks induced by single-

strand lesions. Topoisomerase II inhibitors produce a persistent DSB-associated protein 

(140), whereas IR induces an average of one DSB per 25 SSBs.  
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Other agents have been developed to target DNA-PKcs and inhibit PI3K as it is a member 

of the PIKK enzyme family, which includes ATM, ataxia-telangiectasia and ATR as well as 

mTOR. The agents, LY294002 and wortmannin, affect the strand-rejoining repair for DSB 

and have adjuvant cytotoxicity with DSB-inducing agents (141, 142). Higher levels of DNA-

PKcs are seen in CLL cells, suggestive of poor prognosis and the DNA-PKcs inhibitor 

NU7026 has been shown using in vitro models to increase the sensitivity of CLL cells to 

topoisomerase II inhibitors (143). 

Many of the proteins for HRR are tumour suppressors, including BRCA1, BRCA2 and ATM. 

Cancers with defective HRR are very sensitive to crosslinking agents, such as cisplatin and 

carboplatin, as well as therapeutically-induced DSBs for example by IR and topoisomerase 

I poison. Furthermore, tumours with high rates of HRR defects may potentiate the 

efficacy of cytotoxic therapy, hence providing a rationale to combine HRR inhibitors with 

conventional chemotherapy to sensitize tumours (for tumours with functional HRR); 

known by the term synthetic lethality. In Philadelphia-positive (Ph+) haematological 

malignancies, the proto-oncogene, ABL1, is important for activating phosphorylation of 

RAD51 as an important step in HRR. Imatinib, the BCR-ABL1 TK inhibitor, targets Ph+ 

tumours and consequently sensitizes the cells to IR and DNA crosslinking agents (144, 

145).   

ATM is also a tumour suppressor. ATM-associated defects include mutations, 

polymorphisms, deletion and epigenetic silencing (10). Microsatellite repeats are a 

common frameshift indel in ATR, resulting in truncation of the protein in cancers with MSI 

(146). During the DDR response to DNA-damaging agents, checkpoint activation is a 

common feature where ATM and ATR have multiple protein targets (see section 1.8.6Cell-
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Cycle Checkpoints, page 50 (Figure 1-7). Therefore, checkpoint inhibitors have been used 

to enhance the efficacy of many DNA-damaging agents (80, 147). An example of these is 

KU55933, which inhibits ATM activation during IR and sensitises tumour cells to 

topoisomerase inhibitors and IR (148). 

1.11. TP53 Defects in CLL  

Allelic loss and/or mutation of TP53 can occur in a broad range of malignancies; about 

half of human cancers are affected by TP53 somatic mutations and regarded as a 

cornerstone in tumourigenesis (149, 150). The frequency of TP53 mutations varies 

between different cancers - they account for approximately 10% of haematological 

malignancies (151).  Yet, in other human neoplasms, such as colorectal (152), ovarian 

(153) and head and neck cancers, such an incidence is as high as 50-70% (154). During 

tumour progression, loss of heterozygosity (LOH) usually occurs after somatic mutation 

(155). This suggests that there is a selective pressure by Loss of Heterozygosity (LOH) to 

inactivate the wild-type allele (156, 157).  

Although hot spots have been documented, mutations can occur anywhere within the 

coding region of TP53. Missense mutations are the most common form of the mutations 

in this gene; the resulting amino acid change hampers either DNA-binding ability or the 

conformational structure of p53, nevertheless the full-length protein can be formed (158, 

159). In most cases, the mutations in one allele are associated with the loss of the wild-

type allele, resulting in full loss of wild-type p53’s functions (159), (160).  In addition, 

mutated p53 may gain oncogenic properties (161).    
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In CLL, roughly 90% of mutations are localised to the DNA-binding domain in exons 5-8 of 

this gene (162, 163). The mutations can be found in 5-10% of therapy-naïve patients 

(164), while an incidence rate as high as 25% has been reported among chemotherapy-

resistant patients (165, 166). With regards to missense mutations, transition changes are 

common, particularly at known CLL hotspots, including codons 175, 179, 220, 248, 273, 

281 and 209 (162).  Despite being accompanied by unmutated IGHV, TP53 mutation 

and/or deletion is independently strongly associated with disease severity and outcome 

in CLL (167). It has also been shown that positions of the p53 mutation are significant. 

Mutations in the DNA binding motif are associated with an extremely poor prognosis 

(167). At the chromosomal level, deletion of TP53 from 17p takes place in 7% of 

untreated patients (168). The percentage rises to 50% for refractory patients (169) and 

80% in cases with inactivated p53 mutations(166). Cells acquiring this deletion have 

inhibited p53 tumour suppressor function and therefore, resistance to therapy-induced 

apoptosis and DNA-damaging agents (109). Notably, both deletions and mutations have 

the same biological and clinical impact (162), although TP53 deletions alone can be 

associated with prognostic features, including accelerated disease progression and 

chemotherapy resistance (170).    

Heterogeneities in clinical course and response to treatment for CLL are linked to 

endogenous factors, including chromosomal instabilities, nucleotide mutations and 

subsequent clonal accumulation of these aberrations (171). To date, the most important 

biomarker for predicting prognosis and choice of therapy is the existence of TP53 

mutations and/or chromosome 17p deletions (172). Accordingly, when DNA damaging 

agents are not suitable because of inactivated p53, alternative p53-independent 
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treatments are offered, such as monoclonal antibodies that target the antigenic surfaces 

of cancer cells (19) (see Section 1.5.3 Second-Line Treatment, page 38).  

1.12. Clonal Evolution in CLL 

It has been noted that CLL patients with faster clonal evolution are likely to have an 

aggressive clinical course. This is consistent with the concept that CLL subclones are 

expanding in such patients. In addition, this supports the notion that when CLL symptoms 

appear and absolute lymphocyte counts rise, distinct chromosomal aberrations are 

detectable in certain subclones (173). This was detected in the past using conventional 

FISH and other cytogenetic techniques of low resolution; for an example, in a study by 

Stilgenbauer et al. (2007) where clonal evolution was detected in roughly 43% of CLL 

patients, FISH was the main methodology and from progression to relapse periods, they 

were able to detect the appearance of biomarkers for a poor outcome, such as 17p and 

11q deletions (174).        

It is speculated that during CLL clonal evolution, various clones/subclones more rapidly 

multiply than others, and these cells likely bear the genomic DNA anomalies associated 

with aggressive prognostic features. Therefore, in order to inhibit the progressive 

evolution of CLL, a therapeutic plan to target these clones is desirable. In this regard, two 

main models are proposed: a linear evolution where the mutant clone increases in 

number with no alteration in the initial genetic composition, or branching evolution 

where complex interactions alter the initial genetic composition of different progeny 

(175).                     



Chapter 1. Literature Review 

66 

 

As the most rapidly expanding leukemic subclone, from which permanent DNA 

abnormalities arise could lead to more aggressive disease, preferentially targeting these 

subclones might prevent successive clonal evolution and disease deterioration.  

1.13. Methods for Detecting Genomic Instability 

1.13.1. Cytogenetic Approaches to CLL Prognostication   

In CLL, cytogenetics is highly relevant for defining prognosis (176). Giemsa banding (or G-

banding) produces visible Giemsa-stained metaphase karyotypes from metaphase 

chromosomes. Using photographic representations, large-scale chromosomal defects can 

be detected throughout human chromosomes (177). Unlike other haematologic 

malignancies, few CLL studies have been conducted using chromosome-banding analysis, 

largely owing to lower proliferation activity of CLL cells in in-vitro culture, even with the 

availability of B-cell mitogens. (178, 179). Alternatively, FISH and comparative genomic 

hybridization (CGH) are cytogenetic approaches that do not require proliferating cells. 

FISH was developed in the 1980s. The approach employs fluorescent nucleic acid probes 

to detect complementary DNA or RNA sequences of interest without requiring metaphase 

proliferation. Therefore, it is more sensitive and specific compared to chromosome 

banding analysis and other conventional cytogenetic approaches. FISH can employ multi-

colour probes and is useful in identifying different prognostic subgroups in 

haematological cancers (180). Interphase FISH analysis has been successfully applied for 

detecting recurrent chromosomal indels in CLL. It detects more than 80% of common CLL 

genomic aberrations, such as 17p and 11q deletions (which are associated with the worst 

prognosis), trisomy 12 (associated with intermediate poor prognosis) and 13q (associated 
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with good prognosis and favourable outcomes) (181). Thus, it is an important tool for 

distinguishing high-risk patients. However, the number and size of chromosome regions 

recognised by FISH probes are limited, and quantifying results sometimes are challenging. 

Generally, FISH can detect up to >5% of large chromosomal aberrations (182).                

Another approach uses SNP arrays or array-comparative genome hybridisation (aCGH), 

where labelled genomic sample DNA is hybridised to arrays of oligonucleotide probes 

representing the entire genome and the signal strength from each data point is used to 

infer the relative copy number of the genome at that point in the genome of the sample 

(183). It can, therefore, measure the copy number changes throughout the whole 

genome and it improves in terms of resolution and coverage over the limitations of FISH. 

For example, Xu et al. observed that 50% of patients who were found to have a normal 

karyotype using FISH were found to have subclonal genetic legions associated with poor 

prognosis by SNP arrays, below the limit of detection for FISH (184). SNP arrays are 

preferred over aCGH because they can determine other types of copy number anomalies, 

including double deletions, uniparental disomy (UPD) and additional complex anomalies 

that aCGH cannot. It has been seen that having multiple lesions is a sign of clonal 

progression and is associated with reduced median overall survival of 22 months (185).        

1.14. Identification of Single-Nucleotide Variants (SNVs) and Small Indels 

1.14.1. Detection of Aberrations Using Physical Properties of DNA 

Several methods have been developed to detect small aberrations, such as point 

mutations, small insertions and deletions. Choosing the proper method depends on the 

aberration status (known or unknown) and number and length of aberrations. Single-
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strand conformational polymorphism (SSCP) is one method utilised to identify unknown 

point mutations that makes use of DNA variations resulting in a change to the 

conformational structure of denatured DNA fragments (of up to 200 bp in length) that can 

be detected when the mobility of normal and mutated DNA are compared by gel 

electrophoresis (186). Similarly, differential mobility in denaturing high-performance 

liquid chromatography (DHPLC) of heteroduplexes formed by mutant DNA annealed to 

wild-type DNA can establish point mutations compared to homoduplexes of wild-type 

alleles (187). Denaturing gradient gel electrophoresis (DGGE) makes use of the melting 

behaviour of mutant DNA for the detection of mutant alleles. This technique can detect 

aberrations in DNA fragments up to 1 kbp, with 95% sensitivity, however it is labour 

intensive and only suitable for known target abnormalities (187). None of the methods 

described so far can detect exact changes in the DNA sequence, which need to be 

confirmed by other methods, e.g., Sanger sequencing or NGS. 

1.14.2. Sanger Sequencing 

Sanger sequencing was developed by Frederick Sanger 40 years ago. It is a DNA 

polymerase-dependant approach that involves complementary DNA synthesis using 

deoxynucleotides (dNTPs) and unnatural dideoxynucleotide (ddNTP) terminators (188). 

One terminator is available for each possible base and the position of their incorporation 

is determined from the length of the resultant fragment polymerised. Knowing all of the 

termination positions for each of the possible bases allows the overall sequence to be 

inferred. Laser detection of fluorescent dye terminators (189, 190) and on fragments 

separated by capillary electrophoresis (191, 192)  has allowed the process to be 

automated (193, 194). The accuracy of each base is calculated by a Phred score after the 

https://en.wikipedia.org/wiki/Frederick_Sanger
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corresponding base-calling algorithm that interprets the shape and complexity of the 

electropherograms are produced for each position. The standard Phred quality of 20 

relates to a 99% accuracy (195, 196). Small background peaks produce mixed fluorescent 

signals and therefore the method is not sufficiently sensitive to identify mutations with 

variant frequencies below 10 (197). Electrophoretic resolution and the requirement for 

PCR amplification to prepare the sequencing template limits target size, to less than 900 

bp, and it is laborious for large target regions. 

1.14.3. Massively Parallel (Next-Generation) Sequencing 

High-throughput sequencing, or NGS, was developed to increase throughput and 

decrease costs. Currently, a single sample or multiple samples are sequenced in parallel 

with the capability for millions of nucleotides reads. In addition, in comparison to Sanger 

sequencing, NGS can produce high base depth, which can detect somatic variants with as 

low as 0.1% allele frequency (198). Modifications to the approach allow variants as low as 

1 in ~1000000 to be discerned with confidence but for specific sites of interest (199). 

Various NGS platforms are commercially available, including large-scale machines, such as 

Illumina HiSeq and Illumina HiSeq x10, which can generate gigabases (Gb) and terabases 

of data per run, allowing for the whole human genome to be sequenced over several days 

for multiple individuals (200). Lower throughput platforms, such as the Roche 454, 

Illumina Miseq, Ion Torrent PGM and Ion Proton, have a lower capacity but faster turn-

around times, therefore are more suited to specific questions, especially involving clinical 

samples and tests. All of the platforms are capable of producing megabases to gigabases 

of output at a very low cost compared to the Sanger method (201). Table 1-1 is a 
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summary of the different NGS platforms. The sequencing workflow has multiple stages, 

including DNA extraction, target DNA enrichment when required, template preparation, 

sequencing reactions, raw data production and bioinformatics analysis. Bioinformatics 

analysis is time-consuming and challenging as a large amount of data has multiple steps 

and needs considerable computing power for comprehensive analysis (201). All of the 

platforms yield short reads of data of up to several hundred bases per template. This is 

adequate for de novo sequencing. The reads are aligned to a reference genome and 

differences between the reads and the reference identify variants. Error rates are also 

high and therefore target sequences have to be read to high depth (many times) to have 

high confidence in variant calls (202). The quality of the reference genome for comparison 

is also important and is being constantly refined, in particular with regard to polymorphic 

variants of all types from single nucleotides to large structural alterations and copy 

number differences (203). 

1.14.4. Whole-Genome Shotgun Sequencing (WGS) 

One haploid copy of the human genome comprises approximately 3.1 billion nucleotides, 

but millions of these are polymorphic in the population and any given individual may have 

presented only a few percent of the total polymorphisms known (204).  Sequencing 

random fragments from the genome and then comparing the reads to the reference 

genome has a variety of uses, depending on the depth of coverage. Low pass coverage of 

up to 10 fold is adequate to detect structural variants (205). Yet, only 10-fold depth of 

coverage is required to identify single-nucleotide variants, the random distribution of 

reads across the genome means that many regions are underrepresented, so only a small 

fraction of the genome would offer useful information, and this would be different by 
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chance for each genome compared. Most whole-genome studies, therefore, perform 

sequencing to a depth of 30-50-fold coverage (206). Alternatively, target enrichment is 

performed so that the same total number of sequence reads can be focused on regions of 

interest at higher depth for improved variant calling.  



Chapter 1. Literature Review 

72 

 

Table 1-1. Summary of high-throughput sequencing. Data are adapted from Goodwin et al.  (2016) (207) (208). 

 

Abbreviations: B, Billion; AT, Adenine and thymine; bp, base pair; Gb, Gigabase; d, day; h, hours; K, Kilo, M; Million.
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1.14.5. Whole-Exome Sequencing (WES)  

WES is a common type of sequencing that utilises target enrichment (209). This is because 

any non-synonymous variants established can easily be understood in terms of functional 

consequences (209). A human exome contains both coding and non-coding regions, 

totalling about 30 Mbp and 180,000 exons (roughly 1.1-1.4% of the human genome) 

(210). Another advantage is that ~85% of the known disease-associated, polymorphic 

variants lie within exomes (211). Usually, the average coverage depth achieved by WES is 

100-160x. 

1.14.6. Targeted (Deep) DNA Sequencing 

Targeted DNA sequencing is similar to exome sequencing except that the studies are 

typically even more focused, for example, only on the genes that are responsible for a 

particular pathway or known, expected types of variation of interest. Targeted deep 

sequencing further overcomes coverage limitations for variant calling (212).  

Multiple types of target enrichment approaches are in general use. They vary in 

sensitivity, specificity, reproducibility and coverage uniformity. Other factors should also 

be considered before establishing an enrichment system, such as DNA input, manual 

labour and cost (213). 

1.15. Target Enrichment  

Target enrichment methods fall into one of two types - direct amplification or hybrid-

select/capture. Multiple PCR primers can be designed to allow the simultaneous 

amplification of multiple different targets from every single reaction in a Multiplex PCR 
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(214). This has the benefit of being straightforward but as increasing numbers of targets 

are present, differences in their efficiency result in a number of them becoming 

underrepresented. Emulsion or droplet PCR has been developed to overcome this 

limitation. Millions of independent PCR reaction vessels are created either by the direct 

creation of oil/water emulsions or mechanically using automated microfluidics (215). The 

former is quicker but the latter has the advantage such that it can be more reliably 

formatted for many different targets (216). However, in both cases, long amplicons are 

difficult to produce because of the small size of the droplets, therefore large amounts of 

input DNA are required (217).  

In the hybrid-select/capture system, nucleic acid probes complementary to the target are 

produced so that they can hybridise together. The probe has properties that allow it to be 

selected or captured and when this occurs, the target is co-purified (209). Probes can be 

synthesised on a surface or bead for direct capture or the probes can have a ligand 

attached so that it can be indirectly captured. Biotin ligands that can be captured by 

streptavidin-coated paramagnetic beads are one example of the latter (217). Non-

captured DNA needs to be washed away as off-target DNA can reduce the efficiency of 

the process. High levels of input DNA are necessary (213). Indirect capture methods have 

the benefit that in-solution hybridisation can be used, which supplies a higher specificity 

of enrichment. In the case of the Agilent SureSelect hybrid capture, one example of such 

systems are RNA probes used so the excess probe can be removed by RNAses, lowering 

the background (218). SureSelect has the capacity to cover up to 24 Mbp of targets (219). 

Figure 1-9 portrays a schematic representation of an in-solution hybrid capture system. 

This was the system employed in this thesis and will be detailed in Chapter 2. Haloplex 
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also takes advantage of molecular techniques to achieve enrichment. In this case, probes 

are designed to incorporate a restriction endonuclease site at the ends of the fragments 

of interest. Selected targets can then be circularised and methods for enriching circular 

DNA molecules are used to remove the unwanted background (213). The method is more 

convenient than SureSelect but the total size of the regions to be targeted is smaller and 

dependent on not being confounded by the presence of the restriction sites used. 

 

Figure 1-9. Schematic Representation of In-Solution Hybridisation. The diagram shows 
target enrichment steps that involve RNA-biotinylated probes (baits) (top left) hybridising 
the genomic material (top right). The hybrid library is then bound to streptavidin beads 
(as shown in the bead capture step) prior to washing out non-targeted materials. The 
figure is adapted with permission from (220).              
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Once enrichment has been performed, the captured targets need to be formatted for 

deep sequencing. Typically, DNA adapters are be ligated to DNA molecules. For the 

purpose of multiple samples, multiple, sequence-barcoded adapters are available, so 

each sample can be uniquely labelled and then identified after mixing (221). PCR 

amplification in readiness for the sequencing reactions can then be carried out using 

primers specific to the adapters.  

1.16. Analysis of NGS Data 

NGS sequence data analysis comprises signal production for sequences from each 

template, trimming of adapters and low-quality sequence, mapping of reads to the 

reference genome and annotation of variants (222). Data from the primary stage is filed 

and quality scored so that quality controls can be implemented at subsequent stages 

(223). Similarly, during the mapping stage, the best-aligned reads are determined and 

recalibrated locally around the indels using the genome alignment tool kit (GATK) (224). 

GATK uses a Sequence Alignment Map (SAM), which can be compressed to a Binary 

Alignment Map (BAM) (225, 226). An Integrative Genomic Viewer (IGV) is then employed 

to visualize the coverage and sequence of the aligned reads (227). Variants are identified 

after comparison of sequencing reads with a reference genome and tabulated variants 

are presented in a Variant Call Format (VCF) file, which specifies basic information on 

each identified variant (226, 228). If germline sequence information is also available from 

the same individual, acquired mutations can be identified. In the absence of germline 

material, population databases of germline polymorphisms are used, however, 

contamination with unreported polymorphisms can take place. Databases for variants are 

dbSNP and the 1000 Genomes Project (see Section1.17.3 Refinement of the Human 
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Reference Genome, page 78) for germline polymorphisms and COSMIC  for somatic 

mutations in cancer (229). Variant effect prediction (VEP) tool can be used to predict the 

functional changes of the resultant proteins (Netto, 2015).  

1.17. Ion Torrent PGM Next-Generation Sequencing 

1.17.1.  Sequencing Using Ion Torrent PGM 

The Ion Torrent PGM is a small benchtop sequencer and the fastest and cheapest NGS 

platform. The PGM uses pH-sensitive chips with thousands to millions of microwells, and 

each one can trap a bead of clonally amplified DNA templates and detect/quantify the 

incorporation of nucleotides by a DNA polymerase on the templates because each 

instance releases a proton as part of the reaction (230). This change in pH is detected by 

the underlying pH sensor and subsequently converted to electrical voltages. Each base is 

utilised in turn in a repeating cycle. In this way, voltage is only detected if a nucleotide can 

be incorporated and the peak voltage height is proportional to the number of nucleotides 

incorporated. However, long HPs may be misinterpreted, which results in Hp errors (231). 

DNA is attached to the surface of soft beads called Ion Sphere Particles (ISP) in 

preparation for amplification by emulsion droplet PCR (232). Sequence output is 

dependent on reading length and chip capacity (Table 1-1) (233). 

1.17.2. Ion Torrent PGM Data Analysis   

The raw voltage signals are processed into a linear sequence data file in a FASTQ format 

using Torrent Base Caller. This file can be exported to various external pipelines for 

downstream analysis. 
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Alignment of the sequence reads to a reference genome yields a BAM file and the Torrent 

Variant Calling (TVC) plugin produces a Variant Call Format (VCF) file, which contains the 

list of identified variants, their chromosomal location and quality metrics. This file can be 

exported to various open-access variant effect predictor programmes or to Ion ReporterTM 

software, either manually or automatically using the Ion ReporterTM Uploader plugin. This 

software is efficient, allowing an organised workflow for the annotation and prediction of 

the effects of the identified variants. Moreover, it can be used to compare multiple 

samples. 

1.17.3. Refinement of the Human Reference Genome 

Although a “completed “version of the Human Genome was published in 2003 this 

marked a practical endpoint for a particular phase of the project and considerable work 

was still required to correct misassemblies, errors and filling gaps (234). The genome was 

also based on DNA from multiple individuals. To this day, the Reference Genome remains 

a work in progress and regular “patches” are released. This has become essential as the 

extent of polymorphic variation, in particular in the form of large-scale insertions, 

deletions and rearrangements became apparent through the availability of a reference 

against which comparisons could be made (234) (235). There are places in the genome 

where completely different segments of DNA are found between one individual and the 

next. These were originally considered to be errors or gaps, but it is now acknowledged 

that they are previously unrecognised polymorphic variation. This variation is amongst 

the information stored in relation to the reference genome. Significant efforts have been 

made identifying simple polymorphic variants, in particular, SNPs, because millions are 

considered to exist, and they are an invaluable resource for understanding the genetic 
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structure of human populations, their migration, evolution and phenotypic associations. 

The HapMap project first identified one million SNPs from four generic populations 

worldwide (236). Since that time, there has been more than a 10-fold increase in the 

number of known SNPs, largely through the 1000 Genomes project. This was enabled by 

the availability of Next Generation Sequencers and target-enrichment techniques. 

The 1000 Genome Study was carried out between 2008 and 2015 with the goal of 

discovering all human genetic variation with a frequency of at least 1% in the population. 

It focused sequencing on family trios of two parents and one child. The final data set was 

based on 2,504 individuals from 26 populations. Low coverage and WES were available 

for all of these individuals and 24 individuals were sequenced to high coverage (237). In 

2015, the complete sequencing set had been reconstructed using WGS for 2,504 

individuals from 26 different populations (238, 239). As a result, this project acted as a 

significant resource for conducting research on human variants across several populations 

(240). In addition, the approach can identify genetic anomalies in inherited diseases (241).  

1.18. Next-Generation Sequencing of CLL, Clonal Evolution and Clinical 

Course 

The availability of NGS has led to the more detailed characterisation of the genomes of 

CLL and their clonal evolution. An early study found recurrent mutations for notch1 

(NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) 

and kelch-like 6 (KLHL6) (242). Although the recurrences were found in a screen of 363 

patients, only four patients were surveyed initially, 46 somatic mutations that were 

predicted to affect gene function were identified. It was not clear whether the four 
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recurrently mutated genes actually drove the disease because an initial survey of more 

cases could have implicated more genes. However, MYD88 and KLHL6, in contrast to 

NOTCH1 and XPO1, were associated with mutated immunoglobulins. NOTCH1 mutated 

patients were at a more advanced stage when diagnosed and had shorter overall survival, 

suggestive of the more aggressive disease.  A second study identified other genes to be 

mutated in the notch signalling pathway, including FBXW7 and also ZMYM3, MAPK1, and 

DDX3X as other novel potential drivers (243). Splicing factor SF3B1 was of particular 

interest with mutations occurring in 15% of patients and in association with 11q deletions 

and a poor prognosis. SF3B1 was also implicated in other studies (244).Comparisons of 

multiple samples taken at different time points from the same patients permitted the 

clonal evolution of CLL to be assessed. In one study, in a variety of cases, this included 

later samples taken after chemotherapy. Ten of 12 versus 1/6 cases with and without 

chemotherapy, respectively, demonstrated evidence of clonal evolution. In particular, 

clones with mutations in genes (TP53 and SF3B1) were considered drivers expanded with 

time (245). Specific examination of the Immunoglobulin Ig heavy and kappa chain (IGH 

and IGK) loci in 25 out of 31  patients determined changes in these loci that were 

consistent with clonal evolution in patients who underwent treatment (246, 247).  

Examination of 17p (TP53) and 11q (ATM) also observed losses, consistent with their 

known association with poor prognosis CLL. Out of 168 CLL patients who were wild-type 

for these loci by FISH, eight and five patients acquired a 17p deletion and 11q deletion, 

respectively (248). In eight of these cases, a TP53/ATM mutation was observed in 4-50% 

(median=9%) of the baseline sample and was associated with high-risk chromosomal 

clonal evolution (p=0.02). In a study involving 59 patients from a larger clinical trial of 538 
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cases, 44 recurrently mutated genes and 11 recurrent copy number changes comparing 

pre-treatment with relapsed samples after treatment found a high frequency (57/59 

cases) of clonal evolution (245). The relapsed clone was already present in 18/59 of the 

original cases and was consistent with the presence or acquisition of ‘driver’ mutations.   

1.19. The Study Hypothesis and Aims  

NGS of CLL samples has resulted in significant progress describing the pathways that drive 

CLL and the clonal evolution that leads to aggressive disease. However, the underlying 

cause of genetic instability and its association with aggressive disease has not been fully 

addressed. TP53 deletion/mutation in CLL is associated with clonal instability (e.g., 

increased risk of Richter transformation) (20), which is in line with the known role of wild-

type TP53 as a mediator of apoptosis, cell-cycle arrest and DNA repair in response to 

cellular stress (114). However, it is possible that clonal instability owing to P53 

inactivation may be amplified because of the acquisition of secondary mutations in genes 

other than TP53 that are involved in the DNA repair ‘snow ball effect’. Whether such a 

mechanism exists and if so, to what extent it contributes to clonal instability in cases of 

CLL with P53 inactivation has not previously been investigated. It is the objective of this 

thesis to address this important question (Figure 1-10). 
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Figure 1-10. The Study Hypothesis. Generally, the normal function of p53 as a DNA repair 
protein is to mediate cell-cycle arrest and DNA repair activation. In addition, TP53 
mutated/deleted cases are related to clonal instability in CLL. Taken together, the study 
hypothesis states that progressive CLL, such as inactivated p53 cases, could accumulate 
mutation burden in other DNA repair genes, which may increase the possibility of clonal 
instability, such as Richter Syndrome.    

1.19.1. Hypothesis 

Defects in genes responsible for the maintenance of DNA lead to genomic instability that 

allows more rapid progression of CLL to aggressive disease. 

1.19.2. Approach 

The hypothesis predicts that cases of CLL, pre-selected for having an advanced form of 

the disease, will have a high proportion of genetic abnormalities and these will be found 

in association with mutations in genes for DNA maintenance. 



Chapter 2: Materials and Methods 

83 

 

2. Chapter 2: Materials and Methods  

2.1. Solutions, Reagents and Materials 

1.5 ml LoBind tubes (AG Eppendorf, Hamburg, Germany)  

PCR tubes (AG Eppendorf, Hamburg, Germany)  

Sterilised pipette tips with aerosol filters (StarLab, Milton Keynes, UK) 

Powder-free gloves  

Nuclease-free water (Sigma-Aldrich, Dorset, UK) 

TE buffer (pH 8.0) (Thermofisher Scientific, Loughborough, UK)   

QIAquick PCR Purification Kit (Qiagen, Manchester, UK) 

Wizard® SV Gel and PCR Clean-Up System (Promega, Southampton, UK) 

Qubit® dsDNA HS Assay Kit (ThermoFisher Scientific, Loughborough, UK) 

High Sensitivity DNA Kit (Agilent Genomics, Shrewsbury, UK) 

Herculase II Fusion DNA Polymerase (Agilent Genomics, Shrewsbury, UK)  

Agencourt AMPure XP beads (Beckman Coulter Genomics, High Wycombe, UK) 

E-Gel SizeSelect 2% Agarose Gel (ThermoFisher Scientific, Loughborough, UK) 

 Ion Xpress Plus Fragment Library Kit (ThermoFisher Scientific, Loughborough, UK) 

KAPA Adapter Kit for Ion Torrent Platform 8 libraries (KAPA Biosystems, Wilmington, USA) 
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Dynabeads MyOne Streptavidin T1 (ThermoFisher Scientific, Loughborough, UK)  

Ion PGM Sequencing 200 Kit v2 (ThermoFisher Scientific, Loughborough, UK) 

2.2. Equipment 

Pipettes - P10, P20, P100, and P1000 (Gilson, Dunstable, UK)  

Speed Vac Plus Vacuum Concentrator (Savant, New York, USA) 

Vortex mixer 

Water bath (Grant, Devizes, UK) 

Minispin Microcentrifuge (AG Eppendorf, Hamburg, Germany) 

Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, Loughborough, UK)  

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Loughborough, UK) 

lid-heated thermal cycler (Mastercycler AG Eppendorf, Hamburg, Germany)  

INGenius Imaging System (Syngene, Cambridge, UK) 

2100 Bioanalyzer (Agilent technologies, Shrewsbury, UK) 

E-Gel Safe Imager Real-Time Transilluminator (E-Gel iBase and E-Gel Safe imager combo 

kit (ThermoFisher Scientific, Loughborough, UK) 

Magnetic stand (DynaMag™-PCR Magnet ThermoFisher Scientific, Loughborough, UK) 

Ion OneTouch 2 system (ThermoFisher Scientific, Loughborough, UK) 
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2.3. Clinical Samples  

2.3.1. CLL Samples for Targeted Sequencing (Chapters 4 and 5) 

To meet the aim of the study, 10 CLL cases with severe prognosis were selected from the 

CLL206 trial (46, 47)- see Section 1.5.4. NCRI CLL206 and NCRI CLL210 Trials . Samples of 

peripheral blood were collected following informed consent from the patients and from 

trial committees. Lymphoprep (STEMCELL Technologies, Cat # 07851) was used to 

separate mononuclear cells (MNCs) from the peripheral blood (see section 2.4 Separation 

of Mononuclear Cells (MNCs)). MNC samples were then cryopreserved according to the 

protocol of the University of Liverpool Leukaemia Biobank. Samples were processed and 

gDNA was extracted by Dr Gillian Johonson.   

2.3.2. CLL Samples for Clinical Validation (Chapter 6) 

49 cases of CLL patients were obtained from the CLL210 trial (see Section 1.5.4. NCRI 

CLL206 and NCRI CLL210 Trials  and the local Liverpool blood biobank (249) according to 

TP53 mutation status and their blood MNCs prepared as in the following section.  

Details of the samples, including the clinical and biological characteristics, are found in 

Chapter 6.  

2.4. Separation of Mononuclear Cells (MNCs)  

MNCs were isolated from peripheral blood as instructed by the standard operating 

procedure (SOP) of the biobank. Heparinised blood was then transferred into a 

Lymphoprep TM (Axis-Shield PoC AS, Norway, d = 1.077)-containing tube (50ml falcon 

tube) and centrifuged for 30 minutes at 800xg. Afterwards, the MNC layer was collected 
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and this was followed by washing then resuspension in a mixture of sterile RPMI-1640 

medium containing 10% fetal calf serum (1:1 v/v), providing 100% viability of MNCs (250). 

The cells were then mixed slowly with the same volume of mixture on ice. Afterwards, a 

RPMI-1640 mixture containing 20% dimethyl sulphoxide (DMSO) (Sigma-Aldrich, Dorset, 

UK) was prepared and added slowly to cells with 20 million cells per ml as the expected 

cell count. Samples were then transferred into 1 ml cryovials and stored in the -80°C  

freezer. 

2.5. DNA Purification 

2.5.1. Genomic DNA purification 

The All Prep QIA Extraction Kit (Qiagen, Manchester, UK) was used according to the 

manufacturer's recommendations to purify macromolecules, including genomic DNA from 

MNCs.   

Frozen samples were thawed and RLT plus reagents were prepared by adding 10 l β-

mercaptoethanol-ME) to every 1 ml of RLT. Samples were washed twice with 

Phosphate Buffered Saline (PBS) solution and recovered between washes by 

centrifugation at 4000 rpm in a benchtop minicentrifuge (Eppendorf, Hamburg, Germany) 

for 1 minute. 600 l of RLT plus was added to each sample. The mixture was vortexed 

then transferred to a QIA Shredder column in a 2 ml microcentrifuge tube. The column 

was centrifuged at the maximum speed for 3 minutes. The eluate was then transferred 

into all prep DNA spin columns and centrifuged for 30 seconds at 10,000 rpm. The DNA 

column was then transferred into a new 2 ml collection tube, 500 l of AW1 was added to 

the mixture and the tube centrifuged for 15 seconds at 10,000 rpm. 700 l of AW2 was 
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added to the column which was then centrifuged at 14,000rpm for 2 minutes. The column 

was placed into a new 1.5 ml tube and 50 l of elution buffer added. After 1 minute, the 

column was microcentrifuged at 10,000 rpm for 1 minute and the column subsequently 

being discarded. The tube containing the extracted gDNA solution was stored at -20°C. 

2.5.2. DNA Clean-Up 

PCR products or samples of manipulated DNA were purified using either a QIA Quick 

Column purification kit (Qiagen, Manchester, UK) or the similar Wizard® SV Gel and PCR 

Clean-Up System (Promega, Southampton, UK). 

2.5.2.1. QIAquick Column Purification Kit   

Buffer PE was prepared according to the kit guide by adding five volumes of ethanol. Five 

volumes of buffer PB was added to each volume of a DNA sample and it was verified that 

the pH was 7.5. The sample was then placed into a QIAquick column and centrifuged for 

60 seconds at 13,000 rpm. Samples were washed by adding 750 μl buffer PE to the 

column and centrifuging for 60 seconds at 13,000 rpm. A further centrifugation step 

without the addition of buffer was carried out to remove any residual wash buffer. DNA 

was eluted by adding 50 μl buffer EB (10 mM TrisCl, pH 8.5) and collected following 

centrifugation. 

2.5.2.2. Wizard® SV Gel and PCR Clean-Up System 

The Wizard® SV Gel and PCR Clean-Up System (Promega, Southampton, UK) can purify 

manipulated DNA from molecular genetic reactions or DNA from excised agarose gels. 

Agarose gel containing DNA was placed into the 2ml tube. 10 µl of membrane-binding 
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solution was then added per 10 mg of gel slice and the mixture incubated at 50-65°C in a 

water bath for ~10 minutes until the gel was dissolved. Membrane wash solution was 

prepared by adding 95% ethanol to the stock solution. The melted solution was 

transferred to a SV minicolumn and placed in a collection tube and incubated for 1 

minute, after which the tube was then centrifuged at 14,000 rpm for 1 minute, the 

supernatant discarded, and the column transferred to a fresh 1.5 ml tube. The column 

was washed by adding 700 µl of membrane-washing solution and centrifuged for 1 

minute at 14,000 rpm. Flow-through was discarded and the washing step repeated using 

500 µl of membrane-washing solution. The column was placed into a new 1.5 ml tube and 

50 µl nuclease-free water was then added to the column, which was incubated for 1 

minute at room temperature before collection by centrifugation at 16,000rpm for 1 

minute. The eluted DNA was stored at 4OC. Gel-free DNA was similarly purified except 

equal volumes of the DNA solution and membrane-binding buffer was mixed in the first 

step. 

2.5.2.3. DNA Purification Using Agencourt AMPure XP Beads 

AMPure beads were incubated at room temperature for 30 minutes and then well-mixed 

prior to the addition of the sample. 90 μl of the AMPure beads per sample were added to 

a 1.5 ml Lobind tube and sample (~50 μl) was added and mixed by vortexing before 

incubating for 5 minutes at room temperature. Beads were separated using the magnetic 

stand and the supernatant was discarded. 500 μl of 70% ethanol was added and the 

sample incubated for 1 minute to allow the beads to settle, after which the supernatant 

was removed. Next, the washing with ethanol step was repeated. Samples were 

maintained at room temperature for a maximum of 5 minutes to allow residual ethanol to 
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completely evaporate. 20 μl of TE buffer (pH 8.0) was added to the sample and mixed 

with the beads before placement onto the magnetic stand for 3 minutes, then removing 

the supernatant (~20 μl) containing the purified DNA for use. 

2.6. Analysis of Nucleic Acids 

2.6.1. Nanodrop Spectroscopy 

Nucleic acid amounts and purity were estimated by spectroscopically determining A260, 

A280 and A320 values in 1-2 µl samples using a Nanodrop ND1000 Spectrophotometer 

(Labtech, Heathfield, UK). A260 of 1 for a 1 cm path length was assumed to correspond to 

50 ug/ml of double-stranded DNA, 30 ug/ml of single-stranded DNA or 40 ug/ml of RNA.  

An A260/280 ratio of ~1.8 was accepted as “pure” DNA and ~2.0 as “pure” RNA. “Pure” 

nucleic acid also required an A260/280 of ~2.0. 

2.6.2. Qubit® 2.0 Fluorimetry  

A fluorescence-based assay was used to quantify nucleic acids and proteins between 5 pg-

500 ng in 1-20 µl solutions (HS DNA Qubit Kit) (253, 254). 

Working solution was prepared by adding 1:200 HS DNA reagents to the working solution 

and vortexed to mix. Each reaction was prepared by adding 1-20 µl of sample and 

prepared working solution to 200 µl in qubit 0.5 ml tubes. A range of control samples 

covering a range DNAs and known amounts was set up in parallel. Mixtures were 

incubated for 2 minutes and then measured using the Qubit. 
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2.6.3. Nucleic Acid Assessment by Agarose Gel Electrophoresis  

DNA samples were routinely analysed for size between 150 and 20 kbs and integrity by 

agarose gel electrophoresis using 12x14 cm gels between 0.9-2.4% agarose in 0.5x TBE 

buffer at 120 volts for ~45 minutes (255). Agarose powder (Sigma-Aldrich, Dorset, UK) 

was added to 0.5x TBE buffer (2mM Tris-borate and 2mM EDTA), and the mixture was 

heated in a microwave for ~2 minutes until the agarose was fully dissolved.  5 µl Midori 

Green Advance DNA stain (Geneflow, Lichfield, UK) was added per 100 ml agarose to stain 

the nucleic acids. The cooled solution was poured into an electrophoresis tray and a 

sample comb placed into the gel that was then allowed to solidify. Samples were mixed 

with 6x loading dye at 5:1 (v/v) before loading into wells. 100-1000 bp DNA ladder was 

run as controls (New England Biolabs, Hitchin, UK). Gels were immersed in 0.5x TBE in an 

electrophoresis tank for running and visualised using the INGenius Imaging System 

(Syngene, Cambridge, UK) upon completion. 

2.6.4. Analytical DNA Quality and Quantity assessment  

A Bioanalyzer High Sensitivity DNA assay (Agilent technologies, Shrewsbury, UK) was 

utilised to assess DNA for quality and quantity. The Bioanalyzer chip and DNA marker 

ladder were prepared according to the manufacturer’s protocol.  One μl of samples were 

loaded with DNA input ranges between 5-500 pg/μl.  The chip was loaded into the 2100 

Bioanalyzer (Agilent technologies, Shrewsbury, UK) and the run was started within 5 

minutes of preparation using the settings recommended by the manufacturer. 
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2.7. Molecular Genetic Techniques 

2.7.1. DNA Amplification 

The Polymerase Chain Reaction (PCR) was made use of to amplify the DNA. The GoTaq® 

Flexi DNA Polymerase kit or Herculase II Fusion DNA polymerase were employed. The 

total PCR reaction volume per 50 µl, contained the components in Table 2- 1. 

Table 2- 1: PCR Reaction Reagents per 50 µl PCR Reaction 

 

PCR Reagent Volume (µl) 

Water 32.75 

5x Buffer 10 

25 mM MgCl 3 

10 mM dNTPs 1 

Taq polymerase 0.25 (units) 

Forward and reverse Primers 
(20µM each)* 

2 

DNA 3 (1 to 100 ng) 

 *Details of primers are discussed separately.  

PCR was performed in an Eppendorf Mastercycler 5333 (AG Eppendorf, Hamburg, 

Germany) using the optimised programme as follows: 

94°C for 3 minutes (Initial denaturation) 

94°C for 30 seconds (Denaturation) 

60 or 65°C for 30 seconds (Annealing) 

72°C for 30 seconds (Extension) 
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Repeat steps 2-4 for 32 cycles using (Go Taq) or 10 cycles using (Herculase II) polymerase 

reagents 

72°C for 5 minutes (Final extension) 

END 

2.7.2. PCR Primer Design 

Primers were designed according to Oligo Analyzer Version 3.1 (Integrated DNA 

Technologies (IDT, Surrey, UK). 

2.7.3. Sanger Fluorescent Dideoxynucleotide Sequencing 

PCR products were custom sequenced by separately using their corresponding forward 

and reverse PCR primers (Genewiz® Sanger Service, Takeley, UK). 

2.7.4. DNA Fragmentation 

DNA was mixed with Ion Shear Plus 2.5 µl of 10x reaction buffer and nuclease-free water 

to 25 µl. Then, 1 µl of Ion Shear Plus enzyme mix was added. The reaction mixture was 

incubated in a water bath at 37°C for 18 minutes. Five μl of Ion Shear Plus stop buffer was 

added and the sample was stored on ice. 

2.7.5. DNA Adapter Ligation 

A 75 μl reaction master mix was prepared per sample containing: 7.5 μl 10x ligase buffer; 

7.5 μl Ion Xpress P1 adapter; 2 μl dNTP mix; 31 μl nuclease-free water; 4 μl DNA ligase; 

and 8 μl nick repair polymerase. 10 μl of one of the barcode adaptors (KAPA Biosystems, 
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Boston, USA) was added per sample. The ligation reaction was then incubated in a 

thermal cycler at 25°C for 15 minutes followed by 72°C for 5 minutes and held at 4°C. 

2.7.6. DNA Capture Hybridisation 

750 ng of genomic DNA per 3.4 μl of sample was required. Samples with a DNA 

concentration of < 221 ng/μl were therefore concentrated in a vacuum concentrator at ≤ 

45°C. Regarding SureSelect hybridization buffer, 49 μl per sample was prepared by mixing 

25 μl Hyb#1, 1 μl Hyb#2, 10 μl Hyb#3 and 13 μl Hyb#4, 40 μl was used. 2 μl of the 

SureSelect capture library was added to 5 μl of 10% RNase block per sample. Additionally, 

5.6 μl of SureSelect block mix was prepared per sample using 2.5 μl Block#1, 2.5 μl 

Block#2, and 0.6 μl Block# 3. 3.4 μl of the 221 ng/μl each sample was added to a 0.5 μl 

PCR tube and 5.6 μl of SureSelect Block mix added before heating at 95°C for 5 minutes 

and lower the temperature to 65°C in a thermal cycler with the lid set to 105°C. 40 μl of 

hybridization buffer was added to a 0.5 μl PCR tube per sample and transferred to the 

thermal cycler maintained at 65°C, at which point the tube was incubated for 5 minutes. 

Seven μl of SureSelect capture library mix per sample was added to a 0.5 μl PCR tube and 

placed into the thermal cycler at 65°C for 2 minutes. The tubes were maintained in the 

thermal cycler and each prepped sample was transferred to a SureSelect Capture Library 

tube, with the contents then being mixed by pipetting 10 times and tube capped in the 

thermal cycler to allow hybridisation to proceed for 24 hours. 

2.7.6.1. Magnetic Bead Preparation  

SureSelect Wash 2 was prewarmed at 65°C in a water bath. 50 μl of resuspended 

Dynabeads MyOne Streptavidin T1 beads (Thermofisher Scientific, Loughborough, UK) 
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were added to a 1.5 ml LoBind tube and vortexed. The tube was then placed into the 

Dynal magnetic separator (Thermofisher Scientific, Loughborough, UK) and the 

supernatant removed. This latter step was repeated twice, each time re-suspending the 

recovered beads in 200 μl of SureSelect binding buffer. 

2.7.6.2. Hybrid Capture  

The hybridized sample was directly added to the bead solution, and the tube was then 

inverted three to five times to mix and incubate for 30 minutes at room temperature. A 

magnetic separator was used to separate the beads and their captured DNA from the 

buffer and the supernatant with uncaptured DNA was removed. Beads were washed by 

adding 500 μl of SureSelect Wash 1 and mixed by vortexing before incubation for 15 

minutes at room temperature with occasional mixing by vortex. Beads were recovered as 

before and 500 μl of the pre-warmed SureSelect Wash 2 was added, mixed by vortexing 

and incubated for 10 minutes at 65°C with occasional mixing by inversion for further 

washing. Recovery of the beads was performed as before, and a second washing step was 

repeated for a total of three times. Lastly, 30 μl of nuclease-free water was added to the 

beads, with the targeted DNA enrichment retained. 

Target enrichment was performed by cRNA hybrid capture according to the SureSelect TE 

System (Agilent technologies, Shrewsbury, UK). This included cRNA probes according to 

SureSelect protocol, which captures regions totalling from 0.5 Mb up to 2.9 Mb. The steps 

required involve selection of cDNA probes, DNA sample preparation for hybridisation, 

hybridisation capture and post-hybridisation amplification (256). Selection of 
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appropriately sized fragments was performed at intermediate stages. Figure 2.1 outlines 

the relationships between the steps with the Sure Select TE System. 

 

Figure 2- 1: The Steps of SureSelect Target Enrichment System (Agilent). Additional details 
are found in the manufacturer’s protocol; SureSelect Target Enrichment System for 
Sequencing on Ion Proton (257). 

2.8. cRNA Probe Design  

Agilent SureDesign online software was employed to design biotinylated cRNA-

hybridisation probes. The Human Genome was selected from its database of genomes 

and pre-designed primers retrieved for human genes from the human reference genome, 

hg19. In addition, SureDesign provided stringency options to increase the likelihood of 

coverage of difficult regions, such as those with high GC content, and also to reduce the 

possibility of amplifying off-target regions. An average of two probes was selected per 

exon but this was adjusted according to the aforementioned and also exon size and 

masking for repeat sequences requiring the number of probes to be boosted in certain 

regions or their density to be increased. The masking from least to most used the masker 

tools: RepeatMasker, WindowMasker and the Duke Uniqueness 35 track. For the work 
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herein, SureDesign was chosen to design primers for enriching exons of 194 DNA 

maintenance genes and 2x probe coverage was the density with maximum boosting along 

with low masking options.  

2.9. Sample Pooling for Multiplexed Sequencing 

Barcoded samples were mixed for multiplexing according to a “rule of thumb” formula: 

    
V(f) x C(f)

#xC(i)
   

where: 

V(f) is the final volume of the pool; 

 C(f) is the expected final concentration of all the multiplexed samples in the pool, which 

was 26 nM;  

# is the number of samples to be pooled; and 

C(i) is the initial concentration of each barcoded sample. 

2.10. Size-Selection of Samples 

Size-selected DNA samples were prepared by agarose gel electrophoresis using the 

integrated E-Gel system and E-Gel SizeSelect 2% agarose gels. 

Cassettes were inserted into the E-Gel iBase Power System and 20 μl of the sample, 

including loading buffer, was added per well. Additionally, 10 μl of 50 bp DNA ladder (26 

ng/μl) was loaded into the middle lane (Lane M). Twenty-five µl of nuclease-free water 

was added to unused wells and the amber filter unit was placed prior to running. Samples 
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were electrophoresed until the required band (230 bp or depending on application) in the 

marker was reached on the reference lane. Twenty μl of each sample was then collected 

from each collection well and the electrophoresis was ceased.  

2.11. Template Preparation for Ion PGM sequencing 

For template preparation, the Ion OneTouch 2 System was used along with the Ion PGM 

Template OT2 200 Kit v2 and Ion PGM Sequencing 200 Kit v2 (Agilent technologies, 

Shrewsbury, UK). Template preparation, including the Ion PGM sequencer run, was 

performed as a service provided by the GCLP Laboratory, University of Liverpool, 

Liverpool, UK. For more information regarding the template and sequencing preparation, 

please refer to the manufacturer manuals: Ion PGM™ Template OT2 200 Kit (Publication 

Part Number MAN0007221 Rev. 4.0) and Ion PGM™ Sequencing 200 Kit v2 (Publication 

Number MAN0007360 Revision 1.0). 

2.12. Ion Torrent PGM Sequencing Data Processing 

An Ion Torrent Suite pipeline (illustrated in Figure 2-2) was used for analysing the Ion 

PGM sequencing data, where the FASTQ file (text-based sequences and quality scores) of 

the raw data was processed and then aligned using a TMAP processor to the human 

genome reference, hg19, as a Bam QC file (binary format). The Bam QC file was processed 

for variant calling using Torrent Variant Caller (TVCv4.2), generating the candidate 

variants in VCF QC format (variant representation). The variants were genotyped using 

Ion Reporter IR 4.2 and a final quality control report was produced for each PGM 

sequencing run.  
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The variant selection strategy was based on Ion reporter genotyping, dbSNP and COSMIC 

as a technical control as no paired-samples were available (Figure 2-3). Variants were 

divided into synonymous and non-synonymous variants and indels according to their 

consequences for amino acid coding. They were further divided into germline or somatic 

aberrations as estimated by comparison with those collected in dbSNP (258, 259) and 

COSMIC (260, 261).  

 

Figure 2-2: Sequencing Analysis Pipeline of Ion Suite. The raw data was generated as 
FASTQ using Torrent Base Caller and then the data were aligned to a reference template 
(in our case, human genome reference 19 (hg19)) using TMAP processor in BAM QC file 
format. Variant calling was applied using Torrent Variant Caller 4.2 in VCF format. For 
genotyping, Ion reporter (IR 4.2) on-line software was applied and different genotype 
variants identified by comparison using COSMIC, dbSNP Polyphen and sift.  Abbreviations: 
TMAP - torrent mapping alignment program, BWA - Burrows-Wheeler Aligner, SSAHA - 
Sequence Search and Alignment by Hashing Algorithm.  
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Figure 2-3: Genotyping of Variants Detected by Ion PGM Sequencing and Identification by 
Ion Reporter 4.2 

2.13. Whole Genome Sequencing  

Bi-directional WGS was performed using the Illumina reversible terminator chemistry by 

the Beijing Genomic Institute (BGI) in Hong Kong and data analysed at the Centre of 

Genomic Research (CGR) in Liverpool, UK.   

Raw sequence data from base calling was processed using the Illumina bioinformatics 

pipeline.  Adapter sequences and low-quality bases were removed from the raw data. 

Resultant sequence reads were aligned by Burrows-Wheeler Aligner (BWA) to the 

hg19/hg38 reference sequences and converted into the BAM file format. Mate-pairing 

information, read groups and PCR duplicate information were added to the Bam files. 

Refined BAM files were then used to call variants by GATK, which detected SNPs, small 

insertions/deletions, CNVs, SNVs and somatic indels. Somatic CNVs were detected by 
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BreakDancer. BreakDancer features of two algorithms (262). The first one (BreakDancer 

Max) identifies five types of structural variants that includes deletions, insertions, 

inversions, and intra/inter-chromosomal translocations. The second algorithm 

(BreakDancer Mini) is applied to the detection of small indels (10-10 bp) that are outside 

the scope of BreakDancer Max (Figure 2- 4). After filtering for high confidence, variants 

were annotated using SnpEff. 

CNA detection was performed using control-FREEC using algorithms developed for WGS 

(263). Control-FREEC uses input aligned reads to generate normalized copy number and 

B-allele frequency (BAF) profiles. Both profiles are segmented, and the genotype status of 

each segment is ascribed using both copy number and allelic frequencies; genomic 

alterations are then annotated.  

 

Figure 2- 4 BreakDancer Algorithm. A. BreakDancer workflow. B. Anomalous reads 
detected by BreakDancer. Arrows represent the read pair orientation. Dotted lines 
represent the analysed genome. Solid line is the reference genome. Used with permission 
from Chen et al. (262). 
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2.14. Variant Grouping and Coverage Analysis 

SNPeff was employed to classify variants into known SNP variants and unknown (novel) 

variants. Repeat Masker was applied to classify variants into repetitive variants (264), 

including homopolymer, simple sequence or non-repetitive regions. 

2.15. Statistical Analysis  

Simple statistical analyses were carried out with IBM Statistical Package for the Social 

Sciences (SPSS) v22 (IBM, Chicago, USA). Data visualising, such as histograms, line charts 

and pie charts, were used. A measure of data spread was also applied, like mean (X), 

standard deviation (SD) and range. A  P-value of 0.05 or less was considered statistically 

significant. Regarding genome-wide significance, P ≤ 5 × 10(-8) was considered significant 

and replicated (265). Details on tests are presented in the relevant result chapters.   
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3. Chapter 3: Development of Targeted NGS for the Identification of 

Mutations in DNA Maintenance Genes 

3.1. Introduction 

DNA maintenance genes are defined as any gene that produces a protein to protect the 

genomic integrity of the cell or causes the cell to undergo apoptosis as a self-defence 

mechanism to prevent carcinogenesis and other-gene related disease. Multiple repair 

mechanisms for different DNA maintenance proteins, including those related to the repair 

of single-stranded DNA, double-stranded DNA, cell-cycle checkpoints and apoptosis-

induction are known and were discussed in the Introduction (See Chapter 1). Our 

hypothesis highlights the possible involvement of aberration of DNA maintenance genes 

in clonal and genomic instabilities in CLL, especially those with P53 inactivation. 

Publications support the notion that P53 inactivation plays a direct role in clonal 

instability in CLL, and this is in keeping with the wild-type P53 repair response being 

involved in cell-cycle arrest, induction of apoptosis and the DNA damage response (see 

Introduction, Sections 1.9 to 1.11). This thesis examines the possible involvement of 

mutations in other DNA maintenance genes involved in clonal instability by making use of 

high-throughput NGS to determine the genomic integrity of these genes in high-risk CLL 

cases. It was therefore necessary to identify a panel of important candidate genes that 

could contribute to genomic instability and then develop sequencing strategies that 

would allow them to be compared across multiple CLL cases. Target enrichment 

strategies based on hybrid capture (see Section 1.15) that could produce enriched DNA 

ready for NGS (see Section 1.17.1) was therefore developed and validated, which is the 

subject of this chapter.  
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3.2. Results 

3.2.1. Candidate DNA Maintenance Genes 

A total of 194 DNA maintenance genes were identified from the literature (see 

Introduction) and included in this study. The goal was to produce a canonical set so that 

all possibilities could be screened for mutations by sequencing. Their combined exon 

sequences totalled 499 kbp (see Table 3-1 for list and details) which summarises the 

output report from the SureDesign in terms of the number of genes targeted and the 

repair process in which they were involved. Genes included those for repair of single- and 

double-strand damage (59, 61, 78, 266-275), NER, BER and MMR, HR and NHEJ, other 

enzymes part of the repair process, damage response and cell-cycle control.   
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Table 3-1. Human DNA Maintenance Genes Chosen for This Study (61, 266, 276).    

DNA repair gene Genes 
No. of 
genes 

BER 
MBD4, MPG, MUTYH (MYH), NEIL1, NEIL2, NEIL3, 

NTHL1 (NTH1), OGG1, SMUG1, TDG ,UNG 
11 

Other BER and 
strand break-joining 

factors 

APEX1 (APE1), APEX2, APLF (C2ORF13), LIG3, 

PNKP, XRCC1 
6 

PARP enzymes that 
bind to DNA 

PARP1 (ADPRT), 

PARP2 (ADPRTL2), 

PARP3 (ADPRTL3) 

3 

Direct reversal of 
damage 

ALKBH2 (ABH2), 

ALKBH3 (DEPC1), 

MGMT 

3 

Repair of DNA-
topoisomerase 

crosslinks 

TDP1, 

TDP2 (TTRAP) 
2 

MMR 
MLH1, MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, 

PMS1, PMS2, PMS2P3 
10 

NER 

CETN2, DDB1, DDB2 (XPE), RAD23A, RAD23B, RPA1, 
RPA2, RPA3, XPA, XPC 

-TFIIH: 

CCNH, CDK7, ERCC1, ERCC2 (XPD), ERCC3 (XPB), 
ERCC4 (XPF), ERCC5 (XPG), GTF2H1, GTF2H2, 

GTF2H3, GTF2H4, GTF2H5 (TTDA), LIG1, MNAT1 

-NER-related: 

ERCC6 (CSB), ERCC8 (CSA), MMS19L (MMS19), XAB2 
(HCNP) 

29 

HR 

BRCA1, DMC1, EME1 (MMS4L), EME2, GEN1, GIYD1 
(SLX1A), GIYD2 (SLX1B), MRE11A, MUS81, NBN 

(NBS1), RAD50, RAD51, RAD51L1 (RAD51B), 
RAD51L3 (RAD51D), RAD52, RAD54B, RAD54L, 

RBBP8 (CtIP), SHFM1 (DSS1), XRCC2, XRCC3 

21 

Fanconi anaemia 

BRCA2 (FANCD1), BRIP1 (FANCJ), BTBD12 (SLX4), 
(FANCP), FAAP24 (C19orf40), FANCA, FANCB, 

FANCC, FANCD2, FANCE, FANCF, FANCG (XRCC9), 
FANCI (KIAA1794), FANCL, FANCM, PALB2 (FANCN), 

17 
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3.2.2. cRNA Probe Design 

A panel of cRNA probes for the exonic sequence of the selected DNA maintenance genes 

was determined using the approach described in Materials and Methods section 2.8 using 

SureDesign. Increasing the average number of probes per target increases stringency at 

RAD51C (FANCO) 

NHEJ 
DCLRE1C (Artemis), LIG4, NHEJ1 (XLF, Cernunnos), 

PRKDC, XRCC4, XRCC5 (Ku80), XRCC6 (Ku70) 
7 

Modulation of 
nucleotide pools 

DUT, NUDT1 (MTH1), RRM2B (p53R2) 3 

DNA polymerases 
(catalytic subunits) 

MAD2L2 (REV7), PCNA, POLB, POLD1, POLE, POLG, 
POLH, POLI (RAD30B), POLK (DINB1), POLL, POLM, 
POLN (POL4P), POLQ, REV1L (REV1), REV3L (POLZ) 

15 

Editing and 
processing nucleases 

APTX (aprataxin), EXO1 (HEX1), FAN1 (MTMR15), 
FEN1 (DNase IV), FLJ35220 (ENDOV), SPO11, TREX1 

(DNase III), TREX2 

 

8 

Ubiquitination and 
modification 

HLTF (SMARCA3), RAD18, RNF168, RNF4, RNF8, 
SHPRH, UBE2A (RAD6A), UBE2B (RAD6B), UBE2N 

(UBC13), UBE2V2 (MMS2), SPRTN (C1ORF124) 
11 

Chromatin structure 
and modification 

CHAF1A (CAF1), H2AFX (H2AX), SETMAR (METNASE) 3 

Genes defective in 
diseases associated 
with sensitivity to 

DNA-damaging 
agents 

ATM, BLM, RECQL4, TTDN1 (C7orf11), WRN 5 

Other identified 
genes with known or 

suspected DNA 
repair function 

DCLRE1A (SNM1), DCLRE1B (SNM1B), HELQ 
(HEL308), OBFC2B (SSB1), RDM1 (RAD52B), RECQL 

(RECQ1), RECQL5, RPA4, PRPF19 (PSO4) 
9 

Other conserved 
DNA damage 

response genes 

ATR, ATRIP, CHEK1, CHEK2, CLK2, HUS1, MDC1, 
PER1, RAD1, RAD17 (RAD24), RAD9A, TOPBP1, 

TP53, TP53BP1 (53BP1), RIF1 
15 

Cell-cycle control 
CDK1, CDK2, CCND1, CCND2, CCND3, CCNE1, 

CCNE2, CCNA1, CCNA2, CCNB1, CCNB2, CCNB3, 
CDK4, CDK5, CDK6, 

15 

Cytidine deaminase AICDA 1 

Total -- 194 genes 

Total size -- 
499.047 

kbp 
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the expense of reducing the total possible number of target bases. Another aspect to 

stringency is the possibility of off-target inclusion through sequence similarity or 

repetitive sequences. Stringency was therefore modelled to determine an optimum and 

included the possibility of boosting the number of probes for targets for which coverage 

was low. Table 3-2 lists the effects of decreasing stringency from high to no masking. Low 

stringency masking was predicted to require 15,166 probes and provide 680.6 Kbp of 

target bases for an average of two-fold coverage. 

Table 3-2: Output of stringency test modelling for design of cRNA probes targeting the 
panel of DNA maintenance genes.    

Stringency masking High Moderate Low No masking 

% Coverage 98.94 99.18 99.82 100 

Off-target number of bases N/A 3.38Kb 8.58Kb 10.58Kb 

Total number of probes 15,010 15,064 15,166 15,184 

Total number of base pairs (Kbp) 672.023 657.4 680.6 682.6 

Design results for different masker stringencies (maximum boost and 2X region coverage). 

Low masking stringency was selected when designing the probes. 

Given that over 99.8% of the target sequences were expected to be included, the cRNA 

probes corresponding to the design were obtained. The relative coverage of the 

SureDesign at low stringency masking in terms of the number of exons, probes, size of the 

target region and total region targeted is shown in appendix table 1 for each of the 

classes of DNA maintenance genes included. 

3.2.3. Clinical Samples  

The 10 cases of CLL of the CLL206 trial were as described in the Materials and Methods 

Section 2.3.1. Trial data concerning TP53 status as determined by FISH for the short arm 
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of chromosome 17 (17p) and FASAY (46, 47) were available. Screening for TP53 mutations 

was performed by Sanger sequencing.  

3.2.4. Genomic DNA extraction from CLL samples 

The AllPrep DNA/RNA Mini Kit (see Materials and Methods section 2.5.1) was used to 
extract gDNA from samples for each case. Table 3-3 summarises the gDNA sample 
information and status of the original cases. The FISH results showed that the samples 
had a 17p deletion and FASAY demonstrated the negative functional activity of P53, 
confirming they were positive for TP53 mutations, and clonal TP53 mutations alleles were 
confirmed by Sanger sequencing. TP53 gene mutations in samples CLL03, CLL06 and 
CLL08-CLL10 were located within the TP53 DBMs. Pretreatment details available for 
certain cases revealed that many patients had received intensive treatment regimens 
with DNA-damaging agents, such as fludarabine and cyclophosphamide. Table 3-3: 
Samples Information for gDNA of the 10 Chosen CLL Samples Including a List of Clonal 
TP53 Mutations detected by Sanger Sequencing.  
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Sample 
no. 

Code no. FASAY FISH 
Mutation on 

codon 
Pre-

treatment 
End 

treatment 
DNA amount 

DNA 
quality 

Lymphocyte 
count 

2631 Liv_01 100% 96% Arg 213 Pro N/A CR 8.5ug/85μl 1.87 188 

2681 Liv_02 96.20% 91% Tyr 220 Cys N/A CR 12.9ug/85μl 1.91 247 

2600* Liv_03 91.40% N/A Arg 273 His N/A CR 21.6ug/86μl 1.87 71.3 

2766 Liv_04 77% N/A Phe 109 Val 
Chlo x12 

FC x6 
N/D 6.1ug/55μl 1.87 13.1 

2640 Liv_05 91.10% 100% Ile 162 Asn 
FC x1  

FCR x3 
Met-Pred x6 

SD 9ug/85μl 1.88 31.6 

2657* Liv_06 95% 90% Met 246 Val N/A N/A 11.4ug/85μl 1.91 172.6 

2642 Liv_07 100% N/A Tyr163 Cys 
Chlo x2 
Flu x2 

PR 19.6ug/93μl 1.84 88.2 

2554* Liv_08 95% N/A Cys 238 Tyr 

Chlo x2 
Flu x6  

CHop x6 
Ritn x4 

PD 6.9ug/80μl 1.89 12.7 

2621* Liv_9 100% 90% Arg 248 Trp Chlo/Pred x4 N/A 9.5ug/91μl 1.86 N/A 

2550* Liv_10 100% 72% Try 175 His 

Chlo x4 
FC x3 
Flu x6 

Autograft x1 

CR 23.1ug/84μl 1.86 53.2 

 * Samples with TP53 mutations inside the DBM. gDNA extraction and FASAY were performed by Dr Gillian Johnson. Genomic Integrity of 

Purified CLL DNA 
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The size of the gDNA yielded from each case was estimated by agarose gel 

electrophoresis as described in Materials and Methods, section 2.5.1, Figure 3-1. In each 

case, a tight band of DNA was observed close in size to the 23.1 kbp marker, indicating 

that it was off from acceptably high molecular weight with undetectable degradation. 

Nanodrop spectroscopy (see Materials and Methods, section 2.6.1) showed that purity 

was also robust with an average A260/280 ratio of 1.88 (277). 

 

Figure 3-1: 1% Agarose Gel of CLL gDNA. Lanes 3-12: CLL01-CLL10 samples, respectively. 
M1 is λDNA-Hind III digest (Takara, Kusatsu, Japan) and M2 is D2000 ladder (Tiangen 
Biotech, Beijing China). Nanodrop (OD 260/280: 1.8-1.9). 

 

3.2.5. Shearing of CLL gDNA 

NGS requires sample DNA to be clonally amplified with a size range of ~200 bps. The 

target DNA is therefore randomly fragmented, and adapters ligated to each end so that 

PCR can proceed using primers corresponding to the adapter sequences. DNA 

fragmentation was therefore performed enzymatically as described in Materials and 

Methods, section 2.7.4, using Ion Shear, which cleaves DNA pseudo-randomly and repairs 

the ends ready for ligation. A control gDNA sample was subjected to different periods of 

shearing (5, 10, 15 and 18 minutes) for determining the optimum required to produce the 
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required average DNA fragment size. The sizes of the resulting DNA fragments were then 

measured with a Bioanalyzer as described in Materials and Methods, section 2.6.4. As 

expected, the longer the digestion, the smaller the size of DNA (Figure 3- 2). The 15-

minute digestion produced an average size of DNA fragments of 280 bp, which was 

selected as optimum for the downstream adaptor ligation.   

 

Figure 3- 2: Bioanalyzer 2100 and Bioanalyzer HS-DNA Chip Size Analysis of Ion-Sheared 
Genomic Control DNA. A. Electropherogram comparison of gDNA sizes following different 
fragmentation time reactions of 5, 10, 15, and 18 minutes. B. The corresponding gel 
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representation. Bioanalyzer 2100 HS DNA ladder marker was included. The average 
fragment of choice was 260bp (arrowed). 

Having established the optimum incubation time for producing fragments of the required 

optimum size using control gDNA, fragmentation was repeated using the gDNA from the 

CLL cases. Resultant fragments in each sample were analysed for average size using the 

Bioanalyzer as in the previous (see Figure 3-3). 

 

 

Figure 3-3: Bioanalyzer 2100 and Bioanalyzer HS-DNA Chip Size Analysis of 10 Samples of 
Ion-Sheared CLL gDNA. A. Electropherograms for samples CLL-01, CLL-02, CLL-03, CLL-04, 
CLL-05, CLL-06, CLL-07, CLL-08 and CLL10. B. Corresponding gel representation. 
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Significant variation was observed both in the amounts of DNA per lane and the average 

sizes across lanes. Variations in amounts are to be expected because the Bioanalyzer uses 

electrophoretic loading, which is highly sensitive to starting conditions and can lead to 

varying amounts being loaded to different lanes of the chip. It had been previously 

established that the starting amounts of gDNA were the same in each case. CLL-02 and 

CLL-07 showed signs of having been fragmented the least. Again, loading could have been 

an issue resulting in drag in these lanes and the high molecular weight material in CLL-06 

despite the preponderance of small fragments in this sample is consistent with this 

possibility. However, poor mixing of Ion Shear could have produced a similar effect. It was 

considered safe to proceed with these samples because the molarity of the small 

fragments in all cases would have been very high and this was expected to be sufficient to 

support the clonal amplification required for sequencing. Adaptering was therefore 

performed. 

3.2.6. DNA Adapter Ligation 

Adapter ligation to the control sample of gDNA was performed as described in Materials 

and Methods, section 2.7.5. It was important to achieve a high ratio of adapter ends to 

gDNA fragment ends so that self-ligation of gDNA was avoided because it was 

outcompeted by the adapters, otherwise chimeric gDNA fragments could have resulted. 

The sizes of DNA fragments in pre- and post-ligated samples were therefore compared 

using the Bioanalyzer as earlier (see Figure 3-4). Adaptor-ligated DNA had a larger DNA 

size than non-adaptor-ligated DNA corresponding to a shift of ~150 bps as would be 

expected from ligation of the 76-86 bp adaptors (for both DNA strands) to each end of the 

fragmented DNA. Two different adapters are used to introduce directionality into a 
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subset of the ligated fragments, those receiving one type of adapter on one of their ends 

and the opposite adapter on their other end. This is necessary to ensure that the 

sequencing priming step is unidirectional on each template. Both images also show two 

peaks of free adaptors in adaptor-ligated DNA samples.    

 

Figure 3-4: Bioanalyzer 2100 and Bioanalyzer HS-DNA chip size analysis of adapter ligation 
to fragmented control gDNA. A. Electropherogram of Bioanalyzer HS DNA ladder (red 
peaks), sheared gDNA – ligated adapters and sheared gDNA + ligated adapters. B. 
Corresponding gel representation. 
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Adapter ligation was repeated for the CLL gDNA samples (data not shown) and all samples 

were employed for prehybridization amplification. 

3.2.7. Pre-Hybridisation Amplification 

Further confirmation that adapter ligation had taken place successfully was achieved 

using PCR to amplify the adaptered fragments. In addition, this provides a greater 

concentration of targets for target selection by hybridisation. PCRs were performed using 

a representative adaptered gDNA as described in Materials and Methods, section 2.7.1, 

using Herculase II as the DNA polymerase and forward and reverse primers corresponding 

to the two different types of the adapter. Controls included the use of a single primer. 

The products of the PCR reactions were analysed by the Bioanalyzer and also agarose gel 

electrophoresis as described in Materials and Methods, section 2.6.3. Figure 3-6 depicts 

the PCR efficacy of using both forward and reverse PCR primers and adapter-ligated DNA 

versus single primer as a negative control as determined by the Bioanalyzer. The 

significant product was only produced by the adapter-ligated DNA sample as expected. 

The PCR yield was better for the PCR using both PCR primers when compared to a single 

primer.  
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Figure 3-5: Electropherograms from Bioanalyzer 2100 and Bioanalyzer HS-DNA Chip Size 
Analysis of PCR Amplification of Adaptered gDNA Fragments by the Forward Adapter (F), 
Reverse Adapter (R) or both F and R Adapters.  

The effect of size selecting the adaptered gDNA fragments prior to PCR was also 

determined. Size selection was performed using eGels as described in Materials and 

Methods, section 2.10. Three size classes of ~100, ~200 and ~300 bps were obtained and 

used for the PCRs, which were analysed by agarose gel electrophoresis as in Materials and 

Methods, section 2.10 (see Figure 3-6). The result also specifically depicts PCR yield when 

adapter-ligated DNA and two PCR primers, versus a single primer, were utilised. A faint 

PCR product was seen in the agarose gel when the forward primer was used. This is 

expected because fragments that receive the same adapter at each end are normally 

excluded from PCR because their ends become complementary as a result, causing the 
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single-stranded DNA to hairpin and self-anneal without a primer. However, break-through 

can occur.  

 

Figure 3-6: Agarose Gel Electrophoresis of Size-Selected Adaptered gDNA Fragments 
Amplified by PCR. Three different sized adaptered gDNA fragments were used (~100 bp, 
~200 bp and ~300 bp). Four different PCR reactions each were performed: primer forward 
plus reverse primers, marked F+R on two lanes, forward-only primer, marked (F) and 
reverse-only primer, marked (R). 100 bp DNA ladder was employed as a marker. The 
agarose gel is 1.8% in TBE buffer. 

PCR amplification was repeated for the adaptered CLL gDNA fragments, which were 

analysed using the Bioanalyzer as in the previous (see Figure 3-7). Fragment sizes ranged 

from 200-700 bp after PCR as expected after the DNA adapter ligation. Some samples 

exhibited weaker amplification yielding 150-600 pg per µl. The target amount for the 

cRNA target selection by hybridisation is 1 ug/3.4 µl. It was therefore necessary to use the 

vacuum drier as described in Materials and Methods, section 2.7.6, to concentrate 

samples with concentrations that were below the amount required. These could then be 

used for targeted capture of DNA maintenance gene regions by cRNA. 
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Figure 3-7: Bioanalyzer 2100 and Bioanalyzer HS-DNA Chip Size Analysis of PCR 
Amplification Products from Adaptered CLL gDNA Fragment PCRs. A. Electropherograms 
of cases CLL-01 to CLL-06. B. Cases CLL-07 to CLL-10 (1/10 dilution). C. Corresponding gel 
representation. 
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3.2.8. cRNA to CLL gDNA Hybridisation and Capture  

cRNA probes were hybridised to target sequences in the amplified CLL gDNA and then 

captured using biotinylated beads according to Materials and Methods, sections 2.7.6 and 

2.7.6.2, respectively. The Bioanalyzer was made use of as described for verification, post-

hybridisation, the integrity of the DNA for CLL-03 as a representative sample (see Figure 

3-8). The 200-500 bp size distribution of the DNA was found to be correlated with that in 

the pre-hybridisation analysis, showing that it had not been degraded during 

hybridisation and target capture was therefore performed.  

 

Figure 3-8: Bioanalyzer 2100 and Bioanalyzer HS-DNA Chip Size Analysis of cRNA 
Hybridised gDNA Sample, CLL-03. A. Electropherograms of cRNA library (L) with 
Bioanalyzer HS DNA ladder, negative control (Water) and hybridised sample. B. 
Corresponding gel representation. 
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3.2.9. Size Selection and PCR Amplification of cRNA/CLL gDNA Hybrids 

After target capture, the DNA in each reaction was PCR amplified as before and then size-

selected using eGels as described in Materials and Methods, section 2.10. Samples of the 

purified material were analysed using the Bioanalyzer. Figure 3-9 portrays the amplified 

DNA after size-selection for sample CLL-06. A narrow peak at 318 bp was seen, just as 

expected.  

 

Figure 3-9: Bioanalyzer 2100 and Bioanalyzer HS-DNA Chip Size Analysis of Post-
Hybridised, Size-Selected and PCR-Amplified Sample CLL-06. A. Electropherogram of size-
selected and PCR-amplified DNA sample at 318 bp; Bioanalyzer HS DNA ladder is included. 
B. Corresponding gel representations. 

Figure 3-10 shows the Bioanalyzer analysis for all 10 CLL samples. A narrow fragment size 

range between 200-350 bp was obtained and this was at the acceptable upper limit for 
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PGM sequencing. Differences in size distribution between samples were expected 

because of small variations in timing, naturally occurring when the samples were 

collected. The material produced in each case was therefore subjected to NGS. 

 

Figure 3-10: Bioanalyzer 2100 and Bioanalyzer HS-DNA Chip Size Analysis of Post-
Hybridised, Size-Selected and PCR-Amplified Samples, CLL-01 to CLL-10. A. 
Electropherograms. B. Corresponding gel representations. 

3.2.10. Initial NGS Analysis of cRNA Maintenance Gene Sequences in CLL 

Cases  

PGM Sequencing was performed for the cRNA enriched CLL DNA samples using Ion Chip 

316v2 as described in Materials and Methods, section 2.11. Sequence data was aligned to 

hg19. An overview of the sequence data for all of the samples is seen in Table 3-4.   
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Table 3-4: Coverage Analysis for Ion Torrent PGM Sequencing Using Ion chips 316v2 to 
Read cRNA Enriched gDNA CLL Samples CLL01 to CLL10. Analysis includes the number of 
mapped reads (defined as the number of reads that were mapped to the full reference 
human genome, hg19), the percentage of reads on-target (defined as the percentage of 
mapped reads that were aligned over a target region), the base coverage depth (defined 
as the average base coverage depth over all bases targeted in the reference) and the 
uniformity of base coverage (defined as the percentage of target bases covered by at 
least 20% of the average base read depth) were utilised for sequencing. STDEV refers to 
standard deviation.   

 

The mean number of reads mapped to hg19 was 2.7 m ± 0.7 m reads. This indicated 

robust utilisation of the chip capacity, which is 2-3 m reads. Figure 3-11 portrays a heat 

map distribution representing the amount of data produced from across the chip. On-

target coverage averaged 47.7% ± 14.8% of the total mapped bases. This was significantly 

higher than the expected number of off-target bases predicted from the low-stringency 

probe design utilised. Technical issues, like, for example, washing steps or adsorption, 

may have been an issue. However, the mean base on-target coverage depth was 297.4 ± 

156.2 times, with values ranging from 62-465 for all samples, including those with weaker 

PCR amplification. This could detect alternative allele frequencies (AF) ≥5%,(278-281), 

which was sufficient for the overall purposes of the investigation (282). Additionally, 

samples CLL01-06 were multiplexed and ran pair-wise and in duplicate to increase 

coverage depth. 
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Figure 3-11: PGM Run Summary. Representative heat maps showing density distribution 
of data generating positive Ion Sphere Particles (ISPs) during PGM sequencing run of 
cRNA-enriched gDNA CLL samples. ISP is defined as streptavidin-coupled Dynabeads® that 
were used for enriching DNA templates for clonal amplification.     

3.2.11. Data Validation 

As the approach was new to the laboratory and the cRNA was of a novel probe design, it 

was appropriate to determine their reliability. Samples CLL-01, CLL-02, CLL-03 and CLL-05 

were therefore repeated. Samples were multiplexed in pairs and then sequenced twice 

using 316v2 chips and the results are summarised in Figure 3- 12, which compares the 

read depths for AFs detected per sample in each run. The number of reads per variant per 

run plotted as a straight line at a 45O slope passing through the origin clustering on 50% 

and 100% allele frequency were as expected for reproducibility between runs. Most of 

the expected variants are SNPs and either homo- or heterozygotes 
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Figure 3- 12: Variant Call Reproducibility of Ion Torrent PGM Analysis of cRNA-Targeted 
CLL gDNA.  

Plots A-D represent the linear correlation of variant calls on duplicate sequencing runs for 

samples CLL-01, CLL-02, CLL-03 and CLL-05, respectively. TVC 4.2 online software was 

used for variant calls. These plots specifically represent the percentage of reads having 

variants (allele frequency). The x-axis is for the chip 1 variants and Y-axis for chip 2 

variants.         

3.3. Discussion and Conclusion 

Ion Torrent PGM was utilised to sequence the coding regions of 194 DNA maintenance 

genes enriched by cRNA capture from CLL gDNA samples. This involved an investigation 

using a PGM instrument in-house and involved identifying a canonical set of DNA 
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maintenance genes, designing corresponding cRNA probes, preparing samples, target-

enriching the samples, sequencing the enriched targets and post-sequencing analysis.    

The Ion Torrent was expected to have a number of advantages. The average read capacity 

was well-matched for this study; turn-around time was rapid, sequencing costs were 

feasible and post-sequencing data processing could be performed locally. However, the 

Ion Torrent PGM has an inherent weakness - it is unable to accurately calculate HP length 

and this may cause false positive errors, particularly for indels   (283). This problem arose 

from HPs of ≥ 4 repeated nucleotides, especially with G or C repetitions and increasing 

localisation away from the beginning of sequencing reads (283-285). This will be 

discussed in Chapter 4. 

With respect to methodology development, it was crucial to develop and optimise the 

enrichment process to ensure the satisfactory yield of targeted DNA. The methodology 

development largely involved optimising DNA shearing, DNA purification, PCR 

amplification conditions and target enrichment. The Bioanalyzer results across the 

enrichment process demonstrated that samples were enriched in the specific DNA size 

range of approximately 300 bp. Most gDNA was successfully sheared into the range of 

100-500 bp (average size: ~200 bp) (Figure 3-3). Sheared DNA was ligated to adapters 

(Figure 3-4), successfully amplified (Figure 3-6), hybridised (Figure 3-8) and size-selected 

(Figure 3-10). During sample processing, continuous quality control using Bioanalyzer 

across the enrichment process demonstrated that samples were successfully enriched for 

the specific DNA size range of around 300 bp - the 300 bp is sequenceable in PGM and 

longer reads improve sequencing accuracy (286, 287).  
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Concerning the custom cRNA panel targeting 194 DNA maintenance genes, 71% of 

702,619 bp probes were on-target regions and 29% was off-target. This was anticipated 

because the design algorithm increased the size and number of the off-targets probes 

using adjacent regions to indirectly increase the representation of on-target. 

Experimentally, targeted regions were successfully enriched, achieving 99.7% high 

coverage of the total 2,786 exons for on-target coverage (Table 3-4). The average number 

of sequencing reads was 2.7 ± 0.7 m, which is within the upper limit of the Ion chips 

316v2. Coverage analysis revealed unexpectedly lower than average on-target reads 

compared to off-targets (47.7% ± 14.8%). It had been expected that the design of the 

probe would compromise about 30% of the total reads for on-target, but there was a 

higher number of off-targets detected than expected owing to the low stringency of the 

probe design that increased PCR amplification bias and reduced hybridisation 

effectiveness (282, 288). Improvements could possibly be made by increasing the selected 

design option away from the lowest stringency masking to improve the proportion of on-

target enrichment (289, 290), but this might have reduced the proportion of targets 

detected. Technical improvements, for example, rose numbers of washes or reduction of 

adsorption opportunities may have diminished the number of off-target reads. Overall, 

the design was satisfactory for the intended purpose, namely to detect acquired variants 

that may contribute to genetic instability in CLL.     

The CLL samples had TP53 mutations/deletions and had been treated with multiple 

therapies, including DNA-damaging agents. Patients with TP53 mutations are expected to 

be chemo-refractory (30-32) as seen in the end treatment of various patients. Further 

analysis of the sequence data in this regard is presented in Chapter 4.
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4. Chapter 4: Application of a Targeted NGS Method to Identify Mutations 

in DNA Maintenance Genes of CLL Samples with a Mutated/Deleted 

TP53 Gene 

4.1. Introduction 

In the Results of Chapter 3, a high-throughput methodology was successfully established 

for target enrichment of literature-selected DNA maintenance genes for NGS and applied 

to a small cohort of CLL samples having a TP53 mutation/deletion.  An increasing number 

of publications report the identification of recurrent mutations for CLL by NGS (see 

Introduction, section 1.18). The study reported here is distinct because it focused on a 

cohort of samples with multiple drug resistance, severe clinical phenotypes and TP53 

mutations/deletions in patients. Inactivated P53 protein is associated with clonal 

instability, such as increased risk of Richter transformation. This is in keeping with the 

known role of wild-type P53 as a mediator of apoptosis, cell-cycle arrest and DNA repair 

in response to cellular stress. The main aim of this chapter was to analyse the profile of 

mutations and polymorphisms in the DNA maintenance genes of the samples, as it is 

possible that clonal instability because of P53 inactivation may be amplified based on the 

acquisition of secondary mutations in genes (other than TP53) that are involved in the 

response to DNA damage. 

The objective of this chapter was to refine candidate variants in the DNA maintenance 

genes identified by PGM sequencing and focus on non-synonymous somatic aberrations. 

The refined list of candidate variants would need to be validated by Sanger Sequencing, 

which remains the gold standard for candidate variants with ≥ 10% allele frequency (207). 
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Affected genes with validated aberrations would then be biologically correlated with CLL 

genomic instability, identified as large-scale or extensive genomic alterations by WGS 

with the same cohort of CLL samples (see 

Figure 4-1). 
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Figure 4-1: Relationship Between the Two NGS Approaches Used in the Study. Both 
approaches are applied to a small cohort of 10 CLL samples with TP53 either mutated or 
deleted. Deep sequencing of the canonical set of maintenance gene exons identifies 
somatic alterations that may contribute to genomic instability. WGS detects widespread 
or large structural alterations within the CLL genome of the same samples. Correlation of 
the maintenance gene mutations with the global alterations tests the hypothesis whether 
the former could be responsible for the latter. 

4.1.1. TVC 4.2 Stringency and Candidate Variant Calling 

Candidate variants were called from the CLL sequence data by TVCv4.2. The great 

strength of NGS is its high capacity but sequences are not read precisely, and the data has 

to be modelled to classify sequence differences from the reference genome as a variant. 

Each base is represented on multiple clonal amplicons, where it is read and each time 

there is a chance of an error occurring. Variants are therefore called according to the 

number of reads that differ from expectation, leaving open the possibility of false 

positives (FPs) and false negatives (FNs). The approach is therefore a screening approach, 

hence the need for validation of candidates by Sanger sequencing. Different parameters 
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were therefore varied to control the stringency of TVC and determine the effect on the 

number and nature of the variants called. These included minimum allele frequency 

(proportion of reads that were variant), minimum quality (Phred score), minimum 

coverage and minimum coverage on both strands. These changed the sensitivity and 

accuracy of variant calling. High accuracy comes at the expense of low sensitivity. The 

high-stringency option was used in this project in order to minimise the number of FP 

results. Once variants had been identified, they were classified according to type, SNP or 

somatic candidates and the data was employed to examine the validity of the approach. 

Sanger sequencing of discovered candidate variants was used as the gold standard to 

determine whether variants were actually present in the CLL cases and permitted the 

efficiency and effectiveness of the variant selection criteria to be determined. 

4.1.2. Filtering Strategy for the Classification of Candidate Variants 

After variants were called and genotyped using TVCv4.2 and IRv4.2, respectively, they 

were checked for their occurrence in terms of both the dbSNP and 1000 genome 

databases. If the variants were reported to be germline origination, they were marked as 

SNPs, and if the variants were not reported, they were then checked against the COSMIC 

database. If they had not been reported as somatic, they were compared to DNA from 

buccal cells of the corresponding CLL patient to establish whether they were present and 

therefore of germline origin. Figure 4-2 shows the complete variant classification strategy. 
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Figure 4-2: Flow Chart Outlining the Classification Strategy for Candidate Somatic Variants 
found in the NGS Data. 

4.1.3. Investigation of the Validity of Variant Calling 

Four QC methods were used to investigate the validity of variant calling.  The first and 

second QC rounds utilised known polymorphic SNPs found in the data and compared 

their density versus the normal population (QC1) and within samples (QC2). Plots of 

detected SNPs according to their genomic coordinates were also compared across 

samples to qualitatively demonstrate that gross cross-contamination between samples 

had not taken place. Ti)-to-Tv ratios on the targeted regions of samples was determined 

for QC3, and the expected value was ~2.8 (291, 292).  QC4 compared the TP53 mutational 
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status as determined by NGS with the TP53 mutations that had already been detected by 

FASAY and Sanger sequencing.  

4.2. Results 

4.2.1. Types and Proportion of Variants Identified using High-Stringency 

Calling  

A total of 2812 variants were detected in the 10 CLL samples by TVCv4.2 (average of 280 

variants per sample), of which 1302 variants were non-synonymous missense variants 

(130 variants average per sample) and eight variants were nonsense variants. Indels 

comprised 76 frameshift insertions or deletions and there were 18 non-frame indels. 

Synonymous variants were the largest proportion with 1407 in total (140 variants average 

per sample; see 

Figure 4- 3). The majority of the variants (2634) were present in dbSNP 135 (released on 

Nov 2014) and were considered to be germline variants. Forty-two variants were 
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candidate somatic non-synonymous variants; the remaining 33 variants were 

synonymous. 

 

Figure 4- 3: Pie Chart of the Types and Proportions of Variants Identified in 10 Samples 
Within the Target Regions. Variant types include non-synonymous, nonsense, 
synonymous, frameshift deletion, frameshift insertion, non-frameshift deletion and non-
frameshift insertion. The total number of variants detected was 2812. Missense and 
synonymous variants accounted for the highest number of detected variants, 1302, and 
1407 variants, respectively. TVCv4.2 was used for variant calling.  

4.2.2. Sanger Sequencing Validation of the Candidate Variants 

The candidate non-synonymous somatic variants were validated by Sanger sequencing. 

Primers for the somatic variants were designed by Integrated DNA Technologies (IDT) - 

see Table 4- 1, PCR was optimised using GoTaq G2 Flexi DNA Polymerase (Promega, 

Southampton, UK) and the PCR products were purified by Wizard® SV Gel and PCR Clean-

Up System (Promega , Southampton, UK)- see Materials and Methods section 2.5.2.2 

Wizard® SV Gel and PCR Clean-Up System). Genewiz® Sanger service was employed to 

sequence PCR products with both corresponding PCR primers. 
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Table 4- 1: Primers by Gene Name for PCR Amplification and Validation Testing of 
Candidate Somatic Variants 

Sequence 
name 

Accession 
number 

Bases 
Primer 

sequence 

GC 
con-
tent 
(%) 

Tm 
(MgCl) 

(Celsius) 

Tm 
Temperature 

for PCR 
(Celsius) 

PCR 
Product 

size 
(bp) 

TP53 _For NC_000017.11 20 

5’GAT ACG 
GCC AGG 
CAT TGA 

AG 3’ 

55 60 60 314 

TP53_Rev 
 

23 

3’GCA ATG 
GAT GAT 
TTG ATG 
CTG TC5’ 

43 61 
  

RECQL4_For NC_000008.11 19 

5’GCA CAT 
GTC TGC 

GCA GCT C 
3’ 

63 62 60 455 

RECQL4_Rev 
 

20 

3’TAC AGC 
GAG CCT 
TCA TGC 

AG5’ 

55 60 
  

REV3L_For NC_000006.12 21 

5’GAT TAC 
AGA CAT 
GAG CCA 

GTG 3’ 

48 60 58 389 

REV3L_Rev 
 

22 

3’AGA GTA 
AAT AGG 
AGA AAG 
GGA G5’ 

41 58 
  

ERCC6_For NC_000010.11 19 

5’CTG TTC 
CTT GGC 

CTC ACT C 
3’ 

58 60 58 394 

ERCC6_Rev 
 

21 

3’ATC TGG 
ACC AGA 
AGA GTT 

GTC5’ 

48 60 
  

XPC_For NC_000003.12 19 

5’CCT TTG 
GCA CTT 

GGC CTG C 
3’ 

63 62 60 301 

XPC_Rev 
 

21 

3’GTT GAT 
CAC TGT 
CTG AGC 

TGG5’ 

52 61 
  

ATM_For NC_000011.10 21 

5’CTA GGA 
TTA GTG 
AGT AGG 

AGG 3’ 

48 60 58 301 

ATM_Rev 
 

21 
3’CAC AAG 
GTG AGG 
TTC TAA 

48 60 
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Sequence 
name 

Accession 
number 

Bases 
Primer 

sequence 

GC 
con-
tent 
(%) 

Tm 
(MgCl) 

(Celsius) 

Tm 
Temperature 

for PCR 
(Celsius) 

PCR 
Product 

size 
(bp) 

TCC5’ 

BLM_for NC_000015.10 24 

5’TGT ATC 
TTC TTA 
TCA GGG 
AGT AAG 

3’ 

38 60 58 503 

BLM_Rev 
 

22 

3’GTA TCT 
CCA GTG 
TCA AGC 
ATA G5’ 

45 60 
  

HLTF_for NC_000003.12 25 

5’ACT GAA 
AGA ACA 
CTC TAA 

TAA TCT G 
3’ 

32 59 58 556 

HLTF_rev 
 

22 

3’CTA GCT 
AGT CCA 
GAT CAC 
ATA C5’ 

45 60 
  

MGMT_For NC_000010.11 21 

5’CGA CCA 
GCC TCT 
TAC CTA 
TAC 3’ 

52 61 60 373 

MGMT_rev 
 

21 

3’ACA CAG 
GGA AGC 
TGC AAA 

TGC5’ 

52 61 
  

MSH4_for NC_000001.11 25 

5’ACT CTT 
TGA CTT 
ATT GCC 

TAT AAT G 
3’ 

32 59 58 382 

MSH4_rev 
 

23 

3’CAT ATG 
CTG TTT 
CCT TAA 
ATG GC5’ 

39 59 
  

POLE_for NC_000012.12 18 
5’TGC GAC 
TGG CTG 

GCA CTG 3’ 
67 61 60 393 

POLE_rev 
 

20 

3’GTG TCC 
ACT CAT 
CTA CCA 

CC5’ 

55 60 
  

ERCC3_for NC_000002.12 19 

5’GCA TGC 
TTA CCA 

CCC AGA G 
3’ 

58 60 58 317 

ERCC3_rev 
 

19 
3’GCA GGT 

GGC TCT 
58 60 
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Sequence 
name 

Accession 
number 

Bases 
Primer 

sequence 

GC 
con-
tent 
(%) 

Tm 
(MgCl) 

(Celsius) 

Tm 
Temperature 

for PCR 
(Celsius) 

PCR 
Product 

size 
(bp) 

TAG CTA 
G5’ 

POLI_for NC_000018.10 20 

5’CTC CAC 
GAT TCC 
TTG GCA 

TG 3’ 

55 60 58 324 

POLI_rev 
 

22 

3’CTT CTC 
ATT TAC 
ACC CAA 
GGA G5’ 

45 60 
  

RAD54L_for_2 NC_000001.11 19 

5’CTA GGT 
TGC ACT 

GCC GAC G 
3’ 

63 62 60 340 

RAD54L_rev_2 
 

21 

3’GCA AAC 
ATC ATG 
CAG CCC 

TTC5’ 

52 61 
  

XRCC3_for NC_000014.9 19 

5’TGT GTC 
TGA ACC 

AGG CTC C 
3’ 

58 60 58 359 

XRCC3_rev 
 

20 

3’GCT TGC 
CTG CTT 
CCT GTT 

TC5’ 

55 60 
  

RAD54B_for NC_000008.11 21 

5’GAT TTG 
CTT CAC 
TGA GCT 
AGC 3’ 

48 60 60 469 

RAD54B_rev 
 

26 

3’GAC CTT 
ACT ACT 
TAG ACA 
TTA AAG 

TC5’ 

35 62 
  

ERCC2_for NC_000019.10 18 

5’GCA AAC 
CGC TGT 
GGG CAG 

3’ 

67 61 60 398 

ERCC2_rev 
 

20 

3’TGA GTA 
GCT CTG 
TCT CCC 

AG5’ 

55 60 
  

TDG-Fp-1 NC_000012.12 23 

5’AGA TGC 
CAA GTA 
ATA CTG 

TGT CG 3’ 

43 61 61 900 

TDG-R-1 
 

21 
3’TGC CAT 
GTA TCA 
GGT CTC 

52 61 
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Sequence 
name 

Accession 
number 

Bases 
Primer 

sequence 

GC 
con-
tent 
(%) 

Tm 
(MgCl) 

(Celsius) 

Tm 
Temperature 

for PCR 
(Celsius) 

PCR 
Product 

size 
(bp) 

CAC5’ 

POLD1-Fp-1 NC_000019.10 20 

5’ACG ACC 
GCA TGG 
ACT GCA 

AG 3’ 

60 63 61 942 

POLD-2-Rp-1 
 

21 

3’TGA CCT 
CCG ACT 
TCA TGT 
AGG5’ 

52 61 
  

DMC1-Fp-1 NC_000081.6 21 

5’CAG GGA 
CCA AGT 
CTA TGT 
GTC 3’ 

52 61 61 589 

DMC-1-Rp-1 
 

23 

3’CTC ACC 
TCA CTC 
CTT AGT 
TTA TG5’ 

43 61 
  

DCLRE1A-Fp-
1 

NC_000010.11 22 

5’TAC TTC 
GGA GCA 
GGT GTA 
CTA G 3’ 

50 62 61 1115 

DCLRE1A-Rp-
1  

22 

3’TCA GAG 
TGT CCT 
GAT GGT 
CTT C5’ 

50 62 
  

BRCA1-Fp-1 NC_000017.11 22 

5’AGT ACA 
CCA AGA 
CTC CCT 
CAT C 3’ 

50 62 61 619 

BRCA1-Rp-1 
 

21 

3’TGG CAG 
GCA ACA 
TGA ATC 

CAG5’ 

52 61 
  

RAD54L-Rp-2 NC_000001.11 20 

5’CAT GAA 
GGC GGA 
AGG TCT 

CA 3’ 

55 61 61 780 

RAD54L-Fp-2 
 

22 

3’CAT GTG 
GTT GTT 
GAC CCT 
ATT C5’ 

45 60 
  

FANCA-Fp-1 NC_000016.10 22 

5’AGA AGG 
CTC CAT 
GCG TCT 
AAT G 3’ 

50 62 61 652 

FANCA-Rp-1 
 

22 

3’CAT GTC 
AGG TGA 
GTC CTG 
TTT C5’ 

50 62 
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Sequence 
name 

Accession 
number 

Bases 
Primer 

sequence 

GC 
con-
tent 
(%) 

Tm 
(MgCl) 

(Celsius) 

Tm 
Temperature 

for PCR 
(Celsius) 

PCR 
Product 

size 
(bp) 

PARP1-Fp-1 NC_000001.11 22 

5’GAA GAT 
GCT GTT 
ATG AGG 
GAG A 3’ 

45 60 61 532 

PARP1-rp-1 
 

22 

3’AGA TGG 
TCT TCT 
GGT CGT 
TTC C5’ 

50 62 
  

PER1-Fp-2 NC_000017.11 20 

5’GAG 
GGA GAG 
CTG AGT 

AAG AG 3’ 

55 61 61 750 

PER1-Rp-2 
 

20 

3’GCT GGG 
AGG AAG 
GAC ATT 

TC5’ 

55 61 
  

FANCD2-Fp-2 NC_000003.12 22 

5’GAT GCT 
TGA AGA 
GGG TTG 
CTA C 3’ 

50 62 61 674 

FANCD2-Rp-2 
 

21 

3’CAG GGA 
AGA GGC 
CAG TAT 

TTC5’ 

52 61 
  

The previous table provides the forward and reverse primers of each set. The variants’ 

location, number of bases, primer sequence, GC content, Tm and the size of PCR products 

are included. 

Of the 42 non-synonymous aberrations tested, 15 were also found by Sanger sequencing 

and therefore classified as true positives (TPs). Only one variant, found in POLE, was also 

determined by Sanger sequencing in the buccal sample DNA and was therefore 

considered to be germline. A summary of the variants found after testing for validity is 

presented in Figure 4- 4.    
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Figure 4- 4: Pie Chart Showing the Proportion of Somatic and Non-Somatic Aberrations 
Identified Within the Target Regions of 10 CLL Samples After Validation. 

4.2.3. Sensitivity and Precision of the TVC 4.2 Stringency Set Used for 

Variant Calling. 

Most variants were expected to be polymorphisms and therefore allele frequency in 

terms of reading coverage was expected to be bimodal at 50% and 100%, with such 

distribution having already been observed in the development of the approach (see 

Chapter 3, section 3.2.11, Figure 3- 12). However, low-frequency subclones harbouring 

key mutations could be significant for disease progression (see Introduction, section 

1.18). It was therefore useful to make use of the validated versus non-validated variants 

to investigate the precision of variant calling. Two parameters were calculated based on 

the current results - sensitivity, which is the ability to testify how correct the TP variants 

are with the formula (TP/(TP+FN)) while accuracy and precision are the qualities of being 

correct, which is calculated by ((TP+TN)/(TP+TN+FP+FN)). The outcome is found in Table 

4- 2. 
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Table 4- 2: The TVCv4.2 Stringency Set Used for Variant Calling and Resultant Sensitivity 
and Precision. 

The chosen high-stringency default set is shown with 2% and 5% minimum allele 

frequencies for SNP and indels, respectively. Ten was the minimum Phred quality score, 

20 was the minimum coverage required on either side of a detected variant and 3 

instances of the variant were required in each strand.  

Even with the high-stringency settings, sensitivity for detection of variants was only 90.4% 

and accuracy was 51.3%. This was considered to be a reasonable compromise in terms of 

the aims of the project because a 90% chance of detecting any variants would have 



Chapter 4: Application of a Targeted NGS Method … 

140 

 

offered a superb chance of detecting variants in association with particular forms of 

genomic instability across the samples used. Roughly 50% FPs effectively doubled the 

amount of validation required to find TPs. However, if base coverage had been uneven, 

this could have influenced the apparent sensitivity and precision and was therefore 

examined. 

4.2.4. Base Coverage of TP53  

Coverage of TP53 was assessed according to each CLL case.  The covered bases were 

assessed depending on whether the known mutation was expected to be within the DBM 

or outside it. CLL-02, CLL-04, CLL-05, CLL-07 and CLL-10 were assessed inside the DBM and 

CLL-01, CLL-03, CLL-06, CLL-08 and CLL-09 outside. The results are found in Table 4- 3. 

According to different levels of possible fold coverage, from 1x to 100x, the percentage of 

bases that were covered to a depth of at least 50-fold ranges from 97.95-84.58% (average 

coverage: 91.3%), excluding sample 2642 (CLL-07) which had 60% coverage. Five samples 

had an average of at least 90% (93.97-97.115%) of their bases covered at least 100-fold. 
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Table 4- 3: Base Coverage for TP53 Either Within or Outside of the DBM of 10 CLL Samples 
According to the Expected Location of Their Known Mutation 

 
Inside DBM Outside DBM 

Target 
base 

coverage 

2550 
CLL10 

2640 
CLL05 

2642 
CLL07 

2681 
CLL02 

2766 
CLL04 

2554 
CLL08 

2621 
CLL09 

2631 
CLL01 

2657 
CLL06 

2600 
CLL03 

1X 99.92 99.97 99.87 99.81 99.85 99.9 99.91 99.81 99.79 99.97 

10X 99.6 99.065 90.52 99.235 99.4 99.41 99.61 99.3 99.1 99.49 

20X 99.16 97.745 74.34 98.89 98.92 98.89 99.09 98.935 97.94 98.92 

30X 98.8 95.63 66.5 98.57 98.43 98.4 98.66 98.665 95.79 98.235 

40X 98.35 92.68 62.67 98.28 97.64 97.96 98.15 98.465 91.65 97.395 

50X 97.95 88.915 60 98.03 96.43 97.47 97.58 98.265 84.58 96.31 

100X 95.16 58.425 53.03 96.545 81.47 93.97 94.28 97.115 22.22 85.47 

Uniformity 
of base 

coverage 
95.15 95.99 58.65 97.08 98.4 95.43 95.37 97.585 98.49 97.78 

Samples are divided into groups according to the expected location of their TP53 

mutation either inside the DBM or outside of it. The percentage of bases covered at the 

stated fold coverage is: 1x, 10x, 20x, 30x, 40x, 50x and 100x. Uniformity of base coverage 

is also seen. The uniformity of base coverage is defined as the percentage of target bases 

covered by at least 20% the average base-read depth. 

Loss of heterozygosity (LOH) may have made a difference to the overall coverage of bases 

at the TP53 locus but there did not appear to be a relationship to the FISH results, 

suggesting that the PCR and hybrid selection as well as a total number of reads per case 

were overriding for coverage. Saturation of cRNA probes by the target may have offset 

any differences in relative allelic representation. Apart from CLL-07, uniformity of base 

coverage was over 95%, providing confidence that screening for novel variants would be 

successful.  
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4.2.5. Coverage of Known SNPs  

Most of the variants were SNPs with bimodal allele AF ranges of 90-100% and 40-60%. 

The average coverage was 200 reads with a quality score ≥ 10 as selected by TVCv4.2. 

Coverage analysis graphs were used to show the pattern of allele coverage relative to the 

total coverage and variant frequency (see Figure 4-5 for example using SNPs found in CLL-

04). Allele calls in this case were being made on reading depths of at least 100, offering a 

high confidence that even minor variants would be detected. 

 

Figure 4-5: Coverage Analysis. Coverage versus variant proportion in relation to total 
coverage reads for SNPs found in sample CLL-04. 217 total variants are shown. The X-axis 
represents the variant number; the primary Y-axis represents variant frequency while the 
secondary Y-axis is base coverage (including variant coverage). 

4.2.6. SNP Density Compared to the Normal Population (QC1) and Within 

Samples (QC2) 

In order to further validate the sequencing data, SNP densities and patterns were 

analysed. SNP densities in exonic regions of the 10 CLL samples had an average range of 
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248 SNPs per 499kbp (0.5 SNPs per 1 kbp; Table 4-4), which was as expected within the 

normal population (293). This suggests that SNPs found in the CLL cases were 

representative of the general population and that the methodology was not introducing 

any forms of systematic bias. In addition, each sample had a very different pattern of 

known SNPs, although a few variants were shared among the 10 samples (Figure 4-6). 

This supports the representative nature of the SNPs found and also rules out any gross 

cross-contamination between samples. 

Table 4-4: Density of SNPs in Exonic Regions for CLL Samples 1-10.  

Sample# 
SNPs/499 

kbp 

SNPs/1 
kbp 

1 251 0.50 

2 246 0.49 

3 254 0.50 

4 233 0.46 

5 234 0.46 

6 257 0.51 

7 221 0.44 

8 252 0.50 

9 259 0.51 

10 271 0.54 

Mean 248 0.5 

The number of SNP variants per case and density per 100 bases as detected by Ion 

Reporter (IR 5.0). 
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Figure 4-6: SNPs found in the 10 CLL Samples according to genomic position.  

Red bars denote SNPs with ~100% VAF while the orange bars denote VAF of around 50%. 

4.2.7. QC3 Ratio of Transition (Ti) and Transversion (Tv) Variants 

The Ti-to-Tv ratio was calculated for the detected variants as a reliability measure for 

variant calling (294, 295). Germline variants (SNPs) were classified as transitions or 

transversions and the range of Ti/Tv was found to be an average of 2.4. The most 

frequent variants were transitions of G:C>A:T with an average of 10 variants per change 

per sample. This suggested that the active hypermutation role of activation-induced 

cytidine deaminase (ACIDA) protein had been occurring in the CLL cells and this was as 

expected (296-298). The second most frequent change was A:T>C:G with a range of (1 – 

2.5) variants per sample. This may be related to activation of error-prone polymerase eta 

(299, 300). These were more prominent in CLL samples with TP53-DBM mutations (301). 

Overall, the results suggest that mechanisms of mutagenesis that could enhance genomic 

variation and support progression may have been prevalent in the samples. 
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Table 4-5: Ti versus Tv for the Germline and Novel Variants  

- Transitions - Transversions - - 

Nucleotide 
change 

- A>G G>A C>T T>C 
Total 

Ti 
A>C A>T G>C G>T C>A C>G T>A T>G 

Total 
Tv 

Ti/Tv 

Germline 
variants 

X 5.6 14.1 12.6 7.5 39.7 1.0 1.1 4.7 1.0 0.9 4.3 1.5 2.5 16.9 2.4 

SD 1.4 2.8 3.1 2.7 10.0 1.0 0.7 1.0 1.0 0.8 1.0 0.5 0.8 6.8 1.5 

Novel 
variants 

X 37.8 38.1 33.1 37.5 146.5 5.6 6.7 7.9 8.0 4.7 6.0 2.8 6.5 48.2 3.0 

 
SD 3.5 2.2 1.9 3.1 10.7 0.9 0.9 0.7 0.9 1.0 1.5 0.7 0.5 7.1 1.5 

Table 4.5 lists 10 CLL samples and their means (X) and standard deviations (SD) of each 

group along with the Ti/Tv ratio of each sample. Definitions: Ti is the nucleotide change 

that interchanges into two ring purines (adenine (A) to guanine (G)) or one-ring 

pyrimidines (cytosine (C) to thymine (T)). Therefore, changes are within the same group 

that leads to four scenarios: A > G, G > A, C > T, and T > C. For Tv, the change of nucleotide 

causes interchange of nucleotide from purine to pyrimidine and vice versa, which results 

in eight scenarios: A > C, C > A, A > T, T > A, G > C, C > G, G > T and T > G. X is the 

numerical expression of the middle or central value in a certain data set. SD is the 

expression of how much the values in a group set differ from X.            

QC4 comparison of the TP53 mutational status as determined by NGS with the TP53 

mutations that had already been detected by FASAY and Sanger sequencing in the CLL 

cases. 

Three previously identified TP53 mutations were used as further validation, two variants 

with > 90% read depth were validated using Sanger sequencing (Figure 4-7). One variant 

with 2% read frequency failed validation owing to the sensitivity of Sanger sequencing 

being limited to 10-20% of sample DNA. Identification of the expected TP53 mutations 

supported the efficacy of the overall approach for variant detection. 
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Figure 4-7 depicts the validation of three different TP53 variants on samples CLL-01 and 

CLL-10 using Sanger sequencing. Panel A depicts the Sanger validation of CLL-01 samples 

for a four-amino acid insertion at p.273 (90% AF). Panel B. portrays variant p.Arg 175 His 

(2% AF) failed to be validated by Sanger sequencing. Panel C shows the Sanger validation 

for p.Tyr 234 Asp (60% AF) of sample CLL-10.   
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Figure 4-7: Validating TP53 mutations by Sanger Sequencing. Three TP53 variants from 
CLL01 (A) and CLL10 (B and C) were validated. A. CLL-01 with TP53 somatic Insertions at 
273, including the Sanger sequencing result. B & C. CLL-10 with two somatic variants. 
Panel B depicts the PGM validation for 2% mutation at p.Tyr 234 Asp but failed validation 
with Sanger sequencing as it is below the sensitivity limit. Panel C shows for PGM the 
Sanger validation for mutation p.Arg 175 His.  

4.2.8. Summary of Variants Validated 

Figure 4- presents the validation testing of 16 non-synonymous aberrations detected by 

Ion PGM, WGS and Sanger Sequencing used in the validation as detailed in Table 4- 6. 

There was limited germline material available for validation. Germline materials were 

available for the samples: CLL-02, CLL-06, CLL-08 and CLL-10. As a result, certain variants 

were germline-validated, including the following genes; BLM, RAD54B, XPC, ERCC2, 

ERCC6, HLFT, MSH4 and POLE. The findings indicated POLE p.Ala661Thr was somatically 

validated with 50% AF (Figure 4-). In total, there were two POLE mutations and one 

RAD53L that were regarded as somatic mutations in three CLL samples (30% of cohort 

samples).   
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Table 4- 6: Validated Non-Synonymous Variants Using Ion Reporter v4.2 with dbSNP Released in November 2014. A total of 26 aberrations 
were validated by Sanger sequencing or WGS. Within the table is genotyping information that includes COSMIC, clinvar, dbsnp, maf, 5000 
exomes, polyphen and sift. Ion Reporter v4.2 was employed for the genotyping. Abbreviations: COSMIC: Catalogue of Somatic Mutations in 
Cancer; Clinvar is open archives of reports associated with human variations and phenotypes. Sift is a tool which predicts the severity of 
amino acid substitutions based on the conservation degree of amino acids; maf is the minor allele frequency, which is reported in a given 
population; and the polyphen score predicts the impact of a substituted amino acid on the structure and function of the human protein.  

# Gene # locus 
Sam-

ple af-
fected 

Coding 

(wt) 
co-
don  

Af-
fected 
codon 

Affected 
protein 

Validated by 
(in addition 

to PGM) 

Germ-
line 
vali-

dation 

AF 
(%) 

Cos-
mic 

dbSNP 
(2014) 

1K Ge-
nome 

(Stage 3) 
(2015) 

maf 
5000 

Exomes 
poly-
phen 

sift 

1 ATM 
chr11:10815

1786 
CLL03 

c.3467C
>T 

ACG ATG 
p.Thr1156

Met 
Sanger+WGS - 49.1 - - 

rs7599513
93 

- - 0.001 0.94 

2 BLM 
chr15:91346

924 
CLL02 

c.3532C
>A 

CAA AAA 
p.Gln1178L

ys 
Sanger+WGS Yes 52 - - - - - 0.002 0.16 

3 
RECQL

4 

chr8:145738
669 

CLL04 
& 

CLL07 

c.2395
G>A 

GTG ATG 
p.Val799M

et 
sanger 

(CLL07), WGS 
- 

36.8; 
39.3 

- 
rs3429
3591 

- 0.008 

AMAF=0.0
054:EMAF
=0.0226:G
MAF=0.01

71 

1 0 

4 
RAD54

B 

chr8:954234
78 

CLL08 

c.367_3
70delG

TTA 

GTT AAT p.Val123fs Sanger+WGS Yes 42.9 - - 
rs7664173

86 
- - - - 

5 
RAD54

L 

chr1:467394
01 

CLL04 
c.1592A

>C 
AAG ACG 

p.Lys531-
Thr 

WGS - 46.7 - - - - - 0.12 0 

6 XPC 
chr3:142003

82 
CLL08 

c.1001C
>A 

CCT CAT 
p.Pro334-

His 
Sanger+WGS Yes 50.6 - 

rs7473
7358 

- 0.004 

AMAF=0.0
268:EMAF
=0.001:GM
AF=0.0088 

- - 

7 ERCC2 
chr19:45855

803 
CLL06 

c.2005_
2006del

AG 

AGG GGG p.Arg669fs Sanger+WGS Yes 52.1 - - 
rs7575351

86 
- - - - 

8 ERCC3 
chr2:128051

252 
CLL03 

c.71_72
insGGA
TGAAG
AGGA 

GAT GAG 

p.Glu23_-
Asp24insGl
uAspGluGl

u 

Sanger+WGS - 32.4 - - 
rs7777786

60 
- - - - 
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# Gene # locus 
Sam-

ple af-
fected 

Coding 

(wt) 
co-
don  

Af-
fected 
codon 

Affected 
protein 

Validated by 
(in addition 

to PGM) 

Germ-
line 
vali-

dation 

AF 
(%) 

Cos-
mic 

dbSNP 
(2014) 

1K Ge-
nome 

(Stage 3) 
(2015) 

maf 
5000 

Exomes 
poly-
phen 

sift 

9 ERCC6 
chr10:50678

470 
CLL02 

c.3536A
>G 

TAT TGT 
p.Tyr1179

Cys 
Sanger+WGS Yes 47.1 - - 

rs5367571
72 

- - - - 

10 HLTF 
chr3:148757

858 
CLL06 

c.2462
G>A 

AGT AAT 
p.Ser821As

n 
Sanger+WGS Yes 54.3 - - - - - - - 

11 MGMT 
chr10:13133

4629 
CLL03 

c.206C>
T 

ACG ATG 
p.Thr69Me

t 
Sanger+WGS - 51.2 - - 

rs7636367
57 

- - 0.884 0.09 

12 MSH4 
chr1:763439

68 
CLL08 

c.1505
G>A 

AGA AAA 
p.Arg502Ly

s 
Sanger+WGS Yes 49.3 - - 

rs7677130
32 

- - 0.918 0.03 

13 POLE 
chr12:13321

9559 
CLL07 

c.4572_
4573ins

C 

AGC CAG 
p.Ser1525f

s 
WGS No 48.4 - - - - - - - 

14 POLE 
chr12:13324

5266 
CLL10 

c.1981
G>A 

GCA ACA 
p.Ala661Th

r 
Sanger+WGS - 47.9 - - - - - 0.645 0.05 

15 REV3L 
chr6:111636

520 
CLL01 

c.8416
G>A 

GAA AAA 
p.Glu2806L

ys 
Sanger+WGS - 47.1 - - 

rs7562263
03 

- - 0.753 0.15 
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Figure 4-7: Corresponding Variants Visualised for Variants in Table 4- 6. Somatic refers to 
variant validation using CLL samples, whereas Germline refers to variant validation with 
Germline DNA from a buccal swab of the same patient. Abbreviations; RS: reverse strand; 
and FR: forward strand. Details of variants, including allele coverage, are included in 
Figure 4-6.  
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4.3. Discussion 

This chapter covers the application of NGS to targeted genomic regions for the 

identification of somatic variants in DNA maintenance genes using an in-house Ion 

Torrent PGM. The targeted genes consisted of 194 DNA maintenance genes (61, 266, 

276). The cohort included 10 CLL cases with P53 inactivation. More specifically, the 

chapter sought to address the susceptibility of DNA maintenance gene(s) to somatic 

aberrations in CLL, which could play a role in CLL clonal instability and post-CLL Richter 

syndrome.   

For variant calling, the default high-stringency TVCv4.2 was utilised, resulting in a variant 

sensitivity of 90.4% and accuracy of 51.3%. The reason for the low accuracy was the high 

number of FP variants based on the inherited inaccurate flow calls. These could cause 

overcalling of short HPs and undercalling on long HPs (283). The minimum AF was 20% 

with a minimum Phred quality score of 10, meaning the probability of an incorrect base 

call is 1 in 10.  

Validation checking and comparison of SNP density and patterns across samples 

confirmed the representative nature of the SNPs found and excluded cross-contamination 

between different samples. Ti/Tv ratios suggested mutational processes were active in 

the CLL samples, in particular transition changes affected by AICDA (296-298) and 

polymerase eta (301). 

In respect to the mutation profile, Ion Reporter v4.2 was used to genotype variants and 

differentiate SNPs from total variants. Figure 4- 4 shows 42 variants are non-synonymous 

and 26 were validated by Sanger sequencing. Twelve variants failed validation based on 
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the inherent inaccuracy of the sequencing flow calls. However, the germline validation of 

certain samples revealed that many of the candidate variants were germline validated. 

This was also seen in the updated versions of dbSNPs and the release of phase two and 

three of the 1000 Genome project (238). As a result, many potential somatic variants 

were filtered out as they were confirmed germline. Nevertheless, three non-synonymous 

somatic mutations were identified in two DNA polymerase genes with the same function - 

POLI and POLE in three CLL samples. In particular, the POLE gene was recurrently mutated 

in different samples. As such, POLE was selected as a candidate to be subsequently 

screened in a larger and independent cohort of CLL samples in Chapter 6 as well as 

studying the genomic instability of the 10 CLL samples in Chapter 5.  
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5. Chapter 5: Investigation of Genome Integrity of CLL Having 

Compromised TP53 

5.1. Introduction 

This chapter concerns WGS of CLL already known to have TP53 alterations to investigate 

genomic instability and clonal transformation of this group. Types of DNA repair and the 

characteristic lesions that result when repair is defective are discussed in the 

Introduction. The persistence of repair defects in cancer are expected to contribute to 

genomic instability and therefore the presence of characteristic signatures changes 

resulting from the defect are predicted to indicate the prevailing type within any given 

case. Investigation of the most aggressive forms of CLL was expected to offer the best 

chance of detecting the signatures as they had P53 pathway defects and the greatest 

opportunity for accumulating damage. Forms of genomic instability included deletions, 

duplications, insertions and translocations (302, 303). Generally, damage can cover a 

wide range from one or a few nucleotides to large-scale inter- and intrachromosomal 

structural or copy number alterations. Consequently, the heterogeneity of millions of 

nucleotides could be affected, either thousands of small changes or millions of contiguous 

bases.  Many variants that have arisen in the germline during the course of human 

evolution have become polymorphic in the population. This includes large-scale structural 

variants (SV).      

In a normal population, germline SVs with a size range of one kb to several Mb may 

account for 4.8-9.5% of the total gDNA (304).  In addition, common SVs can manifest 

somatically. In CLL, for example, approximately 80% of patients have between one and 

four common SVs. The four common SVs in CLL are deletions in 13q14.3, 11q, 17p and 
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trisomy 12 (181), which occur in 50%, 18%, 16% and 7% of cases, respectively (12). 

Chromosome deletion 13q (del(13q)) is associated with a strong prognosis. The 13q-

deleted region includes the DLEU2-mir-15-16 cluster, which regulates the expression of 

proteins that participate in cell-cycle progression or inhibit apoptosis. In contrast, 17p and 

11q deletions severely affect clinical outcomes of CLL (181), 17p including the locus for 

TP53 and 11q, which is the locus for ATM. A novel form of genomic instability was first 

observed in CLL, specifically chromothripsis. This has since been detected by SNP-array 

analysis in approximately 2% of patients and it is mainly seen in CLL with mutated TP53 

and unmutated IGHV status, and is associated with the poorest CLL prognosis (305).        

This chapter aims to investigate whether there is evidence of genomic structural 

instability in the 10 cases found herein and if observed, establish whether it is associated 

with alterations to DNA maintenance genes. The data also provided the opportunity to 

look for other changes in genes not already sequenced and compare sequence data to 

that obtained by exome sequencing of cRNA-enriched targets. 

5.2.  Results 

WGS and sequence data processing were performed as described in the Materials and 

Methods, sections 2.13 to 2.14. 
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5.2.1. Sequencing Output and Alignment  

After aligning data in the Bam file, sequencing outputs were generated such that they 

included sequencing coverage. The alignment statistics of the 10 CLL samples showed 

that the average proportion of reads that could be aligned was 96%; most of the 

remainder were PCR duplications. Moreover, the average base coverage was about 30x 

and the average genome coverage having 10x base coverage was 99.4 ± 0.4% (see Table 

5-1). 

Table 5-1: Sequencing Outputs of 10 WGS Experiments. Many parameters were 
calculated, including mapped reads, mapped bases, unique rate, duplicate rate, mismatch 
rate, average sequencing depth, coverage and coverage at least 10x. 

Sequencing outputs Average (10x WGS) Std dev 

Mapped reads 1,031,800,287 14,414,021 

Mapped bases(bp) 91,705,276,908 1,245,616,942 

Unique rate (%) 95.77% 0.29% 

Duplicate rate (%) 5.79% 0.82% 

Mismatch rate (%) 0.40% 0.06% 

Average sequencing depth 30 0.4 

Coverage 99.44% 0.36% 

Coverage at least 10X (%) 96.70% 0.18% 

 

5.2.2. Variant Coverage Analysis and Variant Grouping   

Variants were detected using SNPeff and further grouped to unknown and known 

variants, then sub-grouped into repetitive and non-repetitive variants. Coverage graphs 

for representative Liv_01 were made for each of the variant groups; known SNPs 

(8,706,597 variants), unknown repetitive variants, somatic variants (188,544 variants) and 

somatic missense variants (
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Figure 5-1). Notably, the repetitive group as seen in Panel B of Figure 5-1, as expected, 
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shows a pattern of outlier variants which could be recognised by excessive coverage of 

over 40 reads. Repetitive sequences are highly prone to misalignment because of a large 

number of possibilities for simple sequence errors to result in new FP hits. It is critical to 

distinguish between true variants and FP variants, but this is challenging with such a large 

number of potential artefactual alignments. One criterion are that they should be unique 

to a particular sample because it is highly unlikely that identical somatic mutations will 

occur in more than one of a small number of samples, excepting exceptional ‘driver’-like 

mutations in KRAS or BRAF (306, 307). Most of the unknown variants in repetitive 

sequences are common between samples (dark-yellow points) in comparison to single-hit 

variants (Blue points) and therefore unlikely to be true positives. 
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Figure 5-1: Coverage Analysis of Representative Sample, Liv_01. Four charts containing 
different variants groups; known SNPs, unknown repetitive variants, Unknown variants 
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and Unknown missense variants. X-axis represents genome coordinates and Y-axis 
signifies variants coverage (depth). Dark-green and blue points represent common and 
single-hit-only variants, respectively. A number of total variants is included for both 
known and somatic variants. 

Selection of somatic variants was based on the following criteria: variants that were 

unknown in either dbSNP or the 1000 Genome; variants that were outside of genome 

sequences (identified using the CG-rich masker tool); variants that were unique to a given 

sample; and then the missense variants that had total coverage ≤40 reads (Figure 5- 2). 

The primary goal was to produce a set of variants with a minimum number of FPs. 

 

Figure 5- 2: Selection Criteria for Somatic Variants. Somatic missense variants were 
multistep recovered by identifying unknown variants, non-repetitive variants and novel 

(single-hit) variants. SNPeff software was used for grouping variants.  
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5.2.3. Somatic Variant Analysis 

After variant selection, there were 78 affected genes carrying (8x-2x) multiple variants 

among 10 samples ( Table 5-2). Among them, 8x hits were detected in Mitochondrial 

Ribosomal Protein S27 (MRPS27), 7x hits in IGHV3-13 and 5x hits in TP53, IQ Motif-

Containing GTPase-Activating Protein 2 (IQGAP2) and Family with Sequence Similarity 186 

Member A (FAM186A) (Panel A in Table 5-2). There are two DNA repair genes also noted, 

which were TP53 and POLE. Two IGHV genes were also detected, namely IGHV3-13, and 

IGHV1-3. Panel B in Table 5-2 shows the variant details of the most affected genes. The 

minimum AF observed was 25%, and both allele and reference bases were reliable, having 

average quality scores of 30. Most of the variants were missense variants. Two genes 

carried frameshift lesions with a high expectation of deleterious consequences: G-Protein 

Pathway Suppressor 2 (GPS2) and RANBP2-Like and GRIP Domain-Containing 4 (RGPD4). 

Most of the missense variants were protein-coding variants, and a number of variants are 

regarded as sites for amino acid modifications, either phosphoserine, for example, in 

IQGAP2, or acetyllysine in MRPS27. In TP53, there were five variants out of nine that were 

detected before applying filtering criteria. 

5.2.4. Pathway Analysis 

Although the objective was primarily to identify mutations in single maintenance genes 

and associate these with a genome-wide mutational signature, the possibility that 

maintenance pathways could have been impaired by combinations of variants was 

explored. The variants were therefore mapped protein-interactions pathways with the 

Reactome software (308, 309); see Figure 5-3). Using the set of missense variants as 

input, three interconnected pathways were predicted to be predominantly affected - 
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immune system, signal transduction and metabolism.  The total number of genes involved 

was 184, 126 and 117, respectively (Panels A and B in Table 5-2). Significant changes were 

centred on sub-pathways, like, for instance, cytokine signalling and adaptive and innate 

immunity. Examples of signal transduction are signalling by GPCR, interleukins, 

interferons, FCERI and NGF. Metabolism of proteins and lipids were examples of 

metabolism. Other pathways affected included membrane trafficking, cell cycle, gene 

expression and post-protein modifications. In fact, the range of possibilities was so broad 

it was impossible to make any direct connection to genome instability and that the 

propensity for multiple pathways being important could be safely ignored. 
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Sampl
e # 

Ch
r 

Pos Wt N 
Allel
e N 

Variants - type 1 Prediction Gene Variants - type 2 N change 
Protein 
change 

Protein 
pos1 

G
Q 

AB
Q 

Total 
coverag

e 

Allel
e 

freq 

A
D 

AD
F 

AD
R 

R
D 

RD
F 

RD
R 

PVAL 
RB
Q 

Liv_02 5 75,749,486 T G sequence_feature 
MODERAT

E 
IQGAP2 

amino_acid_modification:Phosphoser
ine 

c.47-7909T>G 
  

30 31 26 35% 9 3 6 17 7 10 8.493 31 

Liv_02 17 7,216,899 G A stop_gained HIGH GPS2 transcript c.622C>T p.Gln208* 923/1379 56 31 21 67% 14 10 4 7 4 3 0.022 33 

Liv_03 2 
108,489,20

3 
CA C frameshift_variant HIGH RGPD4 transcript c.4745delA p.Asn1582fs 

4827/538
3 

55 32 30 50% 15 10 5 15 12 3 0.029 30 

Liv_03 5 75,701,464 A C sequence_feature 
MODERAT

E 
IQGAP2 

amino_acid_modification:Phosphoser
ine 

c.46+2048A>C - - 23 32 24 29% 7 3 4 17 7 10 
47.00

6 
32 

Liv_03 5 71,555,606 T A sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.282-21651A>T 
  

52 32 27 52% 14 9 5 13 10 3 0.062 32 

Liv_03 5 71,563,662 GA G sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.281+27695delT - - 39 32 25 44% 11 3 8 14 7 7 1.193 31 

Liv_04 2 
108,477,64

8 
A G 

splice_acceptor_variant&intron_vari
ant 

HIGH RGPD4 transcript c.1921-2A>G - - 62 32 27 59% 16 6 10 11 5 6 0.006 32 

Liv_04 12 50,745,822 T G missense_variant 
MODERAT

E 
FAM186

A 
transcript c.4793A>C 

p.Glu1598Al
a 

4793/712
7 

22 32 30 23% 7 1 6 23 19 4 
52.71

3 
30 

Liv_04 17 7,579,362 A C missense_variant 
MODERAT

E 
TP53 transcript c.325T>G p.Phe109Val 515/2579 52 32 10 

100
% 

10 0 10 0 0 0 0.054 0 

Liv_05 17 7,578,445 A T missense_variant 
MODERAT

E 
TP53 transcript c.485T>A p.Ile162Asn 675/2579 58 31 11 

100
% 

11 7 4 0 0 0 0.014 0 

Liv_06 12 50,746,486 T G missense_variant 
MODERAT

E 
FAM186

A 
transcript c.4129A>C 

p.Thr1377Pr
o 

4129/712
7 

23 21 21 33% 7 6 1 14 8 6 
43.10

1 
30 

Liv_06 17 7,216,703 
CTGA

G 
C frameshift_variant HIGH GPS2 transcript 

c.716_719delCTC
A 

p.Thr239fs 
1020/137

9 
36 31 9 89% 8 5 3 1 1 0 2.057 36 

Liv_06 17 7,577,545 T C missense_variant 
MODERAT

E 
TP53 transcript c.736A>G p.Met246Val 926/2579 53 28 12 92% 11 4 7 1 1 0 0.048 31 

Liv_07 5 75,753,541 G A sequence_feature 
MODERAT

E 
IQGAP2 

amino_acid_modification:Phosphoser
ine 

c.47-3854G>A - - 53 33 34 44% 15 4 11 19 10 9 0.042 31 

Liv_07 5 71,548,105 A G sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.282-14150T>C 
  

69 31 31 58% 18 9 9 13 8 5 0.001 33 

Liv_07 5 71,563,816 C T sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.281+27542G>A - - 39 33 23 48% 11 6 5 12 6 6 1.014 32 

Liv_07 5 71,534,204 CAG C sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.282-251_282-
250delCT 

- - 42 21 29 41% 12 8 4 17 12 5 0.582 31 

Liv_07 5 71,534,203 A ATTT sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.282-249_282-
248insAAA 

- - 42 29 30 40% 12 8 4 18 12 6 0.618 32 
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Sampl
e # 

Ch
r 

Pos Wt N 
Allel
e N 

Variants - type 1 Prediction Gene Variants - type 2 N change 
Protein 
change 

Protein 
pos1 

G
Q 

AB
Q 

Total 
coverag

e 

Allel
e 

freq 

A
D 

AD
F 

AD
R 

R
D 

RD
F 

RD
R 

PVAL 
RB
Q 

Liv_07 12 
133,219,56

1 
T TG frameshift_variant HIGH POLE transcript c.4572dupC p.Ser1525fs 

4616/784
0 

57 33 36 44% 16 10 6 20 12 8 0.018 33 

Liv_08 12 50,746,740 T G missense_variant 
MODERAT

E 
FAM186

A 
transcript c.3875A>C 

p.Asn1292T
hr 

3875/712
7 

22 22 33 21% 7 6 1 26 7 19 
54.85

5 
28 

Liv_08 12 50,746,164 A G missense_variant 
MODERAT

E 
FAM186

A 
transcript c.4451T>C p.Ile1484Thr 

4451/712
7 

22 20 40 18% 7 3 4 33 17 16 
58.68

8 
28 

Liv_08 17 7,216,149 C CA frameshift_variant HIGH GPS2 transcript c.909dupT p.Ala304fs 
1210/137

9 
66 30 19 79% 15 7 8 4 2 2 0.003 30 

Liv_08 17 7,577,568 C T missense_variant 
MODERAT

E 
TP53 transcript c.713G>A p.Cys238Tyr 903/2579 55 32 14 86% 12 7 5 2 2 0 0.03 26 

Liv_09 5 75,705,917 A G sequence_feature 
MODERAT

E 
IQGAP2 

amino_acid_modification:Phosphoser
ine 

c.46+6501A>G - - 86 30 36 61% 22 7 15 14 6 8 0 33 

Liv_09 5 71,567,881 G A sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.281+23477C>T - - 49 32 23 57% 13 7 6 10 6 4 0.112 31 

Liv_10 5 75,756,307 G C sequence_feature 
MODERAT

E 
IQGAP2 

amino_acid_modification:Phosphoser
ine 

c.47-1088G>C - - 33 29 17 53% 9 5 4 8 5 3 4.635 32 

Liv_10 5 71,543,159 A G sequence_feature 
MODERAT

E 
MRPS27 

amino_acid_modification:N6-
acetyllysine 

c.282-9204T>C - - 38 31 29 38% 11 3 8 18 9 9 1.52 32 

Liv_10 12 50,746,243 T G missense_variant 
MODERAT

E 
FAM186

A 
transcript c.4372A>C 

p.Thr1458Pr
o 

4372/712
7 

26 21 29 28% 8 7 1 21 5 16 
22.39

2 
28 

Liv_10 12 
133,245,26

6 
C T missense_variant 

MODERAT
E 

POLE transcript c.1981G>A p.Ala661Thr 
2025/784

0 
33 31 32 31% 10 6 4 22 12 10 0.426 32 

Liv_10 17 7,577,581 A C missense_variant 
MODERAT

E 
TP53 transcript c.700T>G p.Tyr234Asp 890/2579 41 31 14 71% 10 8 2 4 0 4 0.763 35 

 Table 5-2: Candidate Variants. Panel A lists the genes having multiples hits among samples. Underlined genes are the affected DNA 
maintenance genes. Panel B shows details of the most affected genes. Abbreviation; GT: genotype; GQ: genotype quality; ABQ: average 
quality of variant-supporting bases; AD: depth of variant-supporting bases; ADF: depth of variant-supporting bases on forward strand; ADR: 
depth of variant-supporting bases on reverse strand; RDF: depth of reference-supporting bases in forward strand; RDR: depth of variant-
supporting bases on reverse strand; PVAL: P-value from Fisher’s Exact Test; and RBQ: average quality of reference-supporting bases. 
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  Figure 5-3: Protein Interaction Analysis by Reactome. Panel A describes the main affected protein pathways by 

gene mutations that are also found in Panel B. Green-to-yellow colour bar indicating the most affected sub-
pathways. Panel C presents the most common affected proteins that are involved in both immune response 
and signal transduction pathways.  Underlines indicate proteins affected by multiple mutations. 
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5.2.5. Nucleotide substitutions 

Nucleotide substitution frequencies determined for the different variants groups (Figure 

5-4). Twelve types of nucleotide substitutions were considered: four interchangeable 

substitutions - C=T and A=G as Ti, and eight substitutions of A=T, C=G, A=C and G=T as Tv. 

In the group of known polymorphic variants, the most frequent nucleotide changes were 

G > A, C > T, T > C and A > G at 18%, 17%, 16% and 16%, respectively (Figure 5-4, Panel A). 

The Ti/Tv ratio was 2.0, which was lower than the expected value of ~2.0, and different 

samples in the bar chart exhibited a very similar percentage of substitutions, suggesting 

the possibility of a common driver. That the deviation was observed in the polymorphic 

variants indicated a technical explanation. 

In the group of unknown variants, the most frequent nucleotide changes were C > T, G > 

A, A > G, T > C and G > T at 24%, 20%, 11%, 8% and 8%, respectively, with a Ti/Tv ratio of 

1.0 (Figure 5-4, Panel B). Moreover, the bar chart illustrates no substantial difference in 

the nucleotide substitution changes between samples. This suggests there is a mutational 

mechanism active and that it is common across samples.  
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Figure 5-4: Nucleotide Substitutions. Panel A portrays the substitutions of the known 
variants between the 10 samples and as an accumulative pie chart. Similarly, Panel B 
depicts the substitutions of unknown variants.  

5.2.6. Copy Number Alterations (CNA) 

ControlFreec was used for detecting large CNAs and comparing the sequencing results to 

the FISH analysis already performed (Figure 5-5). A single copy deletion was observed at 

17p in all 10 CLL patients (Figure 5-5, Panel A). In Figure 5-5, Panel B, therein is detailed 

information for large CNAs across samples, including 17p deletions. The majority of 17p 

(about 25.1 Mbp) was deleted in 10 samples, with an average of 17 Mbps  and a range of 

17p: 0-17,000,000 bp. Patient gender could also be confirmed relative to the clinical 

database by detecting single-copy differences in either the X or Y chromosomes in seven 

male and three female patients. Other CLL-related CNAs were also detected; 13q was 

deleted in the range of (13q: 41,500,000- 71,200,000 bp) in Liv_07 and Liv_09. Moreover, 
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most of 11q was deleted in the range of (11q: 67,100,000 – 117,900,000M bp) in Liv_05 

and Liv_09.  

The frequency of large CNAs differed between samples with Liv_04, Liv_01 and Liv_05 

being the most affected with 6x-4x affected chromosomes, respectively (Figure 5-5, Panel 

C), and the least was 2x chromosomes in Liv_02, Liv_03, Liv_06, Liv_07, Liv_08 and Liv_10. 

Chromosome 5 was the second most affected chromosome (after chromosome 17) across 

samples, affecting four cases in the range of (5q: 58,100,000- 170,900,000bp) for Liv_01 

and Liv_05; and (5p: 2,100,000- 46,400,000bp) for Liv_04 and Liv_08. Chromosome 8 was 

affected in three samples; single copy deletions for Liv_01 and Liv_04 in the range of 

(8p:150,000-59,600,000 bp); and 3x copy multiplication for Liv_05 in the range (8q: 

83,950,000- 146,364,022 bp). Chromosome 15 was affected in two samples; single copy 

deletion for Liv_01 and 3x multiplication copy for Liv_02 over the range of 

(15q:22,650,000-102,400,000 bp). Overall, these results suggest that there is a substantial 

extent of CNA for all CLL samples studied and variability in the nature of the changes 

found, with some similarities between small numbers of samples. This would suggest 

defects in maintenance genes that foster gross chromosomal changes to be tolerated 

rather than defects in a DNA repair mechanism that facilitate an accumulation of 

replication errors.
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Figure 5-5: Copy Number Alterations (CNAs) by ControlFREEC. Panel A depicts a 
ControlFreeq graph of chromosome 17, including the 17p Deletion. Green dots represent 
diploid copies, blue dots deleted copies and red dots other gained copies. In Panel B, 
detailed analysis of large CNVs in 10 CLL samples is portrayed. Related to Panel B, Panel C 
provides a summary of CNVs among different samples. Abbreviations - Del: Deletion; 
Mult: Multiplication; M: Male; and F: Female 

5.2.7. Translocations and False Positive Results  

The BreakDancer tool was employed to detect translocations, including those affecting 

multiple samples. The primary analysis shows that there was an average of 54 

intrachromosomal translocations (ITXs) along with 138 interchromosomal translocations 

(CTXs) and indels (Table 5-3). A number of interchromosomal CTXs were common to all 

samples and this was considered to be highly unlikely given the known biology of CLL 

which recognises only the 17p, 11q, 13q and trisomy 12 as frequently occurring 

chromosomal alterations apparent in CLL. The novel translocations were therefore 

further investigated. A representative example wax translocation t(8;11) (Figure 5-6); 

Panel A). The average size of the lesion is 470 bp with a high read coverage of 50-200 

reads. Sample Liv_05 showed two t(8;11) translocations at chromosome locus 

11:38,812,243 with either 8:52,731,606 or 8:52,730,634 and lesion sizes of 79bp and 

583bp, respectively (Figure 5-6, Panel B). This was highly suggestive of errors introduced 

by misalignment of reads to a repetitive sequence, which would lead to both the high 

read depths and multiple destination points for the candidate translocation. The BLAST 

alignment tool (1) was therefore applied to reads corresponding to the 11:38812235 

lesion site (Figure 5-6, Panel C). The alignment results demonstrated low complexity 

regions and multiple alignments with a high score within the breakpoint site. This 
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confirmed the detection artefact and allowed common translocations to be assigned a 

status as FPs.     

Table 5-3: Number of Translocations per Sample. There were on average 54 CTX lesions 
per sample, eight of which are common. ITX lesions were more profound with 138 lesions 
per sample.     

Samples (Liv_01- 
Liv_10) 

No. CTXs  
 

No. ITXs 
 

Average Somatic 54 138 

Average Common  8 - 
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Figure 5-6: FP Translocations. Panel A provides details of T(8;11) as an example of common translocations, where sample CLL-05 is pointed 
out as a representative sample. Panel B describes translocations at t(8;11), where the blue segments represent an affected segment and the 
red bar is the locus breakpoint. Based on BLAST, Panel C shows the alignment results at the lesioned site; red lines indicate the highly 
repetitive sequence of the lesion.     
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5.3. Discussions and Conclusions  

This chapter seeks to investigate the possibility of chromosomal instability CINs in P53-

inactivated CLL. This group of patients was selected because of its severe prognosis such 

that it is refractory to chemotherapy and undergoing clonal evolution. Whether such 

impacts are also caused by defects in other genes is not clear. To understand this, a genes 

panel and WGS were developed to screen CINs and somatic mutations in 194 DNA 

maintenance genes of a cohort of 10 CLL patients. 

After data alignment, the WGS coverage results yielded the expected coverage with 

approximately 30x average reads of 90 billion reads per sample, eliciting a ≥ 20% AF 

detection limit. In terms of genome coverage, 96.7% genome coverage was found to have 

10x read depth. This was also expected as the aim was low-pass sequencing. Different 

genome regions also vary in sequence complexities, affecting their relative proportions 

during PCR amplification.  However, there was still sufficient data to detect a large 

proportion of the variants present. 

In terms of validating the data, 17p deleted cases were confirmed. Expected TP53 

mutations were also established as well as two POLE variants identified by exome 

sequencing as reported in the previous results chapter, specifically section 4.2.8. 

A strategy was developed for identifying candidate somatic alterations without having the 

possibility of comparing to germline controls. Employing dbSNP and COSMIC as technical 

conrols, variant grouping minimized FPs. At the optimisation stage, the investigation of 

coverage provided evidence that variants at repetitive regions may produce significant 

mismatches (310), which were observed as very high coverage regions (>40% AF), and 
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quite a few were common between cases (311); these could be safely ignored as true 

variants. Overall, there were 188,544 variants added as somatic to the study data set, 

while 60% of TP53 mutations were detected and the remaining 40% undetected variants 

were skipped because variants had already been identified within the known group. This 

limitation was expected using tumour-only data. The data also detected 2x POLE somatic 

variants which had been discerned earlier by deep exon sequencing.  

Nucleotide substitution, the actual SNP Ti/Tv of 2 was at a lower than the expected level 

of 2.1, and high rate of novel Ti/Tv of 1 (expected ~1) (312). This is consistent with the 

activity of AICDA proteins in hypermutation processes during B-cell maturation.  

The advantage of WGS is the possibility for variant detection across the genome, 

including the exome sequence. This enabled genes with multiple hits to be detected. 

Chromosome 14 mutations, especially in the IGHV genes, were noticeable in specific 

samples (Liv_05, Liv_07 and Liv_10), reflecting their mutated IGHV status. Chromosome 5 

was also observed to acquire multiple hits in IQGAP2 and MRP27. Moreover, 

Chromosome 12 showed hits in FAM186A and POLE. Chromosome 1 had multiple hits for 

the neuroblastoma breakpoint family members (NBPF1, NBPF9, NBPF10, NBPF14 and 

NBPF20). Chromosome 16 was affected by different Nuclear Pore Complex-Interacting 

Protein Family Members (NPIPB 5, NPIPB 6 and NPIPB 11). On chromosome 19, Zinc 

Finger Proteins (ZNF98, ZNF418 and ZNF560) were affected in multiple samples, as well. 

In summary, there are many interesting genes which may possibly relate to CLL 

progression, though these genes would need to be analysed in the larger cohort for their 
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significance for CLL to be determined and tumour and germline samples would be 

required for validation of somatic origin.     

The reactome offered insight into the protein interactions that may be affected by the 

variants observed. The immune system and signal transduction were highly affected; 

many relevant proteins were involved in both pathways. These pathways could be 

possibly related to B-cell development and CLL. This data supports the importance of 

immune response and signal transduction in CLL progression (309).   

ControlFREEC was provided with a comprehensive copy number analysis. The results 

were validated by confirming 17p deletions in all samples as well as by gender 

confirmation with XY chromosomes. In addition, other CLL deletions were observed, such 

as 13p and 11q deletions. There are also other common CNAs that are implicated, such as 

chromosomes 5, 8, and 10 which affected four (40%), three (30%) and two (20%) of total 

patients, respectively. The common CINs were observed on chromosomes 5 and 8, 

affecting both arms. In addition, several samples had more indels than others, including 

CLL-04, CLL-5 and CLL-09 featuring six, four and four indels, respectively. With this study 

cohort, chromosome 17 was significantly impacted by LOH at the 17p arm and TP53 

somatic mutations on the other strand, where inactivated P53 could suppress its function 

in regulating the cell cycle. This confirms TP53’s prominent role in CLL pathogenesis and 

clonal evolution. Regarding other CINs, this data supports the notion that acquired CNAs 

are elevated in progressive CLL (313).  However, the results would necessitate further 

validation by a clearly defined plan through a larger cohort, germline control and serial 

sampling (289).  
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Regarding translocations, initial analysis via BreakDancer showed that recurrent 

translocations resides within low complex regions. Observations suggested false findings 

owing to algorithm bias and mismatch alignment on those regions. This reflects the 

challenges in defining translocations and suggests using a germline control as an initial 

validation strategy. In parallel, different validation approaches can be utilised, such as 

multiplex FISH, CGH or SNPs microarrays (312). 

A large number of CNAs were observed, and these were amongst the most variable 

features between different CLL samples, raising the possibility that they are one of the 

key drivers of differences between CLL cases in terms of drivers of progression and poor 

outcomes. Their very variability and large scale make it technically challenging to validate 

this possibility, and therefore this was noted but not pursued. It would useful to compare 

instances of CNA across a large cohort in comparison to TP53 pathway alterations to 

determine any possible relationship.       

After combining WGS and targeted-deep sequencing, POLE emerged as one affected DNA 

repair gene by somatic aberrance in 20% of the cohort. Therefore, the next chapter 

concerns validating POLE in a larger cohort of patients and determining whether POLE is 

aberrant in CLL. 
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6. Chapter 6: Investigation of the Significance of DNA Maintenance Gene 

Mutations in Chronic Lymphocytic Leukaemia (CLL)  

6.1. Introduction 

Following the finding of a bias in the types of substitutions present in our CLL cases and 

multiple mutations in POLE, this chapter addresses: (1) whether inactivating mutations in 

POLE is related to inactivated TP53 mutations in CLL; and (2) whether they could be related 

to CLL progression. 

6.1.1. POLE and Cancers 

POLE comprises four subunits and the POLE gene encodes the catalytic and exonuclease 

subunit. It has an important function in leading and lagging strand synthesis during DNA 

replication and also DNA maintenance (314-317). S-phase checkpoints are linked to the 

replication apparatus by its non-catalytic carboxyl terminus domain (318). It is active in both 

BER and BER and may also be relevant to recombinational repair. POLE is located on 

chromosome 12 at 12q24.33 and has 52 exons. The structure of its protein has three main 

functional domains - the exonuclease domain, multifunctional domain and catalytic subunit 

domain (Figure 6-2) (319).  

Germline POLE exonuclease domain mutations (EDMs) are predisposed to colorectal cancer 

(320). In addition, they are found in 5-10% of sporadic colorectal cancers where they are 

associated with a hypermutator, microsatellite-stable phenotype (321). EDMs are also found 

in 7% of endometrial cancers and were associated with a high frequency of base 

substitutions, especially G:C>T:A Tv (322). Enhanced mutation rates with an excess of C>A Tv 

have also been reported for endometrial cancer having EDMs (236). This strongly supports a 
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potential role for EDMs in POLE causing a hypermutator phenotype and contributing to 

genomic instability (319, 323). However, endometrial cancer cases with the hypermutation 

phenotype had a better prognosis and this is possibly caused by enhanced immunogenicity 

as a result compared to other cases (324). The COSMIC database reports hotspot somatic 

mutations in colorectal and endometrial cancers; the hotspots reside within POLE functional 

domains, predominantly in the exonuclease domain (325-327). 

6.1.2. Rationale of the Study 

Two somatic variants were found in POLE in two separate samples of the 10 CLL samples 

studied. One variant was a non-synonymous somatic mutation resulting in p.Ala661Thr and 

the other variant was a frameshift insertion causing p.Ser1525fs. Both mutations reside 

within the functional domains of POLE proteins. This indicates that POLE could be mutated in 

TP53-inactivated CLL cases and contribute to their genomic instability. The purpose of the 

investigation was therefore to determine whether POLE mutations are associated with 

inactivated p53 in a larger cohort of CLL patients. Sanger sequencing was used to detect 

mutations in the potential POLE hotspots. The goal was also to determine whether such 

mutations were associated with the disease status of CLL.  

6.2. Results 

6.2.1. Clinical and Molecular Characteristics of the CLL Cohort 

The validation cohort contained a total of 49 samples; 24 samples with TP53 mutated 

(and/or 17p deleted) and 25 wild-type samples. Regarding TP53 mutated cases, 20/24 (83%) 

cases were TP53 mutated/17p deleted. Furthermore, 62% of the tested samples were IGHV 

hypermutated . Twenty-four of 49 patients had been treated with a cytotoxic drug, including 
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DNA-damaging agents, nine of them (~38%) had TP53 aberrations. Regarding other CLL-

associated genomic aberrations, a 13q deletion was evident in (82%), an 11q deletion in 

(10%) and trisomy 12 in (19%). The ultimate survival ranged between 91-4790 days (1718 

days on average).  Details of the samples, including the clinical and biological characteristics, 

are found in Table 6-1. 24 samples were from the CLL210 trial and had been initially 

screened by FASAY (GCLP Laboratory), and then by Sanger sequencing using optimised 

primers (Table 6-2). The remaining 25 samples were from the local biobank and had been 

FASAY and Sanger sequenced for TP53 by Dr Gillian Johnson.    

Table 6-1: Clinical and Molecular Data for the CLL Validation Cohort. Details which include 
age at sampling, gender, pre-treatment WBC and lymphocyte counts, IGVH mutation 
percentage, 17p deletion and TP53 mutation status, Binet and Rai stages, treatment history, 
OS and other genomic aberration statuses, such as deletion of 11q, 13q and trisomy 12. 
Abbreviations – F: Female; M: Male; Mut: Mutated; Cyclo - Cyclophosphamide 
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Sample # Age at sampling Gender Lymphocyte count pre-treatment VH% 17p del TP53 sequence Treatment history Del11q22.3 Del 13q14 Tri 12

1 54 M 252.9 N/A Deleted Mut None N/A N/A N/A

2 67 M 146.5 N/A Deleted Mut None N/A N/A N/A

3 58 F 92.7 N/A Deleted Mut None N/A N/A N/A

4 59 M 234.7 N/A Deleted Mut None N/A N/A N/A

5 56 F 40.1 N/A Deleted Mut None N/A N/A N/A

6 64 M 95.5 N/A Deleted Mut

1. Alemtuzumab & 

methylprednisolone, 10 

cycles, CR.

 2. Rituximab & 

Bendamustine, 8 cycles, PD

N/A N/A N/A

7 60 M 170.8 N/A Deleted Mut

1. Chlorambucil, 24 cycles.

 2. Fludarabine/ 

cyclophosphamide, 6 cycles.

N/A N/A N/A

8 69 F 290.3 N/A Deleted Mut None N/A N/A N/A

9 68 M 116.5 N/A Deleted Mut

1. Fludarabine, 6 cycles, CR. 

2. fludarabine & 

cyclophosphamide, CR.

 3. fludarabine + 

cyclophosphamide + 

rituximab, 4 cycles, CR

N/A N/A N/A

10 65 F 6.3 N/A Deleted Mut None N/A N/A N/A

11 42 M 1.9 N/A Deleted Mut

1. Alemtuzumab with high 

dose methylprednisolone, 7 

cycles, PR.

2. fludarabine/ 

cyclophosphamide/ 

alemtuzumab conditions for 

reduced intensity allograft, 1 

cycle, CR

N/A N/A N/A

12 60 F 8.5 N/A Deleted Mut
bendamustine, rituximab, 

prednisolone, 1 cycle, PR
N/A N/A N/A

13 77 M 393.4 N/A Deleted Mut None N/A N/A N/A

14 67 M 51.3 N/A Deleted Mut

1. chlorambucil, 6 cycles, 

CR.

2. fludarabine and 

N/A N/A N/A

15 N/A M 88 1.7 Deleted Mut Fludarabine, CR Deleted normal Normal

16 N/A N/A 8.9 N/A Deleted Mut None N/A Deleted N/A

17 N/A N/A 64.7 4.76 Deleted Mut None Normal Deleted Normal

18 N/A M N/A 4.47 Deleted Mut None Normal Deleted Normal

19 N/A N/A N/A 0 Normal Mut None N/A N/A N/A

20 N/A N/A 51.6 0 Normal Mut Flu 2 cycles Deleted Normal Normal

21 71 F 159.3 N/A Deleted Wt None N/A N/A N/A

22 52 M 40.1 N/A Deleted Wt
Dexamethasone, 2 cycles, 

PR
N/A N/A N/A

23 69 M 235.7 N/A Deleted Wt None N/A N/A N/A

24 50 M 23.7 N/A Deleted Wt None N/A N/A N/A

25 N/A N/A N/A N/A Normal
Synonymous 

mutation
None N/A N/A N/A

26 72 M 116.4 N/A Normal Wt

1. Chlorambucil, 8 cycles, 

CR.

2. FC, 8 cycles, PR.

3. RCHOP, 6 cycles, SD

N/A N/A N/A

27 63 M 140.4 N/A Normal Wt

Rituximab, fludarabine, 

cyclophosphamide, 6 cycles, 

PR

N/A N/A N/A

28 72 F 189.8 N/A Normal Wt

Fludarabine & 

cyclophosphamide, 6 cycles, 

PR

N/A N/A N/A

29 65 M 1.8 N/A Normal Wt
rituximab / dexamethasone, 

8 cycles, PR
N/A N/A N/A

30 58 M 3.1 N/A Normal Wt

1. rituximab, 

cyclophosphamide, 

fludarabine, 6 cycles, CR.

2. rituximab, 

cyclophosphamide, 

fludarabine, 5 cycles, PD

N/A N/A N/A

31 N/A N/A 10.3 7.07 Normal Wt None Normal Deleted Normal

32 N/A N/A 8.8 0.34 Normal Wt None Normal Deleted Yes

33 N/A N/A N/A 10.18 Normal Wt None Normal Deleted Normal

34 N/A M N/A 0 Normal Wt CHOPx8, Normal normal Yes

35 N/A N/A N/A N/A Normal Wt None N/A N/A N/A

36 N/A F 8.4 N/A Normal Wt None Normal Deleted Normal

37 N/A N/A N/A N/A Normal Wt None Normal Deleted Normal

38 N/A N/A 22.4 N/A Normal Wt None Normal Deleted Normal

39 N/A N/A 120 N/A Normal Wt None Normal Normal Yes

40 N/A M 13.4 N/A Normal Wt
Fludarabine+Cyclo (CR)

2-Cyclo (CR, relapsed).
Normal Deleted Normal

41 N/A N/A 26.6 14.01 Normal Wt None N/A N/A N/A

42 N/A M 87.5 6.12 Normal Wt None Normal Deleted Yes

43 N/A F 23.1 N/A Normal Wt None Normal Deleted Normal

44 N/A F 20.7 N/A Normal Wt None Normal Deleted Normal

45 N/A F 9.2 5.35 Normal Wt None Normal Deleted Normal

46 N/A F 13.8 N/A Normal Wt None Normal Deleted Normal

47 N/A F N/A N/A Normal Wt None Normal Deleted Normal

48 N/A N/A 29.6 N/A Normal Wt None Normal Deleted Normal

49 N/A N/A N/A 9.22 Normal Wt None Normal Deleted Normal
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6.2.2. DNA Extraction  

gDNA was extracted from MNCs of patient blood samples as described in Materials and 

Methods, section 2.5.1. 

6.2.3. Sanger Sequencing of TP53 and POLE 

TP53 sequencing data was not originally available for 24 of 49 CLL samples. The same PCR 

and sequencing approaches as originally used were therefore applied to determine their 

mutation status in TP53 coding exons 2-11.    

PCR was performed for TP53 and POLE using optimised primers listed in Table 6-2 and Table 

6- 3, respectively, as described in Materials and Methods, section 2.7.1, based on Promega 

GoTaq DNA polymerase.   

The TP53 and POLE genomic structure, including the coding regions, are shown in Figure 6- 1 

and Figure 6-2. POLE is depicted with the positions of mutations recorded in COSMIC (328). 

Four mutational hotspot regions were selected for POLE screening plus two other positions. 

Sample # Age at sampling Gender Lymphocyte count pre-treatment VH% 17p del TP53 sequence Treatment history Del11q22.3 Del 13q14 Tri 12

34 N/A M N/A 0 Normal Wt CHOPx8, Normal normal Yes

35 N/A N/A N/A N/A Normal Wt None N/A N/A N/A

36 N/A F 8.4 N/A Normal Wt None Normal Deleted Normal

37 N/A N/A N/A N/A Normal Wt None Normal Deleted Normal

38 N/A N/A 22.4 N/A Normal Wt None Normal Deleted Normal

39 N/A N/A 120 N/A Normal Wt None Normal Normal Yes

40 N/A M 13.4 N/A Normal Wt
Fludarabine+Cyclo (CR)

2-Cyclo (CR, relapsed).
Normal Deleted Normal

41 N/A N/A 26.6 14.01 Normal Wt None N/A N/A N/A

42 N/A M 87.5 6.12 Normal Wt None Normal Deleted Yes

43 N/A F 23.1 N/A Normal Wt None Normal Deleted Normal

44 N/A F 20.7 N/A Normal Wt None Normal Deleted Normal

45 N/A F 9.2 5.35 Normal Wt None Normal Deleted Normal

46 N/A F 13.8 N/A Normal Wt None Normal Deleted Normal

47 N/A F N/A N/A Normal Wt None Normal Deleted Normal

48 N/A N/A 29.6 N/A Normal Wt None Normal Deleted Normal

49 N/A N/A N/A 9.22 Normal Wt None Normal Deleted Normal
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These included P.P286R, P.V411L and P.A456P at exons 9, 13 and 14, respectively (325). 

Primers were synthesised by ITD Ltd., and the PCRs were optimised using control human 

DNA before utility with CLL sample DNA (not shown).  

PCRs from the CLL samples were purified and sequenced by the Sanger method as described 

in the Materials and Methods, sections 2.5.2.2 and 2.7.3. Purified material was assessed for 

amount and quality by agarose gel electrophoresis and Qubit fluorimetry (not shown) as 

described in Materials and Methods, section 2.6.3 and 2.6.2, respectively
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Figure 6- 1: TP53 Genomic Structure, Including the TP53 Protein Coding Sequence and its Functional Domain. A. TP53 genomic sequence and 
location on chromosome 17 (blue line). The green line represents the transcript, NM 001126112.2, including the exons of interest, namely 2-
11. B. Representation of the protein-coding line, ENSP00000269305 (black and purple lines) featuring the protein functional domains, Pfam 
(the lines underneath the protein-coding line), which shows the three main domains: p53 transcriptional domain, the DNA-binding domain 
and the tetramerisation domain. Panel A is taken from online databases of Ensemble 89, while Panel B is from Gene [TP53]. Bethesda (MD): 
National Library of Medicine (US), National Center for Biotechnology Information; 2004 – 2017 Jan 30. Available from: 
https://www.ncbi.nlm.nih.gov/gene/ 
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Figure 6-2: POLE Structure Containing the POLE Genomic Sequence and its Protein Coding Sequence. A. POLE genomic sequence and 
location on chromosome 12 (blue line). The green line represents POLE sequence (accession #: NM 005231.3), including the exons of 
interest; hot spots are marked in order from 1 to 4. A and B indicates variants A and B, respectively. B. POLE protein coding sequence with 
(accession #: ENSP000000322570 (in dark-light purple)) featuring the protein functional domains, Pfam, which shows three main domains; 
the exonuclease domain, the multifunctional domain and the catalytic domain. Arrows show locations of the affected exons. C. Variant spots 
alongside the protein-coding line using the COSMIC database. The green spots represent the somatic variants and the orange spots 
represent the somatic indels from different cancers. Panels A and C are taken from online databases of Ensemble 89 and the COSMIC v81, 
respectively. Panel B is adapted from Gene [POLE]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology 
Information; 2004 – 2017 Jan 30. Available from: https://www.ncbi.nlm.nih.gov/gene/. 
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Table 6-2: TP53 Primer Sets. DNA sequence was Provided by NCBI with BLAST-Primer 
Software Used for Designing Primers.  

Primer set (size of product) 
Primer sequence 

(5’ – 3’) 

TP53-targeted 
exon(s) 

TP1 (385bP) 
Fp: CAG GGT TGG AAG TGT CTC AT 

Rp: GAA AAG AGC AGT CAG AGG AC 

2-3 

TP2 (358bp) 
Fp: GTC CTC TGA CTG CTC TTT TC 

Rp: GCC AGG CAT TGA AGT CTC AT 

4 

TP3 (550bp) 
Fp: TCT TTG CTG CCG TCT TCC AG 

Rp: CAG CAG GAG AAA GCC CCC 

5-6 

TP4 (322bp) 
Fp: CCT CAT CTT GGG CCT GTG TT 

Rp: GTC CCA AAG CCA GAG AAA AG 

7 

TP5 (509bp) 
Fp: GGG AGT AGA TGG AGC CTG GT 

Rp: TGT CTT TGA GGC ATC ACT GC 

8-9 

TP6 (318bp) 
Fp: TGC ATG TTG CTT TTG TAC CGT C -

Rp: TCA GCT GCC TTT GAC CAT GA 
10 

TP7 (262bp) 
Fp: CCT TCA AAG CAT TGG TCA GG 

Rp: GCA AGC AAG GGT TCA AAG AC 

11 
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Table 6- 3: POLE In-House-Optimised Primer Sets 

Primers set (size of 
product) 

Primer sequence 

(5’ – 3’) 

POLE-targeted 
exon 

POLE-hs1 (289 bp) 
Fp: GTC AGA TTC ACT CTC CAG CAC 

Rp: CAG GGT TGG GTC GCT GC 

8 

POLE-hs2 (405bp) 
Fp: TAC AGC TGG AGG TCG GAA C 

Rp: GTC TTA GGG TCC TTC TCC C 

9 

POLE-hs3 (364bp) 
Fp: GAC CGG CAC AGG ACA AAA C 

Rp: GCT GCA TGT TAG AAT CAT CCT G 

13 

POLE-hs4 (238bp) 
Fp:TGA GGA GGC CAG GGT GCC GA 

Rp:AGG CCA GGC TTT GCT TTC TGT G 

14 

POLE-VA(323bp) 
Fp: TGG TAT TCG CTG CGA CTG G 

Rp: ACT TCC CGT GTC AGA GTC G 

18 

POLE-VB(279bp) 
Fp: TGT AGG CGA GCA GGA ATC G 

Rp: TCG TGA TTG AAT TGG CAG TGC 

36 

6.2.4. TP53 Screening 

After optimisation, the TP53 primers amplified a single band from genomic DNA (Figure 6-

3). PCR was then applied to the CLL samples. Agarose gel electrophoresis showed only 

faint bands for primers TP3 and TP5 (see Figure 6-3, Panels C and E), although the DNA 

yield was sufficient for Sanger sequencing. Primers TP1, covering exons 2 and 3, including 

the transactivation domain, showed two bands, one at 385 bp and a second at 258 bp 

(Figure 6-3, Panel A). The primer sets TP2-TP5 covered exons 4-8, which constitute the 

p53 DBM, and yielded bands at 358 bp, 550 bp, 322 bp and 509 bp, respectively (Figure 6-

3, Panels B-E). Exons 9-11, which include the tetramerisation domain, were covered by 

the primer sets TP5, which elicited PCR products of 509 bp, 318 bp and 262 bp, 

respectively (Figure 6-3, Panels E-G).  
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The same PCR primers were also used for Sanger sequencing. The results confirmed 

coverage of the 10 coding exons 2-11 as expected (Figure 6-4). Strong electropherogram 

signals were apparent throughout the sequences. Several sequences, such as exons 7 and 

10, had delayed signals in certain nucleotide positions, possibly caused by overly 

concentrated input DNA. In addition, various sequences had low background noise, but 

the sequence could still be verified by bi-directional sequencing with either forward or 

reverse primers.    

From 25 samples examined, wild-type sequence alleles were detected in 10 samples, but 

the remaining 21 samples had 23 somatic mutations with samples 8 and 9 each having 

two different mutations (Figure 6-5 and Table 6-4).          
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Figure 6-3: PCR Amplification for TP53 Screening. Panels A-G show agarose gel 
electrophoreses of PCR products amplified using TP53 primer sets TP1-TP7, respectively. 
Four representative samples with the 100-bp DNA ladder control (L). 
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Figure 6-4: Sanger sequencing results of TP53 PCR products. The electropherograms 
portray the TP53 coding sequences (exons 2-11 in the 5’-3’ direction) amplified using 
gDNA from the representative patient samples, 05, 06, 10, 12, 14 and 22 in terms of PCR 
and analysed by Sanger sequencing. The sequence of each exon is indicated by black 
arrows and highlighted in blue at top of each panel.  The same results were achieved 
using 24 other CLL samples - samples 1-24.   
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6.2.5. Refined TP53 Status in the CLL Cohort of Patients Studied 

To address whether any mutations identified in POLE were associated with TP53 

alterations, two groups of subjects (n=49) were selected based on their TP53 status. All of 

the samples already elicited information regarding 17p deletions (as detected by FISH). 

Twenty-five samples had the TP53 somatic mutation and/or deletion (as a result of a 17p 

deletion); of which 18 having both aberrations, four having only a deletion and three with 

just a mutation (Table 6-4). The remaining half (n=24) had neither type of TP53 genomic 

modification (Table 6-4).   
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Table 6-4: TP53 Mutation and/or 17p Deletion Status in the 25 Newly TP53-Sequenced 
Samples of the Cohort. 

Sample 
# 

17p 
deletion 

TP53 
gene 

Nucleotide 
change 

AF(%) 
Codon 
change 

Protein 
change 

1 Y Mut C>T 60 
TCC--
TTC 

Ser 
241 
Phe 

2 Y Mut A Fs Del 20 
CAA--
CAT fs 

Del 

Gln 52 
His Fs 

Del 

3 Y Mut A>G 80 
GAA—
GGA 

Glu 
286 
Gly 

4 Y Mut A>G 70 
AGA—

ACA 

Arg 
280 
Thr 

5 Y Mut G>T 20 
GTC—

TTC 

Val 
157 
Phe 

6 Y Mut G>C 80 
CGT—

CAT 

Arg 
273 
His 

7 Y Mut A>G 40 
TAC—
TGG 

Tyr 
163 
Cys 

8 Y Mut 
C>T, 

G Fs Del 

20, 

40 

CAG—
TAG, 

AAG--
AAA FS 

del 

Gln 
104 x 

Lys 
139 

Lys Fs 
Del 

9 Y Mut 
G>T, 

G>A 

15, 

40 

TGT—
TTT, 

GAA--
CAA 

Cys 
277 
Phe 

Glu 
258 
Gln 

10 Y Mut A>G 75 
TAT--
TGT 

Tyr 
205 
Cys 

11 Y Mut T>G 95 
TTC--
TGC 

Phe 
341 
Cys 
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Sample 
# 

17p 
deletion 

TP53 
gene 

Nucleotide 
change 

AF(%) 
Codon 
change 

Protein 
change 

12 Y Mut G>T 40 
TGT--
TTT 

Cys 
238 
Phe 

13 Y Mut C>T 90 
TGC--
TCC 

Cys 
242 
Ser 

14 Y Mut C>T 50 
CGG--
TGG 

Arg 
282 
Trp 

15 Y Mut - - - - 

16 Y Mut - - - - 

17 Y Mut - - - - 

18 Y Mut - - - - 

19 N Mut - - - - 

20 N Mut - - - - 

21 Y Wt - - - - 

22 Y Wt - - - - 

23 Y Wt - - - - 

24 Y Wt - - - - 

25 N Mut G>C 70 
AGA--
AGG 

Arg 
280 
Arg 

Y: with 17p deletion, N: without 17p deletion; Mut: mutant;  Wt: wild-type  
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Figure 6-5: Sanger Sequencing of 25 Newly Analysed Samples Possessing six Mutations 
Identified in 14 of the 24 CLL Samples Previously Lacking TP53 Sequence Data. The 
affected nucleotide was marked by a black arrow with both mutated and wild-type (WT) 
sequences presented, and the affected codon is highlighted in blue. The results were 
analysed using ChromasPro v2.1.4. 

6.2.6. POLE Sequencing 

Agarose gel electrophoresis of PCR reactions using the six primer sets designed and 

optimised for POLE cohorts with the 49 CLL samples exhibited successful amplification 

with single PCR products as expected at 289bp, 273bp, 315bp, 238bp, 323bp and 279bp 

corresponding to the hotspot regions 1-3 and variants A-B, respectively (Figure 6-6). A 

band of presumed primer dimers at >100 bp were noted with different intensities in the 

hotspots primers 1-3.   

The PCR products were sequenced with the original primers and reliable quality data 

matching the targeted regions was produced (Figure 6-7). The hotspot-3 

electropherograms demonstrated peak tailing, possibly because of the high 

concentrations of DNA affecting gel mobility.  The only variants detected were three 

known SNPs - rs5744751 , rs4883555 and rs5744798 – which affected 12%, 39% and 82% 

of the total samples, respectively (Figure 6-8).  The first SNP is considered to be clinically 

benign and the third not to be significant. However, the first does fall into non-coding 

(ncRNA) and even synonymous SNPs are now known to cause pathology by altering gene 

expression (330). Moreover, the final SNP has been associated with changes in gene 

expression. Although the results rule out any possibility of POLE somatic mutations having 

any contributory role to the genomic instability of the cohort studied or association with 

TP53 status, the possibility that polymorphisms affect gene expression remain open. Our 

original hypothesis, however, was therefore not directly upheld. 
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Figure 6-6: POLE Amplification Using PCR. The hotspot regions 1-4 and two other DNA 
fragments of POLE where the two somatic non-synonymous mutations, A and B, were 
identified in Chapter 3 were amplified in CLL samples 7-12 with six PCRs. The expected 
product size is marked below the band of the first sample for each PCR.  A tube containing 
no gDNA was set as a negative PCR control (-ve).        
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Figure 6-7: Sanger Sequencing Results for POLE Sequence. The 5’-3’ sequence direction for primers hotspots 1-4 and variants A-B, 
respectively, are displayed. Targeted sequence hotspots 1-4 are marked by black arrows and highlighted in blue. Variant loci of A-B are also 

indicated by black arrows.   
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Figure 6-8: POLE Variants Detected by Sanger Sequencing. Included are variant details, such as the Sanger sequence in the 5’-3’ direction, 
nucleotide change, protein change and dbSNP reference. 
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6.3. Discussion and Conclusion 

The investigations described in this chapter sought to detect somatic POLE variants in a 

larger cohort of CLL cases and determine their association with TP53 alterations. Sanger 

sequencing was utilised because it is the gold standard for validating variants with greater 

than 10% AF with a 20% acceptable Phred score (197). PCR amplification and Sanger 

sequencing were successful, covering 11 exonic regions of TP53 and six hotspot regions 

from POLE. Sequencing was performed using both forward and reverse primers to 

confirm the sequences in each strand. 

Table 6-5: Combined TP53 and POLE mutational status in CLL.  

TP53 mutation 
Number of cases 

(n=59) 
TP53/POLE 

Mutations tested by 

Samples with POLE 
aberrations 

A - Wild-type CLL 20 Sanger 0/20 

B - TP53 mutant 
(primary cohort) 

10 Sanger/PGM 2/10 (20%) 

C - TP53 mutant 
(clinical validation 

cohort) 
29 Sanger 0/29 

Table 6-5 summarises 49 CLL screening cases and the original 10 cases screened for 

alterations in their DNA maintenance genes, and all are grouped according to TP53 

mutational status specifically with POLE mutations described.  

Twenty (90%) of the 23 TP53 (17p) deleted cases were also mutants for TP53. This 

supports the literature reporting that TP53 mutations are likely to coincide with  deletions 

(Figure 6-4), although both could be used individually to reflect on worse prognosis (331). 

this was also supported by other prognostic markers such as unmutated IGHV status and 
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advance Binet stage. Furthermore, most of the somatic non-synonymous mutations were 

within exons 4 to 8, and would have affected the TP53 DNA-binding domain.  

Concerning mutations in POLE, 20% of the primary CLL cohort were mutants. Seeing that 

50% of the CLL samples that progressed acquired TP53 mutation (169), it is estimated 

that (0.2x0.5 = 0.01) 1% of progressed CLL would have POLE mutations. The absence of 

POLE mutations in the 49 samples of the clinical validation cohort may have been a 

chance occurrence or reflect a lack of importance for POLE in CLL (332) when compared 

to colon, rectal and endometrial cancers (333, 334). The three common SNPs detected in 

POLE are in accordance with their global AF as recorded in dbSNP and MAF (335). 

Therefore, the Sanger results suggest that the gene is mostly stable during the course of 

CLL, regardless of the TP53 mutation status.  

 In conclusion, POLE seems to be a stable gene during progressive CLL, including those 

with inactivated p53. There is no positive relationship between POLE mutations and CLL 

progression or TP53 mutations/deletions in the tested cases. It could be that CNVs are 

drivers for CLL progression as deactivated p53 tolerates more DSBs and, hence, 

compromises the genomic integrity of CLL cells (127, 336, 337). Therefore, TP53 

aberrations appear to be sufficient for CLL progression and altered TP53 subclones may 

dominate under the selective pressure of chemotherapy (338).  
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7. CHAPTER 7: General Discussion  

7.1. Introduction and Rationale  

CLL is a cancer of mature B lymphocytes, which is characterised by lymphocyte 

accumulations in blood, bone marrow and secondary lymphoid tissues. The average age 

at diagnosis is 70-years old, and it is usually indolent at diagnosis with a watchful waiting 

strategy applied. When symptoms appear, the treatment plan is begun based on RAI or 

BINET staging along with FISH results. Treatment outcomes are heterogeneous among 

patients with some having treatment resistance developed and a shorter OS. In addition, 

clonal instability and chromothripsis are seen in patients with TP53 aberrations, often 

resulting from deletion of one allele from 17p and mutation in another allele. Such LOH 

causes inactivation of this tumour suppressor, which directly contributes to CLL 

progression and subclonal evolution. This is largely based on the loss of function of the 

TP53 protein in regulation of apoptosis, DNA repair and cell-cycle checks (12, 339). 

Evidence for abnormal DNA repair in CLL has also emerged. For example, distributions of 

certain single nucleotide  polymorphisms in DNA repair genes, ERCC2 and XRCC1, are 

different between normal control and CLL cells, particularly those with the unfavourable 

cytogenetic aberrations (i.e., del 17p13 or del 11q22-23) (340). Moreover, increased 

activities in multiple DNA repair pathways have been documented in CLL. This seems to 

involve the upregulated DNA-PK and Rad51 activities as a response to ongoing DSB events 

(341, 342). Therefore, the abnormality in TP53 and other DNA repair genes may cause not 

only resistance to DNA-damaging chemotherapy, but also increase tolerance and burden 

of genomic aberrations, both of which contribute to poor clinical outcomes in CLL.   



CHAPTER 7: General Discussion 

203 

 

Clearly, understanding the molecular basis of the genomic instability in CLL, especially the 

roles of abnormalities of DNA repair, is among the most attractive research activities.  

However, investigation in this field has long been hampered, largely because of the 

resting status of circulating CLL cells, which made it particularly difficult in genetic studies 

using conventional methods. Specifically, it is unclear whether there is any underlying 

damage to the DNA repair genes, the nature of which could help explain unique clinical 

phenotypes. This may now be addressed through the advent of recently developed NGS, 

a powerful technique that can identify any form of genomic aberrations in target genes or 

in the whole genome of resting cells. This has therefore paved the way for investigating 

mechanisms for genomic instability in CLL (217, 220, 343-345).  

7.2.  Thesis Aim and Objectives 

This thesis aims to address whether somatic lesions in DNA maintenance genes are 

involved in CLL clonal instability in a cohort of inactivated TP53 patients. For this reason, 

the NGS approach was established to enrich exon regions of 194 DNA maintenance genes 

(Chapters 3 and 4). Furthermore, genomic structural integrity was also determined via 

WGS (Chapter 5). Missense lesions occurring recurrently in POLE encouraged further 

testing of the gene in a larger cohort of patients (Chapter 6). 

7.3. Summary of Results  

In Chapter 3, the DNA repair panel of 194 genes was successfully established. The probed 

design utilises the maximum capacity of SureSelect in-solution hybridisation (346). With 

the SureDesign tool (347), the panel was set to increase enriching targeted regions by 
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choosing maximum boosting and minimum CG masker options. The total enriched regions 

were 700 Kb, including 70% of targeted regions. 

Regarding PGM coverage analysis, the results show that about 300x was the actual 

coverage depth, which was 55% less than the expected results. This is largely off-target 

from low complexity regions, which were elevated as a result of stringency reduction of 

the designed probes. Lowering the CG masker option caused high off-target enrichment 

to similar genomic regions which compromised sequencing outcomes. It is therefore 

important to balance the probe design setting and try to avoid or reduce low complexity 

regions to harvest the maximum benefits of sequencing capacity. 

The Chapter 4 results confirmed the TP53 mutations and a recurrently altered DNA repair 

gene, POLE. After optimising the NGS protocol, 10 CLL samples were in-house sequenced.  

The results show 90% sensitivity of the variant caller and 50% specificity. The lower 

overall specificity reflects the high impact of PGM HP errors, which could be minimised by 

increasing coverage reads followed by rising stringency of the variant caller (285, 348). 

After that, somatic variants were further validated by comparing findings to the germline 

cells of patients using Sanger sequencing and WGS. The results confirmed that POLE had 

somatic mutations in two of the 10 (20%) samples. These mutations affected POLE at 

P.Ala 661 Thr (CLL10) and P.Ser 1525 Fs (CLL07) with a medium-high missense score of 0.6 

sift and 0.05 polyphen. Generally, inactivated POLE could disrupt different DNA repair 

pathways, such as BER, DNA damage bypass and DNA DSB repair via HR. The TP53 protein 

is also interconnected to the DSB response by ATM activation (349, 350). Further 
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investigation of the genomic integrity was carried out with WGS and the same cohort of 

samples (Chapter 5).  

The WGS was screened to investigate the structural integrity of the CLL genome and 

whether possible chromosomal instability was involved in the same cohort of patients. 

The coverage analysis demonstrated that 30x is the coverage depth with ≥20 AF being the 

detection limit. The results show acceptable uniformity despite the challenge of low 

complexity regions and misalignment, which reduced the coverage. CNA analysis 

confirmed 17p deletion of the samples. In addition, there are 1-3x single copy deletions 

between samples. These lesions were not common, but they do compromise the genomic 

integrity of CLL cells and could be a contributor to progression and poor outcomes. This 

would need to be determined in a larger series where it would also be possible to 

establish their possible association with TP53 pathway defects. 

Common translocations are a feature in certain haematological malignancies, such as 

inter-chromosomal translocation causing oncogene ABL-BCR in CML. However, it was 

difficult to validate them in this study, especially after the bias issue of the BreakDancer 

algorithm in identifying translocations. This suggests future work in terms of data 

validation either by germline control or with different cytogenetic approaches. 

Employing WGS data, there were two major pathways affected by mutations - immune 

response and signal transduction pathways. It was also noted that DNA repair and the cell 

cycle were the least affected by mutations other than TP53, which indicated the 

independent role of TP53 as a DNA repair gene in CLL pathogenesis.  
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WGS-validated POLE mutations were discerned with deep sequencing and Sanger 

sequencing. Apart from TP53, there were no other LOH events within the mutated region. 

This may be reflective of genome stability despite the major molecular defects caused by  

TP53 loss (351). As a result, POLE was assigned as a candidate gene for conducting clinical 

validation in a larger cohort of CLL patients (Chapter 5).  

In Chapter 6, using Sanger sequencing, CLL samples from an expanded cohort of 59 

patients were screened to investigate the distribution of POLE mutations and its 

correlation with TP53 mutations. For this purpose, patients with different disease 

statuses were selected. There were six POLE regions examined; two potential loci and 

four hotspot regions which were recorded from other cancers (329). TP53 mutational 

status was examined in order to classify samples. It was important to examine recurrent 

mutation, if any, and whether it is TP53 dependent. Sanger sequencing is the gold 

standard - it can detect>10% AF, which could be considered a limiting factor of the 

approach in addition to background noise. In a combination of data of the 59 patients 

studied in Chapters 3, 4 and 5, the frequency of TP53 mutation was 52.54% (31/59), but 

that of POLE mutations was only 3.39% (2/59).  

Although there is no statistical difference in this frequency between groups with and 

without TP53 mutations, as analysed with the data from the entire cohort (n=59) or only 

the validation cohort (n=49), both POLE-mutant cases were in the TP53-mutation group, 

rendering the mutation incidence at 6.45% and 9.52% in the entire and validation 

cohorts, respectively.  
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These findings therefore provide evidence that mutations in DNA repair genes indeed 

exist in CLL, although not as common as in other human cancers. A large study may be 

required to further explore their relationship with TP53 mutations in this disease.    

7.4. Strength and Weaknesses of the Whole Thesis 

Strengths:  

NGS provides the advantage of big data to generate and examine a research hypothesis in 

a comprehensive manner (352). A panel of 194 DNA maintenance genes was selected to 

examine their protein-coding regions in CLL (61, 276, 353, 354). WGS was also leveraged 

to provide a larger picture of the genome and whether there were structural 

abnormalities related to genomic instability.  

One of the advantages was employing the CLL 206 and 210 trial samples for in-depth 

correlation of NGS to patient’s response and treatment history (46, 47, 249). The primary 

cohort had 10 patients with inactivated TP53. Trial data stated that patients had multiple 

treatments with resistance to DNA-damaging agents. Therefore, it was suitable to 

examine their DNA repair genes.  

 Deep sequencing utilising the in-house Ion Torrent PGM facility providing an in-depth 

understanding of pre- and post-sequencing processes. Sample processing was optimised 

for DNA quality, DNA shearing and PCR amplification. Post-sequencing involves coverage 

analysis, optimising variant detection and genotyping assessment. 

After deep sequencing of cancer samples, germline validation was applied via Sanger 

sequencing. This was an important step prior to clinical validation. Novel variants of 40-
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60% are likely SNPs and therefore, it was very significant to understand the sporadic 

origin of the variants.     

Clinical validation in a large and separate cohort of patients was proposed to examine 

whether or not POLE mutations are dependent on TP53 mutations and are associated 

with disease status. This was important at this level to clearly define any affected DNA 

repair genes. 

In addition to CNAs, WGS was utilised to interpret WES. It was valuable to look at other 

affected genes and correlate their protein pathways and genomic instability. Many non-

coding RNAs were also examined, providing more depth to the study by examining post-

translation regulators.  

This study defines WGS data free of germline control for detecting CNAs and somatic 

mutations. CNAs were detected using ControlFREEC by comparing sample data to the 

hg38 reference sequence (263). Regarding somatic variants, multi-level filtration was 

employed to reduce alignment bias and false findings. Somatic variants were defined as 

those novel variants that resided within highly complex regions and single-hit variants 

among samples (355).         

Weaknesses: 

 Like any study, a number of weaknesses are observed; using NGS requires complex data 

analysis to be employed. Deep sequencing took place via Ion Torrent PGM with Ion suite 

for data alignment, providing clear data, coverage analysis, variants annotation and 

genotyping. However, with WGS, owing to data scale and technical facility, it was 
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necessary for bioinformatics support to primarily analyse data, including clear data 

processing and variant annotations. This adds more technical and financial challenges 

(356). 

The primary data of NGS was lacking a germline control to exclude SNPs and other 

germline aberrations. In addition, this step could be used in identifying false findings by 

comparing cancer/germline NGS datasets - this would save time and money by increasing 

specificity of the approach with lesser use of other approaches for validation. In addition, 

many of the WGS somatic aberrations could be much easier to validate utilising germline 

controls - this is applied to CNAs, translocations and SNVs.  

Sequential samples were not used in this study. It would be important for observing CLL 

evolution from the genomic instability prospective. Many studies suggested CLL evolution 

by introducing more mutations in different genes which were useful for screening (357-

359).     

Regarding the use of a gene panel, a large list of genes increases the number of probes 

required and total enriched size, reducing the coverage depth and sensitivity to a 

minimum of 8% AF (total coverage: 250 reads; minimum allele coverage: 20 reads). It also 

increases the opportunity for off-target enrichment. Likewise, WGS offers a low-pass 

sequence of a genome, resulting in reducing the sensitivity of variant detection to 20% AF 

(coverage depth: 30x; minimum allele coverage: six reads).  

PGM sequencing produces a modicum of inherited bias when interpreting HP sequences 

and indels. Variant detection usually discerns HP errors as novel indels. As a result, 
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specificity of the variants was reduced and many indels turned out to be FPs, which also 

was a waste of time in terms of validating those variants (283). 

7.5. Conflicts Stated and Explained; Speculations About What The Results 

Might Mean 

DNA repair genes are defective in many cancers. Endometrium cancers have defects in 

TP53, POLE and other DNA repair genes (324, 335, 360). In CLL, other DNA repair genes 

have little evidence of being involved in such a mechanism despite TP53 defects. In 

addition, the data show no common CINs observed other than 17p deleted. This may 

reflect the tolerated status of the CLL genome, at least for this cohort of patients. 

POLE was found mutated in 20% of inactivated TP53 CLL. On the contrary, the inactivated 

POLE gene was confirmed with a robust prognosis in endometrial cancer (324).  

In addition, the chromosome 13q14 deletion was considered for its favourable prognosis. 

However, two cases (20%) from the worst prognosis cohort acquired this deletion. 

Many chromosomal instabilities were observed with WGS. The majority of them are 

single-copy deletions - these were considered  LOH where heterogeneous chromosomes 

had been compromised by dominating SNPs and missense variants in protein-coding 

regions. Regarding translocations and CLL, no common translocations were observed 

compared to other malignancies, such as CML, a common translocation BCR-ABL fused 

oncogene within the Philadelphia chromosome. The frequency of large CNAs varied 

between samples most affected having six affected chromosomes and the least was two 

affected chromosomes in Liv_02, Liv_03, Liv_06, Liv_07, Liv_08 and Liv_10. Chromosome 

5 was the second most affected chromosome. Polymorphic CNAs are extensive 
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throughout the genome, but paradoxically, the pathological consequences of CNAs are 

well-known, with Down’s Syndrome being the classic example. It would therefore be 

interesting to investigate the prevalence and nature of CNAs in a larger cohort where the 

association with TP53 defects and outcomes could be assessed. 

7.6. How to Advance The Knowledge Base Format Relating to the Existing 

Literature 

This study supports the notion that oncogene activation is the initiation event in CLL, 

followed by TP53 inactivation and chromosomal instability. Furthermore, WGS suggests a 

stable CLL genome of the patients despite LOH events that may accumulate mutations in 

the CLL genome at later stages (117, 127, 361, 362). However, there is less evidence that 

other DNA repair genes are recurrently mutated compared to colorectal cancer. In 

addition, CLL seems to be more defective with respect to genes that are involved in 

immune response and signal transduction pathways. These pathways could be linked to 

B-cell development and DSB events. 



CHAPTER 7: General Discussion 

212 

 

 

Figure 7- 1: Oncogene-Induced Model for Cancer Progression. Replication stress is caused 
by oncogenes followed by genomic instability and cancer development. This figure is 
adopted with permission from Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-
induced DNA damage model for cancer development. Science. 2008;319(5868):1352-5. 

7.7. Future work 

The clinical validation for the POLE gene could be expanded using more samples. In 

addition, ultra-deep sequencing could be implemented to detect tiny clones of mutations. 

Sequential samples could also be tested to look at the progress of clonal evolution within 

the disease course. 

WGS is rich with genome data, and so it can be used retrospectively. This includes 

mutations which significantly affect protein pathways, such as immune response and 

signal transduction pathways. In parallel, low-pass sequencing employing germline 

samples should be applied to confirm SNPs and germline indels and CNVs.  

Regarding probes enrichment for targeted-NGS, deep sequencing should be carefully 

established, especially for designing probes. Probes should be specifically designed and 
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tested to provide efficient enrichment and expected coverage depths. This could be 

carried out by targeting specific regions, avoiding CG-rich regions and maximising read 

length. Furthermore, in-house analysis pipelines should be established to reduce 

bioinformatics cost and providing flexibility for optimising and setting sequencing 

analysis.     

7.8. Conclusions 

Apart from TP53, this study shows there are no common mutations in DNA repair genes, 

thereby requiring further validation using a larger CLL cohort. It is also confirmed that the 

independent role of inactivated TP53 is as a molecular culprit for cancer survival and 

chemo resistance (363, 364). NGS proved to be advantageous as a comprehensive tool for 

detecting different molecular alterations. In addition, the 1000 Genome project would be 

a great asset for expanding sample numbers and increasing the statistical power of the 

discovery cohort with paired-sample WGS data from screened CLL samples. 
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Appendices 

Appendix table 1: Details of the Designed Probes for Human DNA Maintenance Genes 
Using Suredesign (Agilent); I and II are Subtypes to NER. 

Row labels 
No. of 
target 
exons 

No. of 
probe 

No. of 
probes 
repli-
cation 

Size of 
target 

regions 
(bp) 

Size of 
se-

quence 
regions 

(bp) 

Per-
centage 

of 
Cover-

age 

Ex-
ons 
of 

high 
cov-
er-
age 

Ex-
on
s of 
lo
w 

cov
er-
age 

BER 94 297 781 16716 23190 - 94 0 

MBD4 8 34 43 1957 2492 100 8 0 

MPG 5 17 82 1021 1320 100 5 0 

MUTYH 17 42 109 2046 3378 100 17 0 

NEIL1 10 30 103 1631 2375 100 10 0 

NEIL2 4 17 26 1084 1260 100 4 0 

NEIL3 10 33 54 2018 2580 100 10 0 

NTHL1 6 19 103 1059 1460 100 6 0 

OGG1 12 36 79 2098 2880 100 12 0 

SMUG1 4 20 44 1151 1440 100 4 0 

TDG 11 29 53 1464 2385 100 11 0 

UNG 7 20 85 1187 1620 100 7 0 

Cell-cycle 
control 

125 396 675 21994 31107 - 125 0 

CCNA1 9 28 31 1578 2220 100 9 0 

CCNA2 8 25 42 1459 1980 100 8 0 

CCNB1 9 28 44 1659 2220 100 9 0 

CCNB2 9 27 42 1377 2148 100 9 0 

CCNB3 11 76 76 4408 5220 100 11 0 

CCND1 5 15 55 988 1200 100 5 0 

CCND2 5 15 36 970 1200 100 5 0 

CCND3 6 18 75 1151 1440 100 6 0 

CCNE1 11 29 79 1471 2368 100 11 0 

CCNE2 12 32 38 1554 2563 100 12 0 

CDK1 7 19 21 1050 1560 100 7 0 

CDK2 7 20 21 1037 1620 100 7 0 

CDK4 7 19 30 1052 1560 100 7 0 

CDK5 12 24 40 1119 2128 100 12 0 

CDK6 7 21 45 1121 1680 100 7 0 

Chromatin 
structure and 

20 97 277 6136 7179 - 20 0 
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Row labels 
No. of 
target 
exons 

No. of 
probe 

No. of 
probes 
repli-
cation 

Size of 
target 

regions 
(bp) 

Size of 
se-

quence 
regions 

(bp) 

Per-
centage 

of 
Cover-

age 

Ex-
ons 
of 

high 
cov-
er-
age 

Ex-
on
s of 
lo
w 

cov
er-
age 

modification 

CHAF1A 15 56 148 3274 4260 100 15 0 

H2AFX 1 7 70 452 480 100 1 0 

SETMAR 4 34 59 2410 2439 100 4 0 

Cytidine 
deaminase 

5 14 22 697 1140 - 5 0 

AICDA 5 14 22 697 1140 100 5 0 

Direct reversal 
of damage 

18 50 94 2870 4080 - 18 0 

ALKBH2 3 12 17 846 900 100 3 0 

ALKBH3 10 24 24 1207 2040 100 10 0 

MGMT 5 14 53 817 1140 100 5 0 

DNA 
polymerases 

(catalytic 
subunits) 

302 1048 2078 58805 80534 - 302 0 

MAD2L2 7 20 53 1170 1620 100 7 0 

PCNA 6 16 34 906 1292 100 6 0 

POLB 17 37 46 1623 3220 100 17 0 

POLD1 26 73 427 3847 5771 100 26 0 

POLE 52 147 299 8169 11824 100 52 0 

POLG 22 72 226 4160 5624 100 22 0 

POLH 10 41 41 2342 3060 100 10 0 

POLI 10 40 74 2423 3000 100 10 0 

POLK 16 57 69 3100 4380 100 16 0 

POLL 9 33 52 2092 2452 100 9 0 

POLM 12 38 173 2232 2997 100 12 0 

POLN 26 69 109 3439 5660 100 26 0 

POLQ 31 148 183 8804 10740 100 31 0 

REV1 24 81 85 4384 6300 100 24 0 

REV3L 34 176 207 10114 12594 100 34 0 

Editing and 
processing 
nucleases 

64 243 486 13254 18302 - 64 0 

APTX 10 28 31 1283 2162 100 10 0 

ENDOV 10 25 113 1141 2100 100 10 0 

EXO1 13 47 49 2801 3600 100 13 0 
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Row labels 
No. of 
target 
exons 

No. of 
probe 

No. of 
probes 
repli-
cation 

Size of 
target 

regions 
(bp) 

Size of 
se-

quence 
regions 

(bp) 

Per-
centage 

of 
Cover-

age 

Ex-
ons 
of 

high 
cov-
er-
age 

Ex-
on
s of 
lo
w 

cov
er-
age 

FAN1 13 58 68 3339 4260 100 13 0 

FEN1 1 19 23 1163 1200 100 1 0 

SPO11 13 32 57 1451 2700 100 13 0 

TREX1 1 18 56 1130 1140 100 1 0 

TREX2 3 16 89 946 1140 100 3 0 

Fanconi 
anaemia 

309 1122 1764 62148 85570 - 309 0 

BRCA2 26 182 211 10777 12436 100 26 0 

BRIP1 19 71 76 4130 5400 100 19 0 

BTBD12 14 93 291 5785 6420 100 14 0 

C19ORF40 4 13 16 728 1010 100 4 0 

C1ORF86 11 31 142 1794 2520 100 11 0 

FANCA 44 108 190 5374 9023 100 44 0 

FANCB 8 45 53 2740 3180 100 8 0 

FANCC 15 38 47 2127 3180 100 15 0 

FANCD2 45 118 122 5479 9780 100 45 0 

FANCE 10 34 109 1811 2640 100 10 0 

FANCF 1 19 67 1145 1200 100 1 0 

FANCG 14 40 54 2149 3239 100 14 0 

FANCI 37 93 95 4731 7710 100 37 0 

FANCL 15 33 39 1492 2843 100 15 0 

FANCM 23 110 139 6607 7980 100 23 0 

PALB2 13 66 80 3821 4729 100 13 0 

RAD51C 10 28 33 1458 2280 100 10 0 

Genes defective 
in diseases 

associated with 
sensitivity to 

DNA-damaging 
agents 

140 431 870 24692 34070 - 140 0 

ATM 62 181 205 10411 14526 100 62 0 

BLM 21 78 86 4674 5940 100 21 0 

C7ORF11 2 8 62 580 600 100 2 0 

RECQL4 21 71 410 4048 5384 100 21 0 

WRN 34 93 107 4979 7620 100 34 0 

HR 273 842 1561 45930 66365 - 272 1 

BRCA1 24 112 116 6184 8160 100 24 0 
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Row labels 
No. of 
target 
exons 

No. of 
probe 

No. of 
probes 
repli-
cation 

Size of 
target 

regions 
(bp) 

Size of 
se-

quence 
regions 

(bp) 

Per-
centage 

of 
Cover-

age 

Ex-
ons 
of 

high 
cov-
er-
age 

Ex-
on
s of 
lo
w 

cov
er-
age 

DMC1 13 29 31 1287 2520 100 13 0 

EME1 8 33 36 1912 2441 100 8 0 

EME2 8 24 206 1495 1899 100 8 0 

GEN1 13 53 61 2987 3925 100 13 0 

GIYD1 6 18 131 948 1389 100 6 0 

GIYD2 6 18 131 948 1389 100 6 0 

MRE11A 21 52 58 2583 4336 100 21 0 

MUS81 16 39 140 1976 3191 100 16 0 

NBN 18 52 77 2668 4140 100 18 0 

RAD50 27 79 92 4751 6327 100 27 0 

RAD51 10 24 24 1355 1980 90 9 1 

RAD51B 12 31 33 1429 2580 100 12 0 

RAD51D 11 26 50 1386 2220 100 11 0 

RAD52 12 34 55 1824 2750 100 12 0 

RAD54B 16 62 67 3953 4680 100 16 0 

RAD54L 18 50 55 2604 4048 100 18 0 

RBBP8 18 59 65 3076 4610 100 18 0 

SHFM1 6 12 13 480 1080 100 6 0 

XRCC2 3 16 27 903 1140 100 3 0 

XRCC3 7 19 93 1181 1560 100 7 0 

MMR 168 582 802 32296 44841 - 168 0 

MLH1 20 52 52 2711 4320 100 20 0 

MLH3 13 83 86 4696 5734 100 13 0 

MSH2 18 55 80 3344 4380 100 18 0 

MSH3 24 72 121 3894 5760 100 24 0 

MSH4 20 57 85 3211 4620 100 20 0 

MSH5 25 63 90 3149 5188 100 25 0 

MSH6 10 70 123 4318 4800 100 10 0 

PMS1 16 62 82 3397 4639 100 16 0 

PMS2 15 51 66 2889 3960 100 15 0 

PMS2L3 7 17 17 687 1440 100 7 0 

Modulation of 
nucleotide pools 

21 56 189 3180 4560 - 20 1 

DUT 7 17 103 915 1440 100 7 0 

NUDT1 4 11 26 620 900 100 4 0 

RRM2B 10 28 60 1645 2220 91 9 1 
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Row labels 
No. of 
target 
exons 

No. of 
probe 

No. of 
probes 
repli-
cation 

Size of 
target 

regions 
(bp) 

Size of 
se-

quence 
regions 

(bp) 

Per-
centage 

of 
Cover-

age 

Ex-
ons 
of 

high 
cov-
er-
age 

Ex-
on
s of 
lo
w 

cov
er-
age 

NHEJ 152 474 584 26563 37459 - 152 0 

DCLRE1C 15 49 59 2528 3840 100 15 0 

LIG4 1 45 47 2756 2760 100 1 0 

NHEJ1 8 22 22 1218 1800 100 8 0 

PRKDC 87 246 336 14163 19879 100 87 0 

XRCC4 8 23 24 1183 1860 100 8 0 

XRCC5 21 53 57 2645 4440 100 21 0 

XRCC6 12 36 39 2070 2880 100 12 0 

NER 115 322 552 16878 26137 - 115 0 

CETN2 5 13 27 619 1080 100 5 0 

DDB1 27 75 87 3963 6061 100 27 0 

DDB2 10 27 34 1484 2220 100 10 0 

RAD23A 9 24 67 1272 1962 100 9 0 

RAD23B 12 31 49 1527 2580 100 12 0 

RPA1 17 44 82 2191 3660 100 17 0 

RPA2 9 26 43 1291 2100 100 9 0 

RPA3 4 9 10 446 780 100 4 0 

XPA 6 18 59 942 1440 100 6 0 

XPC 16 55 94 3143 4254 100 16 0 

I-NER-related 100 327 659 17696 25396 - 100 0 

ERCC6 23 118 125 6949 8460 100 23 0 

ERCC8 13 32 37 1492 2700 100 13 0 

MMS19 32 80 108 3917 6592 100 32 0 

UVSSA 13 42 158 2390 3300 100 13 0 

XAB2 19 55 231 2948 4344 100 19 0 

II-TFIIH 203 557 1002 29276 45270 - 203 0 

CCNH 9 24 26 1209 1980 100 9 0 

CDK7 13 30 38 1352 2580 100 13 0 

ERCC1 10 24 50 1235 2040 100 10 0 

ERCC2 24 59 225 2816 4827 100 24 0 

ERCC3 15 46 87 2857 3660 100 15 0 

ERCC4 12 50 69 3011 3720 100 12 0 

ERCC5 25 93 100 5500 7080 100 25 0 

GTF2H1 14 36 38 2032 3000 100 14 0 

GTF2H2 15 35 44 1488 3000 100 15 0 

GTF2H3 13 29 44 1187 2462 100 13 0 
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Row labels 
No. of 
target 
exons 

No. of 
probe 

No. of 
probes 
repli-
cation 

Size of 
target 

regions 
(bp) 

Size of 
se-

quence 
regions 

(bp) 

Per-
centage 

of 
Cover-

age 

Ex-
ons 
of 

high 
cov-
er-
age 

Ex-
on
s of 
lo
w 

cov
er-
age 

GTF2H4 14 34 64 1715 2771 100 14 0 

GTF2H5 2 5 5 256 420 100 2 0 

LIG1 29 70 186 3528 5930 100 29 0 

MNAT1 8 22 26 1090 1800 100 8 0 

Other BER and 
strand break-
joining factors 

75 223 486 12199 17446 - 75 0 

APEX1 4 16 17 1037 1200 100 4 0 

APEX2 6 28 38 1677 2040 100 6 0 

APLF 11 32 66 1795 2580 100 11 0 

LIG3 20 61 70 3484 4860 100 20 0 

PNKP 16 39 203 1886 3091 100 16 0 

XRCC1 18 47 92 2320 3675 100 18 0 

Other conserved 
DNA damage 

response genes 
300 1000 1505 56916 77108 - 298 2 

ATR 49 151 173 9120 11990 100 49 0 

ATRIP 14 47 107 2695 3660 100 14 0 

CHEK1 13 36 48 1963 2922 100 13 0 

CHEK2 20 47 54 2326 3808 97 19 1 

CLK2 12 31 45 1740 2571 100 12 0 

HUS1 11 26 34 1168 2170 100 11 0 

MDC1 14 111 135 6550 7467 100 14 0 

PER1 23 78 277 4548 5967 100 23 0 

RAD1 6 17 18 1027 1380 100 6 0 

RAD17 18 48 57 2465 3902 100 18 0 

RAD9A 11 28 111 1402 2176 100 11 0 

RIF1 37 149 175 8417 11113 100 37 0 

TOPBP1 27 86 94 5109 6770 100 27 0 

TP53 14 33 57 1697 2632 94 13 1 

TP53BP1 31 112 120 6689 8580 100 31 0 

Other identified 
genes with 
known or 

suspected DNA 
repair function 

97 337 501 18975 25940 - 97 0 

DCLRE1A 9 56 58 3303 3900 100 9 0 
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Row labels 
No. of 
target 
exons 

No. of 
probe 

No. of 
probes 
repli-
cation 

Size of 
target 

regions 
(bp) 

Size of 
se-

quence 
regions 

(bp) 

Per-
centage 

of 
Cover-

age 

Ex-
ons 
of 

high 
cov-
er-
age 

Ex-
on
s of 
lo
w 

cov
er-
age 

DCLRE1B 4 27 33 1679 1860 100 4 0 

HELQ 18 63 72 3666 4860 100 18 0 

OBFC2B 6 14 22 756 1188 100 6 0 

PRPF19 16 38 61 1835 3221 100 16 0 

RDM1 7 19 22 1066 1560 100 7 0 

RECQL 14 39 45 2230 3163 100 14 0 

RECQL5 22 68 175 3634 5348 100 22 0 

RPA4 1 13 13 806 840 100 1 0 

 PARP enzymes 
that bind to DNA 

52 142 218 7782 11547 - 51 1 

PARP1 25 69 88 3828 5580 98 24 1 

PARP2 16 41 55 2106 3390 100 16 0 

PARP3 11 32 75 1848 2577 100 11 0 

Repair of DNA-
topoisomerase 

crosslinks 
25 70 96 3642 5700 - 25 0 

TDP1 17 46 47 2226 3780 100 17 0 

TDP2 8 24 49 1416 1920 100 8 0 

Ubiquitination 
and 

modification 
128 372 533 20402 29678 - 125 3 

HLTF 28 70 92 3710 5854 100 28 0 

RAD18 14 35 51 1872 2940 100 14 0 

RNF168 6 31 31 1836 2220 100 6 0 

RNF4 10 21 23 889 1719 96 9 1 

RNF8 11 37 67 1898 2845 100 11 0 

SHPRH 32 104 112 6060 8160 100 32 0 

SPRTN 5 26 33 1605 1860 100 5 0 

UBE2A 6 13 39 579 1140 100 6 0 

UBE2B 7 13 24 675 1140 86 6 1 

UBE2N 4 11 26 539 900 100 4 0 

UBE2V2 5 11 35 739 900 76 4 1 

Total (194 
Genes) 

2786 9002 15735 499047 702619 - 2778 8 

 


